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Abstract

We study a modified version of a prey-predator system with mod-
ified Leslie-Gower and Holling type II functional response studied by
M.A. Aziz-Alaoui and M. Daher-Okiye. The modification consists in
incorporating a refuge for preys, and substantially complicates the dy-
namics of the system. We also investigate conditions for extinction
or existence of a stationary distribution, in the case of a stochastic
perturbation of the system.

Keywords: Prey-predator; Leslie-Gowers; Holling type II; refuge; Poincaré
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1 Introduction

We study a two-dimensional prey-predator system with modified Leslie-
Gowers and Holling type II functional response. This system is a gener-
alization of the system investigated in the papers by M.A. Aziz-Alaoui and
M. Daher-Okiye [1, 6].

Aziz-Alaoui and M. Daher-Okiye’s model has been studied and general-
ized in numerous papers: models with spatial diffusion term [3], with time
delay [24], with stochastic perturbations [21, 20, 23, 18], or incorportaing a
refuge for the prey [4], to cite but a few.

A novelty of the present paper is that we add a refuge in a way which is
different from [4], since the density of prey in our refuge is not proportional to
the total density of prey. This kind of refuge entails a qualitatively different
behavior of the solutions, even for a small refuge, contrarily to the type of
refuge investigated in [4]. Let us emphasize that, even in the case without
refuge, our study provides new results.
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In the first and main part of the paper (Section 2), we study the system
of [1, 6] with refuge, but without stochastic perturbation:

(1.1)


ẋ = x(ρ1 − βx)− α1y(x− µ)+

κ1 + (x− µ)+

ẏ = y

(
ρ2 −

α2y

κ2 + (x− µ)+

)
.

In this system,

• x ≥ 0 is the density of prey,

• y ≥ 0 is the density of predator,

• µ ≥ 0 models a refuge for the prey, i.e, the quantity (x − µ)+ :=
max(0,x−µ) is the density of prey which is accessible to the predator,

• ρ1 > 0 (resp. ρ2 > 0) is the growth rate of prey (resp. of predator),

• β > 0 measures the strength of competition among individuals of the
prey species,

• α1 > 0 (resp. α2 > 0) is the rate of reduction of preys (resp. of preda-
tors)

• κ1 > 0 (resp. κ2 > 0) measures the extent to which the environment
provides protection to the prey (resp. to the predator).

When the predator is absent, x satisfies a logistic equation and converges to
ρ1
β , so we assume that

0 ≤ µ < ρ1

β
.

Setting, for i = 1, 2,

x(t) =
β

ρ1
x

(
t

ρ1

)
, y(t) =

β

ρ1
y

(
t

ρ1

)
,

m =
µβ

ρ1
, a =

α1ρ2

α2ρ1
, ki =

κiβ

ρ1
, b =

ρ2

ρ1
.

we get the simpler equivalent system

(1.2)


ẋ = x(1− x)− ay(x−m)+

k1 + (x−m)+

ẏ = by

(
1− y

k2 + (x−m)+

)
,

3



where 0 ≤ m < 1, all other parameters are positive, and (x, y) takes its
values in the quadrant R+ × R+.

In this first part, we study the dynamics of (1.2), which is complicated by
the refuge parameter m. However, even in the case when m = 0, we provide
some new results. We first show the persistence and the existence of a com-
pact attracting set. Then, we study in detail the equilibrium points (there
can can be 3 distinct non trivial such points when m > 0) and their local
stability. We also give sufficient conditions for the existence of a globally
asymptotically stable equilibrium, and we give some sufficient conditions for
the absence of periodic orbits. A stable limit cycle may surround several
limit points, as we show numerically.

In a second part (Section 3), we study the stochastically perturbed sys-
tem

(1.3)


dx(t) =

(
x(t)(1− x(t))− ay(t)(x(t)−m)+

k1 + (x(t)−m)+

)
dt+ σ1x(t)dw1(t)

dy(t) = by(t)

(
1− y(t)

k2 + (x(t)−m)+

)
dt+ σ2y(t)dw2(t),

where w = (w1, w2) is a standard Brownian motion defined on the filtered
probability space (Ω,F , (Ft),P), and σ1 and σ2 are constant real numbers.
We show the existence and uniqueness of the global positive solution with
any initial positive value of the stochastic system, and we investigate condi-
tions for extinction or for the existence of an ergodic stationary distribution.

Finally, in section 4, we make numerical simulation to illustrate our
results.

2 Dynamics of the deterministic system

In this section, we study the dynamics of (1.2).
Throughout, we denote by v the vector field associated with (1.2), and

v = v1
∂

∂x
+ v2

∂

∂y
,

so that (1.2) reduces to
(
ẋ = v1 and ẏ = v2

)
.

The right hand side of (1.2) is locally Lipschitz, thus, for any initial
condition, (1.2) has a unique solution defined on a maximal time interval.

Furthermore, the axes are invariant manifolds of (1.2):
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• If x(0) = 0, then x(t) = 0 for every t, and ẏ = by(1− y/k2) yields

y(t) =
y(0)k2

k2 + y(0)(ebt − 1)
,

thus limt→+∞ y(t) = k2 if y(0) > 0.

• If y(0) = 0, then y(t) = 0 for every t, and ẋ = x(1− x) yields

x(t) =
x(0)

1 + x(0)(et − 1)
,

thus limt→+∞ x(t) = 1 if x(0) > 0.

From the uniqueness theorem for ODEs, we deduce that the open quadrant
]0,+∞[×]0,+∞[ is stable, thus there is no extinction of any species in finite
time.

2.1 Persistence and compact attracting set

The next result shows that there is no explosion of the system (1.2). It
also shows a qualitative difference brought by the refuge: when m = 0, the
density of prey may converge to 0, whereas, when m > 0, the system (1.2)
is always uniformly persistent.

Let
A =

{
(x, y) ∈ R2; m ≤ x ≤ 1, k2 ≤ y < L

}
,

where L = 1 + k2 −m.

Theorem 2.1 (a) The set A is invariant for (1.2). Furthermore, if the
initial condition (x(0), y(0)) is in the open quadrant ]0,+∞[×]0,+∞[,
we have

(2.1)


m ≤ lim inf

t→+∞
x(t) ≤ lim sup

t→+∞
x(t) ≤ 1

k2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ L.

(b) In the case when m > 0, for any initial condition (x(0), y(0)) in the
open quadrant ]0,+∞[×]0,+∞[, the point (x(t), y(t)) enters A in finite
time. In particular, the system (1.2) is uniformly persistent.

(c) In the case when m = 0, for any ε > 0 such that k2 − ε > 0, the
compact set [0, 1]× [k2− ε, L] is invariant, and, for any initial condition
(x(0), y(0)) in the open quadrant ]0,+∞[×]0,+∞[, the point (x(t), y(t))
enters [0, 1]× [k2 − ε, L] in finite time. Furthermore :
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(i) If aL < k1, the system (1.2) is uniformly persistent. More pre-
cisely, if (x(0), y(0) ∈]0,+∞[×]0,+∞[, we have

(2.2) lim inf
t→+∞

x(t) ≥ k1 − aL
k1

.

(ii) If ak2 < k1 ≤ aL, the system (1.2) is uniformly weakly persistent.
More precisely, if (x(0), y(0) ∈]0,+∞[×]0,+∞[, we have

(2.3) lim sup
t→+∞

x(t)

≥ min

(
k1

a
− k2,

1− k1 − a+
√

(1− k1 − a)2 + 4(k1 − ak2)

2

)
.

(iii) If k1 = ak2, then

• if 1 − k1 − a > 0, the system (1.2) is uniformly weakly per-
sistent. More precisely, if (x(0), y(0) ∈]0,+∞[×]0,+∞[, we
have

(2.4) lim sup
t→+∞

x(t) ≥ 1− k1 − a.

• if 1− k1 − a ≤ 0, the point E2 = (0, k2) is globally attracting,
thus the prey becomes extinct in infinite time for any initial
condition in ]0,+∞[×]0,+∞[.

(iv) If k1 < ak2, the point E2 = (0, k2) is globally attracting, thus the
prey becomes extinct in infinite time for any initial condition in
]0,+∞[×]0,+∞[.

Remark 2.2 A more general sufficient condition of global attractivity of
E2 is provided by Theorem 2.7 (see Remark 2.8).

Proof of Theorem 2.1. (a) When m = 0, the first inequality in (2.1) is
trivial. In the case when m > 0, we need to prove that lim inft→+∞ x(t) ≥ m,
provided that x(0) > 0. Actually we have a better result, since, if x(0) ≤ m,
then x coincides with the solution to the logistic equation ẋ = x(1 − x) as
long as x does not reach the value m, that is,

x(t) =
x(0)

1 + x(0)(et − 1)
.
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If x(0) > 0, this function converges to 1, thus there exists tm > 0 such that

(2.5) t ≥ tm ⇒ x(t) ≥ m.

Note that, when m > 0, if x(t) = m, we have ẋ = m(1−m) > 0. Thus

(2.6)
x(0) ≥ m

⇒ x(t) ≥ m, ∀t ≥ 0
 ,

which implies the first inequality in (2.1). Now, from the first equation of
(1.2), we have

ẋ ≤ x(1− x),

which implies that, for every t ≥ 0,

(2.7) x(t) ≤ x(0)et

1 + x(0)(et − 1)
.

In particular, we have

(2.8) lim sup
t→+∞

x(t) ≤ 1 and
x(0) ≤ 1⇒ x(t) ≤ 1, ∀t ≥ 0

 .

This implies that, for any ε > 0, and for t large enough (depending on x(0)),
we have x(t) ≤ 1 + ε. We deduce that, for any ε > 0, and for t large enough,
we have

(2.9) by

(
1− y

k2

)
≤ ẏ(t) ≤ by

(
1− y

k2 + 1 + ε−m

)
= by

(
1− y

L+ ε

)
,

which implies that, for t large enough, say, t ≥ t0,

(2.10)
y(0)k2e

bt

k2 + y(0)(ebt − 1)
≤ y(t) ≤ y(t0)(L+ ε)eb(t−t0)

L+ ε+ y(t0)(eb(t−t0) − 1)
.

Of course, if x(0) ≤ 1, we can drop ε in (2.9) and (2.10). Thus, we have

(2.11)
x(0) ≤ 1 and k2 ≤ y(0) ≤ L

⇒ k2 ≤ y(t) ≤ L, ∀t ≥ 0
 .

We deduce from (2.6), (2.8), and (2.11) that A is invariant.
As ε is arbitrary in (2.10), we have also, when y(0) > 0,

(2.12) k2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ L.

From (2.5), (2.8), and (2.12), we deduce (2.1).
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(b) We have already seen that x(t) ≥ m for t large enough, let us now
check that x(t) ≤ 1 for t large enough. Since A is invariant, we only need
to prove this for x(0) > 1. Let ε > 0 such that k2 − ε > 0. Let δ > 0 such
that δ +m < 1 and such that

(2.13) (x ≥ 1− δ)⇒ x(1− x) <
a(k2 − ε)(1−m)

1 + ε−m
.

From the first inequality in (2.12), we have y(t) ≥ k2 − ε for t large enough,
say t ≥ t0. From (2.8), we can take t0 large enough such that, for t ≥ t0, we
have also x(t) ≤ 1 + ε. Using (2.13), we deduce, for t ≥ t0 and x(t) ≥ 1− δ,

ẋ(t) ≤ x(t)
(
1− x(t)

)
− a(k2 − ε)(1− δ −m)

1 + ε−m

≤ −aδ(k2 − ε)
1 + ε−m

Thus x decreases with speed less than −aδ(k2−ε)
1+ε−m < 0. Thus x(t) ≤ 1− δ for

t large enough.
We can now repeat the reasoning of (2.9) and (2.10), replacing ε by −δ,

which yields that lim supt→∞ y(t) ≤ L−δ. In particular, y(t) < L for t large
enough.

