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To deal with time series process with excess of zeros, we extend the INAR(1) process by considering that the innovations follow dierent zeroinated models, called the ZI-INAR(1) model. We present some of its theoretical properties, develop an ecient EM algorithm for parameter estimation and propose several bootstrap techniques to construct condence intervals for the parameters. Finally, we present the relevance and applicability the of proposed ZI-INAR(1) model through simulation studies and an application to a real dataset.

To analyze discrete time series with excess of zeros, in this manuscript we extend the ZINAR(1) model, considering that the innovations follow a class of zero-inated (ZI) models, called the ZI-INAR(1) model. Some properties, such as mean, variance and joint distribution are developed. We propose an EM algorithm to estimate the unknown parameters by maximizing the conditional likelihood function. For this purpose, we start by introducing some denitions, notations and properties about the rst-order integer valued autoregressive processes INAR [START_REF] Abramowitz | Handbook of mathematical functions: With formulas, graphs, and mathematical tables applied mathematics series[END_REF] and the zero-inated (ZI) models.

Denition 1 Let X be a non-negative integer-valued random variable (r.v.) and α ∈ [ 0, 1]. Then, the thinning operator `•' [START_REF] Steutel | Discrete analogues of self-decomposability and stability[END_REF] is dened as:

α • X = X i=1 Z i , (1) 
where {Z i } i≥1 is a sequence of independent identically distributed (iid) Bernoulli random variables independent of X, with P (Z i = 1) = α.

Thus, considering Denition 1, the INAR(1) processes have the following stochastic structure:

Y t = α • Y t-1 + V t , t ∈ Z, (2) 
where {V t } t∈Z is a sequence of non-negative integer-valued random iid variables, called innovations, with E(V t ) = µ < ∞, V ar(V t ) = σ 2 < ∞ and independent of Y t-1 , for all t.

It is important to note that given Y t-1 = y t-1 > 0, the r.v. α • Y t-1 follows a binomial distribution, with parameters y t-1 and α, and given Y t-1 = 0, we have that α • Y t-1 is a r.v. degenerate at zero. As discussed by [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR (1)) process[END_REF] and [START_REF] Du | The Integer Valued Autoregressive (INAR(p)) Model[END_REF], if α ∈ (0, 1), then {Y t } t∈Z is a stationary process, whereas α = 0 and α = 1 imply, respectively, independence and non-stationarity. Also, if 0 ≤ α < 1, the INAR(1) process is second-order stationary.

Several zero-inated models have been proposed in the literature to accommodate simultaneously both overdispersion and excess zeros: (i) the zeroinated Poisson (ZIP) model, [START_REF] Lambert | Zero-inated Poisson regression, with an application to defects in manufacturing[END_REF], in which the zero counts can come from two sources: from the Poisson distribution (sampling zeros) or from Bernoulli distribution (structural zeros); (ii) the zero-inated negative binomial distribution (ZINB), [START_REF] Hall | Zero-inated Poisson and Binomial regression with random eects: a case study[END_REF], [START_REF] Ridout | A score test for testing a zero-inated Poisson regression model against zero-inated negative binomial alternatives[END_REF], [START_REF] Garay | On estimation and inuence diagnostics for zero-inated negative binomial regression models[END_REF], which is obtained by mixing a Bernoulli distribution with a baseline negative binomial (NB) distribution over the ZIP model, among others.

In the following, we dene the zero-inated distributions, through their hierarchical formulation and introduce some further properties and three particular cases. Denition 2 The discrete r.v. V follows a zero-inated (ZI) distribution, with parameters ρ and λ, if it has the following stochastic representation:

V = BU, B⊥U,
where B is a Bernoulli r.v., with P (B = 1) = 1 -ρ and 0 ≤ ρ < 1. U is a nonnegative discrete r.v., with probability mass function (pmf ) h U (u|λ). λ can be a scalar or vector parameter, indexing the distribution of U . B⊥U indicates that the r.v. B and U are independent.

As consequence of Denition 2, we can obtain the pmf of V , given by:

P (V = v) = ρ + (1 -ρ) h U (0|λ) v = 0 (1 -ρ) h U (v|λ) v ≥ 1, (3) 
where h U (v|λ) = P (U = v). We denote V ∼ ZI(ρ, λ; h U (•)).

E [V ] = (1 -ρ) E [U ] and V ar [V ] = (1 -ρ) V ar [U ] + ρE 2 [U ] . (4) 
The distribution of the r.v. U determines the form of the ZI distribution. Thus, we describe briey three particular cases of the exible ZI models:

The zero-inated Poisson (ZIP) model:

In this case, we assume that the r.v. U follows a Poisson distribution, with mean λ. Thus, a pmf of the r.v. V , dened in Equation ( 3), takes the form:

P (V = v) = ρ + (1 -ρ) e -λ , v = 0 (1 -ρ) e -λ λ v v! v ≥ 1. (5) 
We use the notation V ∼ ZIP (ρ, λ) so that:

E [V ] = (1 -ρ) λ and V ar [V ] = (1 -ρ) λ (1 + ρλ) .
The zero-inated negative binomial (ZINB) model:

The ZINB distribution is the result of considering that the r.v. U follows a negative binomial distribution, as in Equation ( 3). We denote by V ∼ ZINB (ρ, µ, φ) and its pmf is given by:

P (V = v) =          ρ + (1 -ρ) φ µ+φ φ , v = 0 (1 -ρ) Γ (φ + v) Γ (v + 1)Γ (φ) µ µ + φ v φ µ + φ φ , v ≥ 1
where µ ≥ 0 and φ > 0 is the dispersion parameter. Γ (•) represents the gamma function. We have that:

E [V ] = (1 -ρ)µ and V ar [V ] = (1 -ρ) µ 1 + µ φ + ρµ .
When ρ = 0, the r.v. V follows a negative binomial distribution, with mean µ and dispersion parameter φ, denoted by V ∼ NB(µ, φ). For more details, see [START_REF] Hall | Zero-inated Poisson and Binomial regression with random eects: a case study[END_REF], [START_REF] Ridout | A score test for testing a zero-inated Poisson regression model against zero-inated negative binomial alternatives[END_REF], [START_REF] Garay | On estimation and inuence diagnostics for zero-inated negative binomial regression models[END_REF], [START_REF] Martinez-Flores | Asymmetric regression models with limited responses with an application to antibody response to vaccine[END_REF], [START_REF] Garay | Bayesian estimation and case inuence diagnostics for the zero-inated Negative Binomial regression model[END_REF].

