
HAL Id: hal-01707514
https://hal.science/hal-01707514

Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Adaptive Fault Tolerance on ROS for Advanced
Driver Assistance Systems

Matthieu Amy, Jean-Charles Fabre, Michaël Lauer

To cite this version:
Matthieu Amy, Jean-Charles Fabre, Michaël Lauer. Towards Adaptive Fault Tolerance on ROS
for Advanced Driver Assistance Systems. 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshop (DSN-W), Jun 2017, Denver, United States. 7p.,
�10.1109/DSN-W.2017.42�. �hal-01707514�

https://hal.science/hal-01707514
https://hal.archives-ouvertes.fr

 1

Towards Adaptive Fault Tolerance on ROS for
Advanced Driver Assistance Systems

M. Amy1, J.-C.Fabre2, M. Lauer3
CNRS-LAAS, Ave du Colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, 2INP, 3UPS, LAAS, F-31400 Toulouse, France

1Technocentre RENAULT, F-78280 Guyancourt, France

Abstract— The use of over-the-air updates has attracted very
much interest these last few years with the software-intensive
development of embedded systems in the car industry. The
development of autonomous driving and ADAS (Advanced Driver
Assistance Systems) renders over-the-air updates mandatory, for
both user satisfaction and economic reasons. How to make sure
that remote updates of critical ADAS do not have an impact on
safety? This is the question we tackle in our work with a major
car manufacturer. This paper is a progress report. We
summarize our approach involving AFT (Adaptive Fault
Tolerance) implemented on ROS (Robot Operating System),
describe the simulation platform we have developed to
experiment and validate over-the-air updates of ADAS and AFT,
and finally draw some lessons learnt and perspectives.

I. INTRODUCTION
Automotive embedded systems are expected to evolve

during their service life, in order to cope with changes of
various nature due to maintenance activities or additional
features requested by users. For many reasons including
economic reasons, over-the-air updates, e.g. additional features
installed remotely into cars, are of prime interest for the car
manufacturers. This capability has been demonstrated by TELSA
and is currently one of the motivations for Adaptive AUTOSAR.

To this aim, the first challenge is to have a runtime support
enabling dynamic software updates to be carried out. ROS is a
possible candidate. ROS is a middleware for implementing
distributed applications that is used in many applications, from
robots (e.g. Robonaut developed by NASA – National
Aeronautics and Space Administration) to autonomous
vehicles (e.g. the Crusher military off-road ground autonomous
vehicle developed by NREC – National Robotics Engineering
Center). A second challenge is related to the side effect of a
functional update on dependability. It is of course mandatory to
adjust the fault tolerance mechanisms of the updated
application to maintain its dependability properties. This
requires separation of concerns, isolation of both application
code and fault tolerance code into error confinement areas, and
dynamic binding facilities between runtime components. We
have proposed a framework and developed several

conventional fault tolerance mechanisms on ROS to analyze to
what extend they can be easily updated.

Our objective is to validate the approach with critical
Advanced Driver Assistance Systems (ADAS). We are
developing a simple Traffic Jam Pilot system (TJP) able to
drive a car autonomously in a traffic jam. Our experimental
platform is composed of a redundant hardware system running
the TJP control system on ROS and controlling a virtual car
using a simulator, the GAZEBO Sim. Based on an FMECA
(Failure Modes Effects Critical Analysis), the TJP was
equipped with several fault tolerance mechanisms.

Our on-going work consists in applying the approach of
Adaptive Fault-Tolerance (AFT) we have investigated on ROS
to the update of ADAS. We aim at analyzing the effect of a
fault in the control system on the behavior of the vehicle. We
plan to analyze the impact of functional updates of the
dependability of the system, and implement adaptive fault
tolerance to make the system resilient.

In this paper, we summarize recent results and draw some
perspectives of our on-going work. In section II we describe
our approach for implementing adaptive fault tolerance on
ROS. In Section III we describe the experimental simulation
platform to experiment AFT on Advanced Driver Assistance
Systems. In Section IV we draw the initial lessons learnt from
this on-going work, and mention our future plans.

