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SOLUTION TO BRIOT AND BOUQUET PROBLEM ON
SINGULARITIES OF DIFFERENTIAL EQUATIONS

RICARDO PÉREZ-MARCO

Abstract. We solve Briot and Bouquet problem on the existence of non-monodromic
(multivalued) solutions for singularities of differential equations in the complex do-
main. The solution is an application of hedgehog dynamics for indifferent irrational
fixed points. We present an important simplification by only using a local hedgehog
for which we give a simpler and direct construction of quasi-invariant curves which
does not rely on complex renormalization.

1. Introduction.

We prove the following Theorem:

Theorem 1. Let f(z) = e2πiαz + O(z2), α ∈ R − Q be a germ of holomorphic
diffeomorphism with an indifferent irrational fixed point at 0.

There is no orbit of f distinct from the fixed point at 0 that converges to 0 by
positive or negative iteration by f .

This Theorem solves the question of C. Briot and J.-C. Bouquet on singularities
of differential equations from 1856 ([7]), as well as questions of H. Dulac (1904, [10],

[11]), É. Picard (1896, [28]), P. Fatou (1919, [12]), and two more recent conjectures
of M. Lyubich (1986, [16]).

The Theorem is trivial when the fixed point is linearizable, so, for the rest of the
article, we assume that f is not linearizable.

The main difficulty is to understand the non-linearizable dynamics. The proof relies
on hedgehogs and their dynamics discovered by the author in [24]. More precisely,
we have from [24] the existence of hedgehogs:
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Theorem 2 (Existence of hedgehogs). Let U be a Jordan neighborhood of 0 such that
f and f−1 are defined and univalent on U , and continuous on Ū .

There exists a hedgehog K with the following properties:

• 0 ∈ K ⊂ Ū
• K is a full, compact and connected set.
• K ∩ ∂U 6= ∅.
• f(K) = f−1(K) = K.

Moreover, f acts continuously on the space of prime-ends of C−K and defines an
homeomorphism of the circle of prime-ends with rotation number α.

Figure 1. A hedgehog and its defining neighborhood.

In the proof we only need to consider local hedgehogs, i.e. a hedgehog associated
to a small disk U = Dr0 with r0 > 0 small enough. Let K0 be the hedgehog associated
to Dr0 . The two following Theorems imply our main Theorem.

Theorem 3. Let (pn/qn)n≥0 be the sequence of convergents of α. We have

lim
n→+∞

f±qn/K0
= idK0 ,

where the convergence is uniform on K0.

Therefore all points of the hedgehog are uniformly recurrent, and no point on the
hedgehog distinct from 0 converges to 0 by positive or negative iteration by f .

Theorem 4. Let z0 ∈ U−K0 such that the positive, resp. negative, orbit (fn(z0))n≥0,
resp. (f−n(z0))n≥0, accumulates a point on K0. Then this orbit accumulates all K0,

K0 ⊂ (fn(z0))n≥0 (resp.K0 ⊂ (f−n(z0))n≥0) .
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In particular this implies that if such an orbit (fn(z0))n≥0 (resp. (f−n(z0))n≥0)
accumulates 0 ∈ K0 then it cannot converge to 0. Note that if f is not linearizable
then it is clear that 0 ∈ ∂K0. Indeed one can prove that the hedgehog K0 has empty
interior and K0 = ∂K0, but we don’t need to use this fact. We can just prove the
previous Theorem for ∂K0.

The proof of these two Theorems are done by constructing quasi-invariant curves
near the hedgehog. These are Jordan curves surrounding the hedgehog and almost
invariant by high iterates of the dynamics. The quasi-invariance property is obtained
for the Poincaré metric of the complement of the hedgehog in the Riemann sphere.

Therefore, it is enough to carry out the construction for local hedgehogs, and for
these we have a direct and simpler construction of quasi-invariant curves, that does
not rely on complex renormalization techniques. Classical one real dimensional es-
timates for smooth circle diffeomorphism combined with an hyperbolic version of
Denjoy-Yoccoz Lemma in order to control the complex orbits for analytic circle dif-
feomorphisms, are enough. This gives an important simplification for local hedgehogs
of the proof of the main Theorem that was announced in [21].

2. Historical introduction on Briot and Bouquet problem.

In 1856 C. Briot and J.-C. Bouquet published a foundational article [7] on the local
solutions of differential equations in the complex domain. They are particularly inter-
ested in how a local solution determines uniquely the holomorphic function through
analytic continuation. They consider a first order differential equation of a differential
equation of the form

dy

dx
= f(x, y) ,

where f is a meromorphic function of the two complex variables (x, y) ∈ C2 in a neigh-
borhood of a point (x0, y0). A. Cauchy proved his fundamental Theorem on existence
and uniqueness of local solutions1: If f is finite and holomorphic in a neighborhood
of (x0, y0) then there exists a unique holomorphic local solution y(x) satisfying the
initial conditions

y(x0) = y0 .

In their terminology, Briot and Bouquet talk about “solutions monogènes et mon-
odromes”, “monogène” or monogenic meaning C-differentiable, i.e. holomorphic, and
“monodrome” or monodromic meaning univalued, since they also consider multival-
ued solutions with non-trivial monodromy at x0 ∈ C.

1What is called today in Calculus books Cauchy-Lipschitz Theorem.
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Briot and Bouquet start their article by giving a simple proof of Cauchy Theorem
by the majorant series method. Then they consider the situation where f is infinite
or has a singularity at (x0, y0). They observe that even in Cauchy’s situation, we may
get to such a point by a global analytic continuation of any solution. We assume for
now on that (x0, y0) = (0, 0). Writing down f as the quotient of two holomorphic
germs

f(x, y) =
A(x, y)

B(x, y)
,

they study the situation when A(0, 0) = B(0, 0) = 0 (they call these singularities “of
the form 0

0
”). This is done in Chapter III, starting in section 75 of [7]. After a simple

change of variables, the equation reduces to

x
dy

dx
= ay + bx+O(2) ,

and a discussion starts considering the different cases for different values of the co-
efficients a, b ∈ C. They prove the remarkable Theorem that if a is not a positive
integer, then there always exists a holomorphic solution y(x) in a neighborhood of 0
vanishing at 0 (Theorem XXVIII in section 80 of [7]). They show that this holomor-
phic solution is the only monodromic one and in their proof of uniqueness (in section
81) the equation is put in the form

x
dy

dx
= y(a+O(2)) .

