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We consider quasi likelihood ratio (QLR) tests for restrictions on parameters under potential model misspecification. For convex M-estimation, including quantile regression, we propose a general and simple nonparametric bootstrap procedure that yields asymptotically valid critical values. The method modifies the bootstrap objective function to mimic what happens under the null hypothesis. When testing for an univariate restriction, we show how the test statistic can be made asymptotically pivotal. Our bootstrap can then provide asymptotic refinements as illustrated for a linear regression model. A Monte-Carlo study and an empirical application illustrate that double bootstrap of the QLR test controls level well and is powerful.

Introduction

Let z ∈ R k be a random vector and Q(θ) = E q(z, θ) a function from R p to R that admits a unique minimizer θ † on the parameter space Θ, i.e. θ † = arg min Θ Q(θ) .

(1.1) For a random sample {z i , i = 1, . . . n} from z, a consistent M-estimator of θ † is defined as

θ n = arg min Θ Q n (θ) , Q n (θ) = n -1 n i=1
q(z i , θ) .

We study tests on parameters based on quasi likelihood ratio (QLR) statistics. We consider for simplicity linear restrictions on parameters of the type

H 0 : d (θ † -h) = 0, against H A : d (θ † -h) = 0 ,
where d is a known p × r full rank matrix, r < p and h is a known vector in R p . Let

θ 0 † = arg min Θ∩H 0 Q(θ) .
(1.

2)

The estimator subject to the null constraint is θ 0 n = arg min Θ∩H 0 Q n (θ). The Quasi Likelihood Ratio (QLR) statistic for testing H 0 is

QLR n = 2 n Q n ( θ 0 n ) -Q n ( θ n ) .
The main advantages of the QLR statistic are (i) it avoids estimation of the asymptotic covariance matrix of estimators, by contrast to Wald and Score statistics (ii) it is transformation equivariant. However, under misspecification, i.e. outside model assumptions, it is generally not asymptotically pivotal under H 0 due to the potential failure of Bartlett's second identity, see [START_REF] Foutz | The Performance of the Likelihood Ratio Test When the Model is Incorrect[END_REF] and [START_REF] Kent | Robust Properties of Likelihood Ratio Tests[END_REF] for unconditional Maximum Likelihood (ML), [START_REF] Vuong | Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses[END_REF] for conditional ML, and [START_REF] Marcellino | Model Selection for Nested and Overlapping Nonlinear, Dynamic and Possibly Mis-specified Models[END_REF] for M-estimation. We revisit these results for a convex but potentially non-differentiable M-estimation criterion, thus allowing for quantile regression. When testing for a single restriction, a robust QLR statistic, which is asymptotically chi-square even under misspecification, easily obtains, as in [START_REF] Stafford | A Robust Adjustment of the Profile Likelihood[END_REF]. The construction is similar to robust Score and Wald statistics, see e.g. White (1982) and [START_REF] Royall | Model Robust Confidence Intervals Using Maximum Likelihood Estimators[END_REF].

Our main focus is to develop a consistent bootstrap procedure based on nonparametric naive bootstrap resampling. To make the bootstrap statistic behaves as if the null hypothesis were true, we modify the criterion function to be optimized. We label our method bootstrapping under the null hypothesis. It is shown to be consistent under misspecification.

Moreover, it yields asymptotic higher-order refinements in the regression model. Our theoretical results and our simulation study show that bootstrapping under the null controls size better than competitors under misspecification. Our simulations also compare the small sample performance of two competing procedures when testing a single restriction, namely bootstrapping the robust QLR statistic or double bootstrapping the non-robust QLR statistic, see [START_REF] Beran | Prepivoting Test Statistics -A Bootstrap View of Asymptotic Refinements[END_REF]. Our findings suggest that the first procedure may be preferable in moderate samples, because it avoids estimation of Hessian and score variance matrices, in line with the conclusions of [START_REF] Stafford | A Robust Adjustment of the Profile Likelihood[END_REF], who states "the use of a model-robust variance estimate for the signed square root, score or Wald statistic, while leaving bias and skewness characteristics relatively unchanged, can increase variability considerably."

The study of potentially misspecified models dates back at least to [START_REF] Huber | The Behavior of Maximum Likelihood Estimates under Nonstandard Conditions[END_REF] and [START_REF] Eicker | Limit Theorems for Regressions with Unequal and Dependent Errors[END_REF]. For conditional ML, [START_REF] Gourieroux | Pseudo Maximum Likelihood Methods: Theory[END_REF] have shown that the parameters of the conditional mean can be estimated consistently whenever it is well specified even if the likelihood itself is not. Similarly, ordinary least-squares consistently estimate mean parameters in the presence of heteroscedasticity of unknown form. If the true conditional expectation is nonlinear, OLS provides the best linear approximation to the true conditional expectation that can be of interest on its own, see [START_REF] White | Using Least Squares to Approximate Unknown Regression Functions[END_REF].

