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Abstract. Adaptive estimation in the sparse mean model and in sparse regression
exhibits some interesting effects. This paper considers estimation of a sparse target
vector, of its `2-norm and of the noise variance in the sparse linear model. We
establish the optimal rates of adaptive estimation when adaptation is considered
with respect to the triplet "noise level – noise distribution – sparsity". These rates
turn out to be different from the minimax non-adaptive rates when the triplet is
known. A crucial issue is the ignorance of the noise level. Moreover, knowing or not
knowing the noise distribution can also influence the rate. For example, the rates of
estimation of the noise level can differ depending on whether the noise is Gaussian
or sub-Gaussian without a precise knowledge of the distribution. Estimation of noise
level in our setting can be viewed as an adaptive variant of robust estimation of scale
in the contamination model, where instead of fixing the "nominal" distribution in
advance we assume that it belongs to some class of distributions. We also show that
in the problem of estimation of a sparse vector under the `2-risk when the variance
of the noise in unknown, the optimal rate depends dramatically on the design. In
particular, for noise distributions with polynomial tails, the rate can range from
sub-Gaussian to polynomial depending on the properties of the design.
Key words: variance estimation, functional estimation, sparsity, robust estimation,
adaptivity, sub-Gaussian noise.

1. INTRODUCTION

This paper considers estimation of the unknown sparse vector, of its `2-norm and of the
noise level in the sparse mean model and in the sparse linear regression model. We focus on
construction of estimators that are optimally adaptive in a minimax sense with respect to the
noise level, to the form of the noise distribution, and to the sparsity.

We consider first the sparse mean model defined as follows. Let the signal θ = (θ1, . . . , θd)
be observed with some noise of unknown magnitude σ > 0:

Yi = θi + σξi, i = 1, . . . , d.

The noise random variables ξ1, . . . , ξd are assumed to be i.i.d. and we denote by Pξ the un-
known distribution of ξ1. We assume throughout that the noise is zero-mean, E(ξ1) = 0, and
that E(ξ2

1) = 1, which ensures identifiability of σ. We denote by Pθ,Pξ,σ the distribution of
(Y1, . . . , Yd) when the signal is θ, the noise level is σ and the distribution of the noise variables
is Pξ. We also denote by Eθ,Pξ,σ the expectation with respect to Pθ,Pξ,σ.

We assume that the signal θ is s-sparse, i.e.,

‖θ‖0 =
d∑
i=1

1θi 6=0 ≤ s,

1
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where s ∈ {1, . . . , d} is an integer. Set Θs = {θ ∈ Rd | ‖θ‖0 ≤ s}. Our aim is to estimate σ2

and the `2-norm

‖θ‖2 =
( d∑
i=1

θ2
i

)1/2
.

In the case of standard Gaussian noise (Pξ = N (0, 1)) and known noise level σ, a rate
optimal estimator of the `2-norm of θ on the class Θs was found in Collier, Comminges and
Tsybakov [4]. In particular, it was proved that the estimator

N̂σ,s =
( d∑
i=1

(Y 2
i − αsσ2)1Y 2

i >2σ2 log(1+d/s2)

) 1
2
, with αs = E

(
ξ2

1 |ξ2
1 > 2 log(1 + d/s2)

)
,

satisfies the bound

sup
σ>0

sup
‖θ‖0≤s

Eθ,N (0,1),σ

(
N̂σ,s − ‖θ‖2

)2
σ2

≤ c0s log(1 + d/s2), ∀s ≤
√
d, (1)

for some positive constant c0, and the rate in (1) cannot be improved for s ≤
√
d. For s >

√
d,

the simple estimator ( d∑
i=1

(Y 2
i − σ2)

) 1
2

is rate-optimal. Thus, in the whole range 1 ≤ s ≤ d, if we define the minimax risk by the
infimum of the quantities in the left-hand side of (1) over all estimators, the minimax rate has
the form

φN (0,1),norm = min{
√
s log(1 + d/s2), d1/4}.

The estimator N̂σ,s depends on σ, s, and crucially uses the fact that the variables ξi are
standard Gaussian. A natural question is whether one can construct an adaptive estimator
independent of these parameters/assumptions that attains the same rate. We show that this is
not possible. Furthermore, we find the best rate that can be achieved by adaptive estimators.
The deterioration of the rate due to adaptation turns out to depend on the assumptions on
the noise distribution Pξ. We consider two types of assumptions: either the noise belongs to a
class of sub-Gaussian distributions Gτ , i.e., for some τ > 0,

Pξ ∈ Gτ iff E(ξ1) = 0, E(ξ2
1) = 1 and ∀t ≥ 2, P

(
|ξ1| > t

)
≤ 2e−(t/τ)2 , (2)

or to a class of distributions with polynomially decaying tails Pa,τ , i.e., for some τ > 0 and
a ≥ 2,

Pξ ∈ Pa,τ iff E(ξ1) = 0, E(ξ2
1) = 1 and ∀t ≥ 2, P

(
|ξ1| > t) ≤

(τ
t

)a
. (3)

In particular, the rate of estimation of the `2-norm functional deteriorates dramatically if Pξ
belongs to Pa,τ as compared to the sub-Gaussian case Pξ ∈ Gτ .

The problem of estimation of the variance σ2 exhibits similar effects. When the variables ξi
are standard Gaussian, a suitably rescaled median of the squared observations achieves the rate
φN (0,1)(s, d) = max

(
1√
d
, sd

)
as shown in Section 2.1 below. However, such an estimator fails

to work on the class of sub-Gaussian distributions Gτ , and we show that adaptive estimation
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of σ2 on this class is only possible with slower rate. We obtain similar conclusions for the class
Pa,τ where the best rate of adaptive estimation is even slower and crucially depends on a.

Finally, we consider extensions of these results to the high-dimensional linear regression
model. We propose estimators of σ2 and ‖θ‖2 based on the Square-Root Slope estimator of θ.
Using the methods of [1] and [6] we show that these estimators are simultaneously adaptive
to σ, s, and to Pξ in the class Gτ .

We conclude this section by a discussion of related work. Chen, Gao and Ren [3] explore the
problem of robust estimation of variance and of covariance matrix under Hubers’s contami-
nation model. As explained in Section 2.1 below, this problem is very similar to estimation of
noise level in our setting. The main difference is that instead of fixing in advance the Gaus-
sian nominal distribution of the contamination model we assume that it belongs to a class of
distributions, such as (2) or (3). Therefore, one can view the part of the current paper dealing
with noise level estimation as a variation on robust estimation of scale where, in contrast to
the classical setting, we are interested in adaptation to the unknown nominal law. Another
aspect of robust estimation of scale is analyzed by Minsker and Wei [11]. They consider classes
of distributions similar to Pa,τ rather than the contamination model. Their main aim is to
construct estimators having sub-Gaussian deviations under weak moment assumptions. Our
setting is different in that we consider the sparsity class Θs of vectors θ and the rates that we
obtain depend on s. We also mention the recent paper by Golubev and Krymova [8] that deals
with estimation of variance in linear regression in a framework that does not involve sparsity.

