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Abstract— The use of over-the-air updates has attracted very 
much interest these last few years with the software-intensive 
development of embedded systems in the car industry. The 
development of autonomous driving and ADAS (Advanced Driver 
Assistance Systems) renders over-the-air updates mandatory, for 
both user satisfaction and economic reasons. How to make sure 
that remote updates of critical ADAS do not have an impact on 
safety? This is the question we tackle in our work with a major 
car manufacturer. This paper is a progress report. We 
summarize our approach involving AFT (Adaptive Fault 
Tolerance) implemented on ROS (Robot Operating System), 
describe the simulation platform we have developed to 
experiment and validate over-the-air updates of ADAS and AFT, 
and finally draw some lessons learnt and perspectives. 

I. INTRODUCTION 
Automotive embedded systems are expected to evolve 

during their service life, in order to cope with changes of 
various nature due to maintenance activities or additional 
features requested by users. For many reasons including 
economic reasons, over-the-air updates, e.g. additional features 
installed remotely into cars, are of prime interest for the car 
manufacturers. This capability has been demonstrated by TELSA 
and is currently one of the motivations for Adaptive AUTOSAR. 

To this aim, the first challenge is to have a runtime support 
enabling dynamic software updates to be carried out. ROS is a 
possible candidate. ROS is a middleware for implementing 
distributed applications that is used in many applications, from 
robots (e.g. Robonaut developed by NASA – National 
Aeronautics and Space Administration) to autonomous 
vehicles (e.g. the Crusher military off-road ground autonomous 
vehicle developed by NREC – National Robotics Engineering 
Center). A second challenge is related to the side effect of a 
functional update on dependability. It is of course mandatory to 
adjust the fault tolerance mechanisms of the updated 
application to maintain its dependability properties. This 
requires separation of concerns, isolation of both application 
code and fault tolerance code into error confinement areas, and 
dynamic binding facilities between runtime components. We 
have proposed a framework and developed several 

conventional fault tolerance mechanisms on ROS to analyze to 
what extend they can be easily updated.  

Our objective is to validate the approach with critical 
Advanced Driver Assistance Systems (ADAS). We are 
developing a simple Traffic Jam Pilot system (TJP) able to 
drive a car autonomously in a traffic jam. Our experimental 
platform is composed of a redundant hardware system running 
the TJP control system on ROS and controlling a virtual car 
using a simulator, the GAZEBO Sim. Based on an FMECA 
(Failure Modes Effects Critical Analysis), the TJP was 
equipped with several fault tolerance mechanisms. 

Our on-going work consists in applying the approach of 
Adaptive Fault-Tolerance (AFT) we have investigated on ROS 
to the update of ADAS. We aim at analyzing the effect of a 
fault in the control system on the behavior of the vehicle. We 
plan to analyze the impact of functional updates of the 
dependability of the system, and implement adaptive fault 
tolerance to make the system resilient.  

In this paper, we summarize recent results and draw some 
perspectives of our on-going work. In section II we describe 
our approach for implementing adaptive fault tolerance on 
ROS. In Section III we describe the experimental simulation 
platform to experiment AFT on Advanced Driver Assistance 
Systems. In Section IV we draw the initial lessons learnt from 
this on-going work, and mention our future plans. 

II. ADAPTIVE FAULT TOLERANCE WITH ROS�  

A. Basic concepts of AFT 
Adaptive fault tolerance means that fault tolerance 

mechanisms attached to applications need to be updated when 
conditions change during the service life in the system. The 
conditions are related to application characteristics; fault 
tolerance requirements consecutive to a risk analysis and 
FMECA leading to determine the criticality level of the 
application and the required fault tolerance mechanisms 
(FTM); fault tolerance mechanisms assumptions related to the 
application structure and behavior; and related fault models, 
namely the type of faults it is able to tolerate. 
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In this paper, we do not analyze AFT in detail and we refer 
the interested reader to several papers on the subjects [1,2,3,4]. 

The main interest of AFT is its ability to update FTMs to 
maintain compliance with some dependability requirements 
and assumptions. An FTM should remain consistent with the 
safety analysis when a change occurs, in particular after an 
over-the-air update of an embedded application. Such 
flexibility is essential, we would say mandatory, to keep the 
system resilient, i.e. dependable in the presence of changes [5]. 