In this last form the holomorphic solution corresponds to y = 0.

After that they proceed to show that when the real part of a is positive there
are infinitely many non-monodromic solutions (section 82 in [7]), i.e. holomorphic
solutions y(x) that are multivalued around 0 ∈ C.

They make the claim in section 85 in [7] that when the real part of a is negative
there are no other solutions, not even non-monodromic, other than the holomorphic
solution found.

The proof of this statement contains a gap. Starting with the new form of the
differential equation

x
dy

dx
= y(a+Oy(1)) + xyϕ(x, y) ,

they transform it into

dy

y
+ (A+By + . . .) dy = a

dt

t
+ ψ(x, y) dt ,
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where A+By + . . . is a holomorphic function of y near 0 and ψ is holomorphic near
(0, 0). Assuming by contradiction the existence of another solution, integration of the
equation over a path from x1 to x, y1 = y(x1), gives

log

(
y

y1

)
+ (A(y − y1) + . . .) = log

(
x

x1

)a
+

∫ x

x1

ψ(x, y(x)) dx .

They pretend that this is of the form

log

(
y(x)

y1

)
= log

(
x

x1

)a
+ ε,

where ε is a small quantity, vanishing for x = x1, and very small when x → 0, to
get a contradiction using that for <a < 0, < log(x/x1)a → +∞ when x → 0 but
< log(y/y1)→ −∞ if y(x)→ 0.

Unfortunately ε is not small because since y(x) is not monodromic, the integral∫ x

x1

ψ(x, y(x)) dx

is not monodromic either, and if the path of integration spirals around 0 it can get
arbitrarily large.

É. Picard observes ([28] Vol. II p.314 and p.317, 1893, see also Vol. III p.27 and
29, 1896) that with some implicit assumptions (that are not in [7]) the argument is
correct if we approach x = 0 along a path of finite length where the argument of
y(x) stays bounded or with a tangent at 0, trying (not very convincingly) to rebate
L. Fuchs that pointed out the error in [13]. H. Poincaré does not mention the error
in his article [29] where he states Briot and Bouquet result without any restriction,
and in his Thesis [30] where he studies the case where the real part of a is positive
(and carefully avoids discussing further the other problematic case).

Picard, in his first edition of his “Traité d’Analyse” ([28], Vol. III, page 30, 1896),
casts no doubt about the correction of Briot and Bouquet statement:

“Il resterait à démontrer que ces deux intégrales sont, en dehors de toute hypothèse,
les seules qui passent par l’origine ou qui s’en rapprochent indéfiniment. Je dois
avouer que je ne possède pas une démonstration rigoureuse de cette proposition, qui
ne parâıt cependant pas douteuse.”2

2“It remains to prove that these two solutions are, without any assumption, the only ones passing
through the origin or accumulating it. I have to admit that I don’t have a proof of this fact but it
doesn’t seem doubtful.”
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He refers to the two Briot-Bouquet holomorphic solutions y(x) and x(y). His belief
is probably reinforced by the saddle picture for real solutions that clearly only exhibit
two real solutions in R2 passing through the singularity.

A major progress came with the Thesis of H. Dulac published in 1904 in the Journal
of the École Polytechnique [10]. He proves the existence of an infinite number of
distinct non-monodromic solutions when a is a negative rational number, thus proving
than Briot and Bouquet original claim is always false in the rational situation. From
the introduction of [10] we can read

“. . . on sait depuis bien longtemps, qu’il n’existe que deux courbes intégrales réelles
passant par l’origine. En est-il de même dans le champ complexe ? C’est une question
qui restait en suspens et que les géomètres penchaient à trancher par l’affirmative
(Picard, Traité d’Analyse, II (sic)3, p. 30). Or je prouve, au contraire, tout au moins
dans le cas où α est rationnel, qu’il existe une infinité d’intégrales y(x) s’annulant
avec x (x tendant vers zéro suivant une loi convenable) . . .” 4

After Dulac’s result Picard changed the quoted text in later editions of his Traité
d’Analyse ([28], Vol. III, 3rd edition, p.30, 1928) into:

“On a longtemps présumé que ces intégrales sont, en dehors de toute hypothèse,
les seules qui passent par l’origine ou qui s’en rapprochent indéfiniment. Dans un
excellent travail sur les points singuliers des équations différentielles, M. Dulac a
démontré que la question était très complexe. Prenons, par exemple, l’équation

x
dy

dx
+ y(ν + . . .) = 0 ,

où ν est positif, équation à laquelle peut toujours se ramener le cas où λ est négatif.
M. Dulac examine particulièrement le cas où ν est un nombre rationnel p/q, et montre
qu’il y a alors, en général, une infinité d’intégrales pour lesquelles x et y tendent vers
0.” 5

3Volume III is the correct reference.
4“. . . from long time ago we know that there are only two real solutions passing through the

origin. Is it the same in the complex? This is a question that remained open and that the geometers
were inclined to decide in the affirmative (Picard, Traité d’Analyse, II (sic), p. 30). But, on the
contrary, I prove, at least in the case when α is rational, that there are infinitely many solutions
y(x) vanishing with x (x converging to 0 under a suitable law) . . .”

5“For a long time it was believed that, without any further condition, these are the only solutions
passing through or accumulating the origin.

In an excellent work on the singular points of differential equations, M. Dulac has proved that
the question is very complex. Take for instance the equation

x
dy

dx
+ y(ν + . . .) = 0 ,
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Dulac insisted in his Thesis that he had no answer for the irrational case ([10] p.4):

“1. ν est irrationnel. On a un col. H(x, y) existe formellement, mais est divergent,
au moins dans certains cas. S’il y a des intégrales pour lesquelles x et y tendent
simultanément vers 0, et si l’on désigne par ω et θ les arguments de x et y, quels que
soient m et n, |xmynω| et |xmynθ| croissent indéfiniment. Je ne puis me prononcer
sur l’existence de ces intégrales.”6

The expression yxνH(x, y) is a formal first integral of the solutions and he discuss
its convergence in p.20. It is well known to Dulac that convergence of H solves the
problem.