To prove that y(t) > k2 for t large enough, let us first sharpen the result
of (2.5). This is where we use that m > 0. Let δ > 0, with m + δ < 1. If
|x−m| < δ, we have

|x(1− x)−m(1−m)| = |(x−m) (1− (x+m))| ≤ |x−m| < δ.

For t large enough, using (2.10), we deduce that

ẋ ≥ x(1− x)− a(L+ ε)δ

k1
≥ D := m(1−m)− δ − a(L+ ε)δ

k1
.

(we do not write t here for the sake of simplicity). For δ small enough, we
have D > 0. Thus, if m > 0, we can find δ > 0 small enough (depending on
m), such that, when x(t) is in the interval [m,m + δ], it reaches the value
m + δ in finite time (at most Dδ), and then it stays in [m + δ, 1]. Using
(2.5), we deduce that there exists tm+δ > 0 such that

(2.14) t ≥ tm+δ ⇒ x(t) ≥ m+ δ.

Using (2.14) in (1.2), we obtain, for t ≥ tm+δ,

ẏ ≥ by
(

1− y

k2 + δ

)
,
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which yields, if y(0) > 0,

y(t) ≥ y(tm+δ)(k2 + δ)eb(t−tm+δ)

k2 + δ + y(tm+δ)(eb(t−tm+δ) − 1)
.

This proves that
lim inf
t→+∞

y(t) ≥ k2 + δ,

and that y > k2 for t large enough.

(c) Assume now that m = 0. Since the first part of the proof of (b) is
valid for all m ≥ 0, we have already proved that x(t) < 1 and y(t) < L
for t large enough. Let ε > 0 such that k2 − ε > 0. For y < k2, we have
ẏ > 0, thus [0, 1] × [k2 − ε, L] is invariant. Furthermore, for any initial
condition (x(0), y(0) ∈]0,+∞[×]0,+∞[, since lim inft→+∞ y(t) ≥ k2, we
have y(t) > k2−ε for t large enough, thus (x(t), y(t)) enters [0, 1]× [k2−ε, L]
in finite time.

(ci) Assume that aL < k1, and let ε > 0 such that a(L + ε) < k1. Let

Kε = k1−a(L+ε)
k1

. By the second inequality in (2.12), we have, for t large
enough

(2.15) ẋ ≥ x(1− x)− ax(L+ ε)

k1
= Kεx

(
1− x

Kε

)
.

Thus lim inf x(t) ≥ Kε. As ε is arbitrary, this proves (2.2). From (2.2) and
the first inequality in (2.12), we deduce that (1.2) is uniformly persistent.

(cii) Assume now that ak2 < k1 ≤ aL. Observe first that, if lim supt→∞ x(t) <
l for some l > 0, then, for t large enough, we have x(t) < l, thus ẏ(t) <
by(1− y/(k2 + l)). We deduce that

(2.16) lim sup
t→∞

x(t) < l⇒ lim sup
t→∞

y(t) < k2 + l.

Let us now rewrite the first equation of (1.2) as

ẋ = x

(
1− x− ay

k1 + x

)
=

x

k1 + x

(
−(x− 1)(x+ k1)− ay

)
that is,

(2.17) ẋ =
ax

k1 + x

(
U(x)− y

)
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where U(x) = (−1/a)(x−1)(x+k1). Since ak2 < k1, the point E2 lies below
the parabola y = U(x), thus in the neighborhood of E2, for x > 0, we have
ẋ > 0.

By (2.16), if lim supt→∞ x(t) < l for some l > 0, then for t large enough,
the point (x(t), y(t)) remains in the rectangle R = [0, l]× [0, k2 + l]. But if,
furthermore, l is small enough such that R lies entirely below the parabola
y = U(x), then, when (x(t), y(t)) ∈ R, we have ẋ(t) > 0, which entails that
x(t) is eventually greater than l, a contradiction. This shows that, for l > 0
small enough, we have necessarily

lim sup
t→∞

x(t) ≥ l.

Let us now calculate the largest value of l such that (x, y) ∈ R implies
y < U(x), that is, the largest l such that

min
x∈[0,l]

U(x) ≥ k2 + l.

From the concavity of U , the minimum of U on the interval [0, l] is attained
at 0 or l. Thus the optimal value of l is the minimum of U(0)−k2 = k1

a −k2

and the positive solution to U(x)− k2 = x, which is

1− k1 − a+
√

(1− k1 − a)2 + 4(k1 − ak2)

2
.

This proves (2.3).

(ciii) Assume that k1 = ak2. With the change of variable ỹ = y − k2, the
system (1.2) becomes 

ẋ =
ax

k1 + x

(
V (x)− ỹ

)
˙̃y = b

ỹ + k2

x+ k2
(x− ỹ),

where V (x) = 1
a

(
(1 − k1)x − x2

)
. The second equation shows that ˙̃y > 0

when ỹ < x, and ˙̃y < 0 when ỹ > x. The first equation shows that ẋ > 0
when (x, ỹ) is above the parabola ỹ = V (x), and ẋ < 0 when (x, ỹ) is below
the parabola ỹ = V (x).
• Assume that 1 − k1 − a > 0, that is, V ′(0) = (1 − k1)/a > 1. Then,

the parabola ỹ = V (x) is above the line ỹ = x for all x in the interval ]0, l[,
where l is the non-zero solution to V (x) = x, that is,

l = 1− k1 − a.
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Let us show that lim supx(t) ≥ l. Assume the contrary, that is, lim supx(t) <
δ for some δ < l. For t large enough, say, t ≥ tδ, we have x(t) < δ. Let us
first prove that |ỹ(t)| < δ for t large enough. If ỹ(tδ) < δ, we have, for all
t ≥ tδ, as long as ỹ(t) < δ,

˙̃y(t) < b
l + k2

k2
(δ − ỹ(t)).

Since the constant function ỹ = δ is a solution to ˙̃y = b l+k2k2
(δ−ỹ), we deduce

that ỹ(t) remains in [−k2, δ] for all t ≥ tδ. Furthermore, if ỹ(t) < −δ, for
t ≥ tδ, we have ˙̃y(t) > 0, thus

˙̃y(t) > b
ỹ(tδ) + k2

k2 + δ
(−ỹ(t)).

Thus

ỹ(t) ≥ y(tδ) exp

(
−b ỹ(tδ) + k2

k2 + δ
(t− tδ)

)
,

which proves that ỹ(t) enters ] − δ, δ[ in finite time. Similarly, if ỹ(tδ) > δ,
then, for all t ≥ tδ such that ỹ(s) > δ for all s ∈ [tδ, t], we have

˙̃y(t) < b
ỹ(tδ) + k2

k2
(δ − ỹ(t)),

thus

ỹ(t) < δ + (ỹ(tδ)− δ) exp

(
−b ỹ(tδ) + k2

k2
(t− tδ)

)
,

which proves that ỹ(t) < δ after a finite time.
We have proved that, for t large enough, (x(t), ỹ(t)) stays in the box

[0, δ[×] − δ, δ[. Since V (x) > x for all x ∈]0, l[, we deduce that, for t large
enough, we have

ẋ(t) > x(t)
V (δ)− δ
k1 + δ

,

which shows that x(t) > δ for t large enough, a contradiction. This proves
(2.4).
• Assume that 1 − k1 − a ≤ 0, that is, V ′(0) = (1 − k1)/a ≤ 1. Then,

the portion of the parabola ỹ = V (x) which lies in ]0,+∞[×]− k2,+∞[, is
below the line ỹ = x. This means that, for any ε > 0 such that k2 − ε > 0,
the system (1.2) has no other equilibrium point than E2 in the invariant
attracting compact set [0, 1]× [k2− ε, L]. Since there cannot be any periodic
orbit around E2 (because E2 is on the boundary of [0, 1]× [k2 − ε, L]), this
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entails that E2 is attracting for all inital conditions in [0, 1]× [k2−ε, L], thus
for all inital conditions in ]0,+∞[×]0,+∞[.

(civ) If k1 < ak2, we can use exactly the same arguments as in the case
when k1 = ak2 with 1− k1 − a ≤ 0.

2.2 Local study of equilibrium points

2.2.1 Trivial critical points

The right hand side of (1.2) has continuous partial derivatives in the first
quadrant R+×R+, except on the line x = m if m > 0. The Jacobian matrix
of the right hand side of (1.2) (for x 6= m if m > 0), is

(2.18) J (x, y) =

(
1− 2x− ayk1

(k1+(x−m)+)2
1lx≥m

−a(x−m)+
k1+(x−m)+

by2

(k2+(x−m)+)2
1lx≥m b− 2by

k2+(x−m)+

)
,

where 1lx≥m = 1 if x ≥ m and 1lx≥m = 0 if x < m.
We start with a result on the obvious critical points of (1.2) which lie

on the axes.

Proposition 2.3 The system (1.2) has three trivial critical points on the
axes:

• E0 = (0, 0), which is an hyperbolic unstable node,

• E1 = (1, 0), which is an hyperbolic saddle point whose stable manifold
is the x axis, and with an unstable manifold which is tangent to the
line (b+ 1)(x− 1) + a(1−m)

k1+1−my = 0,

• E2 = (0, k2), which is

– an hyperbolic saddle point whose stable manifold is the y axis,

with an unstable manifold which is tangent to the line bx+
(
b+

1− ak2
k1

1lm=0

)
(y − k2) = 0 if m > 0 or if ak2 < k1,

– an hyperbolic stable node if m = 0 with ak2 > k1,

– a semi-hyperbolic point if m = 0 and ak2 = k1, which is

∗ an attracting topological node if 1− k1 − a ≤ 0,

∗ a topological saddle point if 1− k1 − a > 0. In this case, the
y axis is the stable manifold, and there is a center manifold
which is tangent to the line y − k2 = x.

12



(Compare with the case (c) of Theorem 2.1).

Proof. The nature of E0, E1, and E2, is obvious since

J (0, 0) =

(
1 0
0 b

)
, J (1, 0) =

(
−1 −a(1−m)

k1+1−m
0 b

)
, J (0, k2) =

(
1− ak2

k1
1lm=0 0

b −b

)
.

The results on stable and unstable manifolds of hyperbolic saddles are
straightforward. In the case when E2 is semi-hyperbolic, since it is either a
topological node or a topological saddle (see [8, Theorem 2.19]), the nature
of E2 follows from Part (ciii) of Theorem 2.1. In the topological saddle case,
that is, when m = 0 with ak2 = k1 and 1 − k1 − a > 0, the eigen values
of J (0, k2) are −b and 1, with corresponding eigenvectors (0, 1) and (1, 1).
Clearly, the y axis is the stable manifold. the change of variables

X = x, Y = (y − k2)− x

yields the normal form

Ẋ = ẋ =
X

X + k1

(
(1− k1)X −X2 − a(X + Y )

)
=

X

X + k1

(
(1− k1 − a)X −X2 − aY

)
,

Ẏ = ẋ− ẏ = ẋ− bX + Y + k2

X + k2
(−Y ) = Ẋ − b

(
1 +

Y

X + k2

)
Y

= − bY + Ẋ − b Y 2

X + k2
.

We can thus write

(2.19)
Ẋ =A(X,Y )

Ẏ = − bY +B(X,Y ),

where A and B are analytic and their jacobian matrix at (0, 0) is 0. In the
neighborhood of (0, 0), the equation 0 = −Y b + B(X,Y ) has the unique
solution Y = f(X), where

f(X) =
k2a

bk2
X +O(X),

and g(X) = A(X, f(X)) has the form

g(X) =
X2

k2

(
1 + k1 − a−

a2k2

bk1

)
+O(X).