The part of this paper dealing with estimation of the `2-norm studies the same questions as
in Collier, Comminges, Tsybakov and Verzelen [5] where the problem of estimation of linear
functional L(θ) =

∑d
i=1 θi was considered. In that case, adaptation is less costly than for

the `2-norm. A minimax rate-optimal estimator of L(θ) with known s and σ and standard
Gaussian ξi can be found in [4] and has the form:

L̂σ,s =

d∑
i=1

Yi1Y 2
i >2σ2 log(1+d/s2). (4)

As shown in [5], adaptive estimation of L(θ) can be achieved with the rate, which is almost
the same as the minimax non-adaptive rate. For this, it is enough to replace the unknown s
and σ in (4) by some data-dependent quantities. In particular, for σ it can be a rough over-
estimator. Furthermore, it is straightforward to extend the method of [5] to sub-Gaussian
noise distributions. However, using such an approach for adaptive estimation of the `2-norm
meets difficulties. Indeed, replacing the unknown parameters in N̂σ,s by some statistics is
more problematic since along with an estimator of σ one needs a very accurate estimate of
the coefficient αs. Therefore, we will proceed in a different way.

2. ESTIMATING THE VARIANCE OF THE NOISE

2.1 Sample median estimator

In the sparse setting when ‖θ‖0 is small, estimation of the noise level can be viewed as
a problem of robust estimation of scale. Indeed, our aim is to recover the second moment
of σξ1 but the sample second moment cannot be used as an estimator because of the presence
of a small number of outliers θi 6= 0. The models in robustness and sparsity problems are
essentially equivalent but the questions of interest are different. When robust estimation of σ
is considered, the object of interest is the pure noise component of the sparsity model while
the non-zero θi that are of major interest in the sparsity model play a role of nuisance.
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In the context of robustness, it is known that the estimator based on sample median can
be successfully applied. This is a special case of M -estimator of scale (cf. [9]) defined as

σ̂2
med =

γ̂

β
(5)

where γ̂ is the sample median of (Y 2
1 , . . . , Y

2
d ), that is

γ̂ ∈ arg min
x>0

∣∣Fd(x)− 1/2
∣∣,

and β is the median of the distribution of ξ2
1 . Here, Fd denotes the empirical c.d.f of (Y 2

1 , . . . , Y
2
d ).

It is easy to see that if ξ1 has a symmetric distribution, then

β =
(
F−1(3/4)

)2 (6)

where F denotes the c.d.f. of ξ1.
The following proposition specifies the rate of convergence of the estimator σ̂2

med.

Proposition 1. Let ξ1 have a symmetric c.d.f. F with positive density, and let β be given
by (6). There exist constants c∗ > 0 and c′∗ > 0 depending only on F such that for t > 0 and

integers s, d satisfying
√

t
d + s

d ≤ c
′
∗ we have

sup
σ>0

sup
‖θ‖0≤s

Pθ,F,σ

(∣∣∣ σ̂2
med

σ2
− 1
∣∣∣ ≥ c∗(√ t

d
+
s

d

))
≤ 2e−t.

When the noise is Gaussian, Chen, Gao and Ren [3] study a generalization of the estima-
tor (5) based on Tukey depth. A model in [3] related to our setting is the contamination model
where the observations are Gaussian N (0, σ2) with probability 1− ε and arbitrary with prob-
ability ε ∈ (0, 1). If ε = s/d, this can be compared with our model. But in contrast to [3], in
our case the number of outliers s is fixed rather than random. Also, the minimax risk in [3] is
different from ours, since the loss is not rescaled by σ2, and σ2 is assumed uniformly bounded.
Modulo these differences, the case ξ1 ∼ N (0, 1) of Proposition 1 can be viewed as an analog
of Theorem 3.1 in [3].

In particular, when ξ1 ∼ N (0, 1), Proposition 1 shows that the rate of convergence of σ̂2
med

in probability is

φN (0,1)(s, d) := max

(
1√
d
,
s

d

)
. (7)

Note also that, akin to the results in [3], Proposition 1 does not allow to derive rates of
convergence in expectation because t is assumed to be bounded from above.

The main drawback of the estimator σ̂2
med is the dependence on the parameter β. It reflects

the fact that the estimator is tailored for a given and known distribution F of noise, for
example, the standard Gaussian distribution. Furthermore, as shown below, the rate (7) cannot
be achieved when it is only known that F belongs to the class of sub-Gaussian distributions.

2.2 Distribution-free variance estimator

Instead of using one particular quantile, like the median in the previous section, we pro-
pose to estimate σ2 by an integral over all quantiles, which allows us to avoid considering
distribution-dependent quantities like (6).
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Indeed, with the notation qα = G−1(1 − α) where G is the c.d.f. of (σξ1)2 and 0 < α < 1,
the variance of the noise can be expressed as

σ2 = E(σξ1)2 =

∫ 1

0
qα dα.

Discarding the higher order quantiles that are dubious in the presence of outliers and replacing
qα by the empirical quantile q̂α of level α we obtain the following estimator

σ̂2 =

∫ 1−s/d

0
q̂α dα =

1

d

d−s∑
k=1

Y 2
(k), (8)

where Y 2
(1) ≤ . . . ≤ Y 2

(d) are the ordered values of the squared observations Y 2
1 , . . . , Y

2
d . Note

that σ̂2 is an L-estimator, cf. [9]. Also, up to a constant factor, σ̂2 coincides with the statistic
used in Collier, Comminges and Tsybakov [4] .

The following theorem provides an upper bound on the risk of the estimator σ̂2 under the
assumption that the noise is sub-Gaussian. Set

φsg(s, d) = max

(
1√
d
,
s

d
log

(
ed

s

))
.

Theorem 1. Let τ be a positive real number, and let s, d be integers satisfying 1 ≤ s < d/2.
Then, the estimator σ̂2 defined in (8) satisfies

sup
Pξ∈Gτ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
σ̂2 − σ2

)2
σ4

≤ c1φ
2
sg(s, d)

where c1 > 0 is a constant depending only on τ .

Note that an assumption of the type s < d/2 is natural in the context of variance estimation.
Indeed, we need s < cd for some 0 < c < 1 since σ is not identifiable if s = d.

The next theorem establishes the performance of the noise level estimator in the case of
distributions with polynomially decaying tails. Set

φpol(s, d) = max

(
1√
d
,
(s
d

)1− 2
a

)
.

Theorem 2. Let τ > 0, a > 4, and let s, d be integers satisfying 1 ≤ s < d/2. Then, the
estimator σ̂2 defined in (8) satisfies

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ

(
σ̂2 − σ2

)2
σ4

≤ c2φ
2
pol(s, d),

where c2 > 0 is a constant depending only on τ and a.

We assume here that the noise distribution has a moment of order greater than 4, which is
close to the minimum requirement since we deal with the squared error of a quadratic function
of the observations.
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We now state the lower bounds matching the results of Theorems 1 and 2. These lower
bounds are obtained in more generality than the upper bounds since they cover a large class
of loss functions rather than only the squared loss.

We denote by L the set of all monotone non-decreasing functions ` : [0,∞) → [0,∞) such
that `(0) = 0 and ` 6≡ 0.

