
HAL Id: hal-01707373
https://hal.science/hal-01707373

Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performing Safety Analyses with AADL and AltaRica
Julien Brunel, Peter Feiler, Jérôme Hugues, Bruce Lewis, Tatiana

Prosvirnova, Christel Seguin, Lutz Wrage

To cite this version:
Julien Brunel, Peter Feiler, Jérôme Hugues, Bruce Lewis, Tatiana Prosvirnova, et al.. Performing
Safety Analyses with AADL and AltaRica. The 5th International Symposium on Model Based Safety
Assessment (IMBSA 2017), Sep 2017, Trento, Italy. pp. 67-81, �10.1007/978-3-319-64119-5_5�. �hal-
01707373�

https://hal.science/hal-01707373
https://hal.archives-ouvertes.fr

�

���������	
�����������������
����	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	���
��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/19368

http://dx.doi.org/10.1007/978-3-319-64119-5_5

Brunel, Julien and Feiler, Peter and Hugues, Jérôme and Lewis, Bruce and Prosvirnova, Tatiana and Seguin, Christel

and Wrage, Lutz Performing Safety Analyses with AADL and AltaRica. (2017) In: The 5th International Symposium on

Model Based Safety Assessment (IMBSA 2017), 11 September 2017 - 13 September 2017 (Trento, Italy).

Performing Safety Analyses with AADL and
AltaRica

Julien Brunel1, Peter Feiler4, Jérôme Hugues3, Bruce Lewis5, Tatiana
Prosvirnova2, Christel Seguin1, and Lutz Wrage4

1 ONERA, 2 avenue Edouard Belin, 31055 Toulouse
julien.brunel,christel.seguin@onera.fr

2 IRT Saint-Exupéry, 118 Route de Narbonne, 31432 Toulouse, France
tatiana.prosvirnova@irt-saintexupery.com

3 ISAE SUPAERO, 10 avenue Edouard Belin, 31055 Toulouse, France
jerome.hugues@isae-supaero.fr

4 Carnegie Mellon University, Software Engineering Institute, 4500 Fifth Ave,
Pittsburgh, PA 15213, USA phf,lwrage@sei.cmu.edu

5 US Army, AMRDEC, Huntsville, AL 35898, USA bruce.a.lewis.civ@mail.mil

Abstract. AADL and AltaRica languages can be used to support the
safety assessments of system architectures. These languages were defined
with different concerns and this paper aims at presenting their principles
and how they can be related. A translator from AADL to AltaRica is
proposed and its prototype is applied to a simplified flight control system
of a UAV. The resulting AltaRica model has been analyzed with the
AltaRica safety tools and the experimental results are discussed.

Keywords: AADL – AltaRica – MBSA – Safety patterns

1 Introduction

The interest of industrial community in Model-Based System Engineering (MBSE)
and Model-Based Safety Assessment (MBSA) is gradually increasing. In this pa-
per we consider two modeling languages: AADL and AltaRica.

AADL (Architecture Analysis and Design Language) is a multi-concerns
modeling language dedicated to distributed real-time embedded systems [11].
It proposes several annexes to describe embedded systems behavior. The AADL
Error Model V2 (EMV2) [6] is an error annex focused on Safety Analyses. It
offers a terminology and an ontology to capture key features of failure/error
propagations.

AltaRica [2, 8] is a high level modeling language dedicated to Safety Analyses.
Its formal semantics allowed the development of a set of efficient assessment
tools, such as compilers to Fault Trees [10, 9] and Markov chains, stochastic
and stepwise simulators. It is in the core of several commercially distributed
integrated modeling and simulation environments and has been successfully used
to perform industrial scale experiments [1].

2

In this article we study the mapping between AADL EMV2 and AltaRica
concepts. To illustrate our purpose, we use as a study case a simplified flight
control system of a small UAV quadcopter with a particular focus on safety mit-
igation architectures, also called safety patterns. The transformation of AADL
EMV2 models to AltaRica is interesting because it enables us to enlarge the set
of safety assessment tools for AADL and to perform cross check verifications.
Indeed, to implement the transformation we use the standardized version of Al-
taRica Data-Flow, which is a subset of AltaRica 3.0 [8]. AltaRica 3.0 is supported
by the OpenAltaRica platform, which is free of use for research and education
purposes. This platform already includes a Fault Tree compiler and a stepwise
simulator. A stochastic simulator and a sequence generator are currently under
development.

The remainder of this article is organized as follows. Section 2 describes a
simplified flight control system of a small UAV quadcopter which is used as a
running example of this article. Section 3 gives an overview of AADL EMV2 con-
cepts. Section 4 introduces the AltaRica modeling language. Section 5 explains
AADL to AltaRica translation principles. Section 6 presents some analysis re-
sults of this study. Section 7 summarizes related works. Section 8 concludes this
article.

2 Running example

The case study is inspired by the flight control system of a small UAV quad-
copter. We address a simplified software architecture that encompasses different
significant safety patterns.
High level functional architecture

Fig. 1. Overview of the flight control software architecture

The control is achieved by three main functions. The ComputeCommand
function aims at computing the commands to control the helixes in automated or

3

manual mode. The function needs two different flight parameters to be performed
correctly in the automated mode whereas it needs at least one flight parameter
and the pilot order in the manual mode. The quality of the inputs and outputs of
this function is checked by the function ControlFlightParameters. The function
ManageFlightMode adapts the piloting mode and the applicable order according
to the checked status.
Failure modes and failure conditions
Each function may fail and its computation may be erroneous or lost. The loss
of control is not catastrophic as long as the crash is controlled in an acceptable
area. The erroneous control is a worse case because the UAV may fly away and
lose the separation with other aircraft or it may crash over populated area. So
the system safety assessment is needed to compute the causes and probability
of occurrences of such failure conditions.

In this study we consider two failure conditions:

– FC01: “Quadcopter fly away, i.e. erratic behavior, potentially fly and crash
in an unauthorized area, leading at worst to fatalities”.

– FC02: “Uncontrolled crash, i.e. loss of the quadcopter control”.

Safety patterns
Several safety patterns are introduced to reduce the failure occurrences or their
effects. A COMMON (COMmand and MONitoring) architecture is proposed to
detect and mitigate the effect of potential erroneous computations.

Fig. 2. Command and Monitoring pattern

The pattern, shown Fig. 2