From [8, Theorem 2.19], we deduce that there exists an unstable center
manifold which is infinitely tangent to the line Y = 0.
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2.2.2 Counting and localizing equilibrium points

Let us now look for critical points outside the axes, i.e., critical points E =
(x, y) with x > 0 and y > 0. From the results of Subsection 2.1, such points
are necessarily in A, in particular they satisfy x ≥ m. We have, obviously:

Lemma 2.4 The set of equilibrium points of (1.2) which lie in the open
quadrant ]0,+∞[×]0,+∞[ consists of the intersection points of the curves

x(1− x) (k1 + x−m) = a (k2 + x−m) (x−m),(2.20)

k2 + x−m = y.(2.21)

Furthermore, these points lie in A.

We shall see that, when m > 0, the system (1.2) has always at least one
equilibrium point in ]0,+∞[×]0,+∞[, whereas, for m = 0, some condition
is necessary for the existence of such a point.

•When m > 0, the solutions to (2.20) lie at the abscissa of the intersec-
tion of the parabola z = P (x) := a (k2 + x−m) (x − m) and of the third
degree curve z = Q(x) := x(1− x) (k1 + x−m). We have P (m)−Q(m) =
−Q(m) = −k1m(1−m) < 0 and, for x > 1, we have P (x) < 0 and Q(x) > 0,
thus P (x)−Q(x) > 0. This implies that the curves of P and Q have at least
one intersection whose abscissa is greater than m, and that the abscissa of
any such intersection lies necessarily in the interval ]m, 1[. The change of
variable X = x−m leads to

(2.22) R(X) := P (x)−Q(x) = X3 + α2X
2 + α1X + α0

with
(2.23)
α2 = a+k1−1+2m, α1 = m2 +m(2k1−1)+ak2−k1, α0 = −k1m(1−m).

By Routh’s scheme (see [11]), the number p of roots of (2.22) with positive
real part, counted with multiplicities, is equal to the number of changes of
sign of the sequence

(2.24) V :=

(
1, α2, α1 −

α0

α2
, α0

)
,

provided that all terms of V are non zero. Thus p = 3 when

(2.25) α2 < 0 and α1α2 < α0,
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and, in all other cases, p = 1. When p = 1, we know that the number n of
real positive roots of R is exactly 1. When p = 3, we have either n = 1 if R
has two complex conjugate roots, or n = 3. So, we need to examine when
all roots of R are real numbers. A very simple method to do that for cubic
polynomials is described by Tong [27]: a necessary and sufficient condition
for R to have three distinct real roots is that R has a local maximum and
a local minimum, and that these extrema have opposite signs. The abscissa
of these extrema are the roots of the derivative R′(X) = 3X2 + 2α2X + α1,
thus R has three distinct real roots if, and only if, the following conditions
are simultaneously satisfied:

(i) The discriminant ∆R′ of R′ is positive,

(ii) R(x)R(x) < 0, where x and x are the distinct roots of R′.

If R(x)R(x) = 0 with ∆R′ > 0, the polynomial R still has three real roots,
two of which coincide and differ from the third one. If R(x)R(x) = 0 with
∆R′ = 0, it has a real root with multiplicity 3, which is x = x, and if
∆R′ = 0 with R(x)R(x) 6= 0, it has only one real root. Fortunately, all
radicals disappear in the calculation of R(x)R(x):

R(x)R(x) =
1

27

(
4α3

2α0 − α2
2α

2
1 + 4α3

1 − 18α2α1α0 + 27α2
0

)
.

In particular, Conditions (i) and (ii) can be summarized as

(2.26) α2
2 − 3α1 > 0 and 4α3

2α0 − α2
2α

2
1 + 4α3

1 − 18α2α1α0 + 27α2
0 < 0.

Let us now examine what happens when one term of the sequence V in
(2.24) is zero. We skip temporarily the case α0 = 0, which is equivalent to
m = 0.

• If α2α1 = α0, we have

R(X) = (X + α2)(X2 + α1),

and α2 and α1 have opposite signs, because α0 < 0. Thus, in that
case, R has a unique positive root, which is

√
−α1 if α2 > 0, and −α2

if α2 < 0.

• If α2 = 0, the derivative of R becomes R′(X) = 3X2 + α1. If α1 > 0,
R is increasing on ]−∞,∞[, thus it has only one (necessarily positive)
real root. If α1 = 0, we have R(X) = X3 + α0, thus R has only one
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real root, which is 3
√
−α0 > 0. If α1 < 0, R is decreasing in the interval

[−
√
−α1,

√
−α1], and increasing in [

√
−α1,+∞[. Since R(0) < 0, R

has only one positive root. Thus, in that case too, R has a unique
positive root.

From the preceding discussion, we deduce the following theorem:

Theorem 2.5 Assume that m > 0. With the notations of (2.23), the num-
ber n of distinct equilibrium points of the system (1.2) which lie in the open
quadrant ]0,+∞[×]0,+∞[ is

(a) n = 3 if
α2 < 0, α1α2 < α0, α2

2− 3α1 > 0, and 4α3
2α0−α2

2α
2
1 + 4α3

1−

18α2α1α0 + 27α2
0 < 0

,
(b) n = 2 if

α2 < 0, α1α2 < α0, α2
2 − 3α1 > 0 and 4α3

2α0 − α2
2α

2
1 + 4α3

1 −

18α2α1α0 + 27α2
0 = 0

,
(c) n = 1 in all other cases, i.e., if

α2 ≥ 0 or α1α2 ≥ α0 or α2
2 − 3α1 ≤ 0

or 4α3
2α0 − α2

2α
2
1 + 4α3

1 − 18α2α1α0 + 27α2
0 > 0

.
Remark 2.6 Numerical computations show that all cases considered in
Theorem 2.5 are nonempty. See Figure 1 for an example of positive numbers
(a, k1, k2,m) satisfying (2.25) and (2.26).

•When m = 0, the system (1.2) is exactly the system studied by M.A. Aziz-
Alaoui and M. Daher-Okiye [1, 6]. As x is assumed to be positive, (2.20) is
equivalent to the quadratic equation

(2.27) (1− x) (k1 + x) = a (k2 + x) ,

which can be written
x2 + α2x+ α1 = 0,

where α2 = a + k1 − 1 and α1 = ak2 − k1 as in (2.23). The associated
discriminant is

(2.28) ∆ = α2
2 − 4α1 = (a+ k1 − 1)2 − 4ak2 + 4k1,

thus a sufficient and necessary condition for the existence of solutions to
(2.27) in R is ∆ ≥ 0, i.e., k2 must not be too large:

(2.29) 4ak2 ≤ (1− k1 − a)2 + 4k1.
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Since the sum of the solutions to (2.27) is −α2 and their product is α1, we
deduce the following result:

Theorem 2.7 Assume that m = 0. With the notations of (2.23), the num-
ber n of distinct equilibrium points of the system (1.2) which lie in the open
quadrant ]0,+∞[×]0,+∞[ is

(a) n = 2 if ∆ > 0 and α1 > 0 and α2 < 0, i.e., if

(2.30) 4ak2 < (1− k1 − a)2 + 4k1 and ak2 > k1 and 1− k1 − a > 0.

(b) n = 1 if
∆ > 0 and

α1 < 0 or (α1 = 0 and α2 < 0)
, or

∆ = 0

and α2 < 0
 i.e., if4ak2 < (1−k1−a)2+4k1

 and
ak2 < k1 or

(
ak2 = k1 and 1−k1−a > 0

),
or
4ak2 = (1− k1 − a)2 + 4k1 and 1− k1 − a > 0

,

(c) n = 0 if ∆ < 0, or if
α1 ≥ 0 and α2 ≥ 0

, i.e., if4ak2 > (1− k1 − a)2 + 4k1

 or
ak2 ≥ k1 and 1− k1 − a ≤ 0

,
Remark 2.8 If m = 0 and n = 0, the point E2 is the only equilibrium
point in the compact invariant attracting set [0, 1]× [k2− ε, L], for any ε > 0
such that k2− ε > 0, thus E2 is globally attractive, because there is no cycle
around E2 (since E2 is on the boundary of [0, 1]× [k2 − ε, L]). This gives a
more general condition of global attractivity of E2 than the result given in
Parts (ciii) and (civ) of Theorem 2.1.

Remark 2.9 Since the roots of the polynomial R defined by (2.22) depend
continuously on its coefficients, Theorem 2.7 expresses the limiting localiza-
tion of the equilibrium points of (1.2) when m goes to 0. In particular, the
case (a) of Theorem 2.7 is the limiting case of (a) in Theorem 2.5. Indeed, it
is easy to check that Condition (2.30), with m = 0, is a limit case of (2.25)
and (2.26). This means that, in the case (a) of Theorem 2.5, when m goes to
0, one of the equilibrium points in the open quadrant ]0,+∞[×]0,+∞[ goes
to E2 and leaves the open quadrant ]0,+∞[×]0,+∞[. (Note that, when
m = 0, the equilibrium point E2 = (0, k2) is in A.)
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Remark 2.10 When k1 = k2 := k, since x > m, Equation (2.20) is equiv-
alent to x(1− x) = a(x−m), i.e.,

x2 + x(a− 1)− am,

thus it has at most one positive solution. In that case, the coordinates of
the unique non trivial equilibrium point E∗ can be explicited in a simple
way, and we have

E∗ =

(
1− a+

√
(1− a)2 + 4am

2
, k + x∗ −m

)
.

If a ≥ 1, the point E∗ converges to E2 when m goes to 0. If a > 1, it
converges to (1− a, 1− a+ k).

2.2.3 Local stability

Let E∗ = (x∗, y∗) be an equilibrium point of (1.2) in the open quadrant
]0,+∞[×]0,+∞[. Since E∗ is necessarily in A, we get, using (2.18) and
(2.21),

(2.31) J (x∗, y∗) =

(
1− 2x∗ − ay∗k1

(k1+x∗−m)2
−a(x∗−m)
k1+x∗−m

b −b

)
.

The characteristic polynomial of J (x∗, y∗) is

χ(λ) = λ2 + sλ+ p,

where

s = −Trace (J (x∗, y∗)) = −1 + 2x∗ +
ay∗k1

(k1 + x∗ −m)2
+ b,

(2.32)

p = det (J (x∗, y∗)) = b

(
−1 + 2x∗ +

ay∗k1

(k1 + x∗ −m)2
+

a(x∗ −m)

k1 + x∗ −m

)
.

(2.33)

The roots of χ are real if, and only if, ∆χ ≥ 0, where

∆χ = s2 − 4p =

(
−1 + 2x∗ +

ay∗k1

(k1 + x∗ −m)2
− b
)2

− 4b
a(x∗ −m)

k1 + x∗ −m
.

The point E∗ is non-hyperbolic if one of the roots of χ is zero (that is, if
p = 0), or if χ has two conjugate purely imaginary roots (that is, if s = 0
with p > 0). If only one root of χ is zero, that is, if p = 0 with s 6= 0, the
point E∗ is semi-hyperbolic.
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a- Hyperbolic equilibria When E∗ is hyperbolic, we get, using the
Routh-Hurwitz criterion, that E∗ is

• a saddle point if p < 0,

• an unstable node if s < 0 and p > 0 with ∆χ > 0,

• an unstable focus if s < 0 and p > 0 with ∆χ < 0,

• an unstable degenerated node if s < 0 and p > 0 with ∆χ = 0,

• a stable node if s > 0 and p > 0 with ∆χ > 0,

• a stable degenerated node if s > 0 and p > 0 with ∆χ = 0,

• a stable focus if s > 0 and p > 0 with ∆χ < 0.