Theorem 3. Let τ be a positive real number, and let s, d be integers satisfying 1 ≤ s ≤ d.
Let `(·) be any loss function in the class L. Then,

inf
T̂

sup
Pξ∈Gτ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
c3(φsg(s, d))−1

∣∣∣ T̂
σ2
− 1
∣∣∣) ≥ c′3,

where c3 > 0 is a constant depending only on `(·), c′3 > 0 is a constant depending only on `(·)
and τ , and inf T̂ denotes the infimum over all estimators.

Theorems 1 and 3 imply that the estimator σ̂2 is rate optimal in a minimax sense when
the noise is sub-Gaussian. Interestingly, an extra logarithmic factor appears in the optimal
rate when passing from the pure Gaussian distribution of ξi’s (cf. Proposition 1) to the class
of all sub-Gaussian distributions. This factor can be seen as a price to pay for the lack of
information regarding the exact form of the distribution.

Under polynomial tail assumption on the noise, we have the following minimax lower bound.

Theorem 4. Let τ > 0, a ≥ 2, and let s, d be integers satisfying 1 ≤ s ≤ d. Let `(·) be
any loss function in the class L. Then,

inf
T̂

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
c4(φpol(s, d))−1

∣∣∣ T̂
σ2
− 1
∣∣∣) ≥ c′4

where c4 > 0 is a constant depending only on `(·), τ and a, c′4 > 0 is a constant depending
only on `(·) and inf T̂ denotes the infimum over all estimators.

This theorem shows that the rate obtained in Theorem 2 cannot be improved in a minimax
sense.

3. ESTIMATION OF THE `2-NORM

In this section, we consider the problem of estimation of the `2-norm of a sparse vector.
We first state a lower bound on the performance of any estimators of the `2-norm when the
noise level σ is unknown and the unknown noise distribution Pξ has either sub-Gaussian or
polynomially decreasing tails.

Theorem 5. Let τ > 0, a ≥ 2, and let s, d be integers satisfying 1 ≤ s ≤ d. Let `(·) be
any loss function in the class L. Set

φsg,norm(s, d) =
√
s log(ed/s), φpol,norm(s, d) =

√
s(d/s)1/a.

Then

inf
T̂

sup
Pξ∈Gτ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
C1(φsg,norm(s, d))−1

∣∣∣ T̂ − ‖θ‖2
σ

∣∣∣) ≥ C ′1, (9)
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and

inf
T̂

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Eθ,Pξ,σ `
(
C2(φpol,norm(s, d))−1

∣∣∣ T̂ − ‖θ‖2
σ

∣∣∣) ≥ C ′2 (10)

where C1, C2 > 0 are constants depending only on `(·), τ and a, C ′1, C
′
2 > 0 are constants

depending only on `(·) and inf T̂ denotes the infimum over all estimators.

The lower bound (10) implies that the rate of estimation of the `2-norm of a sparse vector
deteriorates dramatically if the bounded moment assumption is imposed on the noise instead
of the sub-Gaussian assumption.

The lower bound (9) for the indicator loss `(t) = 1t≥1 is tight and it is achieved by an
estimator independent of s or σ, which is stated in the following theorem.

Theorem 6. There exist absolute constants c ∈ (0, 1), c̄ > 0, c′ > 0, and an estimator N̂
independent of s and σ and such that, for all 1 ≤ s ≤ cd, we have

sup
Pξ∈G1

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣∣N̂ − ‖θ‖2σ

∣∣∣∣ ≥ c′φsg,norm(s, d)

)
≤ c̄

d
.

This theorem is a special case of Theorem 9 in Section 4 where we set X to be the identity
matrix. The estimator N̂ is the corresponding special case of the Square-Root Slope estimator
defined in Section 4.

We now compare these results with findings in Collier, Comminges and Tsybakov [4] regard-
ing the (nonadaptive) estimation of ‖θ‖2 when ξi are standard Gaussian and σ is known. It is
shown in Collier, Comminges and Tsybakov [4] that in this case the optimal rate of estimation
of ‖θ‖2 has the form

φN (0,1),norm = min{
√
s log(1 + d/s2), d1/4}.

In particular, the following lower bound holds (cf. [4]):

Proposition 2. For any σ > 0 and any integers s, d satisfying 1 ≤ s ≤ d, we have

inf
T̂

sup
‖θ‖0≤s

Eθ,N (0,1),σ

(
T̂ − ‖θ‖2

)2 ≥ c5σ
2 min

{
s log(1 + d/s2),

√
d
}
,

where c5 > 0 is an absolute constant and inf T̂ denotes the infimum over all estimators.

We see that, in contrast to these results, in the case of unknown σ the optimal rate
φsg,norm(s, d) does not exhibit an elbow at s =

√
d between the "sparse" and "dense" regimes.

Another conclusion is that, in the "dense" zone s >
√
d, adaptation to σ is only possible with a

significant deterioration of the rate. On the other hand, in the "sparse" zone s ≤
√
d the non-

adaptive rate
√
s log(1 + d/s2) differs only slightly from the adaptive rate

√
s log(1 + d/s)

and the difference vanishes outside a small vicinity of s =
√
d.

We now turn to the class of distributions with polynomial tails Pa,τ , for which we have the
lower bound (10) with the rate φpol,norm. Our aim now is to show that this rate is achievable
when both Pξ ∈ Pa,τ and σ are unknown. We will do it by proving a more general fact. Namely,
we will show that the same rate φpol,norm is minimax optimal not only for the estimation of
the `2-norm of θ but also for the estimation of the whole vector θ under the `2-norm. To this
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end, we first note that (10) obviously implies a lower bound with the same rate φpol,norm for
the estimation of the s-sparse vector θ under the `2-norm. We will show in the rest of this
section that this lower bound is tight; the rate φpol,norm appearing in (10) is achieved by an
adaptive-to-σ version of the Slope estimator θ̂ when the loss is measured by ‖θ̂−θ‖2/σ. This
immediately implies the achievability of the bound (10) by the estimator N̂ = ‖θ̂‖2 of the
`2-norm.

First, we define a preliminary estimator σ̃2 of σ2 that will be used in the definition of θ̂. Let
γ ∈ (0, 1/2] be a constant that will be chosen small enough and depending only on a and τ .
Divide {1, . . . , d} into m = bγdc disjoint subsets B1, . . . , Bm, each of size Card(Bi) ≥ k :=
bd/mc ≥ 1

γ − 1. Set

σ̄2
i =

1

Card(Bi)

∑
j∈Bi

Y 2
j , i = 1, . . . ,m.

Finally, define σ̃2 as a median of (σ̄2
1, . . . , σ̄

2
m). The next proposition shows that with high

probability the estimator σ̃2 is close σ2 to within a constant factor.

Proposition 3. Let τ > 0, a > 2. There exist constants γ ∈ (0, 1/2] and C > 0 depending
only on a and τ such that for any integers s and d satisfying 1 ≤ s < bγdc/4 we have

inf
Pξ∈Pa,τ

inf
σ>0

inf
‖θ‖0≤s

Pθ,Pξ,σ

(
1/2 ≤ σ̃2

σ2
≤ 3/2

)
≥ 1− exp(−Cd).