II. ADAPTIVE FAULT TOLERANCE WITH ROS�

A. Basic concepts of AFT
Adaptive fault tolerance means that fault tolerance

mechanisms attached to applications need to be updated when
conditions change during the service life in the system. The
conditions are related to application characteristics; fault
tolerance requirements consecutive to a risk analysis and
FMECA leading to determine the criticality level of the
application and the required fault tolerance mechanisms
(FTM); fault tolerance mechanisms assumptions related to the
application structure and behavior; and related fault models,
namely the type of faults it is able to tolerate.

 2

In this paper, we do not analyze AFT in detail and we refer
the interested reader to several papers on the subjects [1,2,3,4].

The main interest of AFT is its ability to update FTMs to
maintain compliance with some dependability requirements
and assumptions. An FTM should remain consistent with the
safety analysis when a change occurs, in particular after an
over-the-air update of an embedded application. Such
flexibility is essential, we would say mandatory, to keep the
system resilient, i.e. dependable in the presence of changes [5].

Two basic concepts are essential to implement Adaptive
Fault Tolerant computing, as demonstrated in [6]:

- Separation of Concerns at runtime: this concept is now
well-known at design time, but it is also very important at
runtime; it implies a clear separation between the
application code and the fault tolerance mechanisms. The
connection between the application code and the FTM must
be clearly defined. The FTMs should be disconnected and
replaced by a new one through standardized connectors.

- Componentization and dynamic binding: the first idea is
that fault tolerance software are decomposed into smaller
components. Each component exhibits interfaces (services
provided) and receptacles (services required). This means
that any FTMs can be decomposed into smaller pieces, and
conversely that an FTM is the aggregation of smaller ones.
The ability to manipulate the binding between components
(off-line but also on-line) is of high interest for AFT.

The main benefits of component-based AFT with respect to
pre-programmed adaptation is clear: separation of concerns at
runtime, componentization and dynamic binding enable FTMs
to be more easily updated a posteriori during the system
lifetime. Pre-program adaptation implies that all possible
undesirable situations are known at design time, which is
difficult to anticipate regarding new threats (attacks), new
failure modes (obsolescence of components), or simply adverse
situations ignored or forgotten during the safety analysis.

In short, fine grain adaptation of FTMs improves
maintainability of the system from a non-functional viewpoint.
Over-the-air updates of ADAS may have an impact on fault
tolerance requirements, a strong argument in favor of AFT.

B. Component model and reconfiguration with ROS
The main goal of ROS is to allow the design of modular

applications: a ROS application is a collection of programs,
called nodes, interacting only through message passing.
Developing an application involves the assembly of nodes,
which is akin to component-based approaches. Such an
assembly is referred to as the computational graph of the
application. � Two communication models are available in
ROS: a publisher/subscriber model and a client/server one.

The publisher/subscriber model defines one-way, many-to-
many, asynchronous communications through the concept of
topic. The client/server model relies on bidirectional

synchronous communications through the concept of service.
These high-level communication models introduce modularity
and flexibility in software systems.

� To provide this level of abstraction, each ROS application
includes a special node called the ROS Master. It provides
registration and lookup services to the other nodes. All nodes
register services and topics to the ROS Master. It is the only
node that has a comprehensive view of the computational
graph. When a node issues a service call, it queries the master
for the address of the node providing the service and then it
sends its request to this address. �

In order to be able to add fault-tolerance mechanisms to an
existing ROS application in the most transparent manner, we
need to implement interceptors. An interceptor provides a
means to insert functionality, such as safety or monitoring
nodes, into the invocation path between two ROS nodes. To
this end, a relevant ROS feature is its remapping capability. At
launch time, it is possible to reconfigure the name of any
services or topics used by a node. Thus, requests and replies
between nodes can be rerouted to interceptor nodes.

ROS provides two computational models: client-server (by
mean of services) and publish-subscribe (by means of topics).
The proposed approach is illustrated with the client-server
model in the paper. The application of the proposed framework
to the publish-subscribe computational model is on-going
work. In short, it requires the capture of the termination of the
computation within a ROS node to synchronize replicas.