The zero-inated Poisson inverse Gaussian (ZIPIG) model:

This case arises when we consider that U , given in Equation ( 3), follows a Poisson inverse Gaussian (PIG) distribution. The pmf of the r.v. V , denoted by V ∼ ZIPIG(ρ, λ, φ), is:

P (V = v) =          ρ + (1 -ρ)e φ- √ φ(φ+2λ) , v = 0; (1 -ρ) 2 ρ [φ(φ + 2λ)] -(v-1/2) 2 e φ (λφ) v v! K v-1/2 φ(φ + 2λ) , v ≥ 1 . . .
where, µ > 0 is the mean, φ is a dispersion parameter and

K λ (t) = 1 2 ∞ 0 u λ-1 e -t 2 (u+ 1 u
) du is the modied Bessel function of the third kind, [START_REF] Abramowitz | Handbook of mathematical functions: With formulas, graphs, and mathematical tables applied mathematics series[END_REF]. When ρ = 0, the r.v. V follows a PIG distribution, with mean λ and dispersion parameter φ, denoted by V ∼ PIG(µ, φ), and we have that:

E [V ] = (1 -ρ)µ and V ar [V ] = (1 -ρ) µ 1 + µ φ + ρµ .
The ZIPIG distribution is a particular case of the mixed Poisson (MP) distribution, with hierarchical representation:

V |Z = z ∼ Poisson(µz),
where Z follows an Inverse Gaussian (IG) distribution, with mean 1 and dispersion parameter φ, denoted by Z ∼ IG(1, φ). More details are presented and discussed by [START_REF] Karlis | A general em approach for maximum likelihood estimation in mixed poisson regression models[END_REF] and [START_REF] Barreto-Souza | General mixed poisson regression models with varying dispersion[END_REF].

This manuscript is organized as follows. Section 2 outlines the proposed ZI-INAR(1) model and discusses some mathematical properties, including the likelihood function. Section 3 presents the implementation of an EM-type algorithm to estimate the parameters of the model and proposes several bootstrap methods to construct condence intervals for the parameters. The suitability and applicability of the process are illustrated in Sections 4 and 5, through simulation studies and analysis of real dataset, respectively. Finally, Section 6 concludes with short remarks and some possible avenues for future research.

The ZI-INAR(1) process

The ZI-INAR(1) process is an integer-valued rst-order autoregressive process, with ZI innovations, as presented in Equation (2), given by:

Y t = α • Y t-1 + V t , t ∈ Z, (6) 
where V t ∼ ZI(ρ, λ; h U (•)).

Mathematical properties

In this subsection, we present some mathematical and structural properties of the corresponding marginal distributions of the process:

Proposition 1 Let {Y t } t∈Z be a stationary ZI-INAR(1) process; then:

E[Y t ] = (1 -ρ)E[U t ] 1 -α and V ar[Y t ] = (1 -ρ) αE[U t ] + ρE[U t ] 2 + V ar[U t ] 1 -α 2 ,
where U t denotes a r.v. with density function (or pmf) h U (u|λ), for all t ∈ Z.

Proof By using the expectation obtained in Eq. ( 4), we have that:

E[Y t |Y t-1 ] = E[α • Y t-1 + V t |Y t-1 ] = E[α • Y t-1 |Y t-1 ] + E[V t |Y t-1 ] = αY t-1 + (1 -ρ) E [U t ] . (7) 
Thus,

E[Y t ] = E [E (Y t |Y t-1 )] = E [αY t-1 + (1 -ρ) E (U t )] = αE[Y t-1 ] + (1 -ρ) E [U t ] . (8) 
Eq. ( 8) is a consequence of the fact that the process is stationary, that is,

E[Y t ] = µ Y , for all t ∈ Z.
To obtain the variance of the process, we use:

V ar[Y t |Y t-1 = y t-1 ] = V ar[α • Y t-1 + V t |Y t-1 = y t-1 ] = V ar[α • Y t-1 |Y t-1 = y t-1 ] + V ar[V t |Y t-1 = y t-1 ] = α(1 -α)y t-1 + (1 -ρ) V ar [U t ] + ρE 2 [U t ] . (9) 
Thus, by [START_REF] Politis | The stationary bootstrap[END_REF] and ( 9) we obtain:

V ar[Y t ] = V ar[E(Y t |Y t-1 )] + E[V ar(Y t |Y t-1 )] = α 2 V ar[Y t-1 ] + α(1 -α)E[Y t-1 ] + (1 -ρ)(V ar[U t ] + ρE 2 [U t ]) = α 2 V ar[Y t-1 ] + α(1 -ρ)E[U t ] + (1 -ρ)(V ar[U t ] + ρE 2 [U t ]), (10) 
where [START_REF] Garay | On estimation and inuence diagnostics for zero-inated negative binomial regression models[END_REF] is obtained by the expectation given in Eq. ( 8).

The likelihood function

Let y = (y 1 , y 2 , . . . , y n ) be realizations of the ZI-INAR(1) process. Then the likelihood function of the unknown parameters θ = (α, ρ, λ) , given y, can be written as:

L (θ|y) = P (Y 1 = y 1 , Y 2 = y 2 , . . . , Y n = y n ) = P (Y 1 = y 1 ) P (Y 2 = y 2 |Y 1 = y 1 ) . . . P (Y n = y n |Y 1 = y 1 , . . . , Y n-1 = y n-1 ) = P (Y 1 = y 1 ) n t=2 P (Y t = y t |Y t-1 = y t-1 ) , (11) 
where

P (Y t = y t |Y t-1 = y t-1 ) = min{yt-1,yt} k=0 y t-1 k α k (1 -α) yt-1-k × ρI {0} (y t -k) + (1 -ρ)h (y t -k|λ) . ( 12 
)
I A (•) denotes the indicator function, i.e., I A (y) = 1, if y ∈ A and I A (y) = 0 otherwise.