Consider now the estimator θ̂ defined as follows:

θ̂ ∈ arg min
θ∈Rd

( d∑
i=1

(Yi − θi)2 + σ̃‖θ‖∗
)
. (11)

Here, ‖ · ‖∗ denotes the sorted `1-norm:

‖θ‖∗ =

d∑
i=1

λi|θ|(d−i+1), (12)

where |θ|(1) ≤ · · · ≤ |θ|(d) are the order statistics of |θ1|, . . . , |θd|, and λ1 ≥ · · · ≥ λp > 0 are
tuning parameters.

Theorem 7. Let τ > 0, a > 2. There exists a constant γ ∈ (0, 1/2] such that for any
integers s, d satisfying 1 ≤ s < bγdc/4 the following holds. Let θ̂ be the estimator defined by
(11) and (12) with

λi = t
(d
i

)1/a
, i = 1, . . . , d,

and t > 4
(
(2e)1/aτ ∨ 2). Then, there exist constants c > 0 and c′ > 0 depending only on a and

τ such that

sup
Pξ∈Pa,τ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(
‖θ̂ − θ‖2

σ
≥ ctφpol,norm(s, d)

)
≤ c′

ta
+ exp(−d/c′).
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Note that the estimator θ̂ in Theorem 7 does not require the knowledge of σ or s.
The results of this section show that the optimal rate φpol,norm under polynomially decaying

noise is very different from the optimal rate φsg,norm for sub-Gaussian noise. This phenomenon
does not appear in the regression model when the design is "well spread". Indeed, Gautier and
Tsybakov [7] consider sparse linear regression with unknown noise level σ and show that the
Self-Tuned Dantzig estimator achieves a sub-Gaussian rate (which differs from the optimal
rate only in a log-factor) under the assumption that the noise is symmetric and has only a
bounded moment of order a > 2. Belloni, Chernozhukov and Wang [2] show for the same
model that a square-root Lasso estimator achieves analogous behavior under the assumption
that the noise has a bounded moment of order a > 2. A crucial condition in [2] is that the
design is "well spread", that is all components of the design vectors are random with positive
variance. The same type of condition is needed in Gautier and Tsybakov [7] to obtain a sub-
Gaussian rate. This condition is not satisfied in the sparse mean model considered here. In
this model, the design is deterministic with only one non-zero component. Such a degenerate
design turns out to be the worst from the point of view of the convergence rate, while the "well
spread" design is the best one. An interesting general conclusion is that the optimal rate of
convergence of estimators under sparsity when the noise level is unknown depends dramatically
on the properties of the design. There remains a whole spectrum of possibilities between the
degenerate and "well spread" designs where a variety of new rates can arise depending on the
properties of the design.

4. EXTENSION TO LINEAR REGRESSION SETTING

A major drawback of the estimator σ̂2 proposed in Section 2.2 is its dependence on s.
Nevertheless, it is a very simple estimator. It only requires to sort the observations, which can
be done in nearly linear time.

In this section, we propose rate optimal estimators of σ2 and ‖θ‖2 that do not depend on s
and do not require the exact knowledge of the noise distribution. We only assume that the
noise is sub-Gaussian. Furthermore, we study the performance of the estimators in the more
general context of linear regression.

Assume that we observe a vector Y ∈ Rn satisfying

Y = Xθ + σξ,

where X is a known n × p non-random design matrix, θ ∈ Rp is the unknown parameter
with ‖θ‖0 ≤ s and ξ is a noise vector with i.i.d. components ξi such that their distribution
satisfies (2). For simplicity, we assume that condition (2) holds with τ = 1. We also assume
that

max
j=1,...,p

‖Xj‖22 ≤ 1 (13)

where Xj denotes the j-th column of X. In this section, we denote by Pθ,Pξ,σ the distribution
of Y when the signal is θ, the noise level is σ and the distribution of the noise variables ξi
is Pξ.

We consider the Square-Root Slope estimator defined as

θ̂srs ∈ arg min
θ∈Rp

{
‖Y − Xθ‖2 +

√
n‖θ‖∗

}
, (14)

where ‖·‖∗ is the sorted `1-norm given by (12).
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Minimax optimal bounds on the risk of this estimator in our adaptive setting can be obtained
by combining ideas from Bellec, Lecué and Tsybakov [1] and Derumigny [6]. We say that the
design matrix satisfies a WRE(s, c) condition if

κ := inf
δ∈CWRE(s,c)

‖Xδ‖2√
n‖δ‖2

> 0,

where

CWRE(s, c) =
{
δ ∈ Rp | δ 6= 0, ‖δ‖∗ ≤ (1 + c)‖δ‖2

( s∑
i=1

λ2
i

)1/2}
.

The following proposition holds.

Proposition 4. There exist absolute positive constants c6, c7 and c8 such that the follow-
ing holds. Let the tuning parameters λj in the definition of the norm ‖ · ‖∗ be chosen as

λj = c6

√
log(2p/j)

n
, j = 1, . . . , p.

Assume that X satisfies the WRE(s, 20) condition and (13), and that
s

n
log
(2ep

s

)
≤ c7κ

2.

Then, for all Pξ ∈ G1, σ > 0 and ‖θ‖0 ≤ s, we have with Pθ,Pξ,σ-probability at least 1 −
c8(s/p)s − c8e

−n/c8,

‖X(θ̂srs − θ)‖22 ≤ c9σ
2s log(ep/s),

‖θ̂srs − θ‖22 ≤ c9
σ2s

n
log(ep/s),

‖θ̂srs − θ‖∗ ≤ c9
σs

n
log(ep/s),

where c9 > 0 is a positive constant depending only on κ.

Proof. We follow the proof of Theorem 6.1 in Derumigny [6] but we have now sub-Gaussian
noise and not the Gaussian noise as in [6]. The two minor modifications needed to make the
proof work for sub-Gaussian case consist in using Theorem 9.1 from [1] instead of Lemma 7.7
from [6], and in noticing that Lemma 7.6 from [6] remains valid, with possibly different con-
stants, when the noise is sub-Gaussian.

We now use θ̂srs to define an estimator of σ2, which is adaptive to s and to the distribution
of the noise. Set

σ̂2
srs =

1

n
‖Y − Xθ̂srs‖22.

The following theorem establishes the rate of convergence of this estimator.

Theorem 8. Let the assumptions of Proposition 4 be satisfied. There exists an absolute
constant c10 > 0 such that for any t > 0 satisfying t/n ≤ c10 we have

sup
Pξ∈G1

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣∣ σ̂2
srs

σ2
− 1

∣∣∣∣ ≥ c11

(√ t

n
+
s

n
log(ep/s)

))
≤ c8((s/p)s + e−n/c8) + (5/2)e−t,

where c11 > 0 depends only on κ, and c8 > 0 is a constant from Proposition 4.
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Note that (s/p)s ≤ c/p, s = 1, . . . , p/2, for an absolute constant c > 0.
Finally, we consider the problem of estimation of the `2-norm in the regression model. The

following theorem follows immediately from Proposition 4 and the triangle inequality.

