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Cancer, also known as malignant tumor or malignant neoplasm, is the name given to a collection of related diseases. In all types of cancer, some of the body's cells begin to divide abnormally without stopping and have the potential to invade surrounding tissues. In this work, we focus on estimating the parameters of a model which tries to describe the growth of a cancer tumor based on the available measurements of the tumor volume and on comparing the effectiveness with respect to the accuracy of the estimation of the various methods we have tested. The Gompertz function is used as the model basis, and our analysis aims to compute the growth rate and the plateau size of the tumor. The methods used to estimate these parameters are based on least squares, maximum likelihood and the Extended Kalman Filter (EKF). In this work, we present five different methods. The results show that, when the process and measurement noise characteristics are known, maximizing the joint probability density function of the observations using numerical integration to compute the probability density functions yields most times the best results. The methods based on the EKF also yield satisfactory results.

INTRODUCTION

Cancer is the leading cause of death in the developed world and the second leading cause of death in the developing world (WHO, 2014). The great majority of cancers, some around 90-95% of cases, are due to environmental factors and the remaining 5-10% are due to inherited genetics [START_REF] Anand | Cancer is a preventable disease that requires major lifestyle changes[END_REF]. Treatment options -some of the primary are chemotherapy, surgery and radiation therapy -depend on the type, location and grade of the cancer (WHO, 2014, Wikipedia, 2016).

Chemotherapy is the treatment of cancer with one or more cytotoxic anti-neoplastic drugs (chemotherapeutic agents) as part of a standardized regiment. Traditional chemotherapeutic agents act by killing cells that divide rapidly, one of the main properties of most cancer cells. Mathematical modeling and optimal control techniques could help to deliver a better outcome of cancer chemotherapy. Mathematic models are used to describe the evolution of a tumor, the mechanism of drug effects and the constraints of drug use due to subsequent toxicities, while optimal control uses the developed models to design optimal chemotherapy strategies [START_REF] Barbolosi | Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK-PD model[END_REF][START_REF] Dua | Optimal Delivery of chemotherapeutic agents in cancer Computers and Chemical Engineering[END_REF], Hadjiandreou and Mitsis, 2014).

In the literature, a lot of works deal with the evaluation of the ability the existing models have to describe the tumor dynamics [START_REF] Benzekry | Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth[END_REF][START_REF] Nguimkeu | A Simple Selection Test Between the Gompertz and Logistics Technological Forecasting and Social Change[END_REF][START_REF] Ribba | A Review of Mixed-Effects Models of Tumor Growth and Effects of Anticancer Drug Treatment Used in Population Analysis CPT[END_REF] or with the problem of predicting the future volumes of a tumor [START_REF] Hadjiandreou | Mathematical Model of Tumor Growth, Drug-Resistance, Toxicity, and Optimal Therapy Design[END_REF][START_REF] Achilleos | Linear Dynamic Modelling and Bayesian Forecasting of Tumor Evolution Proceedings of the[END_REF][START_REF] Achilleos | Multiprocess Dynamic Modeling of Tumor Evolution with Bayesian Tumor-Specific Predictions[END_REF]. To the best of our knowledge, this is the first work comparing the performance of various methods for estimating the parameters of the Gompertz function.

In this work, we focus on estimating the parameters of a model that can describe the evolution of a tumor growth in an individual subject. As tumor growth depends on various parameters according to the individual patient, it is important to compute personalized models. This may lead to better chemotherapy strategies. The results depend on the method used. In our analysis, we use the Gompertz curve, a widely used model which takes into account the reduced growth rate of the tumor that is observed as its size increases. In that model, we consider that the initial tumor size is known and we need to identify two unknown parameters, the proliferative ability of the cells and the carrying capacity (the maximum size that can be reached with the available nutrients, also referred to as plateau). Both parameters are considered constant. In our approach, we have a set of measurements representing the volumes of a tumor at various time instants and we need to find the parameters that create the curve fitting best to the set of measurements. This paper is organized as follows: Section 2 describes the tumor growth model used in this work, Section 3 describes the techniques used in order to estimate the parameters of the Gompertz function, Section 4 presents the results from the experiments we conducted, Section 5 contains the discussion about the experimental results and Section 6 contains the conclusions and suggestions for further research.