Remark 2.11 An obvious sufficient condition for any equilibrium point
E∗ ∈ A to be stable hyperbolic is m ≥ 1/2, since x∗ > m. This condition
can be slightly improved, as we shall see in the study of global stability (see
Theorem 2.19).

Application of the Poincaré index theorem When E∗ is an hyper-
bolic equilibrium, its index is either 1 (if it is a node or focus) or −1 (if
it is a saddle). Let n be the number of distinct equilibrium points, which
we denote by E∗1 , ..., E

∗
n , and let I1, ..., In their respective indices. As we

shall see in the proof of the next theorem, by a generalized version of the
Poincaré index theorem, we have I1 + ... + In = 1. When all equilibrium
points are hyperbolic, this allows us to count the number of nodes or foci
and of saddles.

Theorem 2.12 Assume that all equilibrium points of the system (1.2) which
lie in the open quadrant ]0,+∞[×]0,+∞[ (equivalently, in the interior of A)
are hyperbolic, and let n be their number.

1. Assume that m > 0. Then n is equal to 3 or 1.

• If n = 1, the unique equilibrium point in the interior of A is a
node or a focus.

• If n = 3, the system (1.2) has one saddle point and two nodes or
foci in the interior of A.

2. Assume now that m = 0. Then n is equal to 2, 1, or 0.
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• If n = 2, one equilibrium point is a node or focus, and the other
is a saddle.

• If n = 1, the unique equilibrium point in the interior of A is a
node or a focus.

Proof. Let N (respectively S) denote the number of nodes or foci (respec-
tively of saddles) among the hyperbolic singular points which lie in A.

1. Assume that m > 0. By Theorem 2.1, the vector field v = v1
∂
∂x+v2

∂
∂y

generated by (1.2) is directed inward along the boundary ofA. By continuity
of v, we can round the corners of A and define a compact domain A′ ⊂ A
with smooth boundary which contains all critical points of A, and such
that v is directed inward along the boundary of A′. Applying a generalized
version of the Poincaré index theorem (see e.g. [19, 12, 25]) to v in A′, we get
N−S = 1. Since 1 ≤ N+S ≤ 3, the only possibilities are (N = 1 and S = 0)
or (N = 2 and S = 1).

2. Assume now that m = 0. We use the same reasoning as for m > 0,
but with a different domain. Instead of A, we consider the domain

B = [−ε, 1]× [k2 − ε, L]

for a small ε > 0. Thus B contains E2.

•With the notations of (2.17), if ak2 > k1, we have y > U(x) for x = 0 and
for all y ∈ [k2, L]. We have

v1 =
ax

k1 + x

(
U(x)− y

)
.

By continuity of v, we can choose ε > 0, with ε < k1, such that the inequality
y > U(x) remains true on the rectangle [−ε, 0] × [k2 − ε, L]. We then have
v1 > 0 on the segment {−ε} × [k2 − ε, L]. Since v2 > 0 for y = k2 − ε and
v2 < 0 for y = L, the field v is directed inward along the boundary of B.
Again, by rounding the corners, we can modify B into a a compact domain
B′ with smooth boundary which contains the same critical points as B and
such that v is directed inward along the boundary of B′. By the Poincaré
Index Theorem, we have N ′ − S′ = 1, where N ′ (respectively S′) is the
number of nodes or foci (respectively of saddles) in the interior of B′. If we
have chosen ε small enough, the singularities of v in B′ are those which are
in the interior of A, with the addition of the point E2, which is a node by
Proposition 2.3. Thus N = N ′ − 1 and S = S′ which entails N − S = 0.
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Thus, taking into account Theorem 2.7, we have N = S = 1 (if n = 2), or
N = S = 0 (if n = 0).

• If ak2 < k1, E2 is a saddle point, thus, constructing B and B′ as precedingly,
we have now S = S′ − 1 and N = N ′. Furthermore, the vector field v is
no more outward directed along the whole boundary of B′.We use Pugh’s
algorithm [25] to compute N ′ − S′: taking ε small enough such that the
vector field v does not vanish on ∂B′, we have

(2.34) N ′ − S′ = χ(B′)− χ(∂B′) + χ(R1
−)− χ(∂R1

−) + χ(R2
−)− χ(∂R2

−),

where χ denotes the Euler characteristic, R1
− is the part of the boundary

of B′ where v is directed outward, and R2
− is the part of ∂R1

− where v
points to the exterior of R1

−. Since k2 < k1/a, we see that the parabola
y = U(x) crosses the line {x = −ε; y > k2} at some point (−ε, r), so
that the part of the boundary of B where v points outward is the segment
{−ε}× [k2− ε,min(r, L)]. Thus, for small ε, R1

− is an arc whose extremities
are tangency points. Observe also that, since v1 < 0 for x < 0 and v2 < 0
for y > k2 + x > 0, the field v points toward the interior of R1

− at those
tangency points, thus R2

− is empty. Formula (2.34) becomes

Σ(v) = 1− 0 + 1− 2 + 0− 0 = 0,

that is, N−S = N ′−(S′−1) = 1. Since, by Theorem 2.7, we have N+S = 1,
we deduce that N = 1 and S = 0.

b. Semi hyperbolic equilibria This is when p = 0 and s 6= 0. The set
of parameters such that p 6= 0 is nonempty. Indeed, the values a = 0, 5,
b = 0, 01, m = 0, 001, k2 = 0, 25, k1 = 0, 08 lead to p = −0.1003032464
with α2 = 0.044161 > 0 and a = 0, 5, b = 0, 01, m = 0, 001, k2 = 0, 25,
k1 = 0, 112 lead to p = 0.002422466814 with α2 = 0.012225 > 0. Since
α2 is linear function of k1, this shows that α2 > 0 for a = 0, 5, b = 0, 01,
m = 0, 001, k2 = 0, 25 and 0, 08 ≤ k1 ≤ 0, 112. Thus, by Theorem(2.5), for
all these values, the number n of equilibrium points remains equal to 1. By
the intermediate value theorem, we deduce that there exists a value k1, with
0, 08 ≤ k1 ≤ 0, 112, such that, for a = 0, 5, b = 0, 01, m = 0, 001, k2 = 0, 25,
the unique equilibrium point satisfies p = 0.

From (2.32), (2.33) and (2.23), it is obvious that we can chose b such
that s 6= 0 without changing p = 0 nor the coefficients α0, α1, α2.

For p = 0, the Jacobian matrix J (x∗, y∗) is

J (x∗, y∗) =

(
aρ −aρ
b −b

)
,
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The change of variables

u =
aρY − bX
aρ− b

, v =
X − Y
aρ− b

yields

v1 =aρ(aρ− b)v + a2ρ
k1(y∗aρ− bκ)− ρκ3

κ3
v2 − ak1(κ− y∗) + κ3

κ3
u2

−ak1κ(b+ aρ) + ρ(2κ3 − y∗k1a)

κ3
vu + a3k1ρ

2 bκ− y∗aρ
κ3(κ+ u + ρ av)

v3

−ak1
y∗ − κ

κ3(κ+ u + ρav)
u3 + ak1

bκ+ 2aρκ− 3y∗aρ

κ3(κ+ u + ρav)
u2v + a2k1ρ

2bκ+ aρκ− 3y∗aρ

κ3(κ+ u + ρav)
v2u

v2 =b(ρ a− b)v + b
−b2 + 2bρ a− ρ2a2

u + ρ av + y∗
v2

The coordinates of v are, in the basis ( ∂∂u ,
∂
∂v),

u̇ =
1

aρ− b
(aρẎ − bẊ) =

1

aρ− b
(aρv2 − bv1)

=
b

b− ρ a

−(−k1y
∗a+ κ3 + ak1)u2

κ2
+

ak1(κ− y∗)
κ3(κ+ u + ρ av)

u3 +
aρ(−κ3ρa+ y∗k1a

2ρ− κak1b)

κ3
v2

+
a3k1ρ

2(κb− y∗aρ)

κ3(κ+ u + ρ av)
v3 − aκ(k1b+ ak1ρ + 2κ2ρ )− 2y∗k1a

2ρ

κ3
vu− ρ a−b

2 + 2bρ a− ρ2a2

u + ρ av + y∗
v2

+
ak1(bκ+ 2aκρ − 3y∗aρ )

κ3(κ+ u + ρ av)
u2v +

a2k1ρ(2bκ+ aκρ− 3y∗aρ)

κ3(κ+ u + ρ av)
v2u


v̇ = − 1

aρ− b
(Ẋ − Ẏ ) =

1

aρ− b
(v1 − v2)

= (aρ− b)v +
1

b− ρ a

a2ρ
k1bκ+ ρκ3 − y∗k1aρ

κ3
v2 +

ak1κ− k1y
∗a+ κ3

κ3
u2

+ a
k1bκ+ ak1ρκ+ 2ρ κ3 − 2y∗k1aρ

κ3
uv + k1a

3ρ2 y∗aρ− bκ
κ3(κ+ u + ρ av)

v3 + ak1
y∗ − κ

κ3(κ+ u + ρ av)
u3

+ b
(aρ− b)2

u + ρ av + y∗
v2 + ak1

3y∗aρ − κ(b+ 2aρ )

κ3(κ+ u + ρ av)
u2v + k1a

2ρ
3y∗aρ− aρκ− 2bκ

κ3(κ+ u + ρ av)
v2u


We can thus write

(2.35)
u̇ =A(u, v)

v̇ =λv +B(u, v),
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where A and B are analytic and their jacobian matrix at (0, 0) is 0 and
λ > 0. It is not easy to determine v = f(u) the solution to the equation
λv + B(u, v) = 0 in a neighborhood of the point (0, 0), for that we use
implicit function theorem. We find :

Case 1: if κ3 − ky∗a+ ak1κ 6= 0,

f(u) = − κ3 − ky∗a+ ak1κ

κ3(b+ ρ2a2 − ρ ab)
u2

and g(u) = A(u, f(u)) has the form

g(u) =
b

b− aρ
(
κ3 − ky∗a+ ak1κ

κ3
)u2.

We apply [8, Theorem 2.19] to System (2.35). Since the power of u in f(u)
is even, we deduce from Part (iii) of [8, Theorem 2.19] :

Lemma 2.13 If E∗ is a semi-hyperbolic equilibrium of (1.2) in the posi-
tive quadrant ]0,+∞[×]0,+∞[, and if κ3 − ky∗a + ak1κ 6= 0, then E∗ is a
saddle-node, that is, its phase portrait is the union of one parabolic and two
hyperbolic sectors. In this case, the index of E∗ is 0.

Case 2: if κ3 − ky∗a+ ak1κ = 0

f(u) =
ak1(κ− y∗)
κ4(aρ− b)2

u3.

And g(u) = A(u, f(u)) has the form

g(u) =
bak1(κ− y∗)
κ4(aρ− b)2

u3.

Again, we apply [8, Theorem 2.19] to System (2.35). Since the power of u
in f(u) is odd, we look at the cofficient of u3 and we have two possibilities :
P1: If k1 > k2, we deduce from Part (ii) of [8, Theorem 2.19] :

Lemma 2.14 If E∗ is a semi-hyperbolic equilibrium of (1.2) in the positive
quadrant ]0,+∞[×]0,+∞[, and if κ3 − ky∗a+ ak1κ = 0 with k1 > k2, then
E∗ is a unstable node. In this case, the index of E∗ is 1.

P2: If k1 < k2, we deduce from Part (i) of [8, Theorem 2.19] :

Lemma 2.15 If E∗ is a semi-hyperbolic equilibrium of (1.2) in the positive
quadrant ]0,+∞[×]0,+∞[, and if κ3 − ky∗a+ ak1κ = 0 with k1 < k2, then
E∗ is a saddle. In this case, the index of E∗ is -1.