Two basic concepts are essential to implement Adaptive 
Fault Tolerant computing, as demonstrated in [6]:  

- Separation of Concerns at runtime: this concept is now 
well-known at design time, but it is also very important at 
runtime; it implies a clear separation between the 
application code and the fault tolerance mechanisms. The 
connection between the application code and the FTM must 
be clearly defined. The FTMs should be disconnected and 
replaced by a new one through standardized connectors.  

- Componentization and dynamic binding: the first idea is 
that fault tolerance software are decomposed into smaller 
components. Each component exhibits interfaces (services 
provided) and receptacles (services required). This means 
that any FTMs can be decomposed into smaller pieces, and 
conversely that an FTM is the aggregation of smaller ones. 
The ability to manipulate the binding between components 
(off-line but also on-line) is of high interest for AFT.  

The main benefits of component-based AFT with respect to 
pre-programmed adaptation is clear: separation of concerns at 
runtime, componentization and dynamic binding enable FTMs 
to be more easily updated a posteriori during the system 
lifetime. Pre-program adaptation implies that all possible 
undesirable situations are known at design time, which is 
difficult to anticipate regarding new threats (attacks), new 
failure modes (obsolescence of components), or simply adverse 
situations ignored or forgotten during the safety analysis.  

In short, fine grain adaptation of FTMs improves 
maintainability of the system from a non-functional viewpoint. 
Over-the-air updates of ADAS may have an impact on fault 
tolerance requirements, a strong argument in favor of AFT. 

B. Component model and reconfiguration with ROS 
The main goal of ROS is to allow the design of modular 

applications: a ROS application is a collection of programs, 
called nodes, interacting only through message passing. 
Developing an application involves the assembly of nodes, 
which is akin to component-based approaches. Such an 
assembly is referred to as the computational graph of the 
application. � Two communication models are available in 
ROS: a publisher/subscriber model and a client/server one.  

The publisher/subscriber model defines one-way, many-to-
many, asynchronous communications through the concept of 
topic. The client/server model relies on bidirectional 

synchronous communications through the concept of service. 
These high-level communication models introduce modularity 
and flexibility in software systems.  

� To provide this level of abstraction, each ROS application 
includes a special node called the ROS Master. It provides 
registration and lookup services to the other nodes. All nodes 
register services and topics to the ROS Master. It is the only 
node that has a comprehensive view of the computational 
graph. When a node issues a service call, it queries the master 
for the address of the node providing the service and then it 
sends its request to this address. �  

In order to be able to add fault-tolerance mechanisms to an 
existing ROS application in the most transparent manner, we 
need to implement interceptors. An interceptor provides a 
means to insert functionality, such as safety or monitoring 
nodes, into the invocation path between two ROS nodes. To 
this end, a relevant ROS feature is its remapping capability. At 
launch time, it is possible to reconfigure the name of any 
services or topics used by a node. Thus, requests and replies 
between nodes can be rerouted to interceptor nodes.  

ROS provides two computational models: client-server (by 
mean of services) and publish-subscribe (by means of topics). 
The proposed approach is illustrated with the client-server 
model in the paper. The application of the proposed framework 
to the publish-subscribe computational model is on-going 
work. In short, it requires the capture of the termination of the 
computation within a ROS node to synchronize replicas.  

C. Implementing Componentized FTMs 
In this section, we first present the generic computational 

graph we use for implementing FTMs on ROS. An 
implementation of a duplex FTM, a Primary Backup 
Replication (PBR) combined with a Time-Redundancy (TR) 
mechanism has been done to validate our proposal. 

We assume that the reader is familiar with conventional 
replication techniques for fault tolerance (see. [7] or [8] for 
more details about well-known replication techniques). The 
objective is not to present and compare such techniques. The 
objective is to show the capabilities of our framework to 
combine, compose, decompose, adjust FT mechanisms. 
Depending on a large number of performance criteria (e.g. 
coverage, timing, communication overhead, HW resources, 
etc.), the system manager may prefer one FTM instead of 
another. This analysis is out of the scope of this paper. 