Building on [START_REF] Eicker | Limit Theorems for Regressions with Unequal and Dependent Errors[END_REF], [START_REF] White | Using Least Squares to Approximate Unknown Regression Functions[END_REF]White ( , 1982) ) and [START_REF] Royall | Model Robust Confidence Intervals Using Maximum Likelihood Estimators[END_REF] have shown how Wald and score statistics can be rendered robust to misspecification. However their small sample behavior are sensitive to the implementation details and the design of the data, see [START_REF] Mackinnon | Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties[END_REF] and [START_REF] Chesher | The Finite-Sample Distributions of Heteroskedasticity Robust Wald Statistics[END_REF] among others. Bootstrap methods have been investigated to obtain better approximations, see e.g. [START_REF] Wu | Jackknife, Bootstrap and Other Resampling Methods in Regression-Analysis -with Discussion[END_REF], [START_REF] Mammen | Bootstrap, Wild Bootstrap, and Asymptotic Normality[END_REF], [START_REF] Aerts | Bootstrap Tests for Misspecified Models, with Application to Clustered Binary Data[END_REF], [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k-Step Bootstrap for Extremum Estimators[END_REF], and Gonçalves and White (2004). [START_REF] Kline | Higher Order Properties of the Wild Bootstrap Under Misspecification[END_REF] recently pointed out that in a regression model the popular wild bootstrap does not improve over the asymptotic approximation for the Wald statistic when the model is misspecified. By contrast, the naive bootstrap of [START_REF] Efron | Bootstrap Methods: Another Look at the Jacknife[END_REF] provides asymptotic improvements for the robust Wald test as shown by [START_REF] Hall | Bootstrap Critical Values for Tests Based on Generalized-Method-Of-Moments Estimators[END_REF].

Recent work has focused on bootstrap methods for QLR tests. The most advocated method computes a bootstrap statistic that does not test H 0 but rather d (θ † -h) = d θ n -h , where θ n is the initial estimator (considered as fixed for the bootstrap distribution). [START_REF] Kim | Higher-Order Improvements of the Restricted Parametric Bootstrap for Tests[END_REF] propose a parametric bootstrap and establishes higher-order improvements for a well specified model. Camponovo (2016) establishes higher-order improvements of a block bootstrap test in a dependent data context assuming the equivalent of second Bartlett's identity. [START_REF] Spokoiny | Bootstrap Confidence Sets under Model Misspecification[END_REF] study the multiplier bootstrap, allowing for dependence and a large number of parameters, and show that it may not be valid for some misspecified models, see [START_REF] Chen | Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals[END_REF] for a similar method in a semiparametric context. For quantile regression, [START_REF] Angrist | Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure[END_REF] rely on subsampling. [START_REF] Lee | Bootstrap Confidence Regions Based on M-Estimators Under Nonstandard Conditions[END_REF] study the m out of n bootstraps of QLR tests from M-estimation.

In Section 2, we present our bootstrap method and we detail implementation for linear regression and linear quantile regression. In Section 3, we focus on asymptotic properties of QLR statistics under misspecification and the construction of robust statistics, allowing for a non-differentiable criterion. We then show consistency of bootstrapping under the null and we establish asymptotic higher-order refinements of the bootstrap robust QLR test in the linear regression model. Section 4 gathers small sample evidence on the behavior of our method compared to existing methods. We then report some empirical results for quantile regression of children birthweight. Section 5 concludes. Section 6 gathers our technical proofs.

Bootstrapping Under the Null

We assume a convex criterion that is well approximated by a quadratic function, that is

Q n (θ + t) -Q n (θ) = n -1 n i=1 D (z i , θ)t + 1 2 t A(θ)t + R n (t) , R n (t) = o p ( t 2 ), ∀θ, t . (2.3)
Let the empirical score function be the derivative of the quadratic approximation of Q n (•)

S n (θ) = n -1 n i=1 D(z i , θ) . If Q n (•)
is differentiable, this is simply its derivative. To bootstrap the QLR statistic, let Q * n (θ) be the criterion based on observations {z * i , i = 1, . . . n} resampled with replacement from the original data. We then consider the modified criterion

Q * n (θ) = Q * n (θ) -S n ( θ 0 n )(θ -θ 0 n ) .
(2.4)