TUMOR GROWTH MODEL

During the early stages, cancer tumors proliferate in an exponential fashion. Later on, as the tumor size increases, the growth rate decreases and the tumor reaches a plateau size. Unlike the simple exponential model, the Gompertz function can predict this behavior successfully. This model has been widely used because of its simplicity and its ability to describe experimental data reasonably well. It is given by:

x k+1 = θ 2 exp log( x k θ 2 )exp(- 1 θ 1 T ) (1)
where x k (mm 3 ) is the tumor size, θ 1 (days) is a constant related to the proliferative ability of the cells, θ 2 (mm 3 ) is the carrying capacity ( lim k→∞ x k = θ 2 ), T (days) is the time interval between k and k + 1, and k ∈ N -see [START_REF] Dennis | Density dependent state space model for population abundance data with unequal time intervals data with unequal time intervals[END_REF].

Assuming random additive process and measurement noise the model can be formulated as follows:

x k+1 = f (x k , θ) + w k (2a) y k = x k + υ k (2b) where f (x k , θ) = θ 2 exp log( x k θ 2 )exp(- 1 θ 1 T ) (3) and θ = θ 1 θ 2 . ( 4 
)
The random variables w k and υ k , k ∈ N are mutually independent and normally distributed with known parameters:

w k ∼ N (0, σ 1 x k e 1
) and υ k ∼ N (0, σ 2 x k e 2 ). Measurements are available from time k=1 onwards and x 0 = y 0 = 1 is assumed. Because of the random components w k and υ k , the model (2) can also be represented via the description:

x k+1 ∼ p(x k+1 |x k ) (5a) y k ∼ p(y k |x k )
(5b) where p(x k+1 |x k ) is the probability density function describing the dynamics for given values of x k , and p(y k |x k ) is the probability density function describing the measurements.

PARAMETER ESTIMATION TECHNIQUES

In this paper, the following problem is considered: let Y N = {y 1 , y 2 , ..., y N } be the available measurements of a cancer tumor volume and (2a), (2b) describe the system dynamics; compute an estimate θ of the parameter θ based on the N available measurements, considering that the process and measurement noise parameters (σ 1 , e 1 , σ 2 , e 2 ) are known. In the rest of this section, we describe the techniques used to estimate the parameters of the Gompertz function.

Naive Least Squares

The Least Squares approach used in this work is a very simple and easily applicable implementation. In this text, the method will be referred to as Naive Least Squares (NLS). In this method, the measurement noise is not taken into consideration, and as a result it is assumed that y k = x k . The goal is to find an estimate for θ ∈ Θ that minimizes the error:

ε θ = N k=1 (y k -xk ) 2 (6) 
where

xk = f (y k-1 , θ) = θ 1 exp log( y k-1 θ 1 )exp(- 1 θ 2 T ) (7)
with Θ ⊆ R 2 denoting a compact set of permissible values of the unknown parameter θ, and y 0 considered known.

Maximum Likelihood

The Maximum Likelihood approach involves maximizing the joint density (likelihood) p θ (Y N ) of the observation:

θ = arg max θ∈Θ p θ (y 1 , ..., y N ) (8)
with Θ ⊆ R 2 denoting a compact set of permissible values of the unknown parameter θ [START_REF] Schön | System Identification of nonlinear state-space models[END_REF].

To compute this, Bayes' rule can be used in order to decompose the joint density according to

p θ (y 1 , ..., y N ) = p θ (y 1 ) N k=2 p θ (y k |Y k-1 ) (9) 
where

p(y k+1 |Y k ) = p(y k+1 |x k+1 )p(x k+1 |Y k )dx k+1 (10) p(x k+1 |Y k ) = p(x k+1 |x k )p(x k |Y k )dx k (11) and p(x k+1 |Y k+1 ) = p(y k+1 |x k+1 )p(x k+1 |Y k ) p(y k+1 |Y k ) . (12) 
In this work, the permissible values Θ consist of a n Θ × n Θ grid. Since the dimension of x k is 1, numerical integration can be used to approximate the integrals of ( 10) and ( 11).