Then 30 years later he recalls that the problem remains unsolved ([11] p.31):

“Dans le cas 2 (ν irrationnel, h(x, y) divergent), on ne sait s’il existe des solutions
nulles autres que x = 0, y = 0. Ce sont là deux questions qu’il y aurait grand intérêt
à élucider.”7

Many results obtained by these distinguished geometers of the XIXth century where
rediscovered in modern times, sometimes with a different point of view or language.
The original problem of singularities of differential equations of the form 0

0
(according

to Briot and Bouquet terminology) is equivalent to study solutions of the holomorphic
vector field X = (B,A) near (0, 0) ∈ C2,

{
ẋ = B(x, y)

ẏ = A(x, y)

The local geometry corresponds also to the study the holomorphic foliations on C2

near the singular point (0, 0) defined by the differential form

A(x, y)dx−B(x, y)dy = 0 .

where ν is positive, equation that we can always reduce the case where λ is negative.
M. Dulac examines specially the case where ν is a rational number p/q, and proves that in general

there are an infinite number of solutions for which x and y converge to 0.”
6“1.ν is irrational. We have a saddle. H(x, y) exists formally, but is divergent, at least in certain

cases. If there are solutions x and y which tend simultaneously to 0, and if we note ω and θ the
arguments of x and y, then for all m and n, |xmynω| and |xmynθ| must grow indefinitely. I cannot
decide on the existence of such solutions.”

7“In case 2 (ν irrational, h(x, y) divergent), we don’t know if there are null solutions other than
x = 0, y = 0.”
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The situation of Briot and Bouquet problem corresponds to an irreducible singularity
with a non-degenerate linear part,

(αy +O(2))dx+ (x+O(2))dy = 0 ,

where −α = a is Briot and Bouquet coefficient.

When α ∈ C−R+, and α is neither a negative integer nor the inverse of a negative
integer, we are in the Poincaré domain and the singularity is equivalent to the linear
one. When α is a negative integer or its inverse, then we can conjugate the singularity
to a finite Poincaré-Dulac normal form (see [2] section 24). We assume α real and
positive α > 0, which defines, in modern terminology, a singularity in the Siegel do-
main. The singularity is formally linearizable, but the convergence of the linearization
presents problems of Small Divisors. Precisely in this situation Dulac already proved
in his Thesis the existence of non-linearizable singularities in section 12. This is a
notable achievement that anticipates in several decades the non-linearization results
for indifferent fixed points. The existence of Briot and Bouquet holomorphic solution
proves the existence of two leaves of the holomorphic foliation crossing transversally
at (0, 0). This means that the singularity can be put into the form

αy(1 +O(2))dx+ x(1 +O(2))dy = 0 .

Again y = 0 corresponds to the Briot and Bouquet holomorphic solution. It is now
easy to make the link with the original Briot and Bouquet 0

0
singulatities of differential

equations. Each solution y(x), distinct from the only monodromic solution y(x) = 0,
with initial data (x0, y0) close to (0, 0), has a graph over the x-axes that corresponds
to the leaf of the foliation passing through the point (x0, y0). The multivaluedness
or non-monodromic character of the solution can be seen in the intersection of that
leaf with a transversal {x = x0}. The y-coordinates of these points of intersection
give the different values taken by the non-monodromic solution that are obtained by
following a path in the leaf that projects onto the x-axes into a path circling around
x = 0.

The topology of the foliation is understood through a holonomy construction (see
[17], and for the rational case see [9]): Taking a transversal {x = x0} and lifting the
circle C(0, |x0|) ⊂ {y = 0} in nearby leaves, the return map following this lift in the
negative orientation, defines a germ of holomorphic diffeomorphism in one complex
variable with a fixed point at (x0, 0) ⊂ {x = x0}. Taking a local chart in this
complex line, we have a local holomorphic diffeomorphism f ∈ Diff(C, 0), f(0) = 0,
and linearizing the equations we can compute its linear part at 0,

f(z) = e2πiαz +O(z2) .

(to see this, note that yxα is a first integral of the linearized differential form, thus
is invariant of the solutions in the first order) Thus we get a germ of holomorphic
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diffeomorphism with an indifferent irrational fixed point. It is obvious from the
classical point of view that the local dynamics near 0 of this return map contains
the information about the non-monodromic solutions starting at x = x0. Thus we
transform our original problem into a problem of holomorphic dynamics. Note that
we can also reconstruct all the foliation and a neighborhood of (0, 0) ∈ C2 minus the
leave {y = 0} by continuing the continuing the complex leaves from the transversal.
J.-F. Mattei and P. Moussu proved in [17] that two singularities in the Siegel domain
with conjugated holonomies are indeed conjugated in C2 by “pushing” the conjugacy
along these leaves and using Riemann removability Theorem in C2. J.-Ch. Yoccoz and
the author proved in [27] that the set of dynamical conjugacy classes of holonomies
is in bijection with the set of conjugacy classes of singularities in the Siegel domain.
The rational case was previously treated by J. Martinet and J.-P. Ramis ([18], [19])
by identifying the conjugacy invariants. This establish a full dictionary of the two
problems. In particular, an interesting corollary is that Brjuno diophantine condition
is optimal for analytic linearization of the singularity.

For our problem, the existence of non-monodromic solutions vanishing with x when
x→ 0 following an appropriate path is equivalent to finding a leave that accumulates
the singularity (0, 0) but distinct from the Briot and Bouquet leaves {x = 0} and
{y = 0} and a path γ on this leave converging to (0, 0). This path γ projects properly
in the {y = 0} plane into a spiral around (0, 0) and converging to (0, 0). The path γ is
homothopic in the leave to a path above C(0, |x0|) such that the iterates of the return
map converve to (x0, 0). Since π1(C∗) ≈ Z, this gives an orbit of the return map that
has a positive or negative orbit converging to the indifferent fixed point. Conversely,
if we have such an orbit of the return map, we can push homothopicaly the path in
the leave close to {x = 0} to make it converging to (0, 0) (just using continuity of the
foliation).