The bootstrap and constrained bootstrap estimator are defined as

θ * n = arg min Θ Q * n (θ) and θ 0 * n = arg min Θ∩H 0 Q * n (θ) .
The bootstrap QLR statistic is

QLR * n = 2 n Q * n ( θ 0 * n ) -Q * n ( θ * n ) = 2 n Q * n ( θ 0 * n ) -Q * n ( θ * n ) -S n ( θ 0 n )( θ 0 * n -θ * n ) .
We label our method bootstrapping under the null because it makes the bootstrap estimator θ * n and QLR behave as if the restrictions were true. A useful intuition can help to understand why. Since Q * n (θ) converges to Q n (θ) conditionally on the initial sample, at the limit (2.4) becomes Q n (θ) -S n ( θ 0 n ) θ -θ 0 n . But the constrained estimator θ 0 n under H 0 is obtained by solving the Lagrangian program min θ,µ Q n (θ) -µ d (θ -h), where at the optimum d µ is the empirical score at θ 0 n . So, conditionally on the initial sample, θ * n becomes close to θ 0 n . Since clearly θ 0 * n also becomes close to θ 0 n , the bootstrapped statistic is bounded in probability irrespective to whether H 0 holds and has an asymptotic distribution which mimics the one of QLR n under H 0 .

Our method equates the derivatives of the quadratic approximation of [START_REF] Hall | Bootstrap Critical Values for Tests Based on Generalized-Method-Of-Moments Estimators[END_REF] and [START_REF] Andrews | Higher-Order Improvements of a Computationally Attractive k-Step Bootstrap for Extremum Estimators[END_REF] study related "recentering" methods for constructing Wald statistics. The formers use it to account for the non-nullity of the empirical moments in overidentified models estimated by Generalized Method of Moments, the latter because the average score evaluated using block-bootstrapped data can be different from zero. Here we use it instead to account for the fact that the score evaluated at the constrained estimator is not zero.

Q * n (θ) at θ * n to S n ( θ 0 n ).
Least-Squares Regression. Consider the linear model

y i = x i θ + ε i i = 1, ..., n
where z i = (y i , x i ), i = 1, ..., n are independent and identically distributed from P . We allow for conditional heteroscedasticity in the error term ε and for correlation between ε and x. The unique minimizer of

Q(θ) = E (y -x θ) 2 /2 is θ † = E -1 (xx )E (x y)
, where E denotes expectation with respect to P . The corresponding least-squares estimator is

θ n = E -1 n (xx )E n (x y)
, where E n denotes expectation with respect to the empirical distribution of the data P n . Similarly, the constrained minimizer of Q(θ) is

θ 0 † = θ † -E -1 (xx )d d E -1 (xx )d -1 d (θ † -h) ,
and the constrained estimator is

θ 0 n = θ n -E -1 n (xx )d d E -1 n (xx )d -1 d θ n -h . Moreover, as Q n (θ) is quadratic in θ and θ n minimizes Q n (θ), QLR n = 2 n Q n ( θ 0 n ) -Q n ( θ n ) = n θ n -θ 0 n E n (xx ) θ n -θ 0 n = d θ n -h d E -1 n (xx)d -1 d θ n -h ,
and is thus equal to a Wald or Score statistic for testing H 0 up to the residual variance σ 2 .

In the bootstrap world, the modified criterion makes θ * n converging to θ 0 n as

θ * n = E * -1 n (xx ) E * n (xy) + S n ( θ 0 n ) = E * -1 n (xx )E * n (xy) -E * -1 n (xx )E n (xx ) θ n -θ 0 n ,
where E * n denotes expectation with respect to the bootstrap distribution P * n . The bootstrap QLR statistic is

QLR * n = 2 n Q * n ( θ 0 * n ) -Q * n ( θ * n ) = n θ * n -θ 0 * n E * n (xx ) θ * n -θ 0 * n = d θ * n -h d E * -1 n (xx )d -1 d θ * n -h .
It is similar to a Wald statistic, but based on an estimator θ * n that behaves as if H 0 was true.