Theorem 9. Let the assumptions of Proposition 4 be satisfied. Let θ̂srs be the estimator
defined in (14) and set

N̂srs = ‖θ̂srs‖2.

Then

sup
Pξ∈G1

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣∣N̂srs − ‖θ‖2
σ

∣∣∣∣ ≥ c9

√
s

n
log(ep/s)

)
≤ c8((s/p)s + e−n/c8),

where c8 > 0 and c9 > 0 are the constants from Proposition 4.

Note that the estimator N̂srs is adaptive to σ, s and to the distribution of noise in the
class G1. By Theorem 9, this estimator achieves the rate

√
s
n log(ep/s), which is shown to be

optimal in the case of identity matrix X and n = p = d in Section 3.

5. PROOFS

5.1 Proof of Proposition 1

Denote by G the cdf of (σξ1)2 and by Gd the empirical cdf of ((σξi)
2 : i 6∈ S), where S is

the support of θ. Let γ be the median of G, that is G(γ) = 1/2. By the definition of γ̂,

|Fd(γ̂)− 1/2| ≤ |Fd(γ)− 1/2|.

It is easy to check that |Fd(x)−Gd(x)| ≤ s/d for all x > 0. Therefore,

|Gd(γ̂)− 1/2| ≤ |Gd(γ)− 1/2|+ 2s/d.

The DKW inequality [16, page 99], yields that P(supx∈R |Gd(x) − G(x)| ≥ u) ≤ 2e−2u2(d−s)

for all u > 0. Fix t > 0 satisfying the assumption of the proposition with c′∗ chosen smaller
that 1/8, and consider the event

A :=

{
sup
x∈R
|Gd(x)−G(x)| ≤

√
t

2(d− s)

}
.

Then, P(A) ≥ 1− 2e−t. On the event A, we have

|G(γ̂)− 1/2| ≤ |G(γ)− 1/2|+ 2

(√
t

2(d− s)
+
s

d

)
≤ 2

(√
t

d
+
s

d

)
≤ 1

4
, (15)

where the last two inequalities are due to the fact that G(γ) = 1/2 and to the assumption of
the proposition with c′∗ < 1/8. Notice that

|G(γ̂)− 1/2| = |G(γ̂)−G(γ)| = 2
∣∣F (
√
γ̂/σ)− F (

√
γ/σ)

∣∣. (16)

Using (15), (16) and the fact that γ = σ2(F−1(3/4))2 we obtain that, on the event A,

F−1(5/8) ≤
√
γ̂/σ ≤ F−1(7/8).
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This and (16) imply

|G(γ̂)− 1/2| ≥ c∗∗
∣∣√γ̂/σ −√γ/σ∣∣ = c∗∗

√
β
∣∣σ̂med/σ − 1

∣∣.
where c∗∗ = 2 minx∈[F−1(5/8),F−1(7/8)] F

′(x) > 0, and β = (F−1(3/4))2. Combining the last
inequality with (15) we get that, on the event A,∣∣σ̂med/σ − 1

∣∣ ≤ 4c−1
∗∗ β

−1/2

(
s

d
+

√
t

d

)
.

Using this inequality when c′∗ in the assumption of the proposition is chosen small enough we
obtain the result.

5.2 Proof of Theorems 1 and 2

Let ‖θ‖0 ≤ s and denote by S the support of θ. Note first that, by the definition of σ̂2,

σ2

d

d−2s∑
i=1

ξ2
(i) ≤ σ̂

2 ≤ σ2

d

∑
i∈Sc

ξ2
i , (17)

where ξ2
(1) ≤ · · · ≤ ξ2

(d) are the ordered values of ξ2
1 , . . . , ξ

2
d. Indeed, the right hand inequality

in (17) follows from the relations
d−s∑
k=1

Y 2
(k) = min

J :|J |=d−s

∑
i∈J

Y 2
(i) ≤

∑
i∈Sc

Y 2
(i) =

∑
i∈Sc

σ2ξ2
i .

To show the left hand inequality in (17), notice that at least d − 2s among the d − s order
statistics Y 2

(1), . . . , Y
2

(d−s) correspond to observations Yk of pure noise, i.e., Yk = σξk. The sum
of squares of such observations is bounded from below by the sum of the smallest d−2s values
σ2ξ2

(1), . . . , σ
2ξ2

(d−2s) among σ2ξ2
1 , . . . , σ

2ξ2
d.

Using (17) we get (
σ̂2 − σ2

d

d∑
i=1

ξ2
i

)2
≤ σ4

d2

( d∑
i=d−2s+1

ξ2
(i)

)2
,

so that

Eθ,Pξ,σ

(
σ̂2 − σ2

d

d∑
i=1

ξ2
i

)2
≤ σ4

d2

( 2s∑
i=1

√
Eξ4

(d−i+1)

)2
.

Then

Eθ,Pξ,σ(σ̂2 − σ2)2 ≤ 2Eθ,Pξ,σ

(
σ̂2 − σ2

d

d∑
i=1

ξ2
i

)2
+ 2Eθ,Pξ,σ

(σ2

d

d∑
i=1

ξ2
i − σ2

)2

≤ 2σ4

d2

( 2s∑
i=1

√
Eξ4

(d−i+1)

)2
+

2σ4E(ξ4
1)

d
.

Now, to prove Theorem 1 it suffices to note that under the sub-Gaussian assumption (2) we
have E(ξ4

1) <∞ and Lemma 1 yields
2s∑
i=1

√
Eξ4

(d−i+1) ≤ 2s
√
C

2s∑
i=1

log
(
ed/i

)
= 2s

√
C log

((ed)2s

(2s)!

)
≤ 2s

√
C log

(
e2d/s

)
.
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To prove Theorem 2 we act analogously by using Lemma 2 and the fact that E(ξ4
1) <∞ under

assumption (3) with a > 4.

5.3 Proof of Theorems 3 and 4

Since we have `(t) ≥ `(A)1t>A for any A > 0, it is enough to prove the theorems for the
indicator loss `(t) = 1t>A.

(i) We first prove the lower bounds with the rate 1/
√
d in Theorems 3 and 4. Let f0 : R→

[0,∞) be a probability density with the following properties: f0 is continuously differentiable,
symmetric about 0, supported on [−3/2, 3/2], with variance 1 and finite Fisher information
If0 =

∫
(f ′0(x))2(f0(x))−1dx. The existence of such f0 is shown in Lemma 6. Denote by F0

the probability distribution corresponding to f0. Since F0 is zero-mean, with variance 1 and
supported on [−3/2, 3/2] it belongs to Gτ with any τ > 0 and to Pa,τ with any τ > 0 and
a > 0. Define P0 = P0,F0,1, P1 = P0,F0,σ1 where σ2

1 = 1+c0/
√
d and c0 > 0 is a small constant

to be fixed later. Denote by H(P1,P0) the Hellinger distance between P1 and P0. We have

H2(P1,P0) = 2
(
1− (1− h2/2)d

)
(18)

where h2 =
∫

(
√
f0(x) −

√
f0(x/σ1)/σ1)2dx. By Theorem 7.6. in Ibragimov and Hasminskii

[10],

h2 ≤ (1− σ1)2

4
sup

t∈[1,σ1]
I(t)

where I(t) is the Fisher information corresponding to the density f0(x/t)/t, that is I(t) =
t−2If0 . It follows that h2 ≤ c̄c2

0/d where c̄ > 0 is a constant. This and (18) imply that
for c0 small enough we have H(P1,P0) ≤ 1/2. Finally, choosing such a small c0 and using
Theorem 2.2(ii) in Tsybakov [13] we obtain

inf
T̂

max
{
P0

(∣∣∣T̂ − 1
∣∣∣ > c0

2(1 + c0)
√
d

)
,P1

(∣∣∣ T̂
σ2

1

− 1
∣∣∣ > c0

2(1 + c0)
√
d

)}
≥ inf

T̂
max

{
P0

(
|T̂ − 1| > c0

2
√
d

)
,P1

(
|T̂ − σ2

1| >
c0

2
√
d

)}
≥ 1−H(P1,P0)

2
≥ 1

4
.

