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Abstract — The eighth member of Upper Triassic Yanchang Formation (Chang 8) is the major oil
reservoir unit in Jiyuan oil field, though with the high potential for oil exploration. The Chang 8
sandstones are characterized with low porosity, low permeability and strong microscopic
heterogeneities due to the complex deep-burial diagenetic history. Detailed petrological studies by
thin section, X-ray diffraction, scanning electron microscopy, core analysis have been used to
investigate the lithogology characteristics, diagenesis, diagenetic minerals and their coupling
impacts on reservoir property. The results show that Chang 8 sandstones comprise fine to medium-
grained subarkoses, feldspathic litharenites. The pore systems are dominated by remaining primary
intergranular pores, secondary dissolution porosity and micropores. Then, five diagenetic facies
were divided in Chang 8 sandstones based on the type and degree of diagenesis, diagenetic minerals
assemblages and their coupling effects on the reservoir quality. They consist of grain-coating
chlorite weak dissolution facies, unstable component dissolution facies, tight compaction facies, clay
minerals filling facies and carbonate cementation facies.
The well logging response characteristics of various diagenetic facies are summarized on Gamma
Ray (GR), Density Logging (DEN), Acoustic (AC), Compensated Neutron Logging (CNL), and True
Formation Resistivity (RT) by translating diagenetic facies to well log responses, the diagenetic
facies were defined by a set of log responses, and porosity, permeability ranges for each diagenetic
facies were determined from core analyses. Well log data of Luo 13 and Chi 212 are processed to
evaluate the accuracy of the predictive model. The diagenetic facies are predicted on the vertical
profile based on the generated model. Predicted distribution of diagenetic facies precisely coincide
with the microscopic observations, and diagenetic facies in Chang 8 sandstones are generally locally
distributed. Tight compaction and carbonate cementation diagenetic facies mainly correspond to the
non-reservoir and dry layers of Chang 8 sandstones, layers with higher oil potentials are mainly
developed in the grain-coating chlorite weak dissolution and unstable component dissolution
diagenetic facies. By translating diagenetic facies to well log responses, diagenetic facies and
reservoir properties of intervals that lack core control could be predicted with the same or similar
log responses.
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Résumé — Prédiction de faciès diagénétiques à partir de diagraphies de puits : étude des grès de
la formation du Trias supérieur Chang 8 de Yangchang de la région de Jiyuan, bassin d’Ordos,
Chine — Le huitième membre de la formation du Trias supérieur de Yangchang (Chang 8) est le
principal gisement de pétrole du champ pétrolifère de Jiyuan. Bien qu’offrant un potentiel élevé de
prospection pétrolière, les grès de Chang 8 sont caractérisés par une faible porosité, une faible
perméabilité et une importante hétérogénéité microscopique dues à une histoire diagénétique
complexe liée à un enfouissement profond. Des analyses pétrologiques détaillées de lames minces
(par diffractométrie de rayons X, par microscopie à balayage électronique) et de carottes ont été
utilisées pour étudier les caractéristiques lithologiques, la diagenèse, les minéraux diagénétiques et
leurs incidences sur les propriétés du réservoir. Les résultats indiquent que les grès de Chang 8 sont
constitués de litharénites feldspathiques, subarkoses, de taille de grain fine à moyenne. Les systèmes
poreux sont dominés par des pores primaires intergranulaires résiduels, une porosité secondaire de
dissolution et des micropores. Cinq faciès diagénétiques des grès de Chang 8 ont ainsi été
déterminés, selon leur type et degré de diagenèse, les assemblages des matériaux diagénétiques et
leurs incidences sur la qualité du réservoir. Ils consistent en un faciès de dissolution faible à
tapissage argileux de chlorites, un faciès de dissolution à composante instable, un faciès dense de
compaction, un faciès de remplissage en matières argileuses et un faciès de cémentation carbonaté.
Les caractéristiques de réponse des diagraphies de puits de divers faciès diagénétiques ont été résumées
en des données Gamma Ray (GR), Density Logging (DEN), Acoustic (AC), Compensated Neutron
Logging (CNL), et True Formation Resistivity (RT), en convertissant les faciès diagénétiques en des
réponses de diagraphie de puits. Les faciès diagénétiques ont été définis par une série de réponses de
diagraphie, tandis que leurs gammes de perméabilité et de porosité ont été déterminées à partir
d’analyses de carottes. Les données de diagraphie des puits Luo 13 et Chi 212 ont été traitées afin
d’évaluer la précision du modèle prédictif. Le faciès diagénétique est prédit sur un profil vertical à partir du
modèle généré. La distribution des faciès diagénétiques ainsi obtenue coïncide avec les observations
microscopiques, et les faciès diagénétiques des grès de Chang 8 sont généralement localement distribués.
Les faciès denses de compaction et de cémentation carbonatée correspondent principalement aux couches
non-réservoir et sèches des grès de Chang 8, les couches disposant d’un potentiel pétrolifère plus élevé
étant principalement constituées des faciès de dissolution faible à tapissage argileux de chlorite et de
remplissage en matières argileuses. En convertissant les faciès diagénétiques en des réponses de diagraphie
de puits, les faciès diagénétiques et les propriétés de réservoir peuvent être prédits à partir des réponses des
diagraphies ou de réponses similaires, sans besoin de contrôle par carottage.

INTRODUCTION

The North China Craton has been the focus of several recent
studies in terms of understanding the geochronologic and
tectonic evolution of China and adjacent continental frag-
ments (Ji et al., 2008). The recently discovered Jiyuan oil-
field, the focus of this article, is located in the west-central
region in Ordos Basin (Fig. 1), and covers an area of about
9 500 km2, with a flat strata, a slope of only about 1� and
simple structure, representing a gentle big west dipping
monocline (Lai et al., 2013a). The Upper Triassic Yanchang
Formation is the dominant Mesozoic oil oil-source rocks and
reservoir rocks in ordos Basin (Ji et al., 2008), and the Yan-
chang Formation consisting mainly of lacustrine, deltaic and
fluvial deposits, is divided into Chang 1 (1st member of
Yanchang Formation) to Chang 10 oil layers (subsections)
from bottom to top based on marker beds, lithological asso-
ciation and sedimentary cycles, among these subsections,
Chang 7 was deposited in a deep lacustrine environment

(Duan, 2012; Duan et al., 2013), Chang 10 to 7 oil layers
were deposited in lake transgression period; Chang 6 to 2 oil
layers were deposited in lake regression period; Chang 1 oil
layers was deposited during peneplain period (Qiu et al.,
2014). The Chang 8 oil layers, were a shallow water delta sed-
imentary system with many distributary channels. Relatively
shallowwater, stable tectonic setting, gentle slope and plentiful
material sources led to a large set of sandbodies in Chang 8 oil
layers vertically superimposed and laterally distributed,
creating favorable conditions for large-scale developed
reservoir systems and promoting the formation of large scale
continuous litho-stratigrahic reservoir in Chang 8 oil layers
(Zou et al., 2009; Lai et al., 2013a).