Note that Equation [START_REF] Hall | Zero-inated Poisson and Binomial regression with random eects: a case study[END_REF] represents the probability transition of a stationary Markov chain, of state y t-1 to y t . Thus, the marginal probability function can be dened by:

P (Y t = y t ) = ∞ yt-1=0 P (Y t-1 = y t-1 ) P (Y t = y t |Y t-1 = y t-1 ) . ( 13 
)
From Equations (11)(13), we have that:

L (θ|y) = P (Y 1 = y 1 ) n t=2 min{yt-1,yt} k=0 y t-1 k α k (1 -α) yt-1-k × ρI {0} (y t -k) + (1 -ρ)h (y t -k|λ) . (14) 
The marginal distribution is intractable, so a simple approach to deal with this is to condition it on the observed Y 1 , and estimate the parameters by conditional maximum likelihood (CML); see [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR (1)) process[END_REF] and [START_REF] Jazi | First-order integer valued AR processes with zero inated Poisson innovations[END_REF]. To estimate the parameters of the ZI-INAR (1) process by maximizing this conditional likelihood function directly prevents the possibility of analytical solutions. One alternative is to maximize the complete conditional likelihood using the expectationmaximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], which is stable and straightforward to implement, since the iterations converge monotonically and no second derivatives are required. In the next section, we discuss a technique to nd the ML estimates of the parameters vector θ, based on the EM algorithm.

3 Maximum likelihood estimation and bootstrap resampling methods

Parameter estimation via the EM algorithm

In this section we develop an EM-type algorithm for maximum likelihood estimation of the parameters of the ZI-INAR(1) process. The key to the development of our EM-type algorithm is to consider the presence of latent variables and treat the problem as if these variables were in fact observed.

As suggested by [START_REF] Hall | Zero-inated Poisson and Binomial regression with random eects: a case study[END_REF] and [START_REF] Neal | MCMC for integer-valued ARMA processes[END_REF], we dene the latent variables W = (W 1 , . . . , W n ) and S = (S 1 , . . . , S n ) for all t ≥ 1, where:

S t is dened by S t = α • Y t-1 . Thus S t |Y t-1 = y t-1 , α ∼ Bin (y t-1 ; α i ) , if y t-1 >
0 and it is a degenerate distribution at zero if y t-1 = 0, where Bin (y; α) represents the binomial distribution with parameters y and α ∈

[0, 1].
W t is a latent dichotomous variable, that is:

W t = 1 if V t is from the zero state 0 if V t ∼ h (•|λ), with P (W t = 1) = ρ and h (•|λ) as presented in Denition 2.
Let Y c = (Y, W, S) be the complete data vector, where Y and {W, S} represent the observed data and the missing data, respectively, with Y = (Y 1 , . . . , Y n ) . Then the joint probability function for Y ct = (Y t , S t , W t ) is given by:

P (Y ct = y ct ) = P (Y t = y t , S t = s t , W t = w t |Y t-1 = y t-1 ) = P (Y t = y t , W t = w t |S t = s t , Y t-1 = y t-1 ) P (S t = s t |Y t-1 = y t-1 ) = ρ wt ((1 -ρ) h(y t -s t |λ)) 1-wt × y t-1 s t α st (1 -α) yt-1-st , for all t ≥ 1.
Thus, the complete likelihood function is dened by:

L c (θ|y c ) = P (Y 1 = y 1 ) n t=2 P (Y t = Y t , S t = s t , W t = w t |Y t-1 = y t-1 ) ∝ n t=2 ρ wt ((1 -ρ) h (y t -s t |λ)) 1-wt y t-1 s t α st (1 -α) yt-1-st .
Hence, the complete log-likelihood function is given by:

c (θ|y c ) = log (L c (θ|y c )) ∝ n t=2 w t log (ρ) + n t=2 (1 -w t ) log (1 -ρ) + n t=2 (1 -w t ) log (h (y t -s t |λ)) + n t=2 s t log (α) + n t=2 (y t-1 -s t ) log (1 -α) .
The EM algorithm has several appealing properties relative to other iterative algorithms such as Newton-Raphson and Fisher's scoring method for nding MLEs, [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF]. One of them is that the sequence of estimates from the EM algorithm increases the likelihood function (θ|y) at each iteration, and under standard regularity conditions the sequence converges to a stationary point of the likelihood.

Thus, the EM-algorithm proceeds in two steps:

E-step: Let θ (k)
be the current k-th step estimate of θ. By using the property of conditional expectation, we compute the Q(θ| θ

(k)
) function

given by:

Q(θ| θ (k) ) = E c (θ|y c )|y, θ (k) 
.

(

) M-step: Maximize Q(θ| θ (k) 15 
) with respect to θ, obtaining θ

.

Observe that the expression of the Q-function, in Eq. ( 15), is determined by the knowledge of the following expectations:

s (k) t = E S t |y, θ (k) 
w

(k) t = E W t |y, θ (k) 
and

Q * t (λ|θ (k) ) = E (1 -W t ) log h(y t -S t |λ)|y, θ (k) 
.