The most crucial part in this method is to perform an accurate integration. The interval of integration is [0, X max ] and in order to compute this definite integral the trapezoidal rule

b a f (x)dx ≈ (b -a) f (a) + f (b) 2 (13)
is used. The smaller the interval [a, b] is, the smaller the approximation error will be. For this reason, we can divide the interval [0, X max ] to smaller intervals and compute the sum for all the integrals. However, the number of intervals required for a very small error is very large in our case and computing all these integrals at every iteration is prohibitive. Nevertheless, because of the nature of the problem, there is a way to find an interval significantly smaller than the interval [0, X max ] where the error is also very small. Based on the Gaussian nature of the noise and using the measurement y k as the center of the distribution for x k with standard deviation σ = σ 0 y k e 0 , we compute the interval [y k -4σ, y k + 4σ]. This interval is divided into smaller intervals (in this work the experiments were conducted using 50 intervals), and the sum of all these intervals gives the values for the distributions of ( 10) and (11).

As regards the grid, there are two important parameters. The size of the grid (how many values it contains) and the range between these values. The size of the grid is the main parameter that affects the execution time, while the range between the values the grid contains affects the accuracy of the parameter estimation. In order to reduce the size of the grid, the ML method is executed three times, each time decreasing the range between the minimum and the maximum value. The first time the search interval is big enough to contain the real value of the unknown parameters. During the subsequent steps, the search interval becomes smaller, and the grid is centered at the value estimated in the previous step. The default values for the aforementioned variables will be mentioned in Section 4.

Naive Maximum Likelihood

Inspired by the NLS method in 3.1 a simplification concerning the noise can be made, which leads to equations that can be dealt with easier. If (2a) and (2b) are modified to

x k+1 = f (y k , θ) + d k (14a) y k = x k (14b) where f (y k , θ) = θ 1 exp log( y k θ 1 )exp(- 1 θ 2 T ) (15) θ = θ 1 θ 2 (16) and d k ∼ N (0, σ k ), where σ k = σ 1 y k-1 e 1 + σ 2 y k-1 e 2
, then maximum likelihood estimation can be used to find an estimate θ for the unknown parameter θ that maximizes the likelihood p like θ (Y N ):

θ = arg max θ∈Θ p like θ (y 1 , ..., y N ) ( 17 
)
where

p like θ (y 1 , ..., y N ) = N k=1 p θ (y k |y k-1 ) (18) 
with Θ ⊆ R 2 denoting a compact set of permissible values of the unknown parameter θ, y 0 being considered known and p θ (y k |y k-1 ) coming from (2b). This method will be referred to in this text as Naive Maximum Likelihood (NML).

Extended Kalman Filter

In this subsection, we use the Extended Kalman Filter (EKF) to estimate the parameters of the stochastic system using a state augmentation. The EKF gives an approximation of the optimal estimate. In order to approximate the non-linearities of the system dynamics, a linearized version of the nonlinear system model around the last state estimate is created [START_REF] Maybeck | Stochastic Models, Estimation and Control[END_REF][START_REF] Charalampidis | Computationally efficient Kalman filtering for a class of nonlinear systems[END_REF][START_REF] Charalampidis | Calibration of a Microdialysis Sensor and Recursive Glucose Level Estimation in ICU Patients Using Kalman and Particle Filtering[END_REF].

If, in (3), we consider that the parameters θ 1 and θ 2 are also states of the system, and we name θ 1 as x 2 k and θ 2 as x 3 k (these are not exponents), the equation becomes:

f (x 1 k , x 2 k , x 3 k ) = x 3 k exp log( x 1 k x 3 k )exp(- 1 x 2 k T ) (19)
where x j i ∈ (0, +∞) for every i = 1, 2, ...N and j = 1, 2, 3. Then:

x 1 k+1 = f (x 1 k , x 2 k , x 3 k ) + w k (20a) x 2 k+1 = x 2 k (20b) x 3 k+1 = x 3 k (20c) y k = x 1 k + v k (21)
where w k ∼ N (0, q k ) and υ k ∼ N (0, r k ). If we define

X k+1 =   x 1 k+1 x 2 k+1 x 3 k+1   =   f (x 1 k , x 2 k , x 3 k ) x 2 k x 3 k   + w k 0 0 = F (X k ) + W k (22) Y k = [ X k 0 0 ] + V k = H(X k ) + V k (23)
where