Though with the high potential for oil exploration, the
Yanchang Formation, is a typical sandstone reservoir
with low porosity, low permeability and strong micro-
scopic heterogeneity, which is famous for known as a
whetstone (Zeng and Li, 2009). Diagenetic heterogeneities
strongly influence reservoir performance and fluid flow
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(Deschamps et al., 2012). Effective resource exploitation
requires comprehensive reservoir description and charac-
terization to identify the reservoir properties in such diage-
netically heterogeneous sandstones (Ozkan et al., 2011), it
is of great significance to consider the impact of diagenetic
processes and diagenetic minerals on reservoir quality, and
this could provide a powerful tool to predict the high qual-
ity reservoirs within sandstone successions (Higgs et al.,
2007; Ajdukiewicz and Lander., 2010; Morad et al.,
2010; Tobin et al., 2010).

Diagenetic facies, which is the combination of types and
degree of diagenesis, diagenetic minerals assemblages,
determines the formation and distribution of pore type sweet
spot in tight sandstones (Zou et al., 2008; Lai et al., 2013a).
However, research on diagenetic facies has been confined
primarily to core and microscopic thin-section analyses
(Zeng et al., 2013), and diagenetic variations have not been

previously correlated with well-log responses (Ozkan et al.,
2011). However, the diagenetic facies can be defined by a set
of log responses, by translating diagenetic facies to well log
responses, and the generated model could be used to predict
the likely diagenetic facies and reservoir property of inter-
vals that lack core control with the same or similar log
responses, or even in nearby wells in a given field.

In this study, we intend to build the diagenetic facies and
analyze the dominant factors affecting the reservoir
property based on the type and degree diagenesis, diagenetic
minerals.Carefulmicroscopic petrographic assessmentswhich
are correlation with well log response, i.e., log response char-
acteristics for various diagenetic facies, are built by core to
log calibration, and porosity and permeability ranges for each
diagenetic facies were determined from core analyses.
The model generated can be used to predict the likely
diagenetic facies in a single well which lack core control.

Basin boundary
fault

Basin
boundary

Study areaBoundary of
tectonic units

Figure 1

Structural position of the study area (modified after Lai et al., 2013a).
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1 GEOLOGIC SETTING

1.1 Basin Evolution

The Ordos Basin is one of the largest sedimentary basins that
contains huge proven geologic reserves of petroleum
resources in China (Zhu et al., 2008). It is located in the
western part of the North China block with an area of
320 000 km2 (Liu et al., 2004; Zhu et al., 2008). The Ordos
Basin is bordered to the north, east, south, and west by the
Yin, Luliang, Qinling, Liupan, and Helan mountains, respec-
tively, it is rectangular in shape and trending in a north-south
direction (Zhu et al., 2008; Zou et al., 2013a; Qiu et al.,
2014). It can be divided into six first-order tectonic units,
i.e., the Yimeng Uplift in the north, the fault-fold belt on
the west margin, the Tianhuan Depression in the west, the
Shanbei Slope in the center, the Weibei Uplift in the south,
and the Jinxi Flexural Fold Belt inthe east (Fig. 1)
(Li et al., 2008; Jiang et al., 2012; Guo, 2013). The Ordos
Basin is a dustpan-like basin with a gentle slope in the east
and a steep slope on the west, and it plunges from northwest
to southeast (Ji et al., 2010). The study area, Jiyuan Area, is
located in the west-central region in Ordos Basin (Lai et al.,
2013a). The basin, in areas where large faults and folds were
not developed, is a smooth monocline with an east-to-west
dip angle of less than 1� (Zeng and Li, 2009; Duan et al.,
2008). As an oldest typical cratonic basin rich in oil and
gas in central China, the Ordos basin developed on the
Archean granulites and lower Proterozoic greenschists of
the North China block (Yang et al., 2005; Jiang et al.,
2012), and the evolution of the basin during Paleozoic–
Mesozoic can be divided into three stages: Cambrian–Early
Ordovician cratonic basin with divergent margins; Middle
Ordovician–Middle Triassic cratonic basin with convergent
margins; and Late Triassic–Early Cretaceous intraplate
remnant cratonic basin (Yang et al., 2005). During the Late
Triassic, the basin was subjected to major changes from mar-
ine facies and transitional facies to terrestrial facies because
of the Indo-Sinian tectonic movements, and then became an
inland depressed basin (Ji et al., 2010; Zou et al., 2013a).

Two hydrocarbon systems as the Paleozoic gas and Meso-
zoic oil systems are present in the basin (Yang et al., 2005),
abundant oil resources are present in the Upper Triassic
Yanchang Formation, which is part of a lake-delta sedimen-
tary system with a thickness of 1 000-1 500 m (Zeng and Li,
2009). The Liupan Mountains thrust onto the southwestern
Ordos area during the Late Triassic, and then resulted in
the formation of the southwestern Ordos foreland depres-
sion, and the cessation of thrusting and subsequent erosion
of the Liupan Mountains at the end of the Late Triassic, thus
leading to isostatic rebound of the Ordos basin, which pro-
duced a regional unconformity between the Triassic and
the Jurassic in the basin (Yang et al., 2005). However, due

to its rigid basement, the basin has not been strongly folded
and deformed though with the margins of basin having expe-
rienced intense tectonic movements (Yang et al., 2005).

1.2 Stratigraphy and Depositional Facies

Mesozoic stratigraphy of the Ordos basin and adjacent
regions has been well documented in the Chinese literature
(Fig. 2) (Guo et al., 2012; Zeng and Li, 2009). The Ordos
Basin becomes an isolated lake basin during the Middle
and Late Triassic, and a series of lacustrine and deltaic clas-
tic sediments was deposited in the basin during this time,
known as the Yanchang Formation (Ji et al., 2008). The dis-
conformable contacts are located between the base of the
Yanchang Formation and the Middle Triassic Zhifang
Formation and between the top of the Yanchang Formation
and the Lower Jurassic Yan’an Formation or Fuxian Forma-
tion (Ji et al., 2010). The Yanchang Formation can be subdi-
vided into three main depositional facies: lacustrine, deltaic
and fluvial from bottom to up (Luo et al., 2009). The forma-
tion contains mainly shallow lacustrine and coal-bearing del-
taic deposits. The sedimentation of the Chang 7 to Chang 8
subsections occurred during the main development of the
lake when the basin was extending quickly and lake water
was deepening (Ji et al., 2010). The Chang 8 sandstones
were mainly deposited in underwater distributary channels
and mouth bars at the delta front (Lai et al., 2013a), formed
in a very flat, shallow and wide intracratonic depression,
without a distinct shelf/slope break, mudstones and silt-
stones constitute the nonreservoir floodplain and playa
facies. In a shallow lacustrine, it is not favorable for the pres-
ervation of mouth bar sandbodies, so the underwater distrib-
utary channel sandstones are the skeletal sandbodies for
Chang 8 sandstones (Zou et al., 2009).