Thus, the Q-function can be written in more simple form as:

Q(θ| θ (k) ) ∝ n t=2 w (k) t log (ρ) + n t=2 1 -w (k) t log (1 -ρ) + n t=2 Q * t (λ|θ (k) ) + n t=2 s (k) t log (α) + n t=2 y t-1 -s (k) t log (1 -α) .
At each step, s

(k) t can be obtained by using the following results:

P S t = s t |Y t-1 = y t-1 , θ (k) = P S t = s t , Y t = y t |Y t-1 = y t-1 , θ (k) 
P Y t = y t |Y t-1 = y t-1 , θ (k) = P Y t = y t |S t = s t , Y t-1 = y t-1 , θ (k) 
× P S t = s t |Y t-1 = y t-1 , θ (k) min{yt-1,yt} st=0 P Y t = y t , S t = s t |Y t-1 = y t-1 , θ (k) = y t-1 s t (α (k) ) st (1 -α (k) ) yt-1-st ρ (k) I {0} (y t -s t ) + (1 -ρ (k) )h(y t -s t |λ (k) ) min{yt-1,yt} st=0 P Y t = y t , S t = s t |Y t-1 = y t-1 , θ (k) (16) 
and

P W t = w t |Y t-1 = y t-1 , θ (k) = P W t = w t , Y t = y t |Y t-1 = y t-1 , θ (k) P Y t = t t |Y t-1 = y t-1 , θ (k) = P W t = w t , Y t = y t |Y t-1 = y t-1 , θ (k) min{yt-1,yt} st=0 P Y t = y t , S t = s t |Y t-1 = y t-1 , θ (k) 
.

Then, for all t ≥ 1, we have that:

s (k) t = min{yt-1,yt} st=0 
s t P S t = s t |Y t-1 = y t-1 , θ (k) (17) 
w

(k) t = 1 × P W t = 1|y, θ (k) 
=

P W t = 1, Y t = y t |Y t-1 = y t-1 , θ (k) min{yt-1,yt} st=0 P Y t = y t , S t = s t |Y t-1 = y t-1 , θ (k) 
.

Therefore, our EM algorithm for the ZI-INAR(1) process can be summarized in the following way:

E-step: Given θ (k) , for t ≥ 1 we compute s (k) t , w (k) 
t , as given in Eq. ( 17)- [START_REF] Lahiri | Resampling Methods for Dependent Data[END_REF], respectively, and

Q * t (λ|θ (k) ). M-step: Update θ (k) by maximizing Q(θ| θ (k)
) over θ, which leads to the following expressions:

α (k+1) = n t=2 s t n t=2 y t-1 , ρ (k+1) = n t=2 w t n -1 , λ (k+1) = arg max λ n t=2 Q * t (λ|θ (k) ) . (19) 
In the following, we develop the procedure to obtain the expressions

Q * t (λ|θ (k) ) and λ (k+1)
, considering the three particular cases of the ZI models seen before, i.e., when V ∼ ZI(ρ, λ). For this, we dene the expectation b t s t with B t = 1 -W t , given by:

b t s t = E B t S t |y, θ (k) = 1 -ρ (k) min{yt-1,yt} st=0 s t y t-1 s t α (k) st 1 -α (k) yt-1-st h y t -s t | λ (k) P Y t = y t |Y t-1 = y t-1 , θ (k) 
.

Thus,

-If V t ∼ ZIP(ρ,λ), then from Eq. ( 5) h(•|λ) represents a pmf of the Poisson distribution, with parameter λ. Consequently,

Q * t (λ|θ (k) ) ∝ -λ(1 -w (k) t ) + log(λ)(1 -w (k) t )y t + log(λ) b t s t (k) (20) 
and from Eq. ( 19) and ( 20):

λ (k+1) = n t=2 (1 -w (k) t )y t - n t=2 b t s t (k) n t=2 (1 -w (k) t )
.

-If V t ∼ ZINB(ρ,µ,φ), then h(•|λ) represents the pmf of the negative binomial distribution with parameters λ = (µ, φ). Thus,

Q * t (λ|θ (k) ) ∝ g t (φ) (k) + log(µ) -log(µ + φ) (1 -w (k) t )y t -b t s t (k) + -log (Γ (φ)) + φ (log(φ) -log(µ + φ)) 1 -w (k) t (21) 
with

g t (φ) (k) = E B t log Γ (y t -S t + φ)|y, θ (k) = 1 -ρ (k) min{yt-1,yt} st=0 log Γ (y t -s t + φ)P(S t = s t |Y t-1 = y t-1 , θ (k) 
)h(y t -s t | θ

)

P Y t = y t |Y t-1 = y t-1 , θ (k) 
.

(

) 22 
When the M-step turns out to be analytically intractable, it can be replaced by a sequence of conditional maximization (CM) steps. The procedure is known as the ECM algorithm [START_REF] Meng | Maximum likelihood estimation via the ECM algorithm: A general framework[END_REF]. Thus, from Eq. ( 19), ( 21) and ( 22), we have that for the ZINB-INAR(1) process, λ

= ( µ (k+1) , φ (k+1) ) are given by:

µ (k+1) = n t=2 (1 -w (k) t )y t - n t=2 b t s t (k) n t=2 (1 -w (k) t )
.

φ (k+1) = arg max φ n t=2 Q * t (µ (k+1) , φ| θ (k) )
φ (k+1) is obtained using the optim routine in the R software ( [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]).

-If V t ∼ ZIPIG(ρ,µ,φ), then λ = (µ, φ) and Its hierarchical representation is:

V t |Z t = z t , W t = 0 ∼ Poisson(µz t ) V t |Z t = z t , W t = 1 follows a degenerate at zero; (23) 
Z t |W t = 0 ∼ IG(1, φ), (24) 
W t ∼ Bin(1, ρ), t = 2, 3, . . . , (25) 
the density function of Z t |W t = w t is:

f (z t |w t ) = φ 1/2 z -3/2 t exp - φ 2 (z t -1) 2 z t 1-wt . (26) 
In order to develop the EM algorithm for the ZIPIG-INAR model, we add the latent variable Z t . Thus, the complete-data is dened by Y c = (Y, W, S, Z). Thus,

Q * t (µ, φ|θ (k) ) ∝ -µ b t z t (k) -log(µ) b t s t (k) + log(µ)(1 -w (k) t )y t + log(φ) 2 (1 -w (k) t ) + φ(1 -w (k) t ) - φ 2 b t z t (k) + b t /z t (k) , (27) 
where the expectations b t z t (k)

and b t /z t (k)
are dened by:

b t z t (k) = E E B t Z t |S t , y, θ (k) = min{yt-1,yt} st=0 1 -ρ (k) (y t -s t + 1)h y t -s t + 1| λ (k) × P S t = s t |Y t = y t , Y t-1 = y t-1 , θ (k) 
× 1