Remark 2.16 From Theorem 2.12, when the system 1.2 has one equilib-
rium point, this point cannot be a saddle.
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Hopf bifurcation When ∆χ < 0, the roots of χ are
−s±i
√

4p−s2
2 . The

values of x∗, y∗ and p do not depend on the parameter b, whereas s is an
affine function of b, so that the eigenvalues of χ cross the imaginary axis at
speed −1/2 when b passes through the value

b0 = 1− 2x∗ +
ay∗k1

κ2
.

Let us check the genericity condition for Hopf bifurcations. We use the
condition of Guckenheimer and Holmes [13, Formula (3.4.11)]. Let us denote

u̇ = f(u, v), v̇ = g(u, v),

and fuv = ∂f
∂u∂v , etc. We have

λ = fuuu + fuvv + guuv + gvvv

+
1

δ
(fuv(fuu + fvv)− guv(guu + gvv)− fuuguu + fvvgvv)

λ = ak1κ
3(−2y∗ + κ)b20 + κ (2cκ5 + 2k1y

∗aκ3 − κ3ck1a+ 3κck1y
∗2a+ κa2k2

1y
∗ − 2a2k2

1y
∗2)b0

− 2c(c− y∗)κ6 + ak1κ
4cy∗ + 2acy∗k1(−2y∗ + c)κ3 − 3κ2k1y

∗2ac2 − a2k2
1κcy

∗2 + 2k2
1y
∗3a2c

If λ < 0, then the periodic solutions are stable limit cycles, while if λ > 0,
the periodic solutions are repelling. See Figure (3) for a numerical exemple.

c- Non-elementary equilibria Let us rewrite the vector field v = v1
∂
∂x+

v2
∂
∂y associated with (1.2) in the neighborhood of an equilibrium point E∗ =

(x∗, y∗) ∈ A. Let X = x − x∗ and Y = y − y∗. Since E∗ is a critical point
of v, we have

v1 =x(1− x)− ay(x−m)

k1 + (x−m)

= (X + x∗)(1− x∗ −X)− a(Y + y∗)(X + x∗ −m)

X + x∗ + k1 −m

=x∗(1− x∗) +X(1− 2x∗ −X)− ay∗(x∗ −m)

X + x∗ + k1 −m
− a(Y (X + x∗ −m) +Xy∗)

X + x∗ + k1 −m

=x∗(1− x∗)− ay∗(x∗ −m)

x∗ + k1 −m
+X(1− 2x∗ −X)

+
ay∗(x∗ −m)

x∗ + k1 −m
− ay∗(x∗ −m)

X + x∗ + k1 −m
− a(Y (X + x∗ −m) +Xy∗)

X + x∗ + k1 −m
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=X(1− 2x∗ −X) +
ay∗(x∗ −m)

x∗ + k1 −m
− ay∗(x∗ −m)

X + x∗ + k1 −m
− a(Y (X + x∗ −m) +Xy∗)

X + x∗ + k1 −m

=X(1− 2x∗ −X) + ay∗(x∗ −m)

(
1

x∗ + k1 −m
− 1

X + x∗ + k1 −m

)

−
a
(
Y (X + x∗ −m) +Xy∗

)
X + x∗ + k1 −m

=X(1− 2x∗ −X) +
ay∗(x∗ −m)X

(x∗ + k1 −m)(X + x∗ + k1 −m)
−
a
(
Y (X + x∗ −m) +Xy∗

)
X + x∗ + k1 −m

.

For simplification, we denote

(2.36) κ = x∗ + k1 −m, ρ =
x∗ −m

x∗ + k1 −m
,

thus

v1 = X(1− 2x∗ −X) +
a
(
Xy∗(ρ− 1)− Y (x∗ −m)− Y X

)
X + κ

.

Using the equality

1

x+K
=

1

K

(
1− x

K
+ · · ·+ (−1)n

xn

Kn
+ (−1)n+1 xn+1

Kn(x+K)

)
, n ≥ 1,

we get

v1 =X(1− 2x∗ −X)

+
a

κ

(
1− X

κ
+

X2

κ(X + κ)

)(
Xy∗(ρ− 1)− Y (x∗ −m)− Y X

)
=X(1− 2x∗ −X)

+
a

κ

(
Xy∗(ρ− 1)− Y (x∗ −m)− Y X

)
− aX

κ2

(
Xy∗(ρ− 1)− Y (x∗ −m)− Y X

)
+

aX2

κ2(X + κ)

(
Xy∗(ρ− 1)− Y (x∗ −m)− Y X

)
=X

(
1− 2x∗ +

a

κ
y∗(ρ− 1)

)
− Y a

κ
(x∗ −m)

−X2
(

1 +
a

κ2
y∗(ρ− 1)

)
+XY

(
−a
κ

+
a

κ2
(x∗ −m)

)
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+
aX2Y

κ2
+

aX2

κ2(X + κ)

(
Xy∗(ρ− 1)− Y (x∗ −m+X)

)
=X

(
1− 2x∗ − ay∗k1

κ2

)
− Y aρ−X2

(
1− ay∗k1

κ3

)
−XY ak1

κ2

−X3 ay∗k1

κ3(X + κ)
+X2Y

a

κ2

(
1− x∗ −m+X

X + κ

)
=X

(
1− 2x∗ − ay∗k1

κ2

)
− Y aρ−X2

(
1− ay∗k1

κ3

)
−XY ak1

κ2
(2.37)

−X3 ay∗k1

κ3(X + κ)
+X2Y

ak1

κ2(X + κ)
.

Since y∗ = x∗ + k2 −m, we have also

v2 = b(Y + y∗)

(
1− Y + y∗

k2 + x−m

)
= b(Y + y∗)

(
1− Y + y∗

X + y∗

)
= b(X − Y )

Y + y∗

X + y∗

= b(X − Y )

(
1− (X − Y )

1

X + y∗

)
= b(X − Y )− b

y∗
(X − Y )2

(
1− X

X + y∗

)
.(2.38)

This shows in particular that the linear part of v is never zero. Thus the
only non-hyperbolic cases are the nilpotent case and the case when E∗ is a
center for the linear part of v. Let us now investigate these cases :

c1. Nilpotent case

This is when p = 0 = s. From the discussion at the beginning of Case b, it
is clear that this case is nonempty.

In this case, the Jacobian matrix J (x∗, y∗) is

J (x∗, y∗) =

(
b −b
b −b

)
,

With the preceding notations, we thus have

v1 = b(X − Y )−X2

(
1− ay∗k1

κ3

)
−XY ak1

κ2
−X3 ay∗k1

κ3(X + κ)
+X2Y

ak1

κ2(X + κ)
.

The change of variables

u = X, v = Y −X
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yields

v1 = − vb− u2

(
1− ay∗k1

κ3

)
− u(u + v)

ak1

κ2
− u3 ay∗k1

κ3(u + κ)
+ u2(u + v)

ak1

κ2(u + κ)

= − vb− u2

(
1− ay∗k1

κ3
+
ak1

κ2

)
− uv

ak1

κ2

+ u3 ak1

κ2(u + κ)

(
−y
∗

κ
+ 1

)
+ u2v

ak2
1

κ2(u + κ)

v2 = − vb− v2 b

y∗

(
1− u

u + y∗

)
.

The coordinates of v are, in the basis ( ∂∂u ,
∂
∂v),

u̇ = Ẋ = v1

v̇ = Ẏ − Ẋ = v2 − v1

= − vb− v2 b

y∗

(
1− u

u + y∗

)
+ vb+ u2

(
1− ay∗k1

κ3
+
ak1

κ2

)
+ uv

ak1

κ2

− u3 ak1

κ2(u + κ)

(
−y
∗

κ
+ 1

)
− u2v

ak2
1

κ2(u + κ)

= u2

(
1− ay∗k1

κ3
+
ak1

κ2

)
+ uv

ak1

κ2
− v2 b

y∗
+ u3 ak1

κ2(u + κ)

(
y∗

κ
− 1

)
− u2v

ak2
1

κ2(u + κ)
+ uv2 b

y∗(u + y∗)
.

We can thus write

(2.39)
u̇ = − vb+A(u, v)

v̇ =B(u, v),

where A and B are analytic and their jacobian matrix at (0, 0) is 0. In
the neighborhood of (0, 0), the equation 0 = −vb + A(u, v) has the unique
solution v = f(u), where

f(u) =
−u2

(
1− ay∗k1

κ3
+ ak1

κ2

)
− u3 ak1

κ2(u+κ)

(
y∗

κ − k1

)
b+ uak1

κ2
− u2 ak21

κ2(u+κ)

=− 1

b
(1− ay∗k1

κ3
+
ak1

κ2
)u2 +

ak1
(
−k1y∗a+ κ3 + ak1κ+ bκ2 − y∗κb

)
b2κ5

u3 +O
(
u4
)
.
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Let F (u) = B(u, f(u)). Since A(u, f(u)) = bf(u) and B(u, v) has the form

B(u, v) = vb−A(u, v)− vb− v2 b

y∗

(
1− u

u + y∗

)
,

we have

F (u) =− bf(u) − f2(u)
b

y∗

(
1− u

u + y∗

)
=

(
−k1 y

∗ aκ b− k1
2y∗ a2 + κ3ak1 + ak1 κ

2b+ a2k1
2κ
)
u3

κ5b2

+

(
bκ2k1 y

∗ a− κ5b− bκ3ak1

)
u2

κ5b2
+ o(u3).

Let also G(u) = (∂A/∂u + ∂B/∂v)(u, f(u)). We have

∂A/∂u = − v
ak1

κ2
− 2u

(
1− ay∗k1

κ3
+
ak1

κ2

)
+ 2uv

ak1

κ2(u + κ)

+ 3u2 ak1

κ2(u + κ)

(
−y
∗

κ
+ 1

)
− u3 ak1

κ2(u + κ)2

(
−y
∗

κ
+ 1

)
− u2v

ak1

κ2(u + κ)2
,

∂B/∂v = − 2v
b

y∗

(
1− u

u + y∗

)
+ u

ak1

κ2
− u2ak1

κ2
.

Replacing v by f(u) yields

G(u) = u

−2

(
1− ay∗k1

κ3
+
ak1

κ2

)
+
ak1

κ2


+ u2

1

b

(
1− ay∗k1

κ3
+
ak1

κ2

)
ak1

κ2
+ 3

ak1

κ3

(
−y
∗

κ
+ k1

)+ o(u2)

Case 1: 1− ay∗k1
κ3

+ ak1
κ2
6= 0, then

F (u) = u2(1− ay∗k1

κ3
+
ak1

κ2
) + o(u2).

and

G(u) = u

−2

(
1− ay∗k1

κ3
+
ak1

κ2

)
+
ak1

κ2


+ u2

1

b

(
1− ay∗k1

κ3
+
ak1

κ2

)
ak1

κ2
+ 3

ak1

κ3

(
−y
∗

κ
+ k1

)+ o(u2)

We can now apply [8, Theorem 3.5] to system (2.39). Since the coefficient
of u2 in F (u) is nonzero, we deduce from Part (4)-(i1) of [8, Theorem 3.5] :
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Lemma 2.17 If E∗ is a nilpotent equilibrium of (1.2) in the positive quad-
rant ]0,+∞[×]0,+∞[, and if 1 − ay∗k1

κ3
+ ak1

κ2
6= 0, then E∗ is a cusp, that

is, its phase portrait consists of two hyperbolic sectors and two separatrices.
In this case, the index of E∗ is 0.