1.3 Petroleum Systems

Through intensive hydrocarbon exploration and research
over several decades in the Ordos basin, a major break-
through of discovering a significant quantity of hydrocar-
bons in the basin has recently been made (Zhu et al.,
2008; Shuai et al., 2013). It is confirmed that there are abun-
dant petroleum resources in the Ordos basin, continuously
distributed over a large area: the Jurassic–Triassic petroleum
system, and the Upper Paleozoic and Lower Paleozoic
natural gas systems (Shuai et al., 2013; Zou et al., 2013b).
The mudstones and oil shales of the Chang 7 subsection
are thought to be the best source rocks for Jurassic–Triassic
petroleum system (Duan, 2012), the source rocks contain
dominantly type I (oil prone) organic matters, with Ro val-
ues of 0.66-1.07% (Yang et al., 2005). The Chang 6 and
Chang 8 are the main reservoirs in Jiyuan oilfield (Fig. 2).
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Figure 2

Typical stratigraphic section of the Yanchang Formation, Upper Triassic from the Ordos basin (Modified after Dou et al., 2010; Guo et al., 2012;
Zeng and Li, 2009).
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The burial depth of the Chang 8 sandstones ranges from
2 200 to 3 000 m, with an average of 2 600 m. The Upper
Triassic deltaic sandstones and overlying shallow-lacustrine
and swamp mudstones form a reservoir-seal association
(Yang et al., 2005). Chang 7 mudstones and shale form
direct seals for Chang 8 sandstones (Guo et al., 2012), depo-
sition of mudstones about 100 m thick in extensive swamp
and shallow-lacustrine environments during the deposition
of the upper part of the Yanchang Formation, serve as a
regional seal of the Triassic oil pools (Yang et al., 2005).

The Ordos basin is characterized by a stable tectonic set-
ting, most Triassic oil pools are characterized by strati-
graphic traps, including the sandstone pinch-out traps
controlled mainly by the updip pinch-out of sandstones into
mudstones and the truncation traps (Yang et al., 2005).
Oil-source correlation shows that the occurrence of the
reservoir (Chang 8) immediately above the source-rock
(Chang 7) provides an ideal setting for downward petroleum
migration, the over-pressure associated with hydrocarbon
generation in the source rocks are assumed to be the main
driving forces for oil migration and accumulation in
Chang 8 tight reservoirs (Guo et al., 2012). Developed on
the stable North China Craton block, the Ordos basin has
experienced little tectonic deformation since the Palaeozoic
(Zhu et al., 2008), indicating a good condition for preserva-
tion of petroleum resources.

2 MATERIALS AND ANALYTICAL METHODS

Standard modern wire-line logs run in the study area com-
prises Gamma-Ray (GR), Spontaneous Potential (SP), Bulk
Density (DEN), Compensated Neutron (CNL), Borehole-
Compensated sonic (AC), Resistivity Logging (RT and
Rxo), and the core-to-log depth matching is done by corre-
lating the GR signature with the core description.

Core samples and some cuttings samples representative of
non-cored intervals were collected from 53 wells. Diagene-
sis and petrophysical properties were interpreted from petro-
graphic data and core analyses. A total of 957 samples
analysis of He-porosity and air permeability were obtained
from 53 cored wells. The core plug helium porosity and
air permeability were measured at confining pressures of
800 psi (5.5 MPa) net effective stress.

XRD analysis was performed on both bulk and clay frac-
tions of 31 representative sandstone samples, with the aim to
identify the clay-mineral species, I/S mixed-layer ratio, and
the content of matrix and cements.

A Cathode Luminescence (CL) analyses were performed
on polished thin sections using a Technosyn cold cathode
luminoscope with the aim to characterize different cement
generations and to characterize the origin of detrital quartz
grains. The acceleration voltage was 20 kV, 200-400 mA.

ScanningElectronMicroscope (SEM)has beenused to con-
firm the identification of the different clay minerals, to deter-
mine the pore structure and the mode of clay occurrence
within the pore spaces in the reservoir core samples. Three
hundred freshly broken rock fragments coatedwith a thin layer
of goldwere examinedwith a JEOL JSM-T330SEMequipped
with a BackScattered Electron (BSE) detector. Scanning elec-
tronmicroscope analyses of thin section and bulk rock samples
were conducted at 15 to 20 kVacceleration voltageswith beam
currents of 1 and 0.6 nA, respectively.

Lithological characteristics as the textural modal grain size
and sorting parameters ofChang8 sandstoneswere determined
through petrographic analysis of the thin sections under plane-
polarized and cross-polarized light. Representative thin sec-
tions (sections containing no thin-sectioning-induced holes
or fractured grains, 30 lm in thickness) examined with a
petrographic microscope, were point counted (300 points per
sample) to calculate the relative amounts of detrital framework
grains, matrix, authigenic cements, interstitial minerals, and
porosity. Pores were identified as primary intergranular pores
or secondary (intergranular or intragranular) pores that formed
by dissolution of a framework grain.

To examine the volume and distribution of porosity, some
(about 240) well prepared thin sections were impregnated
with blue-dye resin. To distinguish the mineralogy of car-
bonate cements, they are stained with Alizarin Red S and
potassium ferricyanide for identification of dolomites,
ferroan calcite, and nonferroan calcite in thin sections.

3 RESULTS

3.1 Lithology and Well Log Data of the Chang 8
Sandstones

The lithologies of Chang 8 sandstones are mainly composed
of grey medium to fine-grained sandstones (Fig. 3a, b) inter-
bedded with black mudstones (Fig. 3c). Parallel bedding and
wedge-shaped cross bedding are commonly seen from the
core observations (Fig. 3a, b), which represent a relatively
high water energy, while the horizontal bedding can be seen
in the mudstones (Fig. 3c). Sometimes, trough cross bedding
can also be observed in the fine-grained sandstones (Fig. 3d).

The sandstones are often characterized by a box-shape
on the GR logging curves, while the black mudstones always
have typical high GR readings, representing of a weaker
water dynamic condition (Fig. 4).

3.2 Sandstones: Texture and Composition

The Chang 8 sandstones are classified as subarkoses, feld-
spathic litharenites, and litharenites according to Folk’s clas-
sification scheme (Folk, 1974) (Fig. 5). The average
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framework composition of the sandstones is Q27.9F28.5L43.6

(Fig. 5). The sandstones are lithic-rich and plot mostly in
the magmatic-arc field on a Qp–Lvm–Lsm ternary diagram
of Dickinson and Suczek (1979). Quartz (mostly monocrys-
talline) ranges from 10% to 46.5% with an average of 28%,
Feldspar content varies from 5% to 47% average as 29%,
consisting of both plagioclase and smaller amount of
K-feldspar, while the rock fragments range from 13% to
74% (43%), and the main types of rock fragments consist
mainly of metamorphic rock fragments and volcanic rocks.
On average the sandstones are fine- to medium-grained, typ-
ically non-equant and moderately to well sorted, grain shape
is subrounded to subangular, the types of grain contacts are
dominated by planar (Fig. 6a), some samples show concave-
convex grain contacts due to its abundance in soft rock

fragments (Fig. 6b). Interstitial material content is relatively
high, the matrixes (mainly clay minerals) content ranges
from 1% to 20%, averaged as 6.58%, while the cements con-
tent is 5.1% averaged (ranges, trace-26.3%). Generally the
sandstones are a sery of terrestrial clastic rocks with low
compositional maturity but moderate petrological textural
maturity.