C. Implementing Componentized FTMs
In this section, we first present the generic computational

graph we use for implementing FTMs on ROS. An
implementation of a duplex FTM, a Primary Backup
Replication (PBR) combined with a Time-Redundancy (TR)
mechanism has been done to validate our proposal.

We assume that the reader is familiar with conventional
replication techniques for fault tolerance (see. [7] or [8] for
more details about well-known replication techniques). The
objective is not to present and compare such techniques. The
objective is to show the capabilities of our framework to
combine, compose, decompose, adjust FT mechanisms.
Depending on a large number of performance criteria (e.g.
coverage, timing, communication overhead, HW resources,
etc.), the system manager may prefer one FTM instead of
another. This analysis is out of the scope of this paper.

1) Generic Computational graph
We have identified a generic pattern for the computational

graph of a FTM. Fig. 1 shows its application in the context of
ROS. All components are ROS nodes. A node, the Client, uses
a service provided by a Server node. The FTM computational
graph is inserted between the two nodes thanks to the ROS
remapping feature. Since Client and Server must be re-
launched for the remapping to take effect, the insertion is done
off-line, i.e. the binding between nodes is static. The FTM

 3

nodes, topics, and services are generic for every FTM.
Implementing an FTM consists in specializing the Before,
Proceed, and After nodes with the adequate behavior of the
required FTM.

Fig. 1. Generic computational framework for FTM

2) Application to Primary-Backup Replication
We briefly illustrate here the approach and the Before-

Proceed-After framework, through the use of a Primary-
Backup Replication (PBR) mechanism. Three computers are
needed: the CLIENT site hosting the Client node and the ROS
Master, the MASTER site hosting the primary replica, and the
SLAVE site hosting the backup replica.

• We present the behavior of each node, the topics and
services used through a request/reply interaction
between a node Client and node Server (cf. Fig. 2).

• Client sends a request to Proxy (service clt2pxy);

• Proxy adds an identifier to the request and transfers it
to Protocol (topics pxy2pro)

• Protocol checks whether it is a duplicate request: if so,
it sends directly the stored reply to Proxy (topics
pro2pxy). Otherwise, it sends the request to Before
(service pro2bfr);

• Before transfers the request for processing to Proceed
(topics bfr2prd); no other action for PBR.

• Proceed calls the actual service provided by Server
(service prd2srv) and forwards the result to After
(topics prd2aft);

• After gets the last result from Proceed, captures Server
state by calling the state management service provided
by the Server (service aft2srv), and builds a checkpoint
based on this information which it sends to node After
S of the SLAVE replica (topics aft2aft S);

• Protocol gets the result (topics aft2pro) and sends it to
Proxy (topics pro2pxy);

The Before-Proceed-After (BPA) framework synchronizes
replicas in normal operation, i.e. in the absence of faults. It also
runs the recovery procedure when the failure detector (an
external/independent node) signals the crash of a replica.

Fig. 2. Before-Proceed-After framework applied to PBR

The main advantage of this approach is that a slight change
in the protocol can be performed easily just by
replacing/updating one of the Before, Proceed, After nodes. A
second advantage of the approach is that the inter-replica
protocol is clearly independent of the application service. The
main drawback is that ROS does not provide command to
change bindings between nodes after their initialization.

3) Composition of several FT Mechanisms
The generic computational graph for FTM given in Fig. 1 is

designed for composability. The key feature is that a Protocol
node can substitute for a Proceed node.

Fig. 3. Principle of composition for FT mechanisms

With respect to request processing, a Protocol node and a
Proceed node exhibit the same interfaces: in short, a request as
input, a reply as output. Hence, the composition of several FT
mechanisms relies on replacing the Proceed node of a
mechanism by a Protocol and its associated Before-Proceed-
After nodes of a second mechanism, as shown in Fig. 3. Our
approach enables developing a new mechanism on the
foundation of several existing ones. This improves the
development time and the assurance in the overall system,
since all mechanisms have been validated off-line.

 4

Two composition scenarios are shortly described below.