W k ∼ N (0, Q k ), 0 = 0 0 0 , Q k = q k 0 0 0 0 0 0 0 0 and V k ∼ N (0, R k = r k ), then we have X k+1 = F ( Xk ) + ∂F ∂x k | xk (X k -Xk ) + W k (24)
and

Y k+1 = H( Xk ) + ∂H ∂x k | xk (X k -Xk ) + V k . (25)
Therefore, the prediction step is:

X- k+1 = F ( Xk ) (26) P - X k+1 = ∂F ∂x k | xk P X k ∂F ∂x k T | xk + Q k (27)
while the correction step is:

Ŷ - k+1 = H( X- k+1 ) (28) 
P - Y k+1 = ∂H ∂x k | X- k+1 P - X k+1 ∂H ∂x k T | X- k+1 + R k (29) P - X k+1 Y k+1 = P - X k+1 ∂H ∂x k T | X- k+1 (30) Xk+1 = X- k+1 + K k+1 (Y k+1 -Ŷ - k+1 ) (31) 
P X k+1 = P - X k+1 -K k+1 P - Y k+1 K T k+1 (32) K k+1 = P - X k+1 Y k+1 + (P - Y k+1 ) -1 . (33) 
The initial conditions for the EKF are

x 1 0 = 1, x 2 0 = θ (1) 1 and x 3 0 = θ (1)
2 , where θ

(1)

1 and θ

(1)

2 are the estimates of the unknown parameters computed using the NML method, and P X0 = I. After the execution of the EKF algorthm, a new estimate for the unknown parameters is available. Using that estimation as initial condition for x 2 0 and x 3 0 and repeating the same procedure, a new estimation is derived. This is repeated until the estimated parameters converge to a θ.

ML -EKF Combination

Another approach is the combination of the EKF and the ML method. This method uses the ML technique and the EKF in turn. At the first iteration, NML can be used to find an estimate θ(1) for the unknown parameter θ. At later iterations, θ(i) , where i = 2j + 1 and j ∈ N, is the estimate for the unknown parameter θ that maximizes the likelihood p like θ (Y N ):

θ(i) = arg max θ∈Θ p like θ (y 1 , ..., y N ) ( 34 
)
where

p like θ (y 1 , ..., y N ) = N k=1 p θ (y k |x i-1 k ) ( 35 
)
and p θ (y k |x i-1 k ) is given by (2b). Having the estimate θ(i) available and using it as initial condition in the EKF, we can get an estimate xi+1 k for the system states x k . Using the new estimate xi+1 k in the maximum likelihood estimator, we can get another estimate θ(i+2) , and so on. This procedure can be repeated several times until θ(k) converges to a vector θ.

SIMULATIONS

In this section, we present the results of the simulations performed using Matlab. In the first experiment, we simulate the growth of 100 cancer tumors. (2a) and (2b) describe the tumor dynamics. For each tumor, the tumor's carrying capacity θ 2 (parameter θ j 2 ) and the doubling time θ 1 (parameter θ j 1 ), as long as the process and measurement noise parameters (σ j

1 , e j 1 , σ j 2 , e j 2 ), where j = 1, ..., 100 is the identification number of the test subject, were chosen randomly from uniform distributions. Table 1 shows the minimum and maximum possible values for each parameter. The sampling time between two consecutive measurements is two days and the number of available measurements for each tumor is 30. The initial volume for x 0 for every tumor is 1 (mm 3 ).

As regards the ML method described in 4.3, n Θ = 11, σ 0 = σ 1 + 0.1 and e 0 = e 1 . Furthermore, in the first execution of the method, the grid's intervals are [x c1 -10, x c1 + 10] for the x-axis and [x c2 -10, x c2 + 10] for the yaxis, where x c1 = 12 and x c2 = 15. In the second and third execution, the variables x c1 and x c2 take the values θ1 and θ2 estimated by the previous execution of the algorithm, and the grid's intervals are [x c1 -2, x c1 + 2] for the x-axis and [x c2 -2, x c2 + 2] for the y-axis in the second iteration and [x c1 -1, x c1 + 1] for the x-axis and [x c2 -1, x c2 + 1] for the y-axis in the third iteration.