(ii) We now prove the lower bound with the rate s
d log(ed/s) in Theorem 3. It is enough

to conduct the proof for s ≥ s0 where s0 > 0 is an arbitrary absolute constant. Indeed, for
s ≤ s0 we have s

d log(ed/s) ≤ C/
√
d where C > 0 is an absolute constant and thus Theorem 3

follows already from the lower bound with the rate 1/
√
d proved in item (i). Therefore, in the

rest of this proof we assume without loss of generality that s ≥ 32.
We take Pξ = U where U is the uniform distribution on {−1, 1}. Clearly, U ∈ Gτ . Consider

i.i.d. Bernoulli variables δi:
δ1, . . . , δd

iid∼ B
( s

2d

)
,

and i.i.d. Rademacher variables ε1, . . . , εd that are independent of (δ1, . . . , δd). Denote by µ the
distribution of (αδ1ε1, . . . , αδdεd) where α = (τ/2)

√
log(ed/s). Note that µ is not necessarily

supported on Θs = {θ ∈ Rd | ‖θ‖0 ≤ s} as the number of nonzero coefficients of a vector
drawn from µ can be larger than s. Therefore, we consider a restricted to Θs version of µ
defined by

µ̄(A) =
µ(A ∩Θs)

µ(Θs)
(19)
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for all Borel subsets A of Rd. Finally, we introduce two mixture probability measures

Pµ =

∫
Pθ,U,1 dµ(θ) and Pµ̄ =

∫
Pθ,U,1 dµ̄(θ). (20)

Notice that there exists a probability measure P̃ ∈ Gτ such that

Pµ = P0,P̃ ,σ0
(21)

where σ0 > 0 is defined by

σ2
0 = 1 +

τ2s

8d
log(ed/s) ≤ 1 +

τ2

8
. (22)

Indeed, σ2
0 = 1 + α2s

2d is the variance of zero-mean random variable αδε + ξ, where ξ ∼ U ,
ε ∼ U , δ ∼ B

(
s
2d

)
and ε, ξ, δ are jointly independent. Thus, to prove (21) it is enough to show

that, for all t ≥ 2,
P
(
(τ/2)

√
log(ed/s) δε+ ξ > tσ0

)
≤ e−t2/τ2 . (23)

But this inequality immediately follows from the fact that for t ≥ 2 the probability in (23) is
smaller than

P(ε = 1, δ = 1)1
(τ/2)
√

log(ed/s)>t−1
≤ s

4d
1
τ
√

log(ed/s)>t
≤ e−t2/τ2 .

Now, for any estimator T̂ and any u > 0 we have

sup
Pξ∈Gτ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(∣∣∣ T̂
σ2
− 1
∣∣∣ ≥ u)

≥ max
{
P0,P̃ ,σ0

(|T̂ − σ2
0| ≥ σ2

0u),

∫
Pθ,U,1(|T̂ − 1| ≥ u)µ̄(dθ)

}
≥ max

{
Pµ(|T̂ − σ2

0| ≥ σ2
0u),Pµ̄(|T̂ − 1| ≥ σ2

0u)
}

(24)

where the last inequality uses (21). Write σ2
0 = 1+2φ where φ = τ2s

16d log(ed/s) and choose u =
φ/σ2

0 ≥ φ/(1 + τ2/8). Then, the expression in (24) is bounded from below by the probability
of error in the problem of distinguishing between two simple hypotheses Pµ and Pµ̄, for which
Theorem 2.2 in Tsybakov [13] yields

max
{
Pµ(|T̂ − σ2

0| ≥ φ),Pµ̄(|T̂ − 1| ≥ φ)
}
≥ 1− V (Pµ,Pµ̄)

2
(25)

where V (Pµ,Pµ̄) is the total variation distance between Pµ and Pµ̄. The desired lower bound
follows from (25) and Lemma 4 for any s ≥ 32.

(iii) Finally, we prove the lower bound with the rate τ2(s/d)1−2/a in Theorem 4. Again, we
do not consider the case s ≥ 32 since in this case the rate 1/

√
d is dominating and Theorem 4

follows from item (i) above. For s ≥ 32, the proof uses the same argument as in item (ii) above
but we choose α = (τ/2)(d/s)1/a. Then the variance of αδε+ ξ is equal to

σ2
0 = 1 +

τ2(s/d)1−2/a

8
.

Furthermore, with this definition of σ2
0 there exists P̃ ∈ Pa,τ such that (21) holds. Indeed,

analogously to (23) we now have, for all t ≥ 2,

P
(
α δε+ ξ > tσ0

)
≤ P(ε = 1, δ = 1)1(τ/2)(d/s)1/a>t−1 ≤

s

4d
1τ(d/s)1/a>t ≤ (t/τ)a.

To finish the proof, it remains to repeat the argument of (24) and (25) with φ = τ2(s/d)1−2/a

16 .
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5.4 Proof of Theorem 5

As in Section 5.3, we consider only the case s ≥ 32. Indeed, for s < 32 it is enough to use
the lower bound of Proposition 2 since in this case s log(ed/s) ≤ 32 log(ed) ≤ Cs log(1+d/s2)
where C > 0 is an absolute constant.

The proof for s ≥ 32 is very close to the argument in Section 5.3. Set α = (τ/2)
√

log(ed/s)
when proving the bound on the class Gτ , and α = (τ/2)(d/s)1/a when proving the bound
on Pα,τ . In what follows, we only deal with the class Gτ since the proof for Pα,τ is analogous.
Consider the measures µ µ̄, Pµ, Pµ̄ and P̃ defined in Section 5.3. Similarly to (24), for any
estimator T̂ and any u > 0 we have

sup
Pξ∈Gτ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(
|T̂ − ‖θ‖2| ≥ σu

)
≥ max

{
P0,P̃ ,σ0

(|T̂ | ≥ σ0u),

∫
Pθ,U,1(|T̂ − ‖θ‖2| ≥ u)µ̄(dθ)

}
≥ max

{
Pµ(|T̂ | ≥ σ0u),Pµ̄(|T̂ − ‖θ‖2| ≥ σ0u)

}
≥ max

{
Pµ(|T̂ | ≥ σ0u),Pµ̄(|T̂ | < σ0u, ‖θ‖2 ≥ 2σ0u)

}
≥ min

B
max

{
Pµ(B),Pµ̄(Bc)

}
− µ̄(‖θ‖2 ≤ 2σ0u), (26)

where σ0 is defined in (22), U denotes the Rademacher law and minB is the minimum over all
Borel sets. The third line in the last display is due to (21) and to the inequality σ0 ≥ 1.