1) Generic Computational graph  
We have identified a generic pattern for the computational 

graph of a FTM. Fig. 1 shows its application in the context of 
ROS. All components are ROS nodes. A node, the Client, uses 
a service provided by a Server node. The FTM computational 
graph is inserted between the two nodes thanks to the ROS 
remapping feature. Since Client and Server must be re-
launched for the remapping to take effect, the insertion is done 
off-line, i.e. the binding between nodes is static. The FTM 
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nodes, topics, and services are generic for every FTM. 
Implementing an FTM consists in specializing the Before, 
Proceed, and After nodes with the adequate behavior of the 
required FTM. 

 
Fig. 1. Generic computational framework for FTM 

2) Application to Primary-Backup Replication 
We briefly illustrate here the approach and the Before-

Proceed-After framework, through the use of a Primary-
Backup Replication (PBR) mechanism. Three computers are 
needed: the CLIENT site hosting the Client node and the ROS 
Master, the MASTER site hosting the primary replica, and the 
SLAVE site hosting the backup replica.  

• We present the behavior of each node, the topics and 
services used through a request/reply interaction 
between a node Client and node Server (cf. Fig. 2). 

• Client sends a request to Proxy (service clt2pxy); 

• Proxy adds an identifier to the request and transfers it 
to Protocol (topics pxy2pro) 

• Protocol checks whether it is a duplicate request: if so, 
it sends directly the stored reply to Proxy (topics 
pro2pxy). Otherwise, it sends the request to Before 
(service pro2bfr); 

• Before transfers the request for processing to Proceed 
(topics bfr2prd); no other action for PBR. 

• Proceed calls the actual service provided by Server 
(service prd2srv) and forwards the result to After 
(topics prd2aft); 

• After gets the last result from Proceed, captures Server 
state by calling the state management service provided 
by the Server (service aft2srv), and builds a checkpoint 
based on this information which it sends to node After 
S of the SLAVE replica (topics aft2aft S); 

• Protocol gets the result (topics aft2pro) and sends it to 
Proxy (topics pro2pxy); 

The Before-Proceed-After (BPA) framework synchronizes 
replicas in normal operation, i.e. in the absence of faults. It also 
runs the recovery procedure when the failure detector (an 
external/independent node) signals the crash of a replica. 

 
Fig. 2. Before-Proceed-After framework applied to PBR 

The main advantage of this approach is that a slight change 
in the protocol can be performed easily just by 
replacing/updating one of the Before, Proceed, After nodes. A 
second advantage of the approach is that the inter-replica 
protocol is clearly independent of the application service. The 
main drawback is that ROS does not provide command to 
change bindings between nodes after their initialization.  

3) Composition of several FT Mechanisms 
The generic computational graph for FTM given in Fig. 1 is 

designed for composability. The key feature is that a Protocol 
node can substitute for a Proceed node. 

 
Fig. 3. Principle of composition for FT mechanisms 

With respect to request processing, a Protocol node and a 
Proceed node exhibit the same interfaces: in short, a request as 
input, a reply as output. Hence, the composition of several FT 
mechanisms relies on replacing the Proceed node of a 
mechanism by a Protocol and its associated Before-Proceed-
After nodes of a second mechanism, as shown in Fig. 3. Our 
approach enables developing a new mechanism on the 
foundation of several existing ones. This improves the 
development time and the assurance in the overall system, 
since all mechanisms have been validated off-line.  
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Two composition scenarios are shortly described below. 

PBR+TR. PBR is of interest to tolerate crash faults whereas 
TR tolerates transient value faults. TR tolerate transient fault 
by repeating the computation and voting on the results. As a 
second FTM (FTM2), the After node of TR is responsible for 
triggering the repetition of the computation (involving Before 
and Proceed) and the vote on the various results produced 
before forwarding the reply to the After node of FTM1, which 
implements PBR. 

PBR+Assertion. Assertions are often derived from safety 
analysis. For instance, "the electronic lock of the steering 
column must not activate when the speed of the vehicle is over 
10 km/h". This safety rule can easily be translated into a logical 
expression, i.e. a Boolean function. The second FTM (FTM2) 
is responsible for the verification of such assertion 
implemented in its After node. When the assertion is false it 
may raise an alarm and return an error signal to FTM1 that will 
send it back to the Client for emergency action. 

D. Lessons learnt 
The main advantage of ROS is to provide concepts for 

componentization and separation of concerns. This is important 
for the design of adaptive fault tolerance mechanisms, but also 
for their implementation. The proposed framework Before-
Proceed-After inspired from Aspect Oriented Programming [9] 
enables various fault tolerance mechanisms first to be 
decomposed into isolated components that can be customized 
according to the needs, but also to facilitate the composition of 
several mechanisms in a row. 