The function fmincon provided in The Mathworks ( 2016) is used to minimize the error θ and the likelihood p like θ (Y N ) in NLS and NML, respectively. In order to test if fmincon can provide the set of parameters which minimizes the error θ and the likelihood p like θ (Y N ), we used parameter grids and performed extensive simulations to check if there is any set from the grids which is better than the set provided by fmincon. In every case, fmincon provided the best set of parameters. Table 2 shows the absolute mean percentage and the RMS value of the divergence of the estimated value for parameters θ 1 and θ 2 from the real value for every method described in Section 3. We also present the minimum and maximum values of the absolute percentage of divergence for each of the two unknown parameters, as well as the real values of θ 1 and θ 2 for the test subjects that the parameters showed the minimum and maximum divergence from the real ones, and the estimated values θ1 or θ2 (based on which parameter shows the minimum or maximum). Tables 3 and4 contain the aforementioned information. By observing Table 2, we can see that estimating the doubling time of the tumor is not as accurate as estimating the carrying capacity. In order to test if this behavior is a result of the system dynamics or it occurs due to the available measurements, we conducted two different experiments.

Instead of waiting to obtain 30 measurements, the tumor size measurement procedure stops when the last measured volume reaches the 75% of the carrying capacity in the first experiment and the 50% of the carrying capacity in the second one. The results from these experiments are presented in Tables 5 and6 and are discussed in the next section. Lastly, the final experiment is conducted to check the effect of process and measurement noise to the estimation results. Three noise categories have been created, see Table 7, based on the values the parameters σ j 1 and σ j 2 take. For every category, the experiment described at the start of this section was repeated. The results are presented in tables 8 to 10. 

DISCUSSION

In the discussion section, we start by commenting how the implemented techniques performed and continue with presenting and explaining the observations which can be made by studying the results.

It is obvious that the implementation of the NLS method used is outperformed by the other methods (except in case of low process and measurement noise where the EKF methods have a slightly worse result). Nevertheless, it is a very simple and fast approach and its results will probably be better than random estimates. The estimates computed using this method could be used as initial conditions for the EKF methods.

A second approach used due to its simplicity is the NML method. Simulation results show that in a few cases this method performs better than all the other methods used, but this behavior is not ensured. Also, in most cases, the ML method described in 3.3 performs better than NML. NML is preferable to NLS regarding the estimation of the initial conditions.

When the noise parameters are known, the EKF method and the combination of the EKF and ML yield the same results. This does not happen if the carrying capacity has not been reached, if noise parameters are high, or if the noise parameters are unknown (this is a more complex problem and it is outside the scope of this paper).

Judging from the experimental results, it is not clear if the methods using the EKF are better compared to NLS and NML. Sometimes they perform better and sometimes they perform worse. Generally, they are better at estimating the doubling time and worse at estimating the carrying capacity. However, it is clear that the ML method performs better than the EKF methods.

The last method used in order to estimate the unknown parameters of the Gompertz function is the ML method described in 3.3. As mentioned before, compared to the other methods, the estimated values of the unknown parameters have the least divergence from the real parameters. However, in order to achieve this improvement, the amount of time needed to compute the integrals numerically is many times bigger than the time needed to compute parameter estimates using the other methods, but it is still acceptable.

Table 11 shows the mean time (in seconds) that each method needs. The simulations were performed using an Intel Core i7-6700K @ 4.00GHz and 16GB of DDR4 @ 3200 MHz. Starting from Table 2, as regards the doubling time parameter θ 1 , the ML method shows the best general performance, EKF methods (EKF and EKF-ML) come second, NML performs a little worse than the EKF methods and last comes the NLS method. Regarding the carrying capacity θ 2 , the NML method performs sightly better than the ML and then follows the EKF methods and the NLS method. However, the results of carrying capacity estimation do not diverge as much as the results of doubling time estimation.

In Table 3, we can see the minimum absolute divergence between the real tumor's doubling time (θ 1 ) and the estimated doubling time ( θ1 ) achieved by each method. We can also see the minimum absolute divergence between the real tumor's carrying capacity (θ 2 ) and the estimated carrying capacity ( θ2 ). These minimum values were achieved when the noise category for the system was low or medium.