Set u = α
√
s

4σ0
. Then Lemma 5 implies that

µ̄(‖θ‖2 ≤ 2σ0u) ≤ 2e−
s
16 , (27)

while Theorem 2.2 in [13] yields

min
B

max
{
Pµ(B),Pµ̄(Bc)

}
≥ 1− V (Pµ,Pµ̄)

2
, (28)

where V (Pµ̄,Pµ) is the total variation distance between Pµ and Pµ̄. It follows from (26) – (28)
and Lemma 4 that

sup
Pξ∈Gτ

sup
σ>0

sup
‖θ‖0≤s

Pθ,Pξ,σ

(
|T̂ − ‖θ‖2|/σ ≥ α

√
s/(4σ0)

)
≥ 1− 5e−

s
16

2
.

This proves Theorem 5 for s ≥ 32 and thus completes the proof.

5.5 Proof of Proposition 3

In this proof, we denote by Cj(a, τ) positive constants depending only on a and τ . Fix
θ ∈ Θs and let S be the support of θ. We will call outliers the observations Yi with i ∈ S.
There are at least m− s blocks Bi that do not contain outliers. Without loss of generality, we
assume that the blocks B1, . . . , Bm−s contain no outliers.

As a > 2, there exist constants L = L(a, τ) and r = r(a, τ) such that E|ξ2
1 − 1|r ≤ L and

1 < r ≤ 2. Using von Bahr-Esseen inequality (cf. [15]) and the fact that Card(Bi) ≥ k we get

P
(∣∣∣ 1

Card(Bi)

∑
j∈Bi

ξ2
j − 1

∣∣∣ > 1/2
)
≤ 2r+1L

kr−1
, i = 1, . . . ,m.
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Hence, there exists a constant C1 = C1(a, τ) such that if k ≥ C1 (i.e., if γ is small enough
depending on a and τ), then

Pθ,Pξ,σ(σ̄2
i /∈ I) ≤ 1

4
, i = 1, . . . ,m, (29)

where I = [σ
2

2 ,
3σ2

2 ]. Next, by the definition of the median, for any interval I ⊆ R we have

Pθ,Pξ,σ(σ̃2 /∈ I) ≤ Pθ,Pξ,σ

( m∑
i=1

1σ̄2
i /∈I
≥ m

2

)
≤ Pθ,Pξ,σ

(m−s∑
i=1

1σ̄2
i /∈I
≥ m

2
− s
)
.

Now, s ≤ bγdc
4 = m

4 , so that m
2 − s ≥

m−s
3 . Set ηi = 1σ̄2

i /∈I
, i = 1, . . . ,m − s. Due to (29)

we have E(ηi) ≤ 1/4, and η1, . . . , ηm−s are independent. Using these remarks and Hoeffding’s
inequality we find

P
(m−s∑
i=1

ηi ≥
m

2
− s
)
≤ P

(m−s∑
i=1

(ηi −E(ηi)) ≥
m− s

12

)
≤ exp(−C2(a, τ)(m− s)).

Here, m − s ≥ 3m/4 = 3bγdc/4. Thus, if γ is chosen small enough depending only on a and
τ then

Pθ,Pξ,σ(σ̃2 /∈ I) ≤ exp(−C3(a, τ)d).

5.6 Proof of Theorem 7

Set u = θ̂ − θ. It follows from Lemma A.2 in [1] that

2‖u‖22 ≤ 2σ
d∑
i=1

ξiui + σ̃‖θ‖∗ − σ̃‖θ̂‖∗,

where ui are the components of u. Next, Lemma A.1 in [1] yields

‖θ‖∗ − ‖θ̂‖∗ ≤
( s∑
j=1

λ2
j

)1/2
‖u‖2 −

d∑
j=s+1

λj |u|(d−j+1)

where |u|(k) is the kth order statistic of |u1|, . . . , |ud|. Combining these two inequalities we get

2‖u‖22 ≤ 2σ
d∑
i=1

ξiui + σ̃
{( s∑

j=1

λ2
j

)1/2
‖u‖2 −

d∑
j=s+1

λj |u|(d−j+1)

}
.

Thus, on the event B =
{
|ξ|(d−j+1) ≤ λj/4, ∀j = 1, . . . , d

}
∩
{

1/2 ≤ σ̃2/σ2 ≤ 3/2
}

we have

2‖u‖22 ≤
σ

2

d∑
i=1

λi|u|(d−i+1) +
3

2
σ
( s∑
j=1

λ2
j

)1/2
‖u‖2 −

σ

2

d∑
j=s+1

λj |u|(d−j+1)

≤ 2σ
( s∑
j=1

λ2
j

)1/2
‖u‖2.
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This inequality and the definition of λj imply

‖u‖2 ≤ σt

√√√√ s∑
j=1

(d
j

)2/a
≤ cσt φpol,norm(s, d),

where c > 0 is a constant depending only on a. Finally, combining Lemma 2 and Proposition 3
we get

Pθ,Pξ,σ(B) ≥ 1− c′

ta
− exp(−t/c′)

for a constant c′ > 0 depending only on a and τ .

5.7 Proof of Theorem 8

Using the definition of σ̂2
srs in (14) we get

|σ̂2
srs − σ2| ≤ 1

n
‖X(θ̂srs − θ)‖22 +

σ2

n

∣∣∣‖ξ‖22 − n∣∣∣+
2σ

n

∣∣∣ξTX(θ̂srs − θ)
∣∣∣. (30)

To control the second term on the right-hand side of (30), we apply Bernstein’s inequality (cf.
e.g. Corollary 5.17 in [14]): If Pξ ∈ G1, then

P
(∣∣‖ξ‖22 − n∣∣ > u

)
≤ 2e−c

(
u2

n
∧u
)
, ∀u > 0,

where c > 0 is an absolute constant. This yields that for any t > 0 such that
√
t/n ≤ c,∣∣‖ξ‖22 − n∣∣ ≤√nt/c (31)

with probability at least 1− 2e−t.
Next, to bound the first and the third terms on the right-hand side of (30) we place ourselves

on the event of probability at least 1 − c8(s/p)s − c8e
−n/c8 where the result of Proposition 4

holds. We denote this event by C. By Proposition 4, on the event C the first term on the
right-hand side of (30) satisfies

1

n
‖X(θ̂srs − θ)‖22 ≤ c9

σ2s

n
log(ep/s). (32)

Finally, to bound the third term on the right-hand side of (30), we use Proposition 9.1 in
Bellec, Lecué and Tsybakov [1] that we state here in the following form.