Separation of concerns enables the FTM to be externalized 
with respect to the functional code, namely the application 
code. The generic FTM mechanisms we propose are 
independent of the nature of the application. This independence 
between FTMs and application simplifies their i) 
externalization and ii) their composition. The benefits of 
separation of concerns have been demonstrated in many ways 
for non-functional properties (replication, security, tracing, 
etc.) using Meta-Object Protocols [10] in the past as in [11] and 
was the main motivation for Aspect Oriented Programming. 
The main interest is to avoid gluing non-functional 
mechanisms with application code, an approach making 
maintenance and evolution very difficult to achieve. Separation 
of concerns has a lot of merits at design, implementation and 
validation time, but also at runtime since the application and 
the attached FTM can be located into isolated components. 
Isolation is a key feature for dependable computing.  

From an implementation viewpoint, ROS nodes provide 
isolation in a protected address space for error confinement. 
The services and the mechanisms can be isolated from each 
other, and thus an error within the application (e.g. memory 
violation) does not impact the FT mechanism. Although we 
assume that the implementation of any FTM is zero-default 
(huge validation effort following ISO 26262), this isolation 
property also applies to nodes implementing the FTMs. 

The static binding between nodes is a drawback because it 
can only be manipulated a priori and off-line. This is a 
weakness of ROS regarding fine grain over-the-air updates of 
componentized FTM: an update can only be finalized after 
restarting the application. 

It is worth noting however that the validation of a new 
mechanism or even an updated version of it, must be carried 
out off-line following an intensive validation process, in 
particular fault injection as far as fault tolerance is concerned.  

Ideally, dynamic binding would improve the efficiency of 
over-the-air updates of ADAS for instance. As we have shown 
previously, only few or even just one node belonging to our 
Before-Proceed-After framework may need to be updated. So, 
why restarting the whole application? Just uploading a new 
node and binding it to its companion nodes would suffice. This 
is not possible at present with ROS, version 1. There is no API 
to manipulate nodes and bindings at runtime. However, these 
APIs can be emulated with dedicated logic added to some 
nodes, using underlying Unix features and commands. 

Last but not least, the ROS master is a single point of 
failure in the current version of ROS. This problem could be 
tackled using DMTCP [12], a library for checkpointing Unix 
multi-threaded processes as a whole. This might be of interest 
in the short term since a POSIX compliant kernel is part of the 
upcoming Adaptive Autosar platform whose aim is to facilitate 
dynamic reconfiguration and updates of embedded software. 

However, the next major revision of ROS (ROS2) is based 
on a DDS (Data Distribution Service) communication system 
that should help solving this problem by distributing the ROS 
master functionalities among the nodes of the system. This 
approach would however require reliable multicast protocols 
properly implemented and validated.  

III.  EXPERIMENTAL PLATFORM FOR AFT & ADAS 
The objective of the platform is to provide the support for 

several activities: i) the simulation of critical advanced driver 
assistance systems, ii) a target for implementing over-the-air 
update of ADAS, ii) a set of use cases for safety analysis, iv) 
the implementation of adaptive fault tolerance techniques and 
v) their validation by fault injection.  

The use of ROS for the implementation of any ADAS is 
essential to validate our AFT approach and our Before-
Proceed-After framework. 

Instead of performing functional updates and related FTM 
adaptation on a real car, we have used a simulator to 
implement the car behavior. The GAZEBO-Sim tool enables a 
vehicle and its environment to be simulated with a quite 
interesting level of detail. Sensors and actuators can be 
developed and integrated into a model of vehicles on roads. 
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A. The GAZEBO Simulator 
GAZEBO is a very well designed open-source tool for a 3D 

robot simulation [13] that is very well connected to ROS. It is 
based on the Open Dynamics Engine (ODE) and provides 
many libraries of simulated components. 

It is thus possible to represent different items for modeling 
very realistic situations; each item (links) can be parameterized 
with physical realistic characteristics like, mass, inertia, 
stiffness, coefficient of friction, damping factor, etc. The 
physical connections between items are of course part of the 
model (joints). Several joints are available: fixed or enabling 
sliding or rotation between solids. All items, links, must be 
interconnected by connectors, i.e. joints. 