3.3 Porosity, Permeability and Pore Systems

According to the conventional plug analysis of 957 samples,
porosity ranges from 1.03% to 19.50%, with an average
of 9.53%, horizontal permeability ranges from 0.004 to
78.75 mD, averaged as 0.914 mD (Fig. 7). Relationships
between permeability and porosity are described by
power-law regressions, and this correlation is not high.
Reservoirs characterized by high porosity and low perme-
ability are present, possibly reflecting microporosity and
poorly connected pores, suggesting that the permeability is
unrelated to the total porosity but rather controlled by pore
and throat types, radius and its assemblage. However there
are some samples (in the low-porosity/high-permeability
area) fractured to enhance permeability.

Thin section analyses (presence of red epoxy) and SEM
photomicrographs indicate that pore systems in Chang 8
sandstones are dominated by a combination of micro-
(<10 lm) and mesopores (10 to 62 lm) and poorly con-
nected macropores. Pore types present in the Chang 8
sandstones are of primary and secondary (intergranular,
intragranular and moldic) origin, in addition to the remaining
primary intergranular porosity (Fig. 6c, d), variable amounts
of secondary intragranular porosity due to partial to perva-
sive dissolution of detrital framework grains (feldspars and
rock fragments) occur in many sandstones (Fig. 6e, f ).
Intercrystalline micropores are mainly associated with the
pore-filling authigenic clays as kaolinite (Fig. 6g), few
micro-fractures with low aperture can be seen from SEM
observations (Fig. 6h).

Total thin-section porosity of the sandstones, reveals a
wide range from trace to 12.50% with an average of
3.75%. The primary intergranular porosity reveals a range
from trace to 12.0%, averaged as 2.29%, whereas the sec-
ondary porosity, which was derived from partial to complete
dissolution of framework grains, reveals a narrow range
from trace to 4.30%.

3.4 Petrography, Geochemistry and Distribution
of Diagenetic Minerals

The main diagenetic processes affecting the Chang 8 sand-
stones are compaction, authigenesis of quartz, carbonates,
and clay minerals, and dissolution and replacement of detri-
tal grains. Authigenic quartz, authigenic feldspar, clays

a) b)

c) d)

0 1 2 3 4 cm

0 1 2 3 4 cm

Figure 3

Core photos showing the lithology and sedimentary structure
characteristics of Chang 8 sandstones. a) Grey sandstones
with parallel bedding, well Huang 55, 2 337.27 m; b) Grey
sandstones with wedge-shaped cross bedding, well Luo15,
2 337.27 m; c) Black mudstones with horizontal bedding, Geng
271, 2 505.00 m; d) Grey fine-grained sandstones with trough
cross bedding, Geng 271, 2 274.78 m.
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(authigenic and detrital) and carbonates (calcite and dolo-
mite) are the major pore-filling constituents in Chang 8 sand-
stones, others such as zeolite and authigenic feldspars are
present locally.

3.4.1 Carbonates

Carbonate is a common cementing material in siliciclastic
rocks (Loyd et al., 2012), among them, calcite and Fe-calcite
are one of the major cement types in Chang 8 sandstones
(Fig. 8a), ranging in abundance from trace amounts to
26.3% of the rock, with an average of 2.14%, dolomite
and late-stage Fe-dolomite is relatively less common
(ranges, trace to 10.5%, averaged as 1.5%) (Fig. 8b).
The Chang 8 sandstones show dominantly two types of cal-
cite cements:
– microcrystalline calcite, which replaces the framework

grains (mainly feldspars) and tends to fill large intergran-
ular pores between loosely packed framework grains
(Fig. 8a);

– sparry calcite is medium- to coarse grained, which occurs
as blocky and poikilotopic, small pores-filling in tightly
packed sandstones, or in some cases, replaced the detrital
grains (Fig. 8b).
Samples which are tight cemented by carbonate, have

very low thin section porosity (Fig. 8a, b). Ferroan dolomites
also replaced other components, such as feldspar and rock
fragments grains (Fig. 8c).

3.4.2 Quartz

Quartz overgrowths are important reservoir quality deterio-
rating mechanisms in many deep petroleum reservoirs
(Islam, 2009). The quartz cements (trace to 7.5%; av.
1.53%) are very common in Chang 8 sandstones (Fig. 8d,
e), they occur as syntaxial overgrowths (Fig. 8d) filling the
remained porosity among the grains with concave-convex
contacts (Fig. 8e), in which the quartz grains display evi-
dence of pressure dissolution. SEM examination revealed
that quartz overgrowths also occur as prismatic outgrowths
coexisting with clay layers (Fig. 8f ).

3.4.3 Kaolinite

SEM examination showed that kaolin occurs mainly as kao-
linite, with the characteristic vermicular or “booklet” aggre-
gates composed of several platelets; kaolinite occurs both as
pore filling cements and as a replacement products of feld-
spars (Fig. 8g). The total clays reported by XRD reveal that
the clay minerals in these samples are illite, mixed-layer
illite/smectite, chlorite and kaolinite. The kaolinite content
ranges from trace to 69.44% with an average of 31.83%,
based on XRD and SEM analyses; vermiform kaolinite per-
sists (Fig. 7e, 8g) around detrital aluminous silicates show-
ing traces of dissolution, however, there are still a few
samples showing the alteration of kaolinite (Fig. 8h).

3.4.4 Illite and I/S Mixed Layers

X-ray diffraction indicates that authigenic clays of Chang 8
sandstone consist of illite and mixed-layer illite/smectite
(3.14 to 61.54%; av. 21.67%). Based on XRD and SEM
analyses, pore-lining illite displays fibrous and hair-like
crystals around the detrital grain surfaces, and in some cases,
illite extends and bridges the pores, the fibrous and webby
morphology of illite and I/Smixed layer blocks pore throats
or bridges pores (Fig. 8i), they played a strong role in con-
trolling the reservoir quality.