Case 2: if 1− ay∗k1
κ3

+ ak1
κ2

= 0, then

f(u) =
ak1

(
−k1y∗a+ κ3 + ak1κ+ bκ2 − y∗κb

)
b2κ5

u3 +O
(
u4
)

=− 1

bκ
u3 +O

(
u3
)

and

F (u) =
1

κ
u3 + o(u3).

and

G(u) = u

ak1

κ2

 + u2

3
ak1

κ3

(
−y
∗

κ
+ k1

)+ o(u2)

Again, we apply [8, Theorem 3.5] to System (2.39). Since the coefficient of
u3 in F (u) is positive, we deduce from Part (4)-(ii) of [8, Theorem 3.5] :

Lemma 2.18 If E∗ is a nilpotent equilibrium of (1.2) in the positive quad-
rant ]0,+∞[×]0,+∞[, and if 1− ay∗k1

κ3
+ ak1

κ2
= 0, then E∗ is a saddle point.

In this case, the index of E∗ is -1.

c2. The case of a center of the linearized vector field

The point E∗ is a center of the linear part of v if the Jacobian J (x∗, y∗) has
purely imaginary eigenvalues ±i√p, that is, when p > 0 and s = 0. Again,
this case is nonempty. Let us denote

(2.40) b0 = 1− 2x∗ +
ay∗k1

κ2
.

With the notations of (2.36), we have p > 0 and s = 0 if, and only if,

(2.41) b = b0 < aρ.

Note that x∗, y∗, as well as b0, a, ρ, and the sign of p do not depend on the
parameter b, and that s = b − b0. Let us fix all parameters except b, and
assume that ∆χ < 0, that is, the eigenvalues of J (x∗, y∗) are

−s± i
√

4p− s2

2
.
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These eigenvalues cross the imaginary axis at speed −1/2 when b passes
through the value b0. Let us denote c = aρ. By (2.37) and (2.38), we have

v1 =Xb0 − Y c−X2

(
1− ay∗k1

κ3

)
−XY ak1

κ2
−X3 ay∗k1

κ3(X + κ)
+X2Y

ak1

κ2
,

v2 = (X − Y )b− b

y∗
(X − Y )2

(
1− X

X + y∗

)
.

Let us denote by (i, j) the standard basis of R2. In this basis, the matrix of
the linear part ϕ of (X,Y ) 7→ (v1, v2) is

A(b) =

(
b0 −c
b −b

)
.

Let

δ =
√

detA(b0) =
√
b0(c− b0), γ =

c− b0
δ

=

√
c− b0
b0

,

u =i + j, v =
1

δ
ϕ(u) = −γi.

The matrix of ϕ in the basis (u,v) is

Ã(b) =

(
0 − b

b0
δ

δ b0 − b

)
.

The coordinates (u, v) in the basis (u,v) satisfy u = Y, v = 1
γ (Y − X),

X = u− vγ, Y = u. The coordinates of v in the basis ( ∂∂u ,
∂
∂v) are

u̇ = v2 = −bγv +
b

y∗
γ2v2

(
1− u− vγ

u− vγ + y∗

)
,

v̇ =
1

γ
(v2 − v1)

= − bv +
b

y∗
γv2

(
1− u− vγ

u− vγ + y∗

)
− 1

γ

(u− vγ)b0 − uc− (u− vγ)2

(
1− ay∗k1

κ3

)
− u(u− vγ)

ak1

κ2

− (u− vγ)3 ay∗k1

κ3(u− vγ + κ)
+ u(u− vγ)2ak1

κ2

.
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In particular, for b = b0,

u̇ = − δv +
c− b0
y∗

v2

(
1− u− vγ

u− vγ + y∗

)
,

v̇ = δu +
c− b0
y∗

v2

(
1− u− vγ

u− vγ + y∗

)
+

1

γ

+(u− vγ)2

(
1− ay∗k1

κ3

)
+ u(u− vγ)

ak1

κ2

+ (u− vγ)3 ay∗k1

κ3(u− vγ + κ)
− u(u− vγ)2ak1

κ2

.
2.3 Existence of a globally asymptotically stable equilibrium

point

When m = 0, in the case (c) of Theorem 2.7, we have seen that (1.2) has
no cycle, because the compact set delimited by a cycle would contain a
critical point, see [2, Theorem V.3.8]. As the compact set A is invariant
and contains all equilibrium points of the open quadrant ]0,+∞[×]0,+∞[,
all trajectories starting in the quadrant R+ ×R+ converge to E1 or E2 (E0

is excluded because it is an unstable node). On the x axis, we have ẏ = 0
and x satisfies the logistic equation ẋ = x(1 − x), thus, for x(0) > 0, x(t)
converges to 1, i.e., (x(t), y(t)) converges to E1. On the other hand, for
0 < y < k2 +x, we have ẏ > 0, thus, if y(0) > 0, (x(t), y(t)) cannot converge
to E1, it converges necessarily to E2.

Theorem 2.19 A sufficient condition for the existence of a globally asymp-
totically stable equilibrium point E∗ = (x∗, y∗) in the open quadrant ]0,+∞[×]0,+∞[
(equivalently, in the interior of A) is that

(2.42)
2m+ k1 ≥ 1

 and
(m > 0) or

(
4ak2 ≤ (1− k1 − a)2 + 4k1

).
Proof. Let E∗ = (x∗, y∗) ∈ A be an equilibrium point in the interior of A.
Let us denote

ρ(x) =
a(x−m)

k1 + x−m
,

and let us set

V (x, y) =

∫ x

x∗

u− x∗

(k2 + u−m)ρ(u)
du+

1

b

∫ y

y∗

v − y∗

v
dv.
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Then, using (2.20) and (2.21), we have

V̇ =
x− x∗

(k2 + x−m)ρ(x)
ẋ+

1

b

y − y∗

y
ẏ

=
x− x∗

k2 + x−m

(
x(1− x)

ρ(x)
− a(x−m)

k1 + x−m
1

ρ(x)
y

)
+

1

b
(y − y∗)b

(
1− y

k2 + x−m

)
=

x− x∗

a(k2 + x−m)

(
x(1− x)(k1 + x−m)

x−m
− y∗

)
− (x− x∗)(y − y∗)

k2 + x−m

+ (y − y∗)
(

y∗

k2 + x∗ −m
− y

k2 + x−m

)
=

x− x∗

a(k2 + x−m)

(
x(1− x)(k1 + x−m)

x−m
− x∗(1− x∗)(k1 + x∗ −m)

x∗ −m

)
− (x− x∗)(y − y∗)

k2 + x−m

+ (y − y∗) y
∗(k2 + x−m)− y(k2 + x∗ −m)

(k2 + x∗ −m)(k2 + x−m)
.

Let us denote g(x) = x(1− x)(k1 + x−m)/(x−m). Then

V̇ =
x− x∗

a(k2 + x−m)
(g(x)− g(x∗))− (x− x∗)(y − y∗)

k2 + x−m

+ (y − y∗) (y∗ − y)(k2 −m) + y∗x− yx∗

(k2 + x∗ −m)(k2 + x−m)

=
x− x∗

a(k2 + x−m)
(g(x)− g(x∗))− (x− x∗)(y − y∗)

k2 + x−m

+
y − y∗

y∗
(y∗ − y)(x∗ + k2 −m) + y∗(x− x∗)

k2 + x−m

=
x− x∗

a(k2 + x−m)
(g(x)− g(x∗)) +

y − y∗

y∗
(y∗ − y)(x∗ + k2 −m)

k2 + x−m

=
1

k2 + x−m

(
x− x∗

a
(g(x)− g(x∗))− (y − y∗)2

)
.

For x ≥ m, a sufficient condition for V̇ to be negative when (x, y) 6= (x∗, y∗)
is that g be nonincreasing. Let us make the change of variable X = x−m.
We have

g(x) =
(X +m)(1−X −m)(X + k1)

X
,

which leads to

g′(x) =
−2X3 + (1− 2m− k1)X2 − k1(m−m2)

X2
.
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Thus, if 2m + k1 ≥ 1, g′(X) remains negative for X > 0, i.e., for x > m.
Thus, for x > m, under the assumption (2.42), V̇ is negative.

We have seen that the first part of (2.42) implies that the equilibrium
point E∗, if it exists, is globally asymptotically stable. Note that Condi-
tion (2.42) is independent of the coordinates of E∗, and the global stability
implies that the equilibrium point E∗, if it exists, is unique.

The second part of (2.42) is a necessary and sufficient condition for the
existence of such an equilibrium point.

When m > 0, we already know that there exists at least one equilibrium
point in A. Actually, Condition (2.42) implies that the coefficient α2 =
a + k1 − 1 + 2m of (2.23) is positive. Thus, when m > 0, (2.42) is a
particular case of (c) in Theorem 2.5.

When m = 0, by Theorem 2.7-(c), since α2 > 0, there exists an equilib-
rium point in the interior of A if, and only if, (2.29) is satisfied.

2.4 Cycles

Let us investigate the existence of periodic orbits of (1.2). By Theorem 2.1
such orbits can take place only in A.

2.4.1 Refuge free case (m=0)

This case has been studied by M.A. Aziz-Alaoui and M. Daher-Okiye [6],
but we add some new results.

Lemma 2.20 In the cases (c) and (a) of Theorem 2.7, that is, when (1.2)
has 0 or 2 equilibrium points in the open quadrant ]0,+∞[×]0,+∞[, the
system (1.2) has no limit cycle. On the other hand, in the case (b) of
Theorem 2.7, that is, when (1.2) has 1 equilibrium point in the open quadrant
]0,+∞[×]0,+∞[, if furthermore s < 0 and p > 0, the system (1.2) has at
least one limit cycle.

Proof. In the case (c), the only equilibrium points of (1.2) in R+ ×R+ are
the trivial points E0, E1, and E2, on the axes. Thus (1.2) has no cycle,
because the compact set delimited by a cycle would contain a critical point,
see [2, Theorem V.3.8].

In the case (a), if there was a cycle inside A, we could apply the Poincaré-
Hopf Index Theorem to the compact manifold whose boundary is delineated
by this cycle (see [22] for a version of this theorem when the vector field
is tangent to the boundary). Denoting N the number of nodes or foci and
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S the number of saddles in the open quadrant ]0,+∞[×]0,+∞[, we would
have N − S = 1. But Theorem 2.12 shows that N − S = 0, a contradiction.

In the case (b), if s < 0 and p > 0, the system (1.2) has an unstable
equilibrium point. From Theorem (2.1) and Poincare-Bendixson Theorem,
there exists at least one limit cycle around this equilibrium.

Note that the conditions of Lemma 2.20 do not involve the value of b.
Using Bendixson-Dulac criterion, M.A. Aziz-Alaoui and M. Daher-Okiye
obtain another criterion:

Lemma 2.21 [6, Theorem 7] if b + k1 ≥ 1, then the system (1.2) has no
limit cycle.

2.4.2 Case with refuge (m>0)

By Theorem 2.19, if Condition (2.42) is satisfied, there can be no periodic
orbits.

Let us now give some sufficient conditions for the absence of periodic
orbits, using Bendixson-Dulac criterion. Let us denote by f(x, y) and g(x, y)
the coordinates of the vector field in (1.2). For a Dulac function, we choose

D(x, y) = x+ k1 −m.

Let us look for conditions that ensure that ∂(fD)
∂x + ∂(gD)

∂y < 0 in A. We have

∂(fD)

∂x
(x, y) = −3x2 + 2(1− k1 +m)x+ k1 −m− ay,

∂(gD)

∂y
(x, y) =

b(x+ k1 −m)(x+ k2 −m− 2y)

x+ k2 −m
.

For (x, y) ∈ A, we have

∂(fD)

∂x
(x, y) < −3m2 + 2(1− k1 +m)x+ k1 −m− ak2.