Quantile Regression. Our assumptions allow for a non-differentiable criterion. For quantile regression of order τ , q(y, x, θ) = ρ τ (y -x θ), with ρ τ (u) = u (τ -I (u < 0)). In practice, estimation is performed solving the dual problem max

t {y t| -X t = 0, t ∈ [τ -1, τ ] n } ,
where X the matrix of observations on covariates, see [START_REF] Koenker | Quantile Regression[END_REF]. At the optimum,

t i ( θ n ) = τ if y i -x i θ n is positive, t i ( θ n ) = τ -1 if it
is negative, and the remaining components are determined so that -X t( θ n ) = 0. Theses value are, up to a constant, the rank scores of the quantile regression, see [START_REF] Gutenbrunner | Regression Rank Scores and Regression Quantiles[END_REF]. The dual of the restricted quantile regression writes

max t {(y -Xh) t| -H X t = 0, t ∈ [τ -1, τ ] n } ,
where H is a p × (p -r) full rank matrix such that d H = 0.1 One issue with quantile regression is that the subgradient of the function ρ τ (•) can be arbitrarily defined at 0, yielding some indeterminacy. Asymptotically this should be irrelevant, however we have found in practice that using the rank scores to define S n (•) gives better empirical results. Namely, we used S n ( θ n ) = -X t( θ n )/n and S n ( θ 0 n ) = -X t( θ 0 n )/n. These fulfill the usual properties encountered for a differentiable criterion, namely S n ( θ n ) = 0 and H S n ( θ 0 n ) = 0. That is, the empirical score is zero for components of the parameter space that are unconstrained.

We note that our bootstrap modified criterion can be easily computed following the same lines. Indeed the modified optimization program min

θ n i=1 ρ τ y * i -x * i θ -S n ( θ 0 n )θ writes in dual form max t y * t| -X * t = n S n ( θ 0 n ), t ∈ [τ -1, τ ] n .
3 QLR Test under Misspecification

Asymptotic Test

We here state results under misspecification with i.i.d. data without imposing differentiability of the criterion. We consider the following assumption and definition.

Assumption A (a) Θ is open convex, θ † and θ 0 † as defined in (1.1)-(1.2) are unique. (b) Q n (•) is convex. (c) (2.
3) holds with A (θ) symmetric positive definite for all θ and

E D(z, θ † ) = 0. (d) n -1 n i=1 D(z i , θ + t) = n -1 n i=1 D(z i , θ) + A(θ)t + r n (t) r n (t) = o p ( t ) ∀θ, t. (e) n -1/2 n i=1 (D(z i , θ) -E D(z, θ)) d -→ N (0, B(θ)) ∀θ ∈ Θ.
(f ) d is full rank.

Definition 1 Let U = (U 1 , . . . U m ) be a vector of m independent standard normal variables and λ = (λ 1 , . . . λ m ) ∈ R m . The random variable m i=1 λ m U 2 m is distributed as a weighted sum of chi-squares with parameters (m, λ) and its distribution is denoted by M m (•, λ).

Theorem 3.1 For a random sample {z i , i = 1, . . . n}, under Assumption A, (a) Under H 0 , QLR n d -→ M r (•, λ), where λ is the vector of r eigenvalues of d A -1 † d -1 d A -1 † B † A -1 † d , where A † = A (θ † ) and B † = B (θ † ) . (b) Under H A , QLR n /n p -→ c > 0.
When the second Bartlett's identity holds, that is B † = A † , λ is a vector of ones and the QLR statistic asymptotically follows a centered chi-square distribution with r degrees of freedom. In a correctly specified linear regression, B † = σ 2 A † for homoscedastic errors with variance σ 2 , and we can easily render QLR asymptotically pivotal. In general however, the QLR statistic has a more involved asymptotic distribution under H 0 . Our general characterization of λ appears to be new, see Lien and Vuong (1987, Lemma 2) for an alternative one in the linear regression model.

Robust QLR Test

We here focus on an univariate restriction for which one can generally build a robust QLR statistic since λ is scalar. This is of particular empirical relevance for testing the significance of a specific parameter component. Given a consistent estimator λ n , the robust QLR statistic is

RQLR n = QLR n λ n d -→ χ 2 1 under H 0 ,
and a test can be entertained using standard critical values. Estimating λ requires consistent estimation of A -1 † and B † . One can use empirical analogs of the above matrices evaluated at a consistent estimator of θ † . The quantity

A -1 † B † A -1 †
happens to be the asymptotic variance of θ n , which should be estimated to build the robust Wald and Score statistics. Hence it is as easy (or as difficult) to build the robust QLR statistic than it is to get robust Wald or Score statistics.

For testing a single restriction d (θ † -h) = 0 in linear regression, an estimator of λ is easily obtained as

λ n = d E -1 n (xx )Σ n E -1 n (xx )d d E -1 n (xx )d with Σ n = E n (xx (y-x θ n ) 2 ) = n -1 n i=1 x i x i (y i -x i θ n ) 2 ,
see [START_REF] Eicker | Limit Theorems for Regressions with Unequal and Dependent Errors[END_REF] and White (1982). The numerator is the heteroscedasticity-robust variance estimator provided by most statistical software.