Proposition 5. When α ∈ R+ − Q, Briot and Bouquet non-existence of non-
monodromic solutions vanishing at 0 is equivalent to the existence of an orbit distinct
from 0 that converges to 0 by iteration by the return map f or f−1.

Since linearizable dynamics don’t have this property, we see that C-L. Siegel lin-
earization theorem ([31], 1942) shows that Briot and Bouquet statement is true when
α ∈ R+ − Q satisfies the arithmetic linearization condition that was improved later
by A.D. Brjuno ([8]) to the so called Brjuno’s condition

+∞∑
n=0

log qn+1

qn
< +∞ .
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The sequence of (pn/qn)n≥0 are the convergents of α. The positive answer to Briot
and Bouquet question in the linearizable case, that corresponds to H(x, y) being
convergent in Dulac’s notation, was already well known to Dulac in [10].

Indeed the non-existence of non-monodromic for singularities of differential equa-
tions were well understood in the linearizable case, since H. Poincaré [29] because
linearization is equivalent to the existence of a first integral of the system of the form
(see [10] section [])

I(x, y) = yxαH(x, y) .

Note also that to have non-monodromic solutions y(x) that accumulate into (but
not converge to) 0 when x → 0 is a simpler problem that is equivalent for the mon-
odromy dynamics to have an orbit that accumulates 0 by positive or negative iteration.
This was solved in general in [24] by the discovery of hedgehogs and the result that
almost all points in the hedgehog for the harmonic measure have a dense orbit in the
hedgehog.

What remains to be elucidated for the Briot and Bouquet problem is the non-
linearizable case, and more precisely the following problem:

Problem 6. Let α ∈ R − Q and f(z) = e2πiαz + O(z2) be a germ of holomorphic
diffeomorphism with an indifferent fixed point at 0. Does there exists z0 6= 0 such that

lim
n→+∞

fn(z0) = 0 .

P. Fatou was confronted to this problem in his pioneer study of the dynamics of
rational functions ([12], 1919) without knowing the relation to Briot and Bouquet
problem. About fixed points (”points doubles” in Fatou’s terminology) of holomor-
phic germs, which are indifferent, irrational and non-linearizable, Fatou writes [12]
p.220-221:

“Il reste à étudier les points doubles dont le multiplicateur est de la forme eiα, α
étant un nombre réel inconmensurable avec π. Nous ne savons que fort peu de choses
sur ces points doubles, dont l’étude du point de vue qui nous occupe parâıt très difficile.
(. . .) Existe-t-il alors des domaines dont les conséquents tendent vers le point double
? Nous ne pouvons actuellement ni en donner d’exemple, ni prouver que la chose soit
impossible . . .” 8

8“It remains to study fixed points with a multiplier of the form eiα, α being a real number incom-
mensurable with π. We know little about these fixed points, and their study from our point of view
appears very hard. (. . .) Are there any domain such that the positive iterates converge to the fixed
point? We cannot give examples nor rule out this possibility.”
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Fatou’s question is related to the question of the non-existence of wandering com-
ponents of the Fatou set for rational functions. This was only proved in 1985 by D.
Sullivan [33]. Note that we do indeed have domains (that are not Fatou components)
converging by iteration to rational indifferent fixed point as the local analysis of the
rational case shows.

The non-existence of domains converging to an indifferent irrational fixed point was
also conjectured by M. Lyubich in [16] p.73 (Conjecture 1.2), apparently unaware of
Fatou’s question. Lyubich also conjectured (Conjecture 1.5 (a) [16] p.77) that for any
indifferent irrational non-linearizable fixed point there is a critical orbit that converges
to the fixed point.

The author proved in [24] the Moussu-Dulac Criterium : f is not linearizable if and
only if f has an orbit accumulating the fixed point 0. We may think that this could
give support to the existence of a converging orbit. The discovery of hedgehogs gave
new tools for the understanding of the non-linearizable dynamics. Indeed, hedgehogs
are the central tool in the final solution of all this problems:

Theorem 7. There is no orbit converging by positive or negative iteration to an
indifferent irrational fixed point of an holomorphic map and distinct from the fixed
point.

Therefore, the Briot and Bouquet problem has a positive solution in the irrational
case. The questions of Dulac, Picard, Fatou are solved. Lyubich’s Conjecture 1.2
in [16] has a positive answer, but conjecture 1.5 (a) in [16] is false: For a generic
rational function, there is no critical point converging to an indifferent irrational non-
linearizable periodic orbits. There may be pre-periodic critical points to this orbit,
but this is clearly non-generic. We may formulate a proper conjecture that has better
chances to hold true:

Conjecture 8. Let f be a rational function of degree 2 or more, with an indifferent
irrational non-linearizable fixed point z0. There exists a critical point c0 of f , such
that

lim
n→+∞

1

n

n−1∑
j=0

δfj(c0) → δz0 .

Theorem 7 was announced in [21] and a complete proof was given in the unpub-
lished manuscript [25]. The proof given here concentrates on this particular Theorem
and the solution of Briot and Bouquet problem, and not the many other properties
of general hedgehog’s dynamics. The proof follows the same lines as in [25], but we
have incorporated several new ideas that greatly improve and simplify the technical
part of construction of quasi-invariant curves that are fundamental in the study of
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the hedgehog dynamics. It was recently noticed in [26] an hyperbolic interpretation
of Denjoy-Yoccoz Lemma that controls orbits of an analytic circle diffeomorphism g
in a complex neighborhood of the circle. Then, when we control the non-linearity
||D logDg||C0 of g, we can construct directly the quasi-invariant curves without com-
plex renormalization. The second observation if that in the proof of Theorem 7 we
can work with local hedgehogs (small hedgehogs). Then the associated circle diffeo-
morphism has a small non-linearity and the construction of quasi-invariant curves is
easier.
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3. Analytic circle diffeomorphisms.

3.1. Notations. We denote by T = R/Z the abstract circle, and S1 = E(T) its
embedding in the complex plane C given by the exponential mapping E(x) = e2πix.