PBR+TR. PBR is of interest to tolerate crash faults whereas
TR tolerates transient value faults. TR tolerate transient fault
by repeating the computation and voting on the results. As a
second FTM (FTM2), the After node of TR is responsible for
triggering the repetition of the computation (involving Before
and Proceed) and the vote on the various results produced
before forwarding the reply to the After node of FTM1, which
implements PBR.

PBR+Assertion. Assertions are often derived from safety
analysis. For instance, "the electronic lock of the steering
column must not activate when the speed of the vehicle is over
10 km/h". This safety rule can easily be translated into a logical
expression, i.e. a Boolean function. The second FTM (FTM2)
is responsible for the verification of such assertion
implemented in its After node. When the assertion is false it
may raise an alarm and return an error signal to FTM1 that will
send it back to the Client for emergency action.

D. Lessons learnt
The main advantage of ROS is to provide concepts for

componentization and separation of concerns. This is important
for the design of adaptive fault tolerance mechanisms, but also
for their implementation. The proposed framework Before-
Proceed-After inspired from Aspect Oriented Programming [9]
enables various fault tolerance mechanisms first to be
decomposed into isolated components that can be customized
according to the needs, but also to facilitate the composition of
several mechanisms in a row.

Separation of concerns enables the FTM to be externalized
with respect to the functional code, namely the application
code. The generic FTM mechanisms we propose are
independent of the nature of the application. This independence
between FTMs and application simplifies their i)
externalization and ii) their composition. The benefits of
separation of concerns have been demonstrated in many ways
for non-functional properties (replication, security, tracing,
etc.) using Meta-Object Protocols [10] in the past as in [11] and
was the main motivation for Aspect Oriented Programming.
The main interest is to avoid gluing non-functional
mechanisms with application code, an approach making
maintenance and evolution very difficult to achieve. Separation
of concerns has a lot of merits at design, implementation and
validation time, but also at runtime since the application and
the attached FTM can be located into isolated components.
Isolation is a key feature for dependable computing.

From an implementation viewpoint, ROS nodes provide
isolation in a protected address space for error confinement.
The services and the mechanisms can be isolated from each
other, and thus an error within the application (e.g. memory
violation) does not impact the FT mechanism. Although we
assume that the implementation of any FTM is zero-default
(huge validation effort following ISO 26262), this isolation
property also applies to nodes implementing the FTMs.

The static binding between nodes is a drawback because it
can only be manipulated a priori and off-line. This is a
weakness of ROS regarding fine grain over-the-air updates of
componentized FTM: an update can only be finalized after
restarting the application.

It is worth noting however that the validation of a new
mechanism or even an updated version of it, must be carried
out off-line following an intensive validation process, in
particular fault injection as far as fault tolerance is concerned.

Ideally, dynamic binding would improve the efficiency of
over-the-air updates of ADAS for instance. As we have shown
previously, only few or even just one node belonging to our
Before-Proceed-After framework may need to be updated. So,
why restarting the whole application? Just uploading a new
node and binding it to its companion nodes would suffice. This
is not possible at present with ROS, version 1. There is no API
to manipulate nodes and bindings at runtime. However, these
APIs can be emulated with dedicated logic added to some
nodes, using underlying Unix features and commands.

Last but not least, the ROS master is a single point of
failure in the current version of ROS. This problem could be
tackled using DMTCP [12], a library for checkpointing Unix
multi-threaded processes as a whole. This might be of interest
in the short term since a POSIX compliant kernel is part of the
upcoming Adaptive Autosar platform whose aim is to facilitate
dynamic reconfiguration and updates of embedded software.

However, the next major revision of ROS (ROS2) is based
on a DDS (Data Distribution Service) communication system
that should help solving this problem by distributing the ROS
master functionalities among the nodes of the system. This
approach would however require reliable multicast protocols
properly implemented and validated.

III. EXPERIMENTAL PLATFORM FOR AFT & ADAS
The objective of the platform is to provide the support for

several activities: i) the simulation of critical advanced driver
assistance systems, ii) a target for implementing over-the-air
update of ADAS, ii) a set of use cases for safety analysis, iv)
the implementation of adaptive fault tolerance techniques and
v) their validation by fault injection.

The use of ROS for the implementation of any ADAS is
essential to validate our AFT approach and our Before-
Proceed-After framework.