Proposition 5. Let t > 0 and let X be a design matrix satisfying (13). Assume that
Pξ ∈ G1. Then, there is a constant K1 such that for all u ∈ Rp,

1

n
|ξTXu| ≤ K1

(
G(u) ∨ ‖u‖∗

)
with probability at least 1− e−t/2, where

G(u) =

√
t

n
‖Xu‖2.
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In what follows, we set u = θ̂srs − θ, and we denote by C′ the intersection of C with
the event of probability at least 1 − e−t/2, on which Proposition 5 holds. Clearly, P(C′) ≥
1− c8(s/p)s − c8e

−n/c8 − e−t/2. On the event C, Proposition 4 yields

‖u‖∗ ≤ c9
σs

n
log(ep/s),

G(u) ≤ σt

n
+
‖Xu‖22
σn

≤ σt

n
+ c9

σs

n
log(ep/s).

This and Proposition 5 imply that, on the event C′,
1

n
|ξTXu| ≤ K1σ

( t
n

+ c9
s

n
log(ep/s)

)
. (33)

Plugging (31), (32), and (33) in (30) we obtain that if
√
t/n ≤ c, then

|σ̂2
srs − σ2| ≤ c11σ

2
(√

t/n+
s

n
log(ep/s)

)
with probability at least 1−c8(s/p)s−c8e

−n/c8−5e−t/2, where c11 > 0 is a constant depending
only on κ.

6. LEMMAS

Lemma 1. Let z1, . . . , zd
iid∼ P with P ∈ Gτ for some τ > 0 and let z(1) ≤ · · · ≤ z(d) be the

order statistics of |z1|, . . . , |zd|. Then

E
(
z4

(d−j+1)

)
≤ C log2

(
ed/j

)
, j = 1, . . . , d,

where C > 0 is a constant depending only on τ .

Proof. Using the definition of Gτ we get that, for any t ≥ 2,

P
(
z(d−j+1) ≥ t

)
≤
(
d

j

)
Pj(|z1| ≥ t) ≤ 2

(ed
j

)j
e−j(t/τ)2 .

Then, for v = τ
√

2 log(ed/j) ∨ 2 we get

E
(
z4

(d−j+1)

)
= 4

∫ +∞

0
t3 P

(
z(d−j+1) > t

)
dt, (34)

≤ v4 + 8

∫ +∞

0
t3 e−j(t/τ)2/2 dt = v4 +

16τ4

j2
.

The result follows.

Lemma 2. Let z(1) ≤ · · · ≤ z(d) be as in Lemma 1 with P ∈ Pa,τ for some τ > 0 and
a > 0. Then if u > (2e)1/aτ ∨ 2, we have

P
(
z(d−j+1) ≤ u

(d
j

)1/a
,∀ j = 1, . . . , d

)
≥ 1− 2eτa

ua
(35)

and if a > 4,

E
(
z4

(d−j+1)

)
≤ C

(de
j

)4/a
, j = 1, . . . , d, (36)

where C > 0 is a constant depending only on τ and a.
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Proof. Similarly to the proof of Lemma 1 we have, for all t ≥ 2,

P
(
z(d−j+1) ≥ t

)
≤
(ed
j

)j(τ
t

)ja
.

Set tj = u
(
d
j

)1/a
and q = e(τ/u)a. Using the assumption that q < 1/2 we get, for u ≥ 2,

P
(
∃ j ∈ {1, . . . , d} : z(d−j+1) ≥ u

(d
j

)1/a)
≤

d∑
j=1

(ed
j

)j( τ
tj

)ja
=

d∑
j=1

qj ≤ 2q.

This proves (35). The proof of (36) is obtained analogously to (34).

Lemma 3 (Deviations of the binomial distribution). Let B(d, p) denote the binomial ran-
dom variable with parameters d and p ∈ (0, 1). Then, for any λ > 0,

P
(
B(d, p) ≥ λ

√
d+ dp

)
≤ exp

(
− λ2

2p(1− p)
(
1 + λ

3p
√
d

)), (37)

P
(
B(d, p) ≤ −λ

√
d+ dp

)
≤ exp

(
− λ2

2p(1− p)

)
. (38)

Inequality (37) is a combination of formulas (3) and (10) on pages 440–441 in [12]. Inequality
(38) is formula (6) on page 440 in [12].

Lemma 4. Let Pµ and Pµ̄ be the probability measures defined in (20). Then,

V (Pµ,Pµ̄) ≤ e−
3s
16 ,

where V (·, ·) denotes the total variation distance.

Proof. We have

V (Pµ,Pµ̄) = sup
B

∣∣∣∣∫ Pθ,U,1(B)dµ(θ)−
∫

Pθ,U,1(B)dµ̄(θ)

∣∣∣∣ ≤ sup
|f |≤1

∣∣∣∣∫ fdµ−
∫
fdµ̄

∣∣∣∣ = V (µ, µ̄).

Furthermore, V (µ, µ̄) ≤ µ(Θc
s) since for any Borel subset B of Rd we have

∣∣µ(B) − µ̄(B)
∣∣ ≤

µ(B ∩Θc
s). Indeed,

µ(B)− µ̄(B) ≤ µ(B)− µ(B ∩Θ) = µ(B ∩Θc)

and
µ̄(B)− µ(B) =

µ(B ∩Θ)

µ(Θ)
− µ(B ∩Θ)− µ(B ∩Θc) ≥ −µ(B ∩Θc).

Thus,
V (Pµ,Pµ̄) ≤ µ(Θc

s) = P
(
B
(
d,

s

2d

)
> s
)
.

The lemma now follows from (37).

Lemma 5. Let µ̄ be defined in (19) with some α > 0.Then

µ̄
(
‖θ‖2 ≤

α

2

√
s
)
≤ 2e−

s
16 .
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Proof. First, note that

µ
(
‖θ‖2 ≤

α

2

√
s
)

= P
(
B
(
d,

s

2d

)
≤ s

4

)
≤ e−

s
16 (39)

where the last inequality follows from (38). Next, inspection of the proof of Lemma 4 yields
that µ̄(B) ≤ µ(B)+e−

3s
16 for any Borel set B. Taking here B = {‖θ‖2 ≤ α

√
s/2} and using (39)

proves the lemma.

Lemma 6. There exists a probability density f0 : R→ [0,∞) with the following properties:
f0 is continuously differentiable, symmetric about 0, supported on [−3/2, 3/2], with variance 1
and finite Fisher information If0 =

∫
(f ′0(x))2(f0(x))−1dx.

Proof. LetK : R→ [0,∞) be any probability density, which is continuously differentiable,
symmetric about 0, supported on [−1, 1], and has finite Fisher information IK , for example,
the density K(x) = cos2(πx/2)1|x|≤1. Define f0(x) = [Kh(x + (1 − ε)) + Kh(x − (1 − ε))]/2
where h > 0 and ε ∈ (0, 1) are constants to be chosen, and Kh(u) = K(u/h)/h. Clearly, we
have If0 < ∞ since IK < ∞. It is straightforward to check that the variance of f0 satisfies∫
x2f0(x)dx = (1− ε)2 +h2σ2

K where σ2
K =

∫
u2K(u)du. Choosing h =

√
2ε− ε2/σK and ε ≤

σ2
K/8 guarantees that

∫
x2f0(x)dx = 1 and the support of f0 is contained in [−3/2, 3/2].
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