µ (k) ρ (k) I {yt=st} + 1 -ρ (k) h y t -s t | λ (k) (28) 
and

b t /z t (k) = E E B t Z -1 t |S t , , y, θ (k) = min{yt-1,yt} st=0 µ (k) h(y t -s t -1| λ (k) )P(S t = s t |Y t = y t , Y t-1 = y t-1 , θ (k) 
)

(y t -s t )h(y t -s t | λ (k) 
)

I {yt>st} + ρ (k) ( ρ (k) + 2 µ (k) ) + 1 1 -ρ (k) h(0| λ (k) 
)

× P S = y t |Y t = y t , Y t-1 = y t-1 , θ (k) 
× 1

ρ (k) ρ (k) + 1 -ρ (k) h 0| λ (k) I {yt=st} , (29) 
where

P S t = s t |Y t = y t , Y t-1 = y t-1 , θ (k) 
is given in Eq. ( 16). Thus, from Eq. ( 19) and ( 27), we have that:

µ (k+1) = n t=2 (1 -w (k) t )y t - n t=2 b t s t (k) n t=2 b t z t . φ (k+1) = n t=2 (1 -w (k) t ) n t=2 b t z t (k) + n t=2 b t /z t (k) -2 n t=2 (1 -w (k) t ) 
.

This process is iterated until some convergence rule is satised. Here, we use the Aitken acceleration-based stopping criterion [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF] as a convergence rule.

This criterion is based on the fact that the limit of the sequence (k+1) = ( θ (k+1) |y), denoted by ∞ , can be approximated by

(k+1) ∞ = (k) + ( (k+1) - (k) )/(1 -c (k) ), where c (k) = ( (k+1) -(k) )/( (k) -(k-1)
). As suggested by [START_REF] Zeller | Finite mixture of regression models for censored data based on scale mixtures of normal distributions[END_REF], we decided to stop the algorithm when (k+1) ∞ -(k+1) < ε = 10 -5 .

Bootstrap resampling methods

In this section, we propose several bootstrap alternatives to construct condence intervals for the parameter. Actually, we can indierently use the posterior mean of the Bayesian approach or the standard maximum likelihood estimators (mle), or any other ecient estimators. In any case, the standard error can be dicult to compute, so several bootstrap approaches can be used to solve this issue. Here we propose two types of approaches, based respectively on some strong parametric assumptions, on the mixing properties of the INAR(p) process and on the Markov property of this process.

(a) Parametric bootstrap approach:

Let θ = (α, ρ, λ) be the parameters of the ZI-INAR(1) process, where we denote θ n = ( α n , ρ n , λ n ) as the mle estimator obtained using the EM algorithm developed in Section 3.1. The properties of mle for general INAR(p) models are studied, for instance, in [START_REF] Du | The Integer Valued Autoregressive (INAR(p)) Model[END_REF], who showed strong consistency of mle, and [START_REF] Latour | Existence and Stochastic Structure of a Non Negative Integer-Valued Autoregressive Process[END_REF] who studied the eciency and asymptotic normality in Proposition 6.1. Other estimators, based on saddle point approximation of the likelihood, which may be easier to implement, were proposed in [START_REF] Pedeli | Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation[END_REF]. In the following, we denote by θ n any kind of asymptotically ecient estimator of the parameter θ.

The parametric bootstrap method simply consists of generating new data in the model with estimated parameters. That is:

Step 1: Generate the random variable V * t from the ZI distribution, with pa- rameters θ n .

Step 2: Generate a ZI-INAR(1) model recursively as follows:

Y * 1 = y 1 Y * t = α n • Y * t-1 + V * t , t = 2, ..., n, meaning that if Y * t-1 > 0, then α n • Y * t-1 |Y * t-1 d = Y * t-1 i=1 Z * i with Z * i ∼ Bin(1, α n ) or α n • Y * t-1 |Y * t-1 is degenerate at zero if Y * t-1 = 0.
Notice that the rst observation of the bootstrap ZI-INAR(1) process is set to the rst observation of the observed data: asymptotically, even if the generated process is not stationary, this will not perturb the asymptotic properties of the bootstrap process. Now the bootstrap counter- The centered and normalized bootstrap distribution is then given by, for u = (u 1 , . . . , u 4 ) ∈ R 4 :

parts of θ n = ( α n , ρ n , λ n ), say θ * n = ( α * n , ρ * n , λ * n ),
K * (B) n (u) = 1 B B b=1 I { √ n( θ * (b) n -θn)≤u} .
If the bootstrap distribution is asymptotically valid, that is, it is a convergent distribution (at least in probability) of P(

√ n( θ n -θ) ≤ u) then
it is easy to use the quantile of the Monte Carlo bootstrap distribution to construct (simultaneous) condence intervals for the parameter θ or any regular (at least dierentiable) functional of the parameter.

Concerning the choice of B, it is known from the work by [START_REF] Hall | On the Number of Bootstrap Simulations Required to Construct a Condence Interval[END_REF] that one needs to choose B so that it at least has the same order as n and such that (B + 1)(1 -γ)/2 is an integer (when constructing asymptotic two-sided condence intervals of level γ. So typically for γ = 95% (for size of n smaller than 1000) we choose B = 999.

Proposition 2 Assume that the parameter space of θ = (α, ρ, with λ = (µ, φ) is given by

Θ =]0, 1[×]0, 1[×]0, ∞[×]0, ∞[
and consider θ n to be the mle of the ZI-INAR(1) process. Then the parametric bootstrap in asymptotically correct, meaning that almost surely along the sample, notice that any ecient estimator has the LAE property, so that one may use indierently the mle in the construction or the estimators proposed in [START_REF] Pedeli | Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation[END_REF].

sup u∈R 4 P( √ n( θ * n -θ n ) ≤ u) -P( √ n( θ n -θ) ≤ u) → 0 when n → ∞ Proof: In [5], theorem

(b) Moving block bootstrap approach

When no specic assumption is made about the distribution of the residuals, it is still possible to implement semiparametric estimators of the ZI-INAR process, as described in [START_REF] Pedeli | Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation[END_REF]. In that case, a parametric bootstrap process cannot be used. Moreover, to assess the robustness of the parametric assumptions, it may also be interesting to implement a more robust version of the bootstrap process. The more general method is based on splitting the original time series into overlapping blocks which are then resampled to reconstruct the original time series. The procedure in our case is as follows:

Step 1: Choose a length b (which will typically be of size b = o ( √ n)) . Dene the overlapping blocks

B 1 = (Y 1 , ..., Y b ), B 2 = (Y 2 , ..., Y b+1 ), ...., B n-b+1 = (Y n-b+1 , ..., Y n )
Use circular block bootstrap, or even better, apply stationary block bootstrap (see [START_REF] Politis | The stationary bootstrap[END_REF]), which allows simulating a stationary version of the moving block bootstrap, in place of the moving block bootstrap method.