Instead of performing functional updates and related FTM
adaptation on a real car, we have used a simulator to
implement the car behavior. The GAZEBO-Sim tool enables a
vehicle and its environment to be simulated with a quite
interesting level of detail. Sensors and actuators can be
developed and integrated into a model of vehicles on roads.

 5

A. The GAZEBO Simulator
GAZEBO is a very well designed open-source tool for a 3D

robot simulation [13] that is very well connected to ROS. It is
based on the Open Dynamics Engine (ODE) and provides
many libraries of simulated components.

It is thus possible to represent different items for modeling
very realistic situations; each item (links) can be parameterized
with physical realistic characteristics like, mass, inertia,
stiffness, coefficient of friction, damping factor, etc. The
physical connections between items are of course part of the
model (joints). Several joints are available: fixed or enabling
sliding or rotation between solids. All items, links, must be
interconnected by connectors, i.e. joints.

Fig. 4. Simple graphical example with GAZEBO for modeling the TJP

The model format with GAZEBO is SDF (Simulation
Description Format) deriving from XML. The use of GAZEBO
with ROS requires a conversion of the models into URDF
format (Unified Robot Description Format). The interaction of
the models with the environment, e.g. sensors, is developed
using plugins in C++.

B. Simulation of the TJP
The TJP (Traffic Jam Pilot) is a control and command

system providing autonomous driving in traffic jam conditions.
Its role is to drive a vehicle without any intervention of the
driver at low speed, i.e. below 35 km/h. The TJP automatically
adjusts the speed of a vehicle (the follower car) to maintain a
safe distance from the vehicle that is ahead (the leader car).
The development of the TJP is based on three simple use cases:
i) vehicle positioning on the road, ii) vehicle control in traffic
jam, and iii) emergency braking.

1) Simplified specifications
Gap and Safety Distance: The positioning of the car on the

road is essential and is based on several sensors used, in
particular to implement the following features:

• computation of the distance between the follower and
the leader car, denoted gap distance. �

• computation of the speed of the car that is used to
adapt the safety distance (the faster the speed, the
greater the safety distance)

Vehicle control: The control system must be able to
accelerate and brake the vehicle to implement the TJP. This
aspect must consider different parameters of the physical object
in real life to make our simulation realistic. We also need to
take into account the side effect of level of acceleration and
strength of braking on the passengers of the vehicle, for their
own comfort and safety. A too severe braking may injure
passengers or trigger the airbag system by mistake!

Emergency braking (EB): in our specifications we have
included an additional Emergency Braking system (EB) that
will be implemented independently of the TJP for two reasons.
The first reason is a failure of the TJP should not impair the EB
capacity to stop the vehicle in case of emergency. The second
reason is that some external unanticipated event not detected
by the sensors (pedestrian crossing between the two vehicles)
should also lead to an emergency stop. Such situation can
easily be simulated using physical sensors.

2) Architecture and implementation
The experimental platform is composed of two parts: the

simulator of the car and the control system running on ROS.
The TJP was designed using UML tools and is composed of
the following functions:

• the controllerPid implementing the control algorithms;

• the distanceSecurityCalculator responsible for the
processing of distances between vehicles;

• the measureManager responsible for the computation
of the speed of the vehicle;

• the commandManager responsible for the management
of the various commands delivered to the actuators of
the vehicle;

These functions are ROS nodes implementing the control
system on a redundant hardware platform. The physical
redundancy enables implementing various FTMs. Virtual laser
sensors and speed actuators are used in GAZEBO to control the
car for the TJP. One physical Ultrasonic sensor is used for the
Emergency Braking system. The management of the
Ultrasonic sensor is also a ROS node in addition to the 4
mentioned above.

The interaction between GAZEBO and the physical platform
running the TJP on ROS is realized thanks to additional
features enabling a seamless connection between GAZEBO and
ROS application software.

Functional testing was performed through a series of
experiments. A dynamic driving profile was assigned to the
Leader car, the Follower objective being to follow the Leader,
observing the safety distance, the limits in deceleration and
braking. In case of an unanticipated event detected by the

 6

ultrasonic physical sensor, the emergency braking is activated.
The priority of this task is higher that any command sent to the
car by the controllerPid.