In order to estimate the carrying capacity θ 2 accurately, it is necessary that the tumor volume has reached the plateau. This also explains why the real value of doubling time θ 1 is low in Table 3. Because of the way the experiment has been set up -N is chosen to be 30 (measurements) and t is 2 (days) -the doubling time has to have a low value so that the tumor is able to reach the plateau during the measurement time. Another important factor in estimat-ing the carrying capacity is the number of measurements near the plateau size, more measurements near the plateau resulting to higher accuracy. We also need to add that the reason the value of real θ 2 in Table 3 is most times low, is that the measurement noise variance is considered to be σ 2 y e2 k . Indeed, when θ 2 has small values, the variance is low and as a result the measurement noise will probably be smaller.

As regards the cases when the methods fail to make a good estimation of the parameters, for parameter θ 1 this happens mostly when the doubling time is high and the plateau is low, and so the measurements do not provide a good description of the tumor growth procedure. However, there are also cases where the tumor grows too fast and in combination with the high divergence among measurements at the plateau, the proposed methods fail to give a good estimation. For parameter θ 2 , the methods fail to give good estimates if the doubling time is high and as a result there are only a few or no measurements of the plateau size during the monitoring time. This observation led us to the next experiment, where we investigate how well can the proposed methods estimate the parameter θ 2 , when the measurements have reached only the 75% or the 50% of the carrying capacity.

Judging by the first experiment only, could lead to the conclusion that it is easier to estimate θ 2 compared to estimating θ 1 . This happens because there are a lot of measurements describing the plateau of the tumor. When the tumor has not reached the plateau, estimating the carrying capacity is as difficult as estimating the doubling time. Additionally, the less measurements there are, the less accurate the parameter estimation is.

The last experiment was conducted to check the effect of the noise to the parameter estimation. Three noise categories were created (low, medium and high -see Table 7), depending on parameters σ 1 and σ 2 . The simulation results confirm the intuitive expectation that higher noise variance results in a less accurate estimation. Furthermore, this experiment also provides us with another important observation, that the ML method proposed in 3.3 performs better than all the other methods tested and in addition when the process and measurement noise are medium or high, ML provides significantly better results regarding the estimation of the doubling time. The estimation of the carrying capacity is also better when ML is used but there is no significant difference from the other methods. This last conclusion can be also reached for the case of low noise variance.

Regarding the execution time, the simpler a method is, the faster it performs. NLS and NML are the fastest and then follows the EKF and the EKF-ML. ML needs a lot more time than all the other, but using this method we can compute even better estimates.

CONCLUSIONS

In this work, we developed methods that can estimate the unknown parameters of the Gompertz function, in order to use the function to describe the evolution of tumor volumes. Furthermore, we created synthetic data representing measurements of tumor volumes by using the same function and we applied the methods we developed. The parameters we considered unknown and tried to estimate are the tumor's doubling time and the carrying capacity of the tumor. Both process and measurement noise characteristics are considered known. We used the Least Squares method, the Maximum Likelihood and the Extended Kalman Filter. We also combined the aforementioned methods to check if we could achieve better results.

The simulation results show that ML yields the best estimates in case the process and measurement noise characteristics are known. However, it requires a lot of time compared to the other methods. Using the EKF to estimate the unknown parameters, or using the EKF to estimate the states of the system and ML to estimate the unknown parameters yields the same estimates when the process and measurement noise characteristics are known. Finally, making the assumption that there is no measurement noise and thus using NLS or NML can provide a good estimate that can be used as initial condition when using the EKF.

For further research, we propose investigating the cases where the characteristics of one or both of the noises are unknown. In practice, both process and measurement noise characteristics are unknown. However, investigating the case where process or measurement noise characteristics is known may provide useful hindsights. Furthermore, we propose the implementation of Particle Filtering, a method widely used in nonlinear system filtering. Particle Filtering can be used instead of the EKF, in order to estimate the unknown states x k . Finally, the application of these methods to real data is proposed for future work in order to test if the results match with the results from the synthetic data.

Table 1 .

 1 Minimum and maximum parameter values

	Parameters Minimum Value Maximum Value
	θ 1	5	15
	θ 2	8	20
	σ 1 , σ 2	0.1	0.3
	e 1 , e 2	0.3	0.5

Table 2 .

 2 Simulation results

	Method	Mean Div. (%) θ 1 θ 2	RMS Div. θ 1 θ 2
	NLS	16.0612 7.1645 13.3365 7.3556
	NML	14.5844 6.6445 10.8416 6.7939
	ML	12.6019 6.8500 10.7606 7.3053
	EKF/EKF -ML 14.0094 7.0537 11.9133 7.4391

Table 3 .