We study analytic diffeomorphisms of the circle, but we prefer to work at the level
of the universal covering, the real line, with its standard embedding R ⊂ C. We
denote by Dω(T) the space of non decreasing analytic diffeomorphisms g of the real
line such that, for any x ∈ R, g(x + 1) = g(x) + 1, which is the commutation to the
generator of the deck transformations T (x) = x+ 1. An element of the space Dω(T)
has a well defined rotation number ρ(g) ∈ R. The order preserving diffeomorphism g
is conjugated to the rigid translation Tρ(g) : x 7→ x+ρ(g), by an orientation preserving
homeomorphism h : R→ R, such that h(x+ 1) = h(x) + 1.

For ∆ > 0, we note B∆ = {z ∈ C; |=z| < ∆}, and A∆ = E(B∆). The subspace
Dω(T,∆) ⊂ Dω(T) is composed by the elements of Dω(T) which extend analytically
to a holomorphic diffeomorphism, denoted again by g, such that g and g−1 are defined
on a neighborhood of B̄∆.

3.2. Real estimates. We refer to [36] for the results on this section. We assume
that the orientation preserving circle diffeomorphism g is C3 and that the rotation
number α = ρ(g) is irrational. We consider the convergents (pn/qn)n≥0 of α obtained
by the continued fraction algorithm (see [14] for notations and basic properties of
continued fractions).

For n ≥ 0, we define the map gn(x) = gqn(x) − pn and the intervals In(x) =
[x, gn(x)], Jn(x) = In(x)∪In(g−1

n (x)) = [g−1
n (x), gn(x)]. Let mn(x) = gqn(x)−x−pn =

±|In(x)|, Mn = supR |mn(x)|, and mn = minR |mn(x)|. Topological linearization is
equivalent to limn→+∞Mn = 0. This is always true for analytic diffeomorphisms by
Denjoy’s Theorem, that holds for C1 diffeomorphisms such that logDg has bounded
variation.

Since g is topologically linearizable, combinatorics of the irrational translation (or
the continued fration algorithm) shows:

Lemma 9. Let x ∈ R, 0 ≤ j < qn+1 and k ∈ Z the intervals gj ◦ T k(In(x)) have
disjoint interiors, and the intervals gj ◦ T k(Jn(x)) cover R at most twice.

We have the following estimates on the Schwarzian derivatives of the iterates of f ,
for 0 ≤ j ≤ qn+1, ∣∣Sgj(x)

∣∣ ≤ Mne
2V S

|In(x)|2
,
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with S = ||Sg||C0(R) and V = Var logDg.

This implies a control of the non-linearity of the iterates (Corollary 3.18 in [36]):

Proposition 10. For 0 ≤ j ≤ 2qn+1, c =
√

2SeV ,

||D logDgj||C0(R) ≤ c
M

1/2
n

mn

.

These give estimates on gn. More precisely we have (Corollary 3.20 in [36]):

Proposition 11. For some constant C > 0, we have

|| logDgn||C0(R) ≤ CM1/2
n .

Corollary 12. For any ε > 0, there exists n0 ≥ 1 such that for n ≥ n0, we have

||Dgn − 1||C0(R) ≤ ε .

Proof. Take n0 ≥ 1 large enough so that for n ≥ n0, CM
1/2
n < min(2

3
ε, 1

2
), then use

Proposition 11 and |ew − 1| ≤ 3
2
|w| for |w| < 1/2. �

Corollary 13. For any ε > 0, there exists n0 ≥ 1 such that for n ≥ n0, for any
x ∈ R and y ∈ In(x) we have

1− ε ≤ mn(y)

mn(x)
≤ 1 + ε .

Proof. We have Dmn(x) = Dgn(x)− 1, and

|mn(y)−mn(x)| ≤ ||Dmn||C0(R)|y − x| ≤ ||Dgn − 1||C0(R)|mn(x)| .
We conclude using Lemma 12. �
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4. Hyperbolic Denjoy-Yoccoz Lemma.

With these real estimates for the iterates, and, more precisely, a control on the
non-linearity, we can use them to control orbits in a complex neighborhood. We give
here a version of Denjoy-Yoccoz lemma (Proposition 4.4 in [36]) that is convenient
for our purposes.

Given ∆ > 0, we consider g ∈ Dω(T,∆) such that infB∆
<Dg > 0 so that logDg

is a well defined univalued holomorphic function in B∆. Given g ∈ Dω(T) we get
always this for a ∆ > 0 small enough (as in [36]), but here we don’t need to make
the assumption that for a given g, ∆ is small enough.

We do assume that we have a small non-linearity in B∆, more precisely,

τ = ||D logDg||C0(B∆) < 1/9 .

Lemma 14. Let n0 ≥ 1 large enough such that for all n ≥ n0, Mn < ∆/2.

For x0 ∈ R, let 0 < y0 ≤ 1 and

z0 = x0 + imn(x0)y0 .

Then for 0 ≤ j ≤ qn+1, yj ∈ C, <yj > 0, is well defined by

zj = gj(z0) = gj(x0) + imn(gj(x0))yj ,

and we have

|yj − y0| ≤
3

4
y0 .

Proof. For 0 < t ≤ 1 we define more generally

z0,t = x0 + imn(x0)ty0 ,

and we prove that yj,t ∈ C, <yj,t > 0, is well defined by

zj,t = gj(z0,t) = gj(x0) + imn(gj(x0))yj,t ,

and that we have

|yj,t − y0,t| ≤
3

4
y0,t .

Note that this last inequality implies <yj,t ≤ 7
4
y0,t. The lemma corresponds to the

case t = 1.

We prove this result by induction on 0 ≤ j < qn+1 starting from j = 0 for which
the result is obvious. Assuming it has been proved up to 0 ≤ j − 1 < qn+1, then we
have

0 < =zj−1,t ≤Mn<yj−1,t ≤Mn
7

4
ty0 <

7

8
∆ < ∆ ,
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so zj−1,t ∈ B∆ and we can iterate once more and zj,t = g(zj−1,t) is well defined. We
need to prove the estimate for yj,t. By the chain rule we have

logDgj(z0,t) =

j−1∑
l=0

logDg(zl,t) .