3.4.5 Chlorite

Chlorite is the most abundant clay mineral identified by
XRD and SEM measurements (16.99 to 96.86%; av.
54.71%); previous studies confirmed that authigenic chlorite
is mainly present in three forms as grain coatings, pore-
lining cement, and pore-filling cements (Nguyen et al.,
2013). The pore lining and filling chlorite with the rose or
flocculus morphology are very common under SEM obser-
vations (Fig. 8j, k). Another type of chlorite, grain coating
chlorite, is universally known because of its mechanisms
for inhibiting quartz precipitation thus better preserving pri-
mary porosity for Chang 8 sandstones (Wang et al., 2011;
Shi et al., 2011).
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Triangular ternary diagram showing the framework-grain com-
position of Chang 8 sandstones.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2016) 71, 34 Page 9 of 23



a) b)

c) d)

e) f)

g) h)

Figure 6

Lithology characteristics and reservoir pore space of Chang 8 sandstones: a) medium-grained, subrounded to subangular, well sorted sandstone,
grains exhibit planar grain contacts, Well Geng 212, 2 523.51 m, Plane-Polarized Light (PPL); b) medium-grained, well sorted sandstone, frame-
work grains are heavily compacted due to its abundance in soft rock fragments, as indicated by the common planar and concave-convex grain
contacts, Well Yuan 43, 2 277.06 m, PPL; c) primary intergranular pores showing the irregular polygon morphology, Well Hu 148, 2 632.0 m;
d) primary intergranular pore coexisting with the moldic pore, Chi 38, 2 525.2 m, PPL; e) dissolution of K-feldspar along its cleavage, Geng 12,
2 643.9 m; f ) secondary dissolution pores due to partly dissolution of rock fragments, Huang 36, 2 740.8 m; g) SEM analysis reveals that inter-
crystalline pore exists in the kaolinite Well Huang 140, 2 624.64 m, SEM, 14319; h) micro-fracture, Well Geng 221, 2 608.89 m, SEM.
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Well-developed grain-coating chlorite forms barriers for
further secondary quartz cementation on detrital quartz
grains (Fig. 8l). The importance of grain coating chlorite
in preserving porosity has been recognized in many studies
(Bloch et al., 2002; Ehrenberg et al., 2009; Ajdukiewicz and
Lander, 2010; Tobin et al., 2010; Taylor et al., 2010; Ozkan
et al., 2011; Deschamps et al., 2012; Nguyen et al., 2013).
For Chang 8 sandstone, where chlorite rims are present,
the formation of quartz overgrowths is actually inhibited
and thus porosity being preserved (Fig. 8l, m).

3.4.6 Feldspars

It is evident from microscopic observation that feldspar
underwent a significant degree of dissolution or alteration
(Fig. 8n, o). Feldspar overgrowth and authigenic feldspar
are rarely seen. The development of secondary porosity
(intergranular or intragranular) as the common diagenetic
feature largely depends on the leaching of feldspar as detrital
grain. Leaching of feldspar grain helps to the development of
secondary porosity, feldspars commonly show honeycomb
morphology under SEM observations due to dissolution
along its cleavage (Fig. 8p). In addition to the minor remain-
ing primary intergranular porosity, variable amounts of sec-
ondary porosity occur mainly resulting from the partial to
pervasive leaching of feldspar and rock fragments that are
of great importance for Chang 8 tight sandstones.

3.5 Compaction and Sandstone Porosity

Various cements (carbonates, clay minerals and quartz) as
well as compaction have collectively controlled the reservoir
quality evolution of the sandstones (Lima and De Ros, 2002;

Mansurbeg et al., 2008). A plot of total InterGranular Vol-
ume (IGV; also termed minus-cement porosity) versus total
intergranular cement and pseudomatrix (Fig. 9, assuming
that the sandstones had an initial porosity of 40% using
tables from Beard and Weyl (1973) for medium-grained,
moderately sorted sandstones) indicates that the loss of
depositional porosity was greater due to compaction than
to cementation, with the exception of a few samples.
The greater role of compaction than cementation is attributed
to the immature compositional maturity, or presence of
relatively small amounts of rigid grains (quartz) capable of
preventing mechanical compaction.

4 DISCUSSIONS

4.1 Diagenetic Facies

Generally, diagenetic facies is a terminology that describes
and characterizes the result of sediments subject to certain
diagenesis and evolution under the diagenesis (Zou et al.,
2008; Lai et al., 2013a). Diagenetic facies usually consists
of two aspects, namely diagenetic environment and diage-
netic minerals in this environment, and reflects current con-
dition of sedimentary rocks (Zou et al., 2008; Lai et al.,
2013b). Diagenetic facies is a combination of some or more
diagenetic alterations and proper reservoir spaces to describe
the effects on reservoir property (Lai et al., 2013a, c). It rep-
resents the final condition of the sediments after diagenesis
like corrosion, cementation and compaction (Zou et al.,
2008), which is also a sign of characterizing reservoir prop-
erty, type and merits. Therefore, high-quality diagenetic res-
ervoir related to reservoir capacity can be confirmed further
by studying the diagenetic facies, which can manage
petroleum exploration more effectively (Zou et al., 2008).
For specific sedimentary microfacies, diagenetic facies,
together with diagenetic minerals assemblages, decide the
formation and distribution of high quality reservoirs in tight
sandstones (Lai et al., 2013a). Research of diagenetic facies
is helpful for comprehensive evaluation and “sweet spot”
prediction of reservoirs (Fu et al., 2009; Lai et al., 2013a).

Chang 8 oil layers in the study area had experienced many
types of diagenesis during buried diagenetic evolution.
The reservoir quality is mainly related to variation of the
types and degrees of diagenesis and diagenetic minerals
assemblages. Framework grains in Chang 8 sandstones are
generally heavily compacted, as indicated by the dominance
of planar and concave-convex grain contacts; some samples
characterized by medium-grained, high content of rigid
grains and well sorted display limited mechanical compac-
tion. Total cements content is 5.1% averaged, indicating that
the loss of depositional porosity was greater due to compac-
tion than to cementation (Fig. 9). Moldic and vuggy
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Porosity versus permeability crossplot sorting by wells.
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porosities are commonly found under microscopic observa-
tion, and honey-comb porosities resulting from feldspar dis-
solution can also be observed from SEM (Fig. 7, 8). These
secondary porosity is of great importance to the storage
and producibility of hydrocarbon of Chang 8 sandstones.
Generally speaking, porosity was decreased by compaction
and cementation and then increased by alteration or dissolution
of the metastable dissolution of the alumino-silicates grains.

On the basis of the above research on type and degree
of diagenesis, diagenetic minerals of Chang 8 oil layers,
were divided in five types of diagenetic facies including
grain-coating chlorite-weak dissolution diagenetic facies
(Fig. 10a, b), unstable component dissolution diagenetic
facies (Fig. 10c, d), three destructive diagenetic facies
including tight compaction diagenetic facies (Fig. 10e, f ),
clay minerals (mainly kaolinite) filling diagenetic facies

a) b)

c) d)

e) f)