The implementation on ROS is illustrated in Fig. 5.

Fig. 5. Component view of the TJP implementation

C. Safety analysis and fault tolerance
The safety analysis has considered simple fault models

affecting the major functions and equipment for the TJP.
Physical faults leading to a crash of a computer or a transient
fault affecting the sensors were considered (value errors).

Fig. 6. Extract of the simplified FMECA Analysis.

This simplified safety analysis led to the identification of
several FTMs (see Fig. 6). The frequency (F) and the gravity

(G) range from 1 to 4, 4 being the most serious for the gravity.
The result can be summarized as follows:

• the crash of a computer running the TJP (a Raspberry
PI in our mockup) leads to a loss of the service; the
solution was based on a PBR replication strategy;

• erroneous data delivered by the virtual sensor IMU
(Inertial Measurement Unit) used to measure the speed
of the vehicle was solved using TR and by computing
an average value on a sliding window of values;

• erroneous information delivered by virtual laser
sensors was solved by triplication and voting.

The impact of such problems on the safety of the TJP is
classified ASIL D or ASIL C according to RENAULT experts,
combining Frequency and Gravity.

Fig. 7. Overview of the experimental platform

D. Mockup of the experimental platform
The Mockup (see Fig. 7) is composed of a PC running the

GAZEBO simulator and an experimental platform for the
execution of the TJP. The experimental platform is composed
of two Rapsberry PI 3 computers running ROS and an Arduino
playing the role of a watchdog. Physical Ultrasonic sensors are
replicated and attached to each computer.

The controllerPid is replicated using the PBR strategy. It is
running as a primary on one Raspberry PI while it runs as a
backup on the second one. Both replicas can receive the inputs
from the virtual and physical sensors. When one Raspberry PI
crashes, the watchdog triggers the switch to the backup that
takes over the processing of sensor data and the computing of
the commands.

Physical fault injection (loss of power) was used to
simulate a crash of a computer. SWIFI was used to simulate
transient faults of the IMU and the laser sensors.

Command & Control Mockup

Gazebo

Driver

 7

Our on-going work consists first in improving the BPA
framework for asynchronous interactions between nodes, i.e.
following the publish-subscribe computational model. The
solution we have today is based on the capture of the
termination of processing of an input message by a subscriber
using a Terminate statement corresponding to a library
function. All ROS nodes developed in this simulation have a
main loop, a terminate statement is invoked at each iteration.

The second activity consist in revising and extending the
FMECA analysis to investigate new fault tolerance strategies,
ranging from simple restart to user-defined assertion-based
strategies. The interesting work consists in analyzing to what
extent the ROS implementation of the BPA framework
provides sufficient flexibility at design and runtime. Some
measurements will be performed concerning the development
time, concerning the uploading time (complete or partial) and
the suspension time for the system activity.

IV. CONCLUSIONS AND PROSPECTIVES
An ideal runtime support for Adaptive Fault Tolerance

should provide separation of concerns, componentization and
dynamic binding at runtime. As shown in previous work [6],
this ideal executive support should exhibit the following
features at runtime: i) control over component’s life cycle (add,
remove, start, stop), ii) control over interactions for creating or
removing bindings. This is our frame of reference to discuss
the adequacy of ROS as a runtime support for AFT.

In our approach, a component is mapped to a ROS node
providing memory space segregation. The binding between
components relied on topics managed by the ROS Master. The
remapping facilities were used to manipulate the software
configuration, off-line only, to adjust the FTM mechanisms.
Although it is not a core feature of ROS at present, dynamic
binding was possible but ROS does not provide a specific API
to manage such connection between components. Additional
code is required to manage dynamic binding, using facilities
provided by the underlying Linux operating system. The ROS
master is a single point of failure in the architecture. Solutions
exist to overcome this problem and new versions of ROS
should provide new solutions.