Step 2: Draw without replacement [ n b ] + 1 blocks, which are bound together (and possible truncated at the end) to form a new time series of size n.

After this, compute the statistics of interest, either the mle or estimators based on approximations (see [START_REF] Pedeli | Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation[END_REF]) of the corresponding time series.

Step 3: Just like in the Step 3 of the parametric bootstrap, use Monte Carlo method to obtain an approximation of the bootstrap distribution.

It has been shown in [START_REF] Kunsch | The jackknife and the bootstrap for general stationary observations[END_REF] that under some strong mixing conditions and provided that b n → ∞ and bn √ n → 0, the moving block bootstrap is asymptotically valid. A lot of variation and modications have been proposed in the literature to obtain valid second-order approximations (see for instance [START_REF] Lahiri | Resampling Methods for Dependent Data[END_REF] for a complete overview and references). However, it should be noticed that according to the distribution of V t , the INAR(p) process may not strongly mix. The process can be shown to strongly mix when the residuals V t have Poisson distribution. However, it can be shown that the process is only weakly mixing, or ψ -weak mixing for more general distributions; see [START_REF] Doukhan | On weak dependence conditions: The case of discrete valued processes[END_REF]. This includes the ZI cases studied here, when 0 < α < 1, since the moments of all residuals are nite. The validity of the stationary moving block bootstrap method (as well as variations including the circular block bootstrap) in the weak mixing case has been studied in [START_REF] Hwang | Strong consistency of the stationary bootstrap under ψ-weak dependence[END_REF], see theorem 3.2. As noticed by the authors, their theorem can be easily extended to functionals of means, Frechet dierentiable functionals (which can be simply linearized) or even Hadamard dierentiable functionals (including M-estimators). As a consequence, this method will be asymptotically valid for the mle, which is LAE (it is less obvious for the estimators proposed in [START_REF] Pedeli | Likelihood Estimation for the INAR(p) Model by Saddlepoint Approximation[END_REF]).

Condence intervals

In the second simulation study, we use and compare two dierent types of asymptotically valid condence intervals, mainly bootstrap variance based asymptotic intervals and the standard percentile method. We briey describe these methods in our context. Consider θ k the components of the mle of θ = (θ 1 , . . . , θ 4 ) = (α, ρ, µ, φ) and denote by θ * (b) k,l , b = 1, ..., B, the corresponding Bootstrap replications obtained at the Monte-Carlo step, either by the parametric (l = 1) or moving block (l = 2) techniques. In the simulation we will choose B such that (B + 1)(1 -γ)/2 is an integer, as suggested by [START_REF] Hall | On the Number of Bootstrap Simulations Required to Construct a Condence Interval[END_REF].

Variance based asymptotic interval

The bootstrap variance of θ k is simply given by:

V * k,l = 1 B B b=1 θ * (b) k,l - 1 B B i=1 θ * (i) k,l 2 
. Tables 4 and5 show the mean value of the bootstrap estimator and the proportion of times that the condence intervals contain the true value of the 

Conclusion

This article presents a study of the ZI-INAR(1) processes, which are an extension of the ZINAR(1) process, introduced by [START_REF] Jazi | First-order integer valued AR processes with zero inated Poisson innovations[END_REF]. The aim is to propose models with more exibility and that can deal with excess zeros. To t the models, we develop an ecient EM algorithm to estimate the parameters and apply several alternative bootstrap techniques to construct condence intervals for the parameters. The performance of our proposals was evaluated through simulation studies and application to a real dataset of monthly number of drug oenses recorded. In this illustrative example, there is strong evidence of a rst-order dependence structure and zero-inated counts. We conjecture that our methods can be extended by adding a moving average structure to the process. An in-depth investigation of such extension is beyond the scope of the present manuscript, but is an interesting topic for further research.

  are the mle obtained using our proposed EM algorithm, considering the bootstrap process Y * = (Y * 1 , . . . , Y * n ). Step 3: Since the exact bootstrap distribution of θ * n may be dicult (and time consuming) to compute, it is replaced by a Monte Carlo approximation that is repeats the procedure in Step 2, B times, by generating times series y * (b) , b=1,. . . , B , for realization of the bootstrap process Y * . Then we can compute the corresponding θ * (b) n , b = 1, . . . , B estimators.

4. 2 3 .

 23 Simulation 2: Bootstrap condence intervals In this simulation study we analyze the eciency of the bootstrap methods presented in Section 3. We simulate N = 100 samples of size n = 196 from the following processes with parameters α = 0.25 and ρ = 0.4: (i) ZIP-INAR(1), with λ = 4; and (ii) ZINB-INAR(1) and ZIPIG-INAR(1), with µ = 4 and φ = For each sample, we generate B = 999 bootstrap replicates and the length of the circular block bootstrap adopted is b = 14.

Figure 1

 1 Figure 1 contains the panels (a) and (b), which represent the time evolution and the bar plot of the monthly count of drug oenses recorded, respectively. The two plots indicate a signicant presence of zero value observations (43%). In panel (c), the partial autocorrelation function (PACF) suggests a rst-order dependence structure. For comparative purposes, we consider the INAR(1) process with Poisson (Po), NB and PIG innovations and ZI-INAR(1) processes.Table6presents the parameter estimates and the Akaike information criterion (AIC) values,[START_REF] Akaike | A new look at the statistical model identication[END_REF], of all the considered processes. This criterion indicates that the ZIPIG-INAR(1) process is more appropriate for this dataset. Table 7 shows the parameter estimates of the ZIPIG-INAR(1) process and the condence interval, using parametric bootstrap (B-PAR) and circular block bootstrap (CBB).