For quantile regression, A † = E (f ε (0|x)xx ) depends on the conditional density of the error term ε = y -x θ † . [START_REF] Powell | Estimation of Monotonic Regression Models UUnder Quantile Restrictions[END_REF] proposes to use the estimator

1 nh n i=1 K y i -x i θ n h x i x i (3.5)
where K(•) is a density and h a bandwidth. Also B † = E (τ -I(ε ≤ 0))2 xx can be estimated by the Eicker-type estimator

1 n n i=1 τ -I(y i -x i θ n ≤ 0) 2 x i x i ,
see [START_REF] Kim | Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression[END_REF].

Bootstrap Test

Our bootstrap test rejects H 0 if QLR n > q * 1-α , where q * 1-α is the 1 -α quantile of QLR * n . We first establish consistency of our bootstrap procedure. Theorem 3.2 Under Assumption A, QLR * n is bounded in probability conditionally on the sample, and under H 0 , Pr QLR * n ≤ x (y i , x i ) i=1,...,n -Pr (QLR n ≤ x) = o p (1).

As QLR * n is bounded in probability, it would be straightforward to show that our bootstrap test has non trivial power under √ n-local alternatives.

For an univariate restriction, we can obtain an asymptotically pivotal statistic, so we can hope to obtain asymptotic refinements. The next result confirms this holds for linear regression, irrespective of whether the model is well specified. 2 The only competing method that has been shown to yield asymptotic refinements under misspecification is the nonparametric bootstrap Wald test, see [START_REF] Hall | Bootstrap Critical Values for Tests Based on Generalized-Method-Of-Moments Estimators[END_REF]. From our previous results,

RQLR n = QLR n λ n = n θ n -h d d E -1 n (xx )Σ n E -1 n (xx )d -1 d θ n -h ,
and similarly

RQLR * n = QLR * n λ * n = θ * n -h d d E * -1 n (xx )Σ * n E * -1 n (xx)d -1 d θ * n -h , where Σ * n = E * n (xx (y -x θ * n ) 2 ) = n -1 n i=1 x * i x * i (y * i -x * i θ * n ) 2 .
Theorem 3.3 Under Assumption A and (a) the Cramer condition

lim t→∞ |E exp (i t d E -1 (xx )x (y -x θ † ))| < 1, (b) E (d E -1 (xx )xy) 12 < ∞ and E (d E -1 (xx )xx θ † ) 12 < ∞ , Pr RQLR * n ≤ x (y i , x i ) i=1,...,n -Pr (RQLR n ≤ x) = O p (n -3/2 ) under H 0 . Moreover if q * R,1-α is the 1 -α quantile of the bootstrap distribution of RQLR * n , P RQLR n ≤ q * R,1-α = 1 -α + O(n -2 ) under H 0 .
The Cramer condition automatically holds if some components of x have an absolutely continuous part. It is minimal to ensure that the influence function of the functional appearing in the quadratic form of QLR n is non lattice. The condition could be replaced by the multivariate Cramer condition lim ||u||→∞ |E exp(iu x(y -x θ † )| < 1. Moment conditions of order 12 ensure that the terms in the Edgeworth expansion of RQLR n depending on moments of order up to 6 match the empirical ones in the bootstrap distribution up to

O p (n -1/2
) by a standard CLT argument. Such conditions are implied by the existence of higher moments for both y and x.

4 Small Sample Evidence and Application

Simulations

We focused on inference on the coefficient β 2 in the assumed linear model

y i = β 0 + β 1 x 1i + β 2 x 2i + ε i .
We generated the variable y according to the model

y i = β 1 x 1i + β 2 x 2i + ψx 1i x 2i + (1 + l|x 2i |) η i ,
where (β 1 , β 2 ) = (0, 0). The variable x 1 is standard Gaussian, x 2 is independent lognormal with mean 0 and variance 1, and η is independently distributed as a Student law. This specification provides us with an asymmetric covariate and generates observations with high leverage, which can create serious obstacles to heteroscedasticity robust inference as shown by [START_REF] Chesher | The Finite-Sample Distributions of Heteroskedasticity Robust Wald Statistics[END_REF].

The parameter l controls heteroscedasticity. When ψ = 0, the linear conditional mean (or quantile) is misspecified. Due to the regressors' independence, β 2 is unchanged under misspecification of the conditional mean or median, which is convenient when studying the tests' behavior for ψ = 0. We considered values of l = 0.5 and ψ = 0.5, which corresponds to moderate misspecifications that could go unnoticed.