Therefore, we have

∣∣logDgj(z0,t)− logDgj(x0)
∣∣ ≤ j−1∑

l=0

|logDg(zl,t)− logDg(xl)|

≤ τ

j−1∑
l=0

|zl,t − xl|

≤ τ

j−1∑
l=0

|mn(xl)||yl,t|

≤ 7

4
τty0

j−1∑
l=0

|mn(xl)|

≤ 7

4
τ

j−1∑
l=0

|mn(xl)| .

Considering the j-iterate of g on the interval In(x0), we obtain a point ζ ∈]x0, g
qn(x0)−

pn[ such that,

Dgj(ζ) =
mn(xj)

mn(x0)
,

and ∣∣logDgj(ζ)− logDgj(x0)
∣∣ ≤ τ |mn(x0)| ≤ τ

j−1∑
l=0

|mn(xl)| .

Adding the two previous inequalities, we have∣∣∣∣logDgj(z0,t)− log
mn(xj)

mn(x0)

∣∣∣∣ ≤ 11

4
τ

j−1∑
l=0

|mn(xl)| .

The intervals In(xl), 0 ≤ l < qn+1, being disjoint modulo 1, we have

qn+1−1∑
l=0

|mn(xl)| < 1 .
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So we obtain ∣∣∣∣logDgj(z0,T )− log
mn(xj)

mn(x0)

∣∣∣∣ ≤ 11

4
τ ,

and taking the exponential (using |ew− 1| ≤ 3/2|w|, for |w| < 1/2, since τ < 1/9 and
11
4
τ < 1

2
), we have ∣∣∣∣Dgj(z0,t)−

mn(xj)

mn(x0)

∣∣∣∣ ≤ 33

8
τ
mn(xj)

mn(x0)
.

Now, integrating along the vertical segment [x0, z0,t] we get∣∣gj(z0,t)− gj(x0)− iy0mn(xj)
∣∣ ≤ 33

8
τy0,t|mn(xj)| ,

which, using τ < 1/9, finally gives

|yj,t − y0,t| ≤
11

24
y0,t <

3

4
y0,t .

�

4.1. Flow interpolation in R. Since g is analytic, from Denjoy’s Theorem we know
that g/R is topologically linearizable, i.e. there exists an non-decreasing homeomor-
phism h : R→ R, such that for x ∈ R, h(x+ 1) = h(x) + 1, and

h−1 ◦ g ◦ h = Tα ,

where Tα : R→ R, x 7→ x+ α.

We can embed g into a topological flow on the real line (ϕt)t∈R defined for t ∈ R
by ϕt = h ◦ Ttα ◦ h−1. When g is analytically linearizable the diffeomorphisms of this
flow are analytic circle diffeomorphisms, but in general, when g is not analytically
linearizable the maps ϕt are only homeomorphism of the real line, although for t ∈
Z+α−1Z, ϕt is analytic since ϕt is an iterate of g composed by an integer translation.
This can happen that for other values of t, where ϕt can be an analytic diffeomorphism
from the analytic centralizer of g since ϕt ◦ g = g ◦ ϕt. We refer to [22] for more
information on this fact and examples of uncountable analytic centralizers for non-
analytically linearizable dynamics. Now (ϕt)t∈[0,1] is an isotopy from the identity to
g. The flow (ϕt)t∈R is a one parameter subgroup of homeomorphisms of the real line
commuting to the translation by 1.

4.2. Flow interpolation in C. There are different complex extensions of the flow
(ϕt)t∈R suitable for our purposes. For each n ≥ 0, we can extend this topological
flow to a topological flow Fn in C by defining, for z0 = x0 + i |mn(x0)|y0 ∈ C, with
x0, y0 ∈ R,

ϕ
(n)
t (z0) = z0(t) = ϕt(x0) + i |mn(ϕt(x0))|y0 .
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We denote Φ
(n)
z0 the flow line passing through z0,

Φ(n)
z0

= (ϕ
(n)
t (z0))t∈R.

4.3. Hyperbolic Denjoy-Yoccoz Lemma. We are now ready to give a geometric
version of Denjoy-Yoccoz Lemma. We denote by dP the Poincaré distance in the
upper half plane.

Lemma 15 (Hyperbolic Denjoy-Yoccoz Lemma). Let ∆ > 0 and g ∈ Dω(T,∆) such
that

||D log Dg||C0(B∆) < 1/9 .

Let n0 ≥ 1 large enough such that for all n ≥ n0, Mn < ∆/2.

Let z0 = x0 + i|mn(x0)|y0, with 0 < y0 < 1, so z0 ∈ B∆. Then for 0 ≤ j ≤ qn+1 we
have that the (gj(z0)) piece of orbit follows at bounded distance the flow Fn for the
Poincaré metric of the upper half plane. More precisely we have

dP (gj(z0), ϕ
(n)
j (z0)) ≤ C0 ,

for some constant C0 > 0 (we can take C0 = 3).

Proof. We just use Lemma 14 reminding that the Poincaré metric in the upper half

plane is given by |ds| = |dξ|
=ξ and

dP (zj, ϕ
(n)
j (z0)) ≤

∫
[zj ,ϕ

(n)
j (z0)]

|dξ|
=ξ

≤ |mn(xj)| . |yj − y0|
1

inf
ξ∈[zj ,ϕ

(n)
j (z0)]

=ξ

≤ |mn(xj)| . |yj − y0|
4

|mn(xj)| y0

≤ 4
|yj − y0|

y0

≤ 3 = C0

where in the second inequality we used that <yj ≥ 1
4
y0 which follow from |yj − y0| ≤

3
4
y0 that we also used in the last inequality. �
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5. Quasi-invariant curves for local hedgehogs.

Now we construct quasi-invariant curves for g under the previous assumptions:
g ∈ Dω(T,∆) and

τ = ||D logDg||C0(B∆) < 1/9 .

Theorem 16 (Quasi-invariant curves). Let g be an analytic circle diffeomorphism
with irrational rotation number α. Let (pn/qn)n≥0 be the sequence of convergents of
α given by the continued fraction algorithm.