Since the maximum of −3m2 +m is 1/12 and the maximum of −m2 +m is
1/4, we deduce:

1− k1 +m > 0⇒ ∂(fD)

∂x
(x, y) < −3m2 +m− k1 − ak2 + 2

≤ 2 +
1

12
− k1 − ak2,

1− k1 +m < 0⇒ ∂(fD)

∂x
(x, y) < −m2 +m(1− 2k1)− k1 − ak2
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< −m2 −m− k1 − ak2 < 0.

In particular, a condition that ensures that ∂(fD)
∂x < 0 in A is

(2.43) (k1 > 1 +m) or (ak2 + k1 > 2 +
1

12
).

On the other hand, for (x, y) ∈ A, ∂(gD)
∂y (x, y) has the same sign as x+ k2−

m−2y, and we have x+k2−m−2y < 1−m−k2. Thus a sufficient condition
for ∂(gD)

∂x < 0 in A is

(2.44) k2 > 1−m.

The same technique does not provide any sufficient condition for ∂(fD)
∂x +

∂(gD)
∂y > 0 in A. So, our next result concerning the absence of cycles is:

Lemma 2.22 A sufficient condition for (1.2) to have no periodic solution
is k2 > 1−m

 and
(k1 > 1 +m) or (ak2 + k1 > 2 +

1

12
)
.

Now, we consider the existence of limit cycles which are not occuring
from a Hopf bifurcation. The special configuration of the existence of a
limit cycle enclosing three equilibrium points is numerically investigated. In
particular, when the system parameters satisfy a = 0.5, k1 = 0.08, k2 =
0.2, b = 0.1,m = 0.0025, then three hyperbolic equilibrium points exist,
namely, E∗1 = (0.0222589; 0.2197589), E∗2 = (0.0299525; 0.2274525), E∗3 =
(0.3702886; 0.5677886). They define respectively a stable focus, a saddle
point and an unstable focus. Accordingly to the Poincaré index theorem, the
sum of the corresponding indexes is equal to 1. The numerical simulations
show that there exists a limit cycle, which is hyperbolic and stable, see
Figure (1).

3 Stochastic model

We now study the dynamics of the system (1.3), with initial conditions
x0 > 0 and y0 > 0. In the case when m = 0 and k1 = k2, the persistence
and boundedness of solutions have been investigated in by Ji, Jiang and
Shi in [14]. A similar model has been studied by Fu, Jiang, Shi, Hayat and
Alsaedi in [10].
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3.1 Existence and uniqueness of the positive global solution

Theorem 3.1 For any initial condition (x0, y0) ∈ R2
+, the system (1.3) ad-

mits a unique solution (x(t), y(t)), defined for all t ≥ 0 a.s. and this solution
remains in ]0,+∞[×]0,+∞[. Furthermore, if (x0, y0) ∈]0,+∞[×]0,+∞[,
this solution remains in ]0,+∞[×]0,+∞[, whereas, if (x0, y0) belongs to one
of the axis R+ × {0} or {0} × R+, it remains on this axis.

Proof. Since the coefficients of (1.3) are locally Lipschitz, uniqueness of the
solution until explosion time is guaranteed for any initial condition.

Let us now prove global existence of the solution.

The case when (x0, y0) ∈
(
R+ × {0}

)
∪
(
{0} × R+

)
is trivial because

both equations in (1.3) become independent, for example if y0 = 0 with
x0 6= 0, we have y(t) = 0 for all t ≥ 0, and x is a solution to the stochastic
logistic equation

dx(t) = x(t)(1− x(t))dt+ σ1x(t)dw1(t)

which is well known (see Subsection 3.2), thus x(t) is defined for every t ≥ 0.
Assume now that x0 > 0 and y0 > 0. Since the coordinate axes are stable

by (1.3), we deduce, applying locally the comparaison theorem for SDEs (see
[9, Theorem 1], this theorem is given for globally Lipschitz coefficients), that
the solution to (1.3) remains in ]0,+∞[×]0,+∞[ until its explosion time.

Let τe be the explosion time of the solution to (1.3). To show that
τe = ∞, we adapt the proof of [7]. Let k0 > 0 be large enough, such that
(x0, y0) ∈ [ 1

k0
, k0] × [ 1

k0
, k0]. For each integer k ≥ k0 we define the stopping

time

τk = inf
{
t ∈ [0, τe) : x /∈ (

1

k
, k) ou y /∈ (

1

k
, k)
}
.

The sequence (τk) is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence
τ∞ ≤ τe, (in fact, as (x(t), y(t)) > 0 a.s., we have τ∞ = τe). It suffices to
prove that τ∞ =∞ a.s.. Assume that this statement is false, then there exist
T > 0 and ε ∈ ]0, 1[ such that P ({τ∞ ≤ T}) > ε. Since (τk) is increasing we
have

P ({τk ≤ T}) > ε.

Now, we consider the positive definite function V : ]0,+∞[×]0,+∞[→
]0,+∞[×]0,+∞[ given by

V (x, y) = (x+ 1− log x) + (y + 1− log y).
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Applying Itô’s formula, we get

dV (x, y) =
[
(x− 1)(1− x− ay(x−m)

k1 + x−m
) +

σ2
1

2
+ b(y − 1)(1− y

k2 + x−m
) +

σ2
2

2

]
dt

+σ1(x− 1)dW1 + σ2(y − 1)dW2.

The positivity of x(t) and y(t) implies

dV (x, y) ≤
(

2x+ ay +
σ2

1 + σ2
2

2
+ by +

y

k2

)
dt+ σ1(x− 1)dW1 + σ2(y − 1)dW2

≤
(

2x+ (a+ b+
1

k2
)y +

σ2
1 + σ2

2

2

)
dt+ σ1(x− 1)dW1 + σ2(y − 1)dW2.

Denote c1 = a+ b+ 1
k2

, c2 =
σ2
1+σ2

2
2 . Using [7, lemma 4.1], we can write

2x+ c1y ≤4(x+ 1− log x) + 2c1(y + 1− log y)

≤c3V (x, y), where c3 = max(4, 2c1).

Hence

dV (x, y) ≤(c2 + c3V (x, y))dt+ σ1(x− 1)dW1 + σ2(y − 1)dW2

≤c4(1 + V (x, y))dt+ σ1(x− 1)dW1 + σ2(y − 1)dW2, where c4 = max(c2, c3).

Integrating both sides from 0 to τk ∧ T , and taking expectations, we get

EV (x(τk∧T ), y(τk∧T )) ≤ V (x0, y0)+c4T +c4

∫ T

0
EV (x(τk∧ t), y(τk∧ t)dt.

By Gronwall’s inequality, this yields

(3.1) EV (x(τk ∧ T ), y(τk ∧ T )) ≤ c5,

where c5 is the finite constant given by

(3.2) c5 = (V (x0, y0) + c4T )ec4T .

Let Ωk = {τk ≤ T}. We have P(Ωk) ≥ ε, and for all ω ∈ Ωk, there exists
at least one element of x(τk, ω), y(τk, ω) which is equal either to k or to 1

k ,
hence

V (x(τk), y(τk)) ≥ (k + 1− log k) ∧ (
1

k
+ 1 + log k).

Therefore, by (3.1),

c5 ≥ E[1Ωk(ω)V (x(τk, ω), y(τk, ω)] ≥ ε
[
(k + 1− log k) ∧ (

1

k
+ 1 + log k)

]
,

where 1Ωk is the indicator function of Ωk,. Letting k →∞, we get c5 =∞,
contradicts (3.2), So we must have τ∞ =∞ a.s.
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Remark 3.2 An alternative proof of non explosion in finite time can be
obtained by using the comparison theorem, since 0 ≤ x(t) ≤ z1(t) and
0 ≤ y(t) ≤ z2(t) a.s. for every t ≥ 0, where z1 and z2 are geometric Brownian
motions, with

dz1(t) = z1(t)dt+ σ1z1(t)dW1(t) and dz2(t) = bz2(t)dt+ σ2z2(t)dW2(t).

3.2 Comparison results

In this section, we compare the dynamics of (1.3) with some simpler models,
in view of applications to the long time behaviour of the solutions to (1.3).

Applying locally the comparaison theorem for SDEs (see [9, Theorem 1],
this theorem is given for globally Lipschitz coefficients), we have, for every
t ≥ 0,

(3.3) 0 ≤ x(t) ≤ u(t) a.s.

where u is the solution to the stochastic logistic equation (also called stochas-
tic Verhulst equation) with initial condition x0:

(3.4) du(t) = u(t)(1− u(t))dt+ σ1u(t)dw1(t), u(0) = x0.

The process u is well known and can be written explicitely, see [16, page
125]:

u(t) =
e

(
1−σ

2
1
2

)
t+σ1w1(t)

1
x0

+
∫ t

0 e

(
1−

σ21
2

)
s+σ1w1(s)ds

.

By [17, Lemma 2.2], u is uniformly bounded in Lp for every p > 0. Thus,
by (3.3), for every p > 0, there exists a constant Kp such that

(3.5) sup
t≥0

E (x(t))p < Kp.

Using again the comparison theorem, we get, for every t ≥ 0,

(3.6) 0 ≤ y(t) ≤ v(t),

where v is the solution to

(3.7) dv(t) = bv(t)

(
1− v(t)

k2 + u(t)

)
dt+ σ2v(t)dw2(t), v(0) = y0,
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which can be explicited with the help of u:

(3.8) v(t) =
e

(
b−σ

2
2
2

)
t+σ2w2(t)

1
y0

+ b
∫ t

0
1

k2+u(s)e

(
b−

σ22
2

)
s+σ2w2(s)ds

.

Similarly, we have, for every t ≥ 0,

0 ≤ ǔ(t) ≤ x(t) a.s.(3.9)

0 ≤ v̌(t) ≤ y(t) a.s.,(3.10)

with

dǔ(t) =
(
ǔ(t)(1− ǔ(t))− av(t)

)
dt+ σ1ǔ(t)dw1(t), ǔ(0) = x0,(3.11)

dv̌(t) = bv̌(t)

(
1− v̌(t)

k2

)
dt+ σ2v̌(t)dw2(t), v̌(0) = y0.(3.12)

Note that ǔ is defined with the help of the process v defined by (3.7).
The following property of stochastic logistic processes will be useful:

Lemma 3.3 ([17, Theorem 3.2 and Theorem 4.1]) The process u converges
a.s. to 0 if σ2

1 ≥ 2, whereas it converges to a nondegenerate stationary
distribution if σ2

1 < 2.
Similarly, v̌ converges a.s. to 0 if σ2

2 ≥ 2b, whereas it converges to a
nondegenerate stationary distribution if σ2

2 < 2.

Remark 3.4 The global existence and uniqueness of (u, v, ǔ, v̌) can be ob-
tained via the same methods as in Subsection 3.1, see in particular Remark
3.2.

3.3 Extinction

We show that, when the noise is large, the system (1.3) goes almost surely
(but in infinite time) to extinction.

Theorem 3.5 Assume that σ2
1 ≥ 2. Then limt→∞ x(t) = 0 a.s. If moreover

σ2
2 ≥ 2b, then limt→∞ y(t) = 0 a.s.

Proof. If σ2
1 ≥ 2, we deduce from (3.4) and Lemma 3.3 that x(t) converges

to 0 a.s.
Assume moreover that σ2

2 ≥ 2b. From (3.8), the random variable v :
Ω→ C(R+;R+) is a function of two independent random variables, w2 and
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u (the latter is a function of w1). For a fixed u ∈ C(R+;R+) such that
limt→∞ u(t) = 0, we have

(3.13) lim
t→∞

(
v(t)− v̌(t)

)
= 0,

where v̌ is defined by (3.11). Thus, since u(t) goes to 0 a.s., Equation (3.13)
is satisfied a.s. Since, by Lemma 3.3, v̌(t) converges a.s. to 0 if σ2

2 ≥ 2b, we
deduce that limt→∞ v(t) = 0 a.s., and the result follows from (3.6).