We ran 20000 simulations for n = 200. To speed up computations, we use the warpspeed method proposed by [START_REF] Davidson | Improving the Reliability of Bootstrap Tests with the Fast Double Bootstrap[END_REF] and studied by [START_REF] Giacomini | A Warp-Speed Method For Conducting Monte Carlo Experimens Involving Bootstrap Estimators[END_REF]. Specifically, for each considered null hypothesis, we drew one bootstrap and double bootstrap sample for each simulated data, and we used the whole set of bootstrap statistics to compute the bootstrap and double bootstrap p-values associated with each original statistic. We report our results using graphs. The first type of graph draws the errors in rejection probability (ERP), that is the difference between nominal size and the empirical rejection proportion under the null hypothesis. A perfect test would exhibit an ERP of zero for any nominal size. This gives us a visual way to evaluate whether the null distribution of the test statistic is well approximated by its asymptotic or bootstrap approximation. The second type of graph draws the power curves of each test.

Mean Regression

We set η ∼ t 5 . The QLR statistic was bootstrapped under the null (denoted by QLR0-b) and we used double bootstrap to obtain improvements (denoted by QLR0-db). We compare them to the usual bootstrap with naive resampling and testing -b and QLR-db). We also consider RQLR, the robust QLR statistic equal to the Wald one. We applied bootstrapping under the null (RQLR0-b)

β 2 = β 2 in the bootstrap world (QLR
as well as the usual nonparametric bootstrap (RQLR-b), see [START_REF] Hall | Bootstrap Critical Values for Tests Based on Generalized-Method-Of-Moments Estimators[END_REF].

When using robust statistics, we estimated the correction factor λ by the HC3 method, as recommended by [START_REF] Long | Using heteroscedasticity consistent standard errors in the linear regression model[END_REF] and [START_REF] Cribari-Neto | Numerical Evaluation of Tests Based on Different Heteroskedasticity-Consistent Covariance Matrix Estimators[END_REF].

Figure 1 gathers our results for size control. The robust asymptotic test is always undersized at usual nominal sizes, and bootstrap very imperfectly corrects this phenomenon.

The bootstrap test QLR-b is always oversized at usual nominal sizes and double bootstrap is moderately helpful. Double bootstrap under the null always yields the best size control.

Figure 2 gathers our results in terms of power. Tests that are systematically oversized have a slightly better power, as could be expected, while other tests have similar performances.

Quantile Regression Since most existing bootstrap methods for inference in quantile regression assume a correct model, see [START_REF] Kocherginsky | Practical Confidence Intervals for Regression Quantiles[END_REF] for a review, we For standard errors, we used the formula detailed in Section 3.2, and specifically we chose K(•) as the standard normal density and h = 0.79 n -1/5 IQR in (3.5). We also consider the percentile bootstrap, denoted as P-b, which was found to be the best performing method by [START_REF] Tarr | Small Sample Performance of Quantile Regression Confidence Intervals[END_REF]. We compare these to our bootstrap under the null QLR test, denoted as QLR0-b, and its double bootstrap version, QLR0-db.

We did not look at bootstrap with naive resampling for testing β 2 = β 2 in the bootstrap world, given its poor performances in our previous experiments. We considered several setups corresponding to median regression and quantile regression of order τ = 0.25, and η distributed as t 5 or t 1 . We report a selection of our results. 

Empirical Application.

We considered some parametric quantile models for children birthweight using data analyzed by [START_REF] Abrevaya | The Effects of Demographics and Maternal Behavior on the Distribution of Birth Outcomes[END_REF] and [START_REF] Koenker | Quantile Regression[END_REF], who also gave a detailed data description.

We focused on median regression and lower quantiles regression on a subsample of 1089 (2017) reported that there may be misspecification for lower quantiles, but did not find evidence of misspecification in median regression. In Table 1, we report 90% confidence intervals for the CIGAR parameter using the same methods as in our simulations. We considered 999 bootstrap samples for each potential value of the parameter.

For median regression, there are little differences between the outcomes of different methods, but confidence intervals from QLR0-b and QLRO-db are among the shortest, while the bootstrap Wald and percentile intervals are largest. For lower quantiles, the asymptotic Wald-based confidence interval is mostly shortest, while the bootstrap one is much larger. This is coherent with our simulation findings: Wald test does not control size well and can be severely oversized, and the bootstrap makes it more conservative. The difference between confidence intervals can be so large that for τ = 0.25 the Wald and percentile bootstrap signals a significant effect of cigarettes consumption on birthweight, while the confidence intervals based on QLR indicates a non-significant effect. For τ = 0.1, our bootstrap method delivers tighter intervals than competing bootstrap methods, which is likely related to its superior power performances under misspecification as observed in simulations.