The proposed (Protocol)Before-Proceed-After framework
was of high interest to design FTM for later adaptation and to
customize them easily according to the needs. This framework
is also of interest to compose FTMs on a case-by-case basis
without any impact on the functional software. More details
can be found in [14]. We are convinced that AFT is essential
for a safe management of over-the-air updates of ADAS. Many
ADAS are currently available and one objective of car
manufacturers is to maintain, update, but also sell a posteriori
new software-implemented ADAS. The proposed approach
enables FTMs to be easily specialized for a given ADAS
release and it matches the Agile development processes [15]
considered today in the car industry. Over-the-air updates are
thus of interest for both functional and non-functional software.

The integration of our approach in the development process
of ADAS at Renault and SDK is one of our objectives. The
mockup should help us to validate the AFT approach with
several versions of ROS and ADAS of different nature,
including safety critical ones targeting autonomous driving.

ACKNOWLEDGEMENTS
The authors wish to deeply thank our master students for

the implementation of the mockup: Sarah AMAR, Jules LE
BRETON, Daniel LOCHE, Hélène PHOURATSAMAY, and David
RAYMOND, from the department of Electrical Engineering and
Automation of ENSEEIHT (www.enseeiht.fr), the School of
Engineering of the Toulouse Institute of Technology.

REFERENCES
[1] K. H. K. Kim and T. F. Lawrence, “Adaptive Fault Tolerance: Issues

and Approaches,” in Procs of the Second IEEE Workshop on Future
Trends of Distributed Computing Systems. IEEE, 1990, pp. 38–46.

[2] C. Krishna and I. Koren, “Adaptive Fault-Tolerance for Cyber- Physical
Systems,” in IEEE International Conference on Computing, Networking
and Communications (ICNC), 2013, pp. 310–314.

[3] P. McKinley, S. Sadjadi, E. Kasten, and B. H. C. Cheng, “Composing
Adaptive Software,” Computer, vol. 37, no. 7, pp. 56–64, 2004.

[4] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[5] J.-C. Laprie, “From Dependability to Resilience,” in 38th IEEE/IFIP
International Conf. on Dependable Systems and Networks (DSN), 2008.

[6] M. Stoicescu, J.-C. Fabre, M. Roy, "Architecting Resilient Computing
Systems: A Component-Based Approach For Adaptive Fault
Tolerance", Journal Of Systems Architecture, Elsevier Eds, Ref. Jsa-D-
16-00131R1, Nov. 2016.

[7] Delta-4: A Generic Architecture for Dependable Distributed Computing,
David Powell (Eds), Springer, ISBN 978-3-642-84696-0.

[8] Wiesmann M, Pedone F, Schiper A, Kemme B, Alonso G.
Understanding replication in databases and distributed systems.
Distributed Computing Systems, 2000. Proceedings. 20th International
Conference on, 2000; 464–474, doi:10.1109/ICDCS.2000.840959. �

[9] Gregor Kiczales, John Lamping, Anurag Mendhekar et Maeda,
« Aspect-Oriented Programming », Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP 1997), 1997,
p. 220–242

[10] G. Kiczales, J. d. Rivières and D. G. Bobrow, The Art of the Metaobject
Protocol, MIT Press, 1991.

[11] J.-C. Fabre and T. Pérennou, “A Metaobject Architecture for Fault
Tolerant Distributed Systems: The FRIENDS Approach”, IEEE
Transactions on Computers, Special Issue on Dependability of
Computing Systems, pp. 78-95, 1998.

[12] Ansel J, Arya K, Cooperman "G. DMTCP: Transparent checkpointing
for cluster computations and the desktop", .23rd IEEE International
Parallel and Distributed Processing Symposium, Rome, Italy, 2009.

[13] Official Gazebo website http://gazebosim.org to get started with Gazebo.
[14] M. Lauer, M.Amy, J.-C. Fabre, M. Roy, W.Excoffon, M. Stoicescu,

"Engineering Adaptive Fault Tolerance Mechanisms for Resilient
Computing on ROS", IEEE HASE 2016 (High Assurance System
Engineering), Orlando, USA, , Jan. 2016.

[15] J.Highsmith and A.Cockburn, “Agile Software Development: The
Business of Innovation,” Computer, vol. 34, no. 9, pp. 120–127, 2001.