Figure 8

Photomicrographs showing the microscopic diagenetic minerals of Chang 8 reservoirs in Jiyuan region: a) calcite fill large intergranular pores
between loosely packed framework grains and replaces the framework grains, Yuan 180, 2 346.01 m, PPL; b) poikilotopic calcites filling in small
pores in tightly packed sandstones, and replaced the detrital grains, An 62, 2 396.47 m, PPL; c) Fe-dolomite (stained blue) cements are common,
the porosity is very low, Yuan 181, 2 043.7 m, (PPL); d) syntaxial quartz overgrowth, Feng 6, 2 565.3 m, cross-polarized light, XPL; e) syntaxial
quartz overgrowth, quartz is shown in brown, calcite present a bright red-orange, Geng 166, 2 791.77 m, Cathode Luminescence (CL); f ) residual
intergranular pores filled by authigenic quartz cement, Huang 51, 3 086.9 m, SEM; g) SEM images showing vermicular kaolinite aggregate with
kaolinite platelets, Huang 129, 2 524.18 m; h) SEM images showing slight alteration of vermicular kaolinite, Yuan 26, 2 652.34 m, SEM; i) SEM
images showing pore-bridging morphology of illite blocks pore throats, Geng 80, 2 808.6 m; j) SEM images showing pore lining and pore filling
chlorite, Chi 41, 2 612.98 m; k) SEM images showing pore lining and pore filling chlorite, Luo 57, 2 684.69 m; l) SEM images showing grain
coating chlorite, the primary porosity is then preserved, Chi 41, 2 612.98 m; m) the primary porosity (irregular polygon) is preserved, thin chlorite
developed on the edge of particles, Luo 34, 2 481.5 m, PPL; n) dissolution of feldspars, Luo 38, 2 700.63 m, PPL; o) intragranular pores formed
by dissolution of feldspars, Geng 79, 2 557.2 m, SEM; p) leaching of feldspar grain which helps to the development of secondary porosity, dis-
solution of feldspar along its cleavage, honeycomb like pores, Huang 140, 2 624.64 m, SEM.
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(Continued)
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(Fig. 10g, h) and carbonate cementation diagenetic facies
(Fig. 10i, j). Diagenetic facies have different diagenetic combi-
nations and porosities (Lai et al., 2013a).

4.2 Log Response of Various Diagenetic Reservoir Facies

For years, research on diagenetic reservoir facies has been
confined primarily to core and microscopic thin-section
analyses (Zeng et al., 2013). Diagenetic variations have
not been previously correlated with core petrophysics and
well-log response (Ozkan et al., 2011). However, different
diagenetic reservoir facies have discrepancies related with
macro petrological and mineralogical characteristics. Such
discrepancies result in different response characteristic of
diagenetic facies in different logging curves and their com-
binations, which are the theoretical basis of diagenetic facies
recognition and detection using well log curves (Zhang
et al., 2012; Shi et al., 2011; Lai et al., 2013c), in other
words, diagenetic facies can be defined by a set of log
responses, with the value ranges of bulk density, neutron,
sonic, and GR logs (Ozkan et al., 2011). For example, car-
bonate cemented intervals (high apparent cementing rate)
are identified by low-density porosity, clay matrix-and
pseudomatrix-rich sandstones and mica-rich sandstones
(compaction was more effective) and also have high bulk
densities, but their GR and CNL values are significantly

higher than carbonate cemented intervals, while clean sand-
stones (clay matrix-free) tend to have lower GR readings
(Ozkan et al., 2011). Therefore, by translating diagenetic
facies to log responses, a model can be generated, and it
could be used to predict the likely diagenetic facies in nearby
wells which lack core control with the same or similar log
responses (Ozkan et al., 2011).

Based on diagenetic facies classification and combination
of core thin section and logging data, the wire line logging
response characteristics of five different diagenetic facies
can be summarized. Conventional logging curves that are
highly sensitive to diagenetic facies include acoustic time
(AC), natural Gamma (GR), Bulk Density (DEN), Compen-
sated Neutron Log (CNL), and Resistivity Logging (RT)
(Lai et al., 2013a, c). Bulk density, AC, RT, CNL are plotted
against GR (Fig. 11). Because each diagenetic facies is
defined by a distinct range in a set of log responses, espe-
cially DEN, RT and GR, these open well logs are the most
helpful tools in predicting diagenetic facies. The range of
well-log parameters of various diagenetic facies is provided
in Figure 11 and Table 1. The diagenetic facies are defined
by a set of log responses in this way, and the diagenetic
facies can be predicted with this generated model (Ozkan
et al., 2011).

4.2.1 Carbonate Cementation Diagenetic Facies

Carbonate cementation is a common and important diage-
netic alteration that has profound impact on reservoir heter-
ogeneity and quality (Dutton and Loucks, 2010; Mansurbeg
et al., 2008; Loyd et al., 2012); it often contributes to the
poor reservoir quality. Thin section porosity of carbonate
cementation diagenetic facies are very low due to the
extensive carbonate cements (Fig. 10i, j).

Extensive carbonate cementation can be detected in resis-
tivity logs because of the high resistivity values (>50 X�m)
encountered (Fig. 11b). High resistivity values of carbonate
cementation layer also correspond to high bulk density
(>2.58 g/cm3) and low GR values (<75 API), indicating that
the reservoir quality is diminished in the presence of diage-
netic carbonate cements (Fig. 11a). Previous studies con-
firmed that carbonate cement is interpreted to occur where
the well-log neutron porosity exceeds the density porosity
by more than 7% (Atchley et al., 2010). However, for
Chang 8 sandstones, the CNL values of carbonate cementa-
tion diagenetic facies are generally lower than 20% due to
the absence of clays and clay minerals, also the AC values
of this type of diagenetic facies are low, showing the sand-
stones are tightly cemented by carbonate cements
(Fig. 11c, d). Generally, carbonate cementation diagenetic
facies are easy to identify with their high bulk density, low
GR readings, high resistivity values, low neutron porosity
and low AC values (Fig. 11c).
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Note that destruction of porosity by mechanical compaction
was more significant than by cementation.
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4.2.2 Tight Compaction Diagenetic Facies

Cumulative effect of mechanical compaction due to progres-
sive burial results in a rapid decrease in porosity in the early
diagenetic stage (Gier et al., 2008). Compaction is more
penetrative where ductile grains are abundant (Ozkan et al.,
2011). The rate of porosity reduction was higher for lithic-rich
or detrital clay-rich samples due to the abundance of malleable
grains. Fine-grained sandstone units are also strongly influ-
enced by tight mechanical compaction (Mckinley et al.,
2011; Mansurbeg et al., 2012). There is also a greater degree

of compaction in poorly sorted sandstones since the smaller
grains could fit into the pores between the relatively larger
grains, leading to porosity reduction (Mckinley et al., 2011;
Walderhaug et al., 2012). Poorly sorted sand with silt and clay
can however be mechanically compacted to low porosity com-
pounds at moderate burial depth and stress (Bjørlykke, 2014).
Thin section porosity of tight compaction diagenetic facies is
also very lowdue to the high degree of compaction (Fig. 10e, f ).