Conclusion

We propose a simple bootstrap method, bootstrapping under the null, for quasi likelihoodratio tests that provides valid critical values even under misspecification. A key advantage of QLR tests is that they do not necessitate to estimate a robust-covariance matrix: this can be difficult, as in quantile regression, and can severely affect size control and power performances. We found that our method yield in practice rejection probabilities that are close to nominal levels in small samples, and double bootstrapping under the null the nonrobust QLR is preferable to relying on a robust version for size control as well as power.

We considered an i.i.d. setting and a particular class of convex estimation criteria, but it is likely that the same idea could be extended to dependent data and more general criteria.

We intend to investigate along these lines in future work.

Proofs

We first recall two useful results. Theorem 6.2 (Hjort and Pollard (1993, Basic Corollary)) Suppose A n (s) is convex and can be represented as 1 2 s V s + U n s + C n + r n (s), where V is symmetric and positive definite, U n is stochastically bounded, C n is arbitrary, and r n (s) = o p (1) for each s. Then α n , the argmin of A n (s), is only o p (1) away from β n = -V -1 U n , the argmin of 1 2 s V s+U n s. 

If also U n d -→ U then α n d -→ -V -1 U . Proof of Theorem 3.1. (a) Let ∆ n = n -1/2 n i=1 D i (z i , θ † ). Write n Q n (θ † + t/ √ n) -Q n (θ † ) = ∆ n t
n Q n (H(γ † + u/ √ n) + h) -Q n (Hγ † + h) = ∆ n Hu + 1 2n u H A † Hu + nR n (Hu/ √ n) ⇒ √ n( θ 0 n -θ † ) = -H(H A † H) -1 H ∆ n + o p (1) .
From the quadratic approximation of Q n (θ † ),

QLR n = n( θ n -θ * ) A † ( θ n -θ * ) -n( θ 0 n -θ † ) A † ( θ 0 n -θ † ) + o p (1)

= n( θ n -θ 0 n ) A † ( θ n -θ 0 n ) + o p (1) , because ( θ n -θ 0 n ) A † ( θ 0 n -θ † ) = o p (1). This is a quadratic form in the vector √ n( θ n -θ 0 n ) = A -1 † -H(H A † H) -1 H ∆ n + o p (1) .

It thus converges to a weighted sum of independent chi-squares with one degree of freedom.

From Vuong (1989, Lemma 3.2), the vector λ contains the eigenvalues of

B † A -1 † -H(H A † H) -1 H A † A -1 † -H(H A † H) -1 H = B † A -1/2 † M A -1/2 † . d E * -1 n (xx )Σ * n E * -1 n (xx )d
.

Since γ(P ) is a smooth functional of moments, its influence function is given by

γ (1) (y, x) = d E -1 (xx )d -1 d E -1 (xx )x(y -x θ † ) -d (θ † -h) d E -1 (xx ) (xx -E xx ) E -1 (xx )d (d E -1 (xx )d) 2 .
then follows from the fact that k j,n -k j = O P (n -1/2 ), for j = 2, 4, 6, which is ensured by the moment conditions of order 12 (since k 6 contains moments of order 6 of the gradient, we need moments of order 12 to ensure that a CLT holds). The result about coverage probability follows from [START_REF] Hall | On the Bootstrap and Confidence Intervals[END_REF].

Figure 1 :Figure 2 :

 12 Figure 1: Errors in Rejection Probabilities for mean regression with η ∼ t 5 .

Figures 3

 3 Figures 3 and 5 gather our results for size control in median regression, while Figure7consider quantile regression of order 0.25. Under misspecification, the asymptotic robust Wald test does not perform well, and bootstrap is not very successful at correcting this phenomenon. The percentile bootstrap performs better, but double bootstrap under the null of the QLR test provides the best size control. Figures 4, 6, and 7 reports power curves. Misspecification, and in particular heteroscedasticity, has very adverse effects on the tests' performances. Under misspecification, Wald tests can have an erratic behavior, leading to a sometimes non-monotone power. Besides the Wald test, QLR-0db has always highest power under misspecification.

Figure 4 :Figure 6 :Figure 7 :

 467 Figure 4: Power curves for median regression with η ∼ t 5 .

Theorem 6. 1 (

 1 Andersen and Gill (1982, Theorem II.1)) Let Q n (•) be a sequence of random convex functions defined on an open convex Θ such that Q n (θ) p -→ Q(θ) for any θ ∈ Θ. Then for any compact subset K of Θ, sup θ∈K |Q n (θ) -Q(θ)| p -→ 0.