 3 Minimum divergence between real and estimated parameters achieved by each method

	Method	Div. (%)	θ 1	θ 2	θ1
	NLS	0.0413	13.6740	8.1862	13.6796
	NML	0.5213	8.6419	18.9599	8.5969
	ML	0.0722	8.7937	14.5772	8.8000
	EKF/EKF -ML	0.6290	13.9511 19.1620 13.9423
					θ2
	NLS	0.0241	10.5643	8.9633	8.9654
	NML	0.0368	9.0437	18.6802 18.6733
	ML	0.1569	6.9781	9.2145	9.2000
	EKF/EKF -ML	0.0386	5.9121	9.0397	9.0432
	Table 4. Maximum divergence between real
	and estimated parameters achieved by each
		method		
	Method	Div. (%)	θ 1	θ 2	θ1
	NLS	71.3236	19.2754 17.0948 33.0234
	NML	53.4808	8.6876	8.1531	4.0414
	ML	53.2046	18.2762 15.2335 28.0000
	EKF/EKF -ML	52.1723	19.0060	9.0625	9.0901
					θ2
	NLS	37.2337	19.2754 17.0948 23.4599
	NML	32.3063	18.2762 15.2335 20.1549
	ML	53.2046	18.2762 15.2335 22.0000
	EKF/EKF -ML	37.1583	18.0459 14.0771	8.8463

Table 5 .

 5 Simulation results (75%) of carrying capacity

	Method	Mean Divergence (%) θ 1 θ 2	RMS Divergence θ 1 θ 2
	NLS	35.1654	38.3545	19.3628 30.4817
	NML	32.7685	38.8622	21.3486 29.9026
	ML	34.4015	33.2359	31.3080 22.9401
	EKF	34.3691	43.8032	19.5450 31.0698
	EKF -ML 34.3689	43.4494	19.5449 29.8533
	Table 6. Simulation results 50% of carrying
			capacity	
	Method	Mean Divergence (%) θ 1 θ 2	RMS Divergence θ 1 θ 2
	NLS	62.4214	53.3370	58.1404 35.1616
	NML	64.5582	53.1736	42.1386 35.1578
	ML	73.3614	67.1030	62.8518 55.3252
	EKF	66.7913	55.7251	41.6237 34.9852
	EKF -ML 66.5279	55.4277	41.5188 34.5241

Table 7 .

 7 Noise categories

	Parameters Minimum σ j 1 and σ j 2	Maximum σ j 1 and σ j 2
	Low	0.01			0.1
	Medium	0.1			0.25
	High	0.25			0.4
	Table 8. Low system and measurement noise
		variance		
	Method	Mean Divergence (%) RMS Divergence θ 1 θ 2 θ 1 θ 2
	NLS	3.6265	1.6377		3.0243	1.4587
	NML	3.3309	1.5478		2.5050	1.3714
	ML	3.3001	1.5336		2.7131	1.3701
	EKF/EKF -ML 3.9977	2.1865		3.6205	3.2832
	Table 9. Medium system and measurement
		noise variance		
	Method	Mean Divergence (%) θ 1 θ 2	RMS Divergence θ 1 θ 2
	NLS	19.1271	6.9694		14.1750	7.9602
	NML	17.1271	6.6480		10.8947	6.7706
	ML	13.8611	6.8200		11.3370	7.4151
	EKF/EKF -ML 18.6537	9.7560		10.9018 11.1491

Table 10 .

 10 High system and measurement noise variance

	Method	Mean Divergence (%) θ 1 θ 2	RMS Divergence θ 1 θ 2
	NLS	33.3905	11.5012	19.2734 11.3903
	NML	32.8010	11.4564	17.6611 12.0277
	ML	22.3425	11.3136	18.3328 14.5604
	EKF	30.3944	14.2893	15.5761 16.2113
	EKF -ML 30.9344	14.1240	15.5761 15.4199

Table 11 .

 11 Mean execution time for each method

	Method	Mean Time (seconds)
	NLS	0.5
	NML	0.1
	ML	224
	EKF	1.8
	EKF -ML	1.1