Fig. 1 :

 1 Fig. 1: Drugs oence dataset. (a) Time series plot. (b) Bar plot. (c) PACF.

Table 1 :

 1 RB and RRSE of the parameter estimates of ZIP-INAR(1) processes, with α = 0.3 and λ = 2.

	ρ	n	RB	α	RRSE	RB	ρ	RRSE	RB	λ	RRSE
		100	-0.0668 0.3141 -0.0764 0.3436 -0.0035 0.1163
	0.3	300 500	-0.0166 0.1635 -0.0090 0.1943 -0.0229 0.1188 -0.0128 0.1372	0.0058 0.0033		0.0777 0.0579
		1000 -0.0020 0.0870 -0.0150 0.0995 -0.0024 0.0395
		100	-0.0433 0.2362 -0.0212 0.1337	0.0007		0.1582
	0.6	300 500	-0.0118 0.1289 -0.0068 0.0707 -0.0058 0.0895 -0.0117 0.0985 -0.0050 0.0488 0.0021 0.0650
		1000 -0.0095 0.0750 -0.0031 0.0388 -0.0040 0.0472

Table 2 :

 2 RB and RRSE of the parameter estimates of ZINB-INAR(1) processes, with α = 0.3 and µ = 2.

				α		ρ		µ		φ	
	φ	ρ	n	RB	RRSE	RB	RRSE	RB	RRSE	RB	RRSE
			100	0.0051	0.2080	-0.0001	0.7010	0.0971	0.3614	0.3417	1.8875
		0.3	300 500	0.0042 0.0022	0.1117 0.0842	-0.0365 -0.0238	0.5423 0.4571	0.0344 0.0143	0.2355 0.1873	0.1165 0.0696	0.6861 0.4845
	0.75		1000 100	0.0019 0.0052	0.0595 0.1893	-0.0424 -0.1443	0.3500 0.4576	-0.0048 0.0306	0.1376 0.4736	0.0111 0.2758	0.2943 3.2307
		0.6	300 500	-0.0148 0.0083	0.1091 0.0830	-0.0688 -0.0684	0.2908 0.2552	0.0106 -0.0158	0.2980 0.2584	0.0990 0.0125	0.9289 0.6428
			1000	-0.0021	0.0612	-0.0242	0.1472	-0.0076	0.1692	0.0602	0.3940
			100	-0.0157	0.2241	-0.0666	0.6120	0.0183	0.2399	0.2144	1.4996
		0.3	300 500	-0.0015 -0.0019	0.1219 0.0899	-0.0834 -0.0185	0.4179 0.3245	-0.0147 0.0084	0.1604 0.1294	0.0298 0.0585	0.6910 0.4348
	1.5		1000 100	0.0020 -0.0200	0.0687 0.2105	-0.0333 -0.1236	0.2436 0.3800	-0.0043 -0.0118	0.0950 0.3557	-0.0039 0.0959	0.2898 2.1109
		0.6	300 500	0.0005 -0.0109	0.1204 0.0949	-0.0407 -0.0256	0.1930 0.1351	-0.0130 -0.0167	0.2056 0.1607	0.0401 0.0213	1.1545 0.6549
			1000	-0.0004	0.0603	-0.0218	0.0883	-0.0184	0.1161	-0.0314	0.3832
			100	-0.0388	0.2513	-0.1162	0.5348	0.0030	0.2104	0.0319	0.9771
		0.3	300 500	-0.0050 -0.0212	0.1370 0.1089	-0.0642 -0.0502	0.3803 0.2699	-0.0077 -0.0061	0.1390 0.1037	0.1027 0.0178	0.9715 0.5092
	2.5		1000 100	-0.0066 -0.0169	0.0764 0.2278	-0.0281 -0.1465	0.1829 0.3334	-0.0082 -0.0959	0.0755 0.2975	-0.0169 -0.1273	0.3569 1.3087
		0.6	300 500	-0.0125 -0.0030	0.1194 0.0889	-0.0165 -0.0088	0.1262 0.0954	-0.0176 -0.0022	0.1730 0.1286	0.0525 0.0730	1.0700 0.8590
			1000	-0.0006	0.0697	-0.0065	0.0690	-0.0025	0.0977	< 0.001	0.4792

Table 3 :