Remark 3.6 Since v̌(t) ≤ y(t) ≤ v(t), we can deduce also from (3.13) that,
if σ2

1 ≥ 2 with 0 < σ2
2 < 2b, then x(t) converges a.s. to 0 while y(t) converges

to a nondegenerate stationary distribution.

3.4 Existence of a stationary distribution

In this section, we assume that m > 0. The existence of a stationary dis-
tribution is proved for a similar (but different) system without refuge in
[10].

Theorem 3.7 Assume that 0 < σ2
1 < 2 and 0 < σ2

2 < 2b, with m > 0. Then
the system (1.3) has a unique stationary distribution µ on ]0,+∞[×]0,+∞[.
Moreover, the system (1.3) is ergodic and its transition probility P((x, y), t, .)
satisfies

P((x0, y0), t, ϕ)→ µ(ϕ) when t→∞

for each (x0, y0) ∈]0,+∞[×]0,+∞[ and each bounded continuous function
ϕ : ]0,+∞[×]0,+∞[→ R.

Remark 3.8 Theorem 3.7 shows that, contrarily to the deterministic case,
when min{σ1, σ2} > 0, there is only one equilibrium for the system (1.3) in
the open quadrant ]0,+∞[×]0,+∞[.

Note also that, when min{σ1, σ2} > 0, there is no invariant closed subset
in the open quadrant ]0,+∞[×]0,+∞[ for the system (1.3). Indeed, since
the noise in (1.3) acts in all directions, the viability conditions of [5] are
satisfied for no closed convex subset of ]0,+∞[×]0,+∞[.

In particular, there is no equilibrium point for (1.3), thus the limit sta-
tionary distribution is nondegenerate.

Remark 3.9 The ecologically less interesting case when (x, y) stays in one
of the coordinate axes has similar features, since, by [17, Theorem 3.2], the
stochastic logistic equation admits a unique invariant ergodic distribution
when the diffusion coefficient is positive but not too large.
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Our proof of Theorem 3.7 is based on the following well known result:

Lemma 3.10 Consider the equation

(3.14) dX(t) = f(X(t)) dt+ g(X(t)) dW (t)

where f : Rd → Rd and g : Rd → Rm×d are locally Lipschitz functions
with locally sublinear growth, and W is a standard Brownian motion on
Rm. Denote by A(x) the m×m matrix g(x) g(x)T . Assume that ]0,+∞[d is
invariant by (3.14) and that there exists a bounded open subset U of ]0,+∞[d

such that the following conditions are satisfied:

(B.1) In a neighborhood of U , the smallest eigenvalue of A(x) is bounded
away from 0,

(B.2) If x ∈ Rd \ U , the expectation of the hitting time τU at which the
solution to (3.14) starting from x reaches the set U is finite, and
supx∈K Ex τU <∞ for every compact subset K of ]0,+∞[d.

Then (3.14) has a unique stationary distribution µ on ]0,+∞[d. Moreover,
(3.14) is ergodic, its transition probility P(x, t, .) satisfies

(3.15) P(x, t, ϕ)→ µ(f) when t→∞

for each x ∈ Rd and each bounded continuous ϕ : ]0,+∞[d→ R.

The existence of the stationary distribution comes from [15, Theorem 4.1],
its uniqueness from [15, Corollary 4.4], the ergodicity from [15, Theorem
4.2], and (3.15) comes from [15, Theorem 4.3]. Section 4.8 of [15] contains
remarks that allow the restriction to an invariant domain such as ]0,+∞[d.

To prove Condition (B.2), we establish some preliminary results using
the systems (3.4)-(3.7) and (3.11)-(3.12) of Subsection 3.2. Let us first set
some notations: For r,R, x0, y0 > 0, we denote

τ
(R)
1 (x0) = inf{t ≥ 0; u(t) < R},

τ
(R)
2 (x0, y0) = inf{t ≥ 0; v(t) < R},

τ̌
(r)
1 (x0) = inf{t ≥ 0; x(t) > r},

τ̌
(r)
2 (y0) = inf{t ≥ 0; v̌(t) > r},

where inf ∅ = +∞, u, v, and v̌ are the solutions to (3.4), (3.7), and (3.12)
respectively, and x is the first component of the solution to (1.3) starting
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from (x0, y0). Note that, since v depends on u, the hitting time τ
(R)
2 depends

on (x0, y0).
Since (3.4) and (3.12) are stochastic logistic equations, the proof of [17,

Theorem 3.2] shows the following:

Lemma 3.11 Assume that 0 < σ2
1 < 2. There exists R1 > 0 sufficiently

large such that E
(
τ

(R1)
1 (x0)

)
is finite and uniformly bounded on compact

subsets of [R1,+∞[.
Assume that 0 < σ2

2 < 2b. There exists r2 > 0 sufficiently small such that

E
(
τ̌

(r2)
2 (y0)

)
is finite and uniformly bounded on compact subsets of ]0, r2].

Note that the proof of [17, Theorem 3.2] provides a two-sided version of
Lemma 3.11 (that is, each of the processes u and v̌ hits an interval of the
form ]r,R[ in finite time), but we only need the one-sided version stated
here.

Lemma 3.12 Assume that 0 < σ2
1 < 2. There exists r1 sufficiently small

such that E(τ̌
(r2)
1 (y0)) is finite and uniformly bounded on compact subsets of

]0, r2].

Proof. We use the fact that, when x < m, x coincides with a process z
solution to the stochastic logistic equation

dz(t) = z(1− z)dt+ σ1zdw1(t).

The proof of [17, Theorem 3.2] provides a number r > 0 such that the expec-
tation of the hitting time of ]r,+∞[ by z is finite and uniformly bounded on
each compact subset of ]0, r]. Then, we only need to take r2 = min{r,m}.

Lemma 3.13 There exists R2 sufficiently large such that E(τ
((R2))
2 (x0, y0))

is finite and uniformly bounded on compact subsets of ]0,+∞[×[R2,+∞[.

Proof. Let us set, for u, v > 0,

V (u, v) =
1

u
+ u+

1

v
+ log(v).

We have V (u, v) ≥ V (1, 1) > 0. Let L be the infinitesimal operator (or
Dynkin operator) of the system (3.4)-(3.7). We have

LV (u, v) =u(1− u)

(
1− 1

u2

)
+
σ2

1

u
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+ bv

(
1− v

k2 + u

)(
− 1

v2
+

1

v

)
+
σ2

2

2

(
2

v
− 1

)
=− 1 + u

u

(
(u− 1)2 − σ2

1

)
− σ2

1

+ b
v − 1

v

k2 + u− v
k2 + u

+
σ2

2

2

2− v
v

.

Let ρ ≥ 1 such that

u > ρ⇒ (u− 1)2 − σ2
1 > bu.

For u > ρ and v > max{4, 1/(b+ σ2
1)}, we get (2− v)/v ≤ −1/2 and

LV (u, v) ≤ −1 + u

u
bu− σ2

1 + b− σ2
2

4

= −bu− σ2
1 −

σ2
2

4
≤ −b+ σ2

1

b+ σ2
1

− σ2
2

4
< −1.

On the other hand, there exists a number K ≥ 0 such that

u ≤ ρ⇒ (u− 1)2 − σ2
1 ≤ K.

For u ≤ ρ and v ≥ max{4, (1 + 2/b)(k2 + ρ)}, we have (v − 1)/v ≥ 3/4 and
(k − 2 + ρ− v)/(k2 + ρ) ≤ −2/b, thus

LV (u, v) ≤− 1 + ρ

ρ
K − σ2

1 + b
v − 1

v

k2 + ρ− v
k2 + ρ

− σ2
2

4

≤− 1 + ρ

ρ
K − σ2

1 + b× 3

4
× −2

b
− σ2

2

4

<− 1.

Let R2 = max{4, 1/(b+σ2
1), (1+2/b)(k2 +ρ)}. For every y0 > R2 and every

x0 > 0, we have LV (u, v) < −1. Denote for simplicity τ = τ
(R2)
2 (x0, y0). We

have

0 ≤ E(x0,y0) V (u(τ), v(τ))

= V (x0, y0) + E

∫ τ1

0
LV (u(s), v(s))ds ≤ V (x0, y0)− E(τ),

which proves that E(τ) ≤ V (x0, y0) <∞.

Proof of Theorem 3.7. Condition (B.1) of Lemma 3.10 is trivially stat-
isfied.
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To prove Condition (B.2), with the notations of Lemmas 3.11, 3.12,
and 3.13, taking into account the inequalities (3.3), (3.6), and (3.10), we
only need to take r and R such that 0 < r < R, r ≤ min{r1, r2}, R ≥
max{R1, R2}, and U =]r,R[×]r,R[.

4 Numerical simulations and figures

All simulations and pictures of this section are obtained using Scilab.

4.1 Deterministic system

We numerically simulate solutions to System (1.2). Using the Euler scheme,
we consider the following discretized system:

(4.1)

xk+1 = xk +

[
xk(1− xk)−

ayk(xk −m)

k1 + xk −m

]
h,

yk+1 = yk + byk

[
1− yk

k2 + xk −m

]
h.
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Figure 1: A phase portrait of (1.2) with three equilibrium points and a cycle

in the interior of A. The dashed lines are isoclines y = x(1−x)(k1+x−m)
a(x−m) and

y = k2 + x−m. The grey region is the invariant attracting domain A.

45



Figure 2: A phase portrait of (1.2) with an unstable equilibrium and a stable
limite cycle
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Hopf bifurcation of (1.2) λ < 0, (semi hyperbolic case).

Hopf bifurcation of (1.2) λ > 0, (semi hyperbolic case).

Figure 3: Hopf bifurcation. In the upper subgraph we have a stable limit
cycle with m = 0.0025, k1 = 0.08, k2 = 0.01, a = 1.1, b = 0.2 and in the lower
subgraph we have an unstable limite cycle with m = 0.02, k1 = 0.08, k2 =
0.1, a = 0.5, b = 0.1.
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4.2 Stochastically perturbated system

We numerically simulate the solution to System (1.3). Using the Milstein
scheme (see [16]), we consider the discretized system
(4.2)

xk+1 = xk +

[
xk(1− xk −

ayk
k1 + xk −m

)

]
h+ σ1 xk

√
h ξ2

k +
1

2
σ2

1xk(h ξ
2
k − h),

yk+1 = yk + byk

[
1− y

k2 + x

]
h+ σ2yk

√
h ξ2

k +
1

2
σ2

2yk(h ξ
2
k − h).

In Figure 1, we choose a = 0.4, k1 = 0.08, k2 = 0.2, b = 0.1,m = 0.0025, σ1 =
0.01, σ2 = 0.01, the initial value (x(0), y(0)) = (0.55, 0.6), and the time step
h = 0.01. The deterministic model has a globally stable equilibrium point
(x∗, y∗) = (0.55, 0.75). The simulations show the permanence of the system
(1.3).
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Figure 4: Solutions to the stochastic system (1.3) and the corresponding
deterministic system, represented respectively by the blue line and the red
line. First subgraph: σ1 = 0.01, σ2 = 0.01. Second subgraph: σ1 = 0.3,
σ2 = 0.2.
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with boundary. Differential Integral Equations, 11(1):191–199, 1998.

[20] J. Lv and K. Wang. Analysis on a stochastic predator-prey model
with modified Leslie-Gower response. Abstr. Appl. Anal., pages Art.
ID 518719, 16, 2011.

[21] J. Lv and K. Wang. Asymptotic properties of a stochastic predator-
prey system with Holling II functional response. Commun. Nonlinear
Sci. Numer. Simul., 16(10):4037–4048, 2011.

[22] T. Ma and S. Wang. A generalized Poincaré-Hopf index formula and its
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