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Making randomness tests more robust
Alexander Shen*

Abstract

In this note we suggest a simple change in practical randomness tests
that could make them more robust (not dependent on the asymptotic
formulas and etalon random sources).

1 What is a randomness test?
Imagine that we want to check some “null hypothesis”, e.g., the hypothesis of
a fair coin (all bits are independent with probabilities 1/2 for head and tail).
The standard way is to choose some test, a subset 𝐹 ⊂ {0, 1}𝑛 of the set of all
possible outcomes that has small probability, and agree that an appearance of
a sequence from 𝐹 will be interpreted as a failure (the hypothesis is rejected).1
The probability of𝐹, usually called the significance level, is the probability of re-
jecting a sequence that is produced according to the null hypothesis. Its choice
depends on the level of certainty we need when rejecting the null hypothesis.
For example, a simple test could consists of all strings of some length𝑁 where
the frequency of ones exceeds some threshold 𝑡 > 1/2. The significance level
is then the fraction of 𝑁-bit strings that contain more than 𝑡𝑁 ones, and this
fraction should be small to make the rejection meaningful.

*LIRMM CNRS & University of Montpellier. Supported by RaCAF ANR grant.
1There aremany philosophical and practical questions related to this procedure. Normally

we should choose a test before the experiment, but what can be done if the experiment already
happened? What are the “reasonable” tests that can be meaningful in such a situation? Algo-
rithmic information theory considers “simple” tests and identifies “randomness” with incom-
pressibility, but how can we test incompressibility? Does it make any sense to test algorithms
that claim that they produce a “pseudorandom” sequence — without a seed, like the binary
expansion of 𝜋, or with a seed? (This latter setting corresponds to the Yao–Blum–Micali defi-
nition of pseudo-random number generators.) We do not discuss these questions here.
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More general, we may consider any test statictic, i.e., a random variable 𝜉
that is a real-valued function defined on the outcomes (𝑛-bit strings in our ex-
ample), and for every outcome 𝑐 consider the p-value that corresponds to this
outcome, i.e., the probability of the event {𝑥 ∣ 𝜉(𝑥) ≥ 𝜉(𝑐)}. In this way we get
a family of tests: for every ε > 0 we get a test 𝑇ε that consist of all outcomes
that have 𝑝-value atmost ε. The probability of 𝑇ε is at most ε (more precisely, it
is equal to the maximal p-value that does not exceed ε). So different observers
may look at the p-value for the tested string, compare this p-value with their fa-
vorite significance level and decide whether to reject the null hypothesis based
on the test result (this happens if 𝑝-value is below the significance level) or not.
Popular collections of randomness tests (like diehard [1] and more extensive
dieharder [2]) use this approach: they do not say just “rejected” or “accepted”
but provide the 𝑝-value for many different tests (random variables 𝜉 in our no-
tation).

2 Secondary tests
An important part of mentioned test collections [1, 2] are “secondary” tests
based on the following observation. Let 𝜉 be an arbitrary random variable;
consider the new random variable 𝜂 = 𝑝(𝜉), where 𝑝 is the p-value function
constructed for the variable 𝜉. The main observation: the distribution of this
random variable is close to the uniform distribution. It would be exactly the uni-
form distribution if 𝜉 were a continuous random variable such that every indi-
vidual value has probability 0. In general, the cumulative distribution function
Pr[𝜉 ≤ 𝑐] equals the maximal p-value that does not exceed 𝑐. The distance be-
tween the consecutive p-values is the probability of an individual outcome for
𝜉, so for almost all tests the distribution is very close to the uniform one.

So we can apply the test to non-overlapping (and therefore independent)
segments of the input sequence, and then test the sequence of p-values ob-
tained for them against the uniform distribution. The test collections we men-
tioned [1, 2] use the Kolmogorov–Smirnov test for this comparison. And this
is important: in many cases the p-values obtained by the primary tests are not
very close to zero; the significant discrepancy appears only at the second stage.
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3 Problems with secondary tests
The first problem is already mentioned: the distribution of p-values is not ex-
actly uniform. But the difference usually is negligible, since the distance be-
tween empirical and theoretical cumulative distributions is much bigger any-
way. More dangerous are the assumptions that aremade in the tests. The birth-
day spacing test from the original collection uses the overlapping sequences of
bits for several tests, so there are no reasons to claim that the p-values will
have uniform distribution.2 The same problem appears with 6×8matrix rank
test from diehard (Kolmogorov–Smirnov test is applied to dependent distru-
butions).