Table 1 :

 1 90% Confidence Intervals for CIGAR parameter

		τ = 0.1	τ = 0.25	τ = 0.5
	Wald	[-13.83 , 1.49] [-9.65 , -0.54] [-9.46 , -1.31]
	Wald-b	[-17.09 , 4.67] [-10.14 , -0.07] [-9.93 , -0.86]
	P-b	[-15.60 , 3.15] [-10.00 , -0.03] [ -9.83 , -0.94]
	QLR0-b	[-15.72 , 1.73] [-9.86 , 0.23] [-8.95 , -0.93]
	QLR0-db [-16.06 , 1.73] [-9.87 , 0.41]	[-8.95 , -0.74]
	smoking college graduate white mothers. We considered a model linear in (i) weight gain
	during pregnancy, (ii) average number of cigarettes per day (denoted as CIGAR), and (iii)

dummies indicating whether the child is male and whether the mother is married, and quadratic in mother's age as suggested by

[START_REF] Koenker | Quantile Regression[END_REF]

. Maistre, Lavergne, and Patilea

  = o p ( t 2 ) for all t. By Theorem 6.2, √ n( θ n -θ † ) = -A -1 † ∆ n + o p (1). Rewrite the null hypothesis as H 0 : θ † = Hγ † + h, then under H 0

		+	1 2	t At + nR n (t/ √	n) ,
	with nR n (t/ √	n)		

This comes from rewriting the null hypothesis as θ † = Hγ † + h.

We focus on least-squares regression, as the Edgeworth expansion for quantiles is typically non-standard due to the lattice nature of the subgradient, see e.g.[START_REF] Falk | Edgeworth Expansions for Studentized and Prepivoted Sample Quantiles[END_REF].

* This research has been conducted as part of the project Labex MME-DII (ANR11-LBX-0023-01). Pascal Lavergne acknowledges support from ANR under grant ANR-17-EURE-0010 (Investissements d'Avenir program).

As M is idempotent, the above has the same eigenvalues as M A

is an orthogonal matrix. Hence W has the same eigenvalues as CM A

. These are unchanged by pre-multiplying by d A -1 † d -1/2 and post-multiplying by its inverse.

where

A similar reasoning shows that

n has conditionally on the initial sample the same asymptotic distribution than ∆ 0 n -n 1/2 E D(z, θ 0 † ) by [START_REF] Gine | Bootstrapping General Empirical Measures[END_REF], it is bounded in probability. Moreover,

, and QLR * n is conditionally on the initial sample asymptotically distributed as M r (•, λ).

Proof of Theorem 3.3. We adopt a functional view of the regression parameters, which allows to compute the influence functions of the parameters and prove the asymptotic validity of the method when standardizing by the correct variance. We then derive Edgeworth expansions of the bootstrap and original statistic and show that their coefficients coincide up to terms of order O p (n -1/2 ). Define

Let γ(P n ) ≡ γ n and γ(P * n ) ≡ γ * n be similar quantities defined by replacing E by E n or E * n . Then

Define the empirical counterpart and its bootstrap version as

and

.

Provided ω 2 exists and is different from zero, n 1/2 ω -1 n (γ n -γ) d -→ N (0, 1), since this is the ratio of two continuously Hadamard differentiable functionals from van der Vaart (1998, Theorem 20.8). Similarly,

-→ N (0, 1) conditionally on the original sample from [START_REF] Gill | Non-and Semi-Parametric Maximum Likelihood Estimators and the Von Mises Method (Part 1) [with Discussion and Reply[END_REF]. As RQLR n = n 1/2 ω -1 n (γ n -γ) 2 and γ is a smooth functional of moments with regular gradients (influence functions), n 1/2 ω -1 n (γ n -γ) admits an Edgeworth expansion up to O(n -2 ), under moments of order 6 of the gradients and the Cramer condition of Theorem 3.3, see [START_REF] Bhattacharya | On the Validity of the Formal Edgeworth Expansion[END_REF]. Moreover, by symmetry, we have that uniformly in x ≥ 0

Explicit expressions of the cumulants k 2 , k 4 and k 6 are given in Bertail and Barbe (1995, Appendix 2), where the coefficients involve both the influence function γ (1) (y, x) of γ and the one of ω 2 , see also [START_REF] Withers | Expansions for the Distribution and Quantiles of a Regular Functional of the Empirical Distribution with Applications to Nonparametric Confidence Intervals[END_REF]Withers ( , 1984) ) and Hall (1992). The bootstrap distribution of n 1/2 ω * -1 n (γ * n -γ n ) has the same functional form and thus admits the same Edgeworth expansion with true cumulants replaced by the empirical ones k 2,n , k 4,n and k 6,n . The result