Tight compactiondiagenetic faciesmainlydevelop in lithof-
acies rich in, micas, detrital clay and soft rock fragments, and

a)

c)

e)

b)

d)

f)

Figure 10

Diagenesis facies characteristics of Chang 8 sandstones in Jiyuan Area: a) grain-coating chlorite-weak dissolution diagenetic facies, grain-coating
chlorite around the quartz grains, primary porosity is preserved, Luo 8, 2 650.51 m, PPL; b) grain-coating chlorite-weak dissolution diagenetic
facies, Yuan 181, 2 024.55 m, PPL; c) unstable component dissolution diagenetic facies, intergranular macropores are relatively common in this
sandstone, some feldspar grains contain intragranular micropores due to the partial grain dissolution, Yuan 183, 2 895.06 m, PPL; d) unstable
component dissolution diagenetic facies, intergranular macropores are commonly seen, some feldspargrains and rock fragments are microporous
due to the partial grain dissolution, Feng 4, 2 267.5 m, PPL; e) tight compaction diagenetic facies, relatively soft rock fragments mostly show
concave-convex grain contacts; quartz and feldspar grains usually exhibit planar grain contacts, deformation of micas, Luo 32, 2 857.8 m, PPL;
f) tight compaction diagenetic facies, deformation of micas, framework grains are heavily compacted, as indicated by the common planar and
concave-convex grain contacts, Yuan 189, 2 220.02 m, PPL; g) clay minerals (mainly kaolinite) filling diagenetic facies, vermicular kaolinite
aggregates, Huang 3, 2 571.42 m; h) clay minerals (mainly kaolinite) filling diagenetic facies, SEM images showing vermicular kaolinite aggre-
gate, Luo 17, 2 829.18 m; i) calcite (stained in red) occludes intergraular pores, the sandstones are generally tight, floating grain texture, Yuan 153,
2 386.85 m, PPL; j) calcite (stained in red) occludes intergraular pores, Luo 1, 2 499.07 m, PPL.
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these low-energy fine-grained, clay-rich sandstones often
have poorer quality than higher energy, well-sorted and
relatively coarser grained sandstones (Zhang et al., 2008).
Because of the effect of clays, micas and rock fragments, GR
readings for tight compaction diagenetic facies are highest
(>100 API averaged), and neutron porosities are relatively
middle to high (Fig. 11). These clay and mica rich sandstones
also have high bulk densities due to the tight compaction in the
geological history, indicating a poor reservoir property,
however, their GR readings are significantly higher than the
carbonate cemented intervals (Ozkan et al., 2011). Further-
more the tight compaction diagenetic facies can be recognized
by the low-resistivity responses (Fig. 11a, b).

4.2.3 Clay Minerals Filling Diagenetic Facies

The abundance of authigenic clay minerals played a strong
role in controlling the reservoir quality, for example, the
fibrous and webby morphology of illite and MILS block
pore throats or bridge pores may significantly reduce the per-
meability of a deeply buried sandstone (Mckinley et al.,
2011; Ajdukiewicz and Lander, 2010). Together with car-
bonate cements, clay minerals cementation (pore filling
kaolinite, illite and MILS) is among the most damaging dia-
genetic processes for petrophysical properties of Chang 8
sandstones. The pore systems of clay minerals filling diage-
netic facies are dominated by micropores associated with the
pore-filling authigenic clays (Fig. 10g, h).

Compared with tight compaction diagenetic facies, clay
minerals filling diagenetic facies generally have lower clay

(mainly authigenic) content, so the GR readings are on aver-
age 89 API (Fig. 11), however, the neutron porosity gives
unreasonably high porosities (>20%) because of clay effects
(Fig. 11d). SEM analyses reveal that authigenic clays occur
in the form of pore filling, and considerable amounts of
micro-porosity are assumed to exist in the authigenic miner-
als, especially the vermicular kaolinite aggregates, so the
neutron porosity is relatively high and the bulk density is rel-
atively low (<2.55 g/cm3; Fig. 11a, d); in which over predic-
tion of porosity reaches more than 10%, however, their GR
values are also relatively high (>80 API).

4.2.4 Grain-Coating Chlorite Weak Dissolution Diagenetic
Facies

Although the thin, chloritic grain coatings occupy a small
volume of the pore space, primary porosity is better pre-
served in these sandstones because of inhibition of quartz
precipitation by grain-coating chlorites (Ozkan et al.,
2011). In addition, the dissolution intensity is closely related
to the preservation of primary pores and the flow of pore
fluid (Zou et al., 2008). Grain-coating sandstones with high
compaction resistance may preserve more primary pores,
and this is favorable to pore fluid flow and framework grains
dissolution (Zou et al., 2008). Pore systems of grain-coating
chlorite weak dissolution diagenetic facies are dominated by
intergranulary pores and minor dissolution pores (Fig. 10a, b).
This is consistent with microscopic observations, see
Figure 10a, b, for which the high thin section porosities are
of both primary and secondary origins.

g)

i)

h)

j)

Figure 10

(Continued)
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Sandstones with grain-coating chlorite weak dissolution
diagenetic facies are characteristic of low-middle GR read-
ings (70-90 API; Fig. 11), and a wide range of resistivity
values (resistivity values from 7.9 to 170.2 X�m; Fig. 11b).
Commonly, these sandstones have a RT reading less than
20 X�m, however, when this diagenetic facies corresponds
to the oil bearing layers, high resistivity values (>50 X�m)
are also encountered (Fig. 11b, Tab. 1). Bulk density of this
diagenetic facies is low (<2.6 g/cm3; Fig. 11a). This is
different for carbonate cementation diagenetic facies, where
CNL values range from 11 to 27% (Fig. 11d), and the AC
values arehigh (>220ls/m;Fig. 11C).All theseparameters indi-
cate that the reservoir quality of this diagenetic facies is good.

This feature was also helpful in discriminating clay minerals
filling diagenetic facies.

4.2.5 Unstable Component Dissolution Diagenetic Facies

Reservoir quality of deeply buried sandstones can be enhanced
to various extents owing to secondary porosity development
which results from the dissolution of framework grains
(Mansurbeg et al., 2008). Dissolution is generally associated
with sandstones characteristic ofmedium-grained, well sorted,
low clay and cement contents. Porosity can be enhanced to
some extent only in the high energy clean sandstones (clay
matrix-free) sandstones which are relatively coarse grained,
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Plots of gamma ray versus a) bulk density, b) deep resistivity, c) AC and d) CNL values.
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well sorted and abundant in rigid grains (Bloch et al., 2002):
this is consistent with petrographic observations (Fig. 10c,
d). Unstable component dissolution diagenetic facies develop
in sandstones inwhich thebyproduct of silica andclayminerals
is removed (reaction 1-3), so there is a net increase in porosity.
Pore systems of this diagenetic facies are dominated bymoldic
and vuggy porosity resulting from framework grains dissolu-
tion (Fig. 10c, d). However, these secondary macropores are
relatively poorly connected to the intergranular pore network,
owing to the presence of feldspar remnants (Mansurbeg et al.,
2012):

3KAlSi3O8 ðK-feldsparÞ þ 2Hþ þ H2O !

KAl3Si3O10ðOHÞ2ðilliteÞ þ 6SiO2ðaqÞ þ 2Kþ þ H2O

ð1Þ

2NaAlSi3O8 plagioclaseð Þ þ 2CO2 þ 3H2O !