 
Fig. 4. Simple graphical example with GAZEBO for modeling the TJP 

The model format with GAZEBO is SDF (Simulation 
Description Format) deriving from XML. The use of GAZEBO 
with ROS requires a conversion of the models into URDF 
format (Unified Robot Description Format). The interaction of 
the models with the environment, e.g. sensors, is developed 
using plugins in C++.  

B. Simulation of the TJP 
The TJP (Traffic Jam Pilot) is a control and command 

system providing autonomous driving in traffic jam conditions. 
Its role is to drive a vehicle without any intervention of the 
driver at low speed, i.e. below 35 km/h. The TJP automatically 
adjusts the speed of a vehicle (the follower car) to maintain a 
safe distance from the vehicle that is ahead (the leader car). 
The development of the TJP is based on three simple use cases: 
i) vehicle positioning on the road, ii) vehicle control in traffic 
jam, and iii) emergency braking. 

1) Simplified specifications 
Gap and Safety Distance: The positioning of the car on the 

road is essential and is based on several sensors used, in 
particular to implement the following features:  

• computation of the distance between the follower and 
the leader car, denoted gap distance. � 

• computation of the speed of the car that is used to 
adapt the safety distance (the faster the speed, the 
greater the safety distance) 

Vehicle control: The control system must be able to 
accelerate and brake the vehicle to implement the TJP. This 
aspect must consider different parameters of the physical object 
in real life to make our simulation realistic. We also need to 
take into account the side effect of level of acceleration and 
strength of braking on the passengers of the vehicle, for their 
own comfort and safety. A too severe braking may injure 
passengers or trigger the airbag system by mistake! 

Emergency braking (EB): in our specifications we have 
included an additional Emergency Braking system (EB) that 
will be implemented independently of the TJP for two reasons. 
The first reason is a failure of the TJP should not impair the EB 
capacity to stop the vehicle in case of emergency. The second 
reason is that some external unanticipated event not detected 
by the sensors (pedestrian crossing between the two vehicles) 
should also lead to an emergency stop. Such situation can 
easily be simulated using physical sensors. 

2) Architecture and implementation 
The experimental platform is composed of two parts: the 

simulator of the car and the control system running on ROS. 
The TJP was designed using UML tools and is composed of 
the following functions: 

• the controllerPid implementing the control algorithms; 

• the distanceSecurityCalculator responsible for the 
processing of distances between vehicles; 

• the measureManager responsible for the computation 
of the speed of the vehicle; 

• the commandManager responsible for the management 
of the various commands delivered to the actuators of 
the vehicle; 

These functions are ROS nodes implementing the control 
system on a redundant hardware platform. The physical 
redundancy enables implementing various FTMs. Virtual laser 
sensors and speed actuators are used in GAZEBO to control the 
car for the TJP. One physical Ultrasonic sensor is used for the 
Emergency Braking system. The management of the 
Ultrasonic sensor is also a ROS node in addition to the 4 
mentioned above. 

The interaction between GAZEBO and the physical platform 
running the TJP on ROS is realized thanks to additional 
features enabling a seamless connection between GAZEBO and 
ROS application software. 

Functional testing was performed through a series of 
experiments. A dynamic driving profile was assigned to the 
Leader car, the Follower objective being to follow the Leader, 
observing the safety distance, the limits in deceleration and 
braking. In case of an unanticipated event detected by the 
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ultrasonic physical sensor, the emergency braking is activated. 
The priority of this task is higher that any command sent to the 
car by the controllerPid.  

The implementation on ROS is illustrated in Fig. 5.  

 
Fig. 5. Component view of the TJP implementation 

C. Safety analysis and fault tolerance 
The safety analysis has considered simple fault models 

affecting the major functions and equipment for the TJP. 
Physical faults leading to a crash of a computer or a transient 
fault affecting the sensors were considered (value errors).  

 
Fig. 6. Extract of the simplified FMECA Analysis. 