The bigger problem arises because for most of these tests the distribution
is not really computed exactly; instead, some heuristic assumptions are used
(based on asymptotic convergence, or some experimental measurements3). So
we do not have proofs that the approximate p-values coincide with the correct
ones. The problem becomes even more serious when the secondary tests are
used: in a primary test we may believe for a good reason that the approxima-
tion provides some upper bound for a correct p-value. However, for the sec-
ondary tests bounds are not enough, and we have no reason to believe in the
correctness of the tests.

4 “True randomness” calibration
The natural idea would be to check first that the tests are valid by applying
them to sequences that are believed to be random. If some test systematically
rejects sequences that (we believe) are produces by a reliable source of random
bits, then the test should be discarded. The dieharder documentation says
about this problem:

Many dieharder tests, despite our best efforts, are numerically un-
stable or have only approximately known target statistics or are

2“The first test uses bits 1–24 (counting from the left) from integers in the specified file.
Then the file is closed and reopened, then bits 2–25 of the same integers are used to provide
birthdays, and so on to bits 9–32. Each set of bits provides a p-value, and the nine p-values
provide a sample for a KSTEST” (cdbday.c from diehard).

3The comments for one of the tests (OQSO) in diehard say “The mean is based on theory;
sigma comes from extensive sumulation”.
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straight up asymptotic results, and will eventually return a fail-
ing result even for a gold-standard generator (such as AES), or for
the hypercautious the XOR generator with AES, threefish, kiss,
all loaded at once and xor’d together. ⟨…⟩ Failure with numbers
of psamples within an order of magnitude of the AES thresholds
should probably be considered possible test failures, not generator
failures. Failures at levels significantly less than the known gold
standard generator failure thresholds are, of course, probably fail-
ures of the generator.

So some tests in [2] are labeled as suspect tests that consistently fail “good” gen-
erators. It would be desirable to use somemore reliable approach, and there is
an obvious possibility. Instead of using Kolmogorov–Smirnov test to compare
the p-values distribution with the hypothetical uniform distribution, we may
use two-sampleKolmogorov–Smirnov test (or any other test for comparing two
distrubutions) to check whether the p-values obtained for the generator under
testing are indistinguishable (up to some significance level) from the p-values
obtained for the “gold standard generator” (assume for now that we have one).

The additional advantage of this approach is that now we do not need to
compute the p-values, since only the ordering of them matters, so we can di-
rectly work with the values of the underlying test variable and do not need
any information about its distribution. The price we pay is that we need more
data. Indeed, we need the p-values both for generatorwe test and for the etalon
generator. Also we need more samples for the same precision, since we now
compare two empirical distributions and each has some sampling error.

5 What if do not have “true randomness”?
The trick mentioned in the preceding section assumes that we have some gen-
erator that we trust to be random. This assumption is crucial: If we use some
faulty generator as an etalon for comparison, we may easily reject the good
generator or accept a bad one. The second case may happen anyway for every
test, but the first situation is hardly acceptable.

However, there is an easy way to get around this problem. Instead of using
𝑁 test runs (strings 𝑥1, … , 𝑥𝑁) of our generator and comparing then with 𝑁
test runs (𝑒1, … , 𝑒𝑁) of an “etalon” (presumably good) generator, we may take
2𝑁 runs 𝑥1, … , 𝑥2𝑁 of our generator and 𝑁 test runs 𝑒1, … , 𝑒𝑁 of the etalon
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generator, and then compare the distribution of test values for 𝑥1, … , 𝑥𝑁 and
for 𝑥𝑁+1⊕𝑒1, … , 𝑥2𝑁⊕𝑒𝑁 (here⊕ stands for bitwise xor). This is a valid test
for every 𝑒1, … , 𝑒𝑁 (assuming they are independent from 𝑥1, … , 𝑥2𝑛; wemay use
some fixed values since this guarantees independence). On the other hand, if
we use true random generator to obtain 𝑒1, … , 𝑒𝑁 , then the second half will
contain true random variables, so the test is as powerful as before. The only
disadvantage is that we need twice more bits for testing.
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