Al2Si2O5 OHð Þ4 þ 4SiO2 quartzð Þ þ 2Naþ þ 2HCO�
3 ð2Þ

CaAl2Si2O8 ðplagioclaseÞ þ 2CO2 þ 3H2O !

Al2Si2O5 ðOHÞ4 þ Ca2þ þ 2HCO�
3 ð3Þ

In general, these clean sandstones tend to have lower GR
readings than that of grain-coating chlorite weak dissolution
diagenetic facies, ranging between 60 and 88 with an aver-
age of 72 API (Fig. 11). High resistivity values (>50 X�m;
Fig. 11b) are also encountered in the unstable component
dissolution diagenetic facies due to its higher oil potentials.
Bulk density of this diagenetic facies is low (<2.6 g/cm3;
Fig. 11a), CNL values range from 13 to 27% (Fig. 8d),
and the AC values are high (>210 ls/m; Fig. 11c).

4.3 Diagenetic Facies versus Reservoir Quality

Various diagenetic facies combinations result in different
porosity characteristics and physical properties of reservoirs
(Fu et al., 2009). Porosity and permeability ranges for each
diagenetic facies were determined from core analyses.
Correlation of diagenetic facies with petrophysical proper-
ties shows that sandstones with the poorest reservoir quali-
ties in Chang 8 oil layers are tightly cemented with
carbonate or are rich in clay matrix, i.e., carbonate cementa-
tion diagenetic facies: tight compaction diagenetic facies
have the lowest porosities and lowest permeabilities
(Fig. 12). Sandstones of the highest reservoir quality are
those with chlorite grain-coating clays that inhibit quartz

TABLE 1

Well logging response characteristics of various diagenetic facies of Chang 8 sandstones in Jiyuan Area

Diagenetic facies GR (API) AC (ls�m�1) CNL (%) DEN (g�cm�3) Rt (X�m)

Grain-coating chlorite
weak dissolution

facies
70-90 220-250 12-27 2.38-2.59 >8.0

Unstable component
dissolution facies 60-88 210-250 13-27 2.40-2.59 9-240

Tight compaction
facies 80-140 200-250 15-50 >2.55 <30.0

Clay minerals filling
facies 80-120 200-260 22-42 2.34-2.55 <30.0

Carbonate
cementation facies 55-75 <230 <20 >2.60 >50.0
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Figure 12

Core-measured porosity versus permeability crossplot for vari-
ous diagenetic facies. The legend is shown in Figure 11.
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The vertical division of diagenetic facies in Well Luo 13.
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cementation, and those with clean sandstones are abundant
in the secondary dissolution porosity but rare in clay miner-
als (Fig. 12). These two diagenetic facies correspond to the
main high quality reservoirs and oil bearing layers in Chang
8 tight reservoirs. Sandstones for clay minerals filling
diagenetic facies have middle porosity and middle –

to low permeability values (Fig. 12), and the low permeabil-
ity is mainly caused by micropores that dominate the pore
system as confirmed by petrography and SEM studies.

The permeability of grain-coating chlorite weak
dissolution diagenetic facies is relatively high compared to
unstable component dissolution diagenetic facies (Fig. 12).
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The vertical division of diagenetic facies in Well Chi 212.
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Permeability is mainly controlled by intergranular
macroporosity and pore-throat size, not by pore space mor-
phology (Midtbø et al., 2000; Bloch et al., 2002). The primary
intergranular pores in grain-coating chlorite weak dissolution
diagenetic facies, connected by larger pore throats compared
to the secondary pores, favour the higher reservoir quality in
grain-coating facies (Dutton and Loucks, 2010).

4.4 Diagenetic Facies in a Single Well

To evaluate the accuracy of the predictive model of diage-
netic facies, a blind test was administred from two cored
wells within the study area that had not been included within
the database used to develop the well-log facies. Based on
the interpretation of diagenetic facies from cores and thin
sections observations, and the translation diagenetic facies
to well log responses, vertical profile distribution rule of dia-
genetic facies in each well can be predicted. A software
FORWARD (Formation Oil and Gas Reservoir Well logging
Analysis and Research and Development) is used in China to
predict the diagenetic facies in a single well. According to
the well logging response, characteristics of various diage-
netic facies are summarized in Figure 8 and Table 1. Diage-
netic facies is predicted from comprehensively analyzing the
combination characteristics of well logs. For theWell Luo 13
and Chi 212 as examples, actual log data of these two wells
were processed using the generated model, and the diage-
netic facies is predicted on the vertical profile. The predicted
distribution of diagenetic facies precisely coincides with the
microscopic observations (Fig. 13, 14). By the coupling of
carbonate cementation and mechanical compaction (tight
compaction diagenetic facies) control the ultimate reservoir
property of Chang 8 sandstones, these two diagenetic
facies mainly correspond to the non-reservoir and dry layers,
while the layers with higher oil potentials are mainly
developed in the grain-coating chlorite diagenetic facies
(Fig. 13, 14). In general, diagenetic processes in Chang 8
sandstones are generally locally distributed, reflecting the
sediment composition, temperature history and effective
stress (Bjørlykke, 2014). By translating diagenetic facies
to well log responses, diagenetic facies and further reservoir
quality of intervals that lack core control, could be predicted
with the same or similar log responses.

CONCLUSIONS

A model that uses GR, bulk density, neutron, and sonic logs
and their ratios as variables is designed to identify diagenetic
facies from well logs.

Five types of diagenetic facies are selected based on
type and degree of diagenesis, diagenetic minerals assem-
blages and their effect on the reservoir quality. They are:
grain-coating chlorite-weak dissolution facies, unstable

component dissolution facies, tight compaction facies, clay
minerals filling facies and carbonate cementation facies.

Carbonate cementation facies are identifiedby lowGR,high
bulk density, high resistivity values, low AC and CNL values.

Tight compaction facies can be recognized by their
highest GR readings, high bulk density, low resistivity
values, high AC and CNL values.

Claymineralsfilling facies are characteristic of highGR, low
bulk density, low resistivity, and relatively high CNL values.

Unstable component dissolution facies are identified by
low GR readings, wide range of RT values, low bulk density,
high AC values and middle to high CNL values.

Grain-coating chlorite weak dissolution diagenetic facies
are characteristic of low-middle GR readings (higher than
unstable component dissolution facies), a wide range of
resistivity values, low bulk density, high AC values and mid-
dle to high CNL values.

Correlation of diagenetic facies with petrophysical prop-
erties shows that sandstones with the poorest reservoir qual-
ities in Chang 8 oil layers are associated with carbonate
cementation diagenetic facies and tight compaction diage-
netic facies. Unstable component dissolution facies and
grain-coating chlorite weak dissolution diagenetic facies
correspond to the main high quality reservoirs and oil bear-
ing layers in Chang 8 tight reservoirs.

The accuracy of the predictive model of diagenetic facies
was evaluated by a blind test conducted on two cored wells
within the study area that had not been included within the
database used to develop the well-log facies. The predicted
results of diagenetic facies precisely coincides with the
microscopic observations.
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