This simplified safety analysis led to the identification of 
several FTMs (see Fig. 6). The frequency (F) and the gravity 

(G) range from 1 to 4, 4 being the most serious for the gravity. 
The result can be summarized as follows: 

• the crash of a computer running the TJP (a Raspberry 
PI in our mockup) leads to a loss of the service; the 
solution was based on a PBR replication strategy; 

• erroneous data delivered by the virtual sensor IMU 
(Inertial Measurement Unit) used to measure the speed 
of the vehicle was solved using TR and by computing 
an average value on a sliding window of values; 

• erroneous information delivered by virtual laser 
sensors was solved by triplication and voting. 

The impact of such problems on the safety of the TJP is 
classified ASIL D or ASIL C according to RENAULT experts, 
combining Frequency and Gravity. 

 
Fig. 7. Overview of the experimental platform 

D. Mockup of the experimental platform 
The Mockup (see Fig. 7) is composed of a PC running the 

GAZEBO simulator and an experimental platform for the 
execution of the TJP. The experimental platform is composed 
of two Rapsberry PI 3 computers running ROS and an Arduino 
playing the role of a watchdog. Physical Ultrasonic sensors are 
replicated and attached to each computer.  

The controllerPid is replicated using the PBR strategy. It is 
running as a primary on one Raspberry PI while it runs as a 
backup on the second one. Both replicas can receive the inputs 
from the virtual and physical sensors. When one Raspberry PI 
crashes, the watchdog triggers the switch to the backup that 
takes over the processing of sensor data and the computing of 
the commands.  

Physical fault injection (loss of power) was used to 
simulate a crash of a computer. SWIFI was used to simulate 
transient faults of the IMU and the laser sensors.  

Command & Control Mockup

Gazebo

Driver
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Our on-going work consists first in improving the BPA 
framework for asynchronous interactions between nodes, i.e. 
following the publish-subscribe computational model. The 
solution we have today is based on the capture of the 
termination of processing of an input message by a subscriber 
using a Terminate statement corresponding to a library 
function. All ROS nodes developed in this simulation have a 
main loop, a terminate statement is invoked at each iteration.  

The second activity consist in revising and extending the 
FMECA analysis to investigate new fault tolerance strategies, 
ranging from simple restart to user-defined assertion-based 
strategies. The interesting work consists in analyzing to what 
extent the ROS implementation of the BPA framework 
provides sufficient flexibility at design and runtime. Some 
measurements will be performed concerning the development 
time, concerning the uploading time (complete or partial) and 
the suspension time for the system activity.  

IV. CONCLUSIONS AND PROSPECTIVES 
An ideal runtime support for Adaptive Fault Tolerance 

should provide separation of concerns, componentization and 
dynamic binding at runtime. As shown in previous work [6], 
this ideal executive support should exhibit the following 
features at runtime: i) control over component’s life cycle (add, 
remove, start, stop), ii) control over interactions for creating or 
removing bindings. This is our frame of reference to discuss 
the adequacy of ROS as a runtime support for AFT. 

In our approach, a component is mapped to a ROS node 
providing memory space segregation. The binding between 
components relied on topics managed by the ROS Master. The 
remapping facilities were used to manipulate the software 
configuration, off-line only, to adjust the FTM mechanisms.  
Although it is not a core feature of ROS at present, dynamic 
binding was possible but ROS does not provide a specific API 
to manage such connection between components. Additional 
code is required to manage dynamic binding, using facilities 
provided by the underlying Linux operating system. The ROS 
master is a single point of failure in the architecture. Solutions 
exist to overcome this problem and new versions of ROS 
should provide new solutions. 

The proposed (Protocol)Before-Proceed-After framework 
was of high interest to design FTM for later adaptation and to 
customize them easily according to the needs. This framework 
is also of interest to compose FTMs on a case-by-case basis 
without any impact on the functional software. More details 
can be found in [14]. We are convinced that AFT is essential 
for a safe management of over-the-air updates of ADAS. Many 
ADAS are currently available and one objective of car 
manufacturers is to maintain, update, but also sell a posteriori 
new software-implemented ADAS. The proposed approach 
enables FTMs to be easily specialized for a given ADAS 
release and it matches the Agile development processes [15] 
considered today in the car industry. Over-the-air updates are 
thus of interest for both functional and non-functional software. 

The integration of our approach in the development process 
of ADAS at Renault and SDK is one of our objectives. The 
mockup should help us to validate the AFT approach with 
several versions of ROS and ADAS of different nature, 
including safety critical ones targeting autonomous driving. 
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