 3 RB and RRSE of the parameter estimates of ZIPIG-INAR(1) processes, with α = 0.3 and µ = 2.

				α		ρ		µ		φ	
	φ	ρ	n	RB	RRSE	RB	RRSE	RB	RRSE	RB	RRSE
			100	0.0010	0.2044	-0.0046	0.5836	0.0391	0.2632	0.1688	1.8383
		0.3	300 500	-0.0056 -0.0002	0.1175 0.0887	-0.0665 -0.0243	0.3940 0.2975	-0.0078 0.0004	0.1739 0.1293	0.0431 0.0237	0.5878 0.3576
	0.75		1000 100	-0.0016 -0.0205	0.0614 0.2034	-0.0117 -0.0825	0.2135 0.3159	-0.0004 0.0369	0.0918 0.3589	0.0301 0.2246	0.2578 2.6273
		0.6	300 500	-0.0007 -0.0073	0.1125 0.0871	-0.0345 -0.0121	0.1567 0.1040	-0.0168 -0.0096	0.2096 0.1539	-0.0025 0.0717	0.7321 0.5155
			1000	-0.0027	0.0677	-0.0095	0.0790	-0.0110	0.1204	0.0187	0.3109
			100	-0.0340	0.2193	-0.0740	0.5251	0.0183	0.2156	0.1622	1.3835
		0.3	300 500	-0.0068 -0.0050	0.1367 0.1032	-0.0243 -0.0162	0.3257 0.2326	0.0016 0.0007	0.1346 0.0959	0.0398 0.0268	0.7542 0.4768
	1.5		1000 100	-0.0065 -0.0320	0.0702 0.2046	-0.0273 -0.0452	0.1705 0.2319	-0.0001 0.0160	0.0762 0.2772	-0.0163 0.1455	0.2293 1.6193
		0.6	300 500	-0.0052 -0.0051	0.1066 0.0913	-0.0212 -0.0096	0.1103 0.0885	-0.0034 -0.0015	0.1659 0.1253	0.0623 0.0543	0.9166 0.9582
			1000	0.0022	0.0640	0.0025	0.0573	0.0051	0.0942	0.0481	0.3459
			100	-0.0437	0.2472	-0.0750	0.4556	0.0187	0.1978	0.1961	1.3687
		0.3	300 500	-0.0095 -0.0040	0.1382 0.1188	-0.0194 0.0002	0.2708 0.2095	-0.0006 0.0061	0.1141 0.0938	0.0972 0.0628	0.9488 0.4610
	2.5		1000 100	-0.0042 -0.0486	0.0720 0.2160	-0.0017 -0.0850	0.1384 0.2530	0.0070 -0.0336	0.0621 0.2658	0.0338 -0.0715	0.3133 1.1974
		0.6	300 500	-0.0107 -0.0088	0.1299 0.0918	-0.0161 -0.0143	0.0976 0.0777	-0.0046 -0.0097	0.1420 0.1051	0.0965 0.0423	0.9962 0.7257
			1000	0.0025	0.0653	-0.0031	0.0503	-0.0027	0.0776	0.0077	0.3785

parameter (Cov.), as well as the percentage of times that the parameter value is less than the lower bound (θ k < LL) and greater than the upper bound (U L < θ k ). In general, the proportion of the intervals containing the true value of the parameters is close to the nominal level (95%). However, these proportions are smaller than 90% for the intervals based on percentiles of the ZINB-INAR(1) process.

Table 4 :

 4 Parametric bootstrap approach results using condence intervals.

	Model ZIP-INAR(1) ZINB-INAR(1) ZIPIG-INAR(1)	α ρ µ α ρ µ φ α ρ µ φ	boots. value mean θ k < LL U L < θ k Cov. θ k < LL U L < θ k Cov. Asymptotic interval Standard percentile method 0.25 0.2504 3% 4% 93% 3% 6% 91% 0.40 0.4038 3% 1% 96% 3% 1% 96% 4.00 3.9864 1% 4% 95% 1% 4% 95% 0.25 0.2430 1% 2% 97% 0% 3% 97% 0.40 0.3772 3% 1% 96% 3% 3% 94% 4.00 3.9360 2% 6% 92% 2% 6% 92% 3.00 4.4043 0% 4% 96% 5% 2% 93% 0.25 0.2441 4% 3% 93% 4% 3% 93% 0.40 0.3863 0% 1% 99% 0% 2% 98% 4.00 4.0022 7% 1% 92% 7% 1% 92% 3.00 5.0738 0% 2% 98% 4% 0% 96%

Table 5 :

 5 Circular block bootstrap results using condence intervals.To further demostrate the usefulness of our approach, we analyze a real dataset of the monthly number of drug oenses recorded from January 1990 to December 2001, with 144 observations, in Pittsburgh's census tract 2206. The data were obtained from Forecasting Principles site: http://www.forecastingprinciples.com.

	Model ZIP-INAR(1) ZINB-INAR(1) ZIPIG-INAR(1)	α ρ µ α ρ µ φ α ρ µ φ	boots. value mean θ k < LL U L < θ k Cov. θ k < LL U L < θ k Cov. Asymptotic interval Standard percentile method 0.25 0.2375 2% 5% 93% 2% 5% 93% 0.40 0.3945 3% 3% 94% 3% 3% 94% 4.00 3.9912 2% 4% 94% 2% 5% 93% 0.25 0.2249 0% 9% 91% 0% 11% 89% 0.40 0.3575 2% 4% 94% 1% 9% 90% 4.00 3.9057 3% 9% 88% 3% 9% 88% 3.00 4.1189 0% 7% 93% 4% 7% 89% 0.25 0.2258 0% 6% 94% 0% 6% 94% 0.40 0.3693 0% 8% 92% 0% 9% 91% 4.00 3.9847 3% 1% 96% 5% 1% 94% 3.00 4.8409 0% 5% 95% 4% 3% 93%
	5 Real dataset: Drug oenses

Table 6 :

 6 Parameter estimates

	Processo	α	ρ	µ	φ	AIC
	Po-INAR(1)	0.212	-	1.679	-	590.74
	ZIP-INAR(1)	0.181 0.512 3.577	-	565.77
	NB-INAR(1)	0.071	-	1.977 0.471	550.43
	ZINB-INAR(1)	0.070 0.138 2.296 0.630	552.20
	PIG-INAR(1)	0.072	-	1.973 0.336	554.53
	ZIPIG-INAR(1) 0.065 0.325 2.946 0.903 549.41
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Thus, the asymptotic normal approximation leads to an asymptotic γ condence interval of the type

, where u 1+γ 2 is a quantile of order 1+γ 2 of a standard normal distribution.

Standard percentile method

Dene respectively θ * k,l( 

2 ) .

Simulation Study

In this section we show the performance of the estimation procedure for the ZI-INAR(1) process, using the EM algorithm proposed and bootstrap resampling methods described before. Thus, we present examples considering articial datasets, in dierent scenarios. All the computational codes were implemented using the R software ( [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]) and the program codes are available from us on request.

We present two simulation studies. The rst one investigate the asymptotic properties of the maximum likelihood estimation. In the second one, we use and compare dierent type of asymptotically valid condence intervals.

Simulation 1: Asymptotic properties

We consider the set of sample sizes n ∈ {100, 300, 500, 1000} to analyze the consistency of the mle of parameters. We x α = 0. 

where θ ij is the mle of parameter θ i , computed in the j-th sample.

Tables 13 show that both RB and RRSE decrease when the sample size increases, for all the parameter estimates.