Given C0 > 0 there is n0 ≥ 0 large enough such that there is a sequence of Jordan
curves (γn)n≥n0 for g which are homotopic to S1 and exterior to D such that all the
iterates gj, 0 ≤ j ≤ qn, are defined in a neighborhood of the closure of the annulus
Un bounded by S1 and γn, and we have

DP (gj(γn), γn) ≤ C0 ,

where DP denotes the Hausdorff distance between compact sets associated to dP , the
Poincaré distance in C − D. We also have for any z ∈ γn, dP (gqn(z), z) ≤ C0, that
is,

||gqn − id||CO
P (γn) ≤ C0 .

We choose the flow lines γn+1 = Φ
(n)
z0 , with y0 > 1/2 and n ≥ n0 for n0 ≥ 1 large

enough, for the quasi-invariant curves of the Theorem. These flow lines are graphs

over R. Given an interval I ⊂ R, we label Ĩ(n) the piece of Φ
(n)
z0 over I.

Lemma 17. There is n0 ≥ 1 such that for n ≥ n0 and for any x ∈ R, the piece

Ĩ
(n)
n (x) has bounded Poincaré diameter.

Proof. Let z = x+ i |mn(x)|y0 be the current point in Ĩ
(n)
n (x). We have

dz = (1± i (Dgn(x)− 1)y0) dx .

For any ε0 > 0, choosing n0 ≥ 1 large enough, for n ≥ n0, according to Lemma 12 we
have ∣∣∣∣dzdx − 1

∣∣∣∣ ≤ ε0 .

Therefore, we have

lP (Ĩ(n)
n (x0)) =

∫
Ĩ

(n)
n (x0)

1

|mn(x)| y0

|dz| ≤
∫
In(x0)

1

|mn(x)| y0

(1 + ε0) dx .

Now using Lemma 13 with ε = ε0 and increasing n0 if necessary, we have

lP (Ĩ(n)
n (x)) ≤

∫
In(x0)

1

|mn(x0)| y0

1 + ε0
1− ε0

dx ≤ 1

y0

1 + ε0
1− ε0

≤ 2
1 + ε0
1− ε0

≤ C .
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�

We assume n ≥ n0 from now on in this section and the next one.

Lemma 18. For 0 ≤ j < qn+1 and any x ∈ R, the pieces (gj◦T k(J̃ (n)
n (x)))0≤j≤qn+1,k∈Z

have bounded Poincaré diameter and cover Φ
(n)
z0 .

Proof. From Lemma 17 any Ĩ
(n)
n (x) has bounded Poincaré diameter, thus also any

J̃
(n)
n (x) = Ĩ

(n)
n (x) ∪ Ĩ(n)

n (g−1
n (x)). Moreover, we have gj ◦ T k(Jn(x)) = Jn(gj ◦ T k(x)),

and all J̃
(n)
n (gj ◦ T k(x)) have also bounded Poincaré diameter. From Lemma 9 these

pieces cover Φ
(n)
z0 . �

Corollary 19. For some C0 > 0, the flow orbit (ϕ
(n)
j,k (z0))0≤j<qn+1,k∈Z is C0-dense in

Φ
(n)
z0 for the Poincaré metric.

We prove the first property stated in Theorem 16:

Proposition 20. Let γn = Φ
(n−1)
z0 for some z0 from the previous lemma, then we

have, for 0 ≤ j ≤ qn,

DP (gj(γn), γn) ≤ 2C0

Proof. We prove this Proposition for n + 1 instead of n (the proposition is stated
to match n in Theorem 16). It follows from the hyperbolic Denjoy-Yoccoz Lemma

that the orbit (gj ◦ T k(z0))0≤j<qn+1,k∈Z is C0-close to flow orbit (ϕ
(n)
j,k (z0))0≤j<qn+1,k∈Z,

and from Corollary 19 we have that a 2C0-neighborhood of gj(γn+1) contains γn+1.
Conversely, since we can chooose any z0 ∈ γn+1, we also have that gj(γn+1) is in a
C0-neighborhood of γn+1. �

We prove the second property of Theorem 16. We observe that gqn+1(z0) ∈ J̃ (n)
n (x0),

that z0 ∈ J̃ (n)
n (x0), and that J̃

(n)
n (x0) has a bounded Poincaré diameter by Lemma 18.

Thus we get (taking a larger C0 > 0 if necessary):

Proposition 21. For any z0 ∈ Φ(n) , we have

dP (z0, g
qn+1(z0)) ≤ C0 .

6. Osculating orbit.

We prove the existence of an osculating orbit.
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Theorem 22 (Oscullating orbit). With the above hypothesis, for n ≥ no there exists

a quasi-invariant curves γn = Φ
(n−1)
z0 such that the orbit (gj(z0))0≤j≤qn is such that

the union of Poincaré balls

Un =
⋃

0≤j<qn,k∈Z

BP (gj(z0) + k, C0) ,

separates R from {=z > H} with H > 0 large enough, and any orbit (gj(w0))j∈Z with
=w0 > H with an iterate between γn and R has, for any 0 ≤ j ≤ qn, an iterate in⋃

k∈Z

BP (gj(z0) + k, C0) .

From Lemma 18 we get the property that the hyperbolic balls BP (ϕ
(n)
t+k(z0), C0)

cover Φ
(n)
z0 .

Lemma 23. We have that

Un =
⋃

0≤j<qn+1,k∈Z

BP (ϕ
(n)
t+k(z0), C0)

is a neighborhood of the flow line Φ
(n)
z0

Proof. We prove Theorem 22. In the following argument C0 will denote several uni-
versal constants. Enlarging the constant C0, and using Lemma 15 we can replace the

points ϕ
(n)
t+k(z0) by the points gj(z0) + k in the orbit of z0 in Lemma 23. Also, any

orbit that jumps over γn (by positive or negative iteration) as in Theorem 22 has to
visit a C0-neighborhood of γn , and will be C0-close to a point z1 ∈ γn and then will
be C0-close to the qn-orbit of z1 modulo 1. Finally we can replace z1 by z0 using that
each point of the qn-orbit of z1 is C0-close to a point in the qn-orbit of z0 modulo 1
(enlarge C0 if need be). �

7. Proof of the main Theorem.

We prove Theorems 3 and 4 that imply the main Theorem. We prove first the
following preliminary Lemma that will allow us to work only with local hedgehogs.

Lemma 24. Let gn ∈ Dω(T,∆n) with ρ(gn) = α and ∆n → +∞. Then gn → Rα

uniformly on compact sets of C∗ and

lim
n→+∞

||D logDgn||C0(R) = 0 .

Proof. Let g̃n be the associated circle diffeomorphism. The sequence (g̃n) is a normal
family in C∗ (bounded inside D, and outside is the reflection across the unit circle),
and any accumulation point is not constant since the unit circle is in the image of all



22 R. PÉREZ-MARCO

gn. Then by Hurwitz theorem any limit is an automorphism of C∗, that extends to 0
by Riemann’s theorem, and so gives an automorphism of the plane leaving the unit
circle invariant. The rotation number on the circle depends continuously on g̃n and
is constant equal to α, therefore the only possible limit of the sequence (gn) is Rα.
Since D logDRα = 0 we get the last statement. �

We consider now the hedgehog K0 given by Theorem 2 for the domain U = Dr0 , and
we use the relation between hedgehogs and analytic circle diffeomorphisms presented
in [24] to construct a circle diffeomorphism g0.

Figure 2. Relation between hedgehogs and circle maps.

We consider a conformal representation h0 : C−D→ C−K0 (D is the unit disk),
and we conjugate the dynamics to a univalent map g0 in an annulus V having the
circle S1 = ∂D as the inner boundary,

g0 = h−1
0 ◦ f ◦ h0 : V → C .

The topology of K0 is complex ([4], [5], [22]) and in particular K0 is never locally
connected, and h0 does not extend to a continuous correspondence between S1 and
∂K0. Nevertheless, f extends continuously to Caratheodory’s prime-end compacti-
fication of C − K0. This shows that g0 extends continuously to S1 and its Schwarz
reflection defines an analytic map of the circle defined on V ∪ S1 ∪ V̄ , where V̄ is
the reflected annulus of V . Then it is not difficult to see that g0 is an analytic circle
diffeomorphism. We can also prove that g0 has rotation number α. This is harder to
prove in general (for an aribtrary hedgehog), but it is not difficult to show that we
can pick K0 so that the rotation number of g0 is α (see [24] Lemma III.3.3) that is
enough for our purposes. We choose such a K0. Therefore, the dynamics in a complex
neighborhood of K0 corresponds to the dynamics of an analytic circle diffeomorphism
with rotation number α.
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There is no risk of confusion and we denote also g0 the lift to R.

Theorem 25. Let ε0 > 0 and ∆ > 0 be given

For r0 > 0 small enough we have g0 ∈ Dω(T,∆) and

||D logDg0||C0(R) < ε0 .

Proof. When r0 → 0, we have K0 → {0} and the annulus where g0 and g−1
0 are defined

has a modulus M0 → +∞. Therefore, by Grötsch extremal problem, for r0 > 0 small
enough we have g0 ∈ Dω(T,∆). From Lemma 24

lim
r0→0
||D logDg0||C0(R) = 0 ,

and the result follows. �

Let ε0 = 1/9 and ∆ > 0 be as in Section 5 and Section 6. We fix now r0 > 0 small
enough such that g0 ∈ Dω(T,∆), ρ(g0) = α, and

||D logDg0||C0(R) < ε0 ,

so that the hypothesis of Theorem 16 are fulfilled for g0. Now we can apply Theorem
22 and find a sequence (γn)n≥n0 of quasi-invariant curves for g0. We transport them
by h0 to get a sequence of Jordan curves (ηn)n≥n0

ηn = h0(γn) .

We have
||gqn0 − id||C0

P (γn) ≤ C0 ,

therefore, for the Poincaré metric of the exterior of the hedgehog,

||f qn − id||C0
P (ηn) ≤ C0 ,

and, since ηn → K0, for the euclidean metric, we have

||f qn − id||C0(ηn) = εn → 0 .

Thus, if Ωn is the Jordan domain bounded by ηn, by the maximum principle we have

||f qn − id||C0(Ωn) = εn → 0 .

Since Ωn is a neighborhood of K0, K0 ⊂ Ω̄n, we have

||f qn − id||C0(K0) = εn → 0 .

This proves Theorem 3 for the positive iterates (same proof for the negative ones, or
just apply the result to f−1).

We prove Theorem 4 for K0, or more precisely for ∂K0 that was noted before that
is enough for proving the Main Theorem (the hedgehog K0 has empty interior and
K0 = ∂K0, but we don’t need to use this fact). For the proof of Theorem 4 we
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transport by h0 the Poincaré C0-dense orbit (gj0(z0))0≤j≤qn given by Theorem 22. Let
ζ0 = h0(z0) and On = (f j(ζ0))0≤j≤qn be this orbit. Since ηn → ∂K0, we have, for
εn → 0

D(On, ∂K0) ≤ D(On, ηn) +D(ηn, ∂K0) ≤ εn ,

where D denotes the Hausdorff distance for the euclidean metric.

Then any orbit starting outside of ηn with an iterate inside ηn must visit εn-close
for the euclidean metric any point of ∂K0 that is strictly larger than {0}.
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[2] V.I. ARNOLD, Geometrical methods in the theory of ordinary differential equations, 2nd edition,
Springer, 1988.

[3] G.D. BIRKHOFF, Surface transformations and their dynamical applications, Acta Mathematica,
43, 1920.

[4] K. BISWAS, Nonlinearizable holomorphic dynamics and hedgehogs, Eur. Math. Soc. Newsl., 73,
p.11-15, 2009.

[5] K. BISWAS, Positive area and inaccessible fixed points for hedgehogs, Ergodic Theory Dynam.
Systems, 36, 6, p.1839-1850, 2016.
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du premier ordre, Ann. Sc. E.N.S. 4eme série, 16, p. 671-625, 1983.
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[22] R. PÉREZ-MARCO, Topology of Julia sets and hedgehogs, preprint Université Paris-Sud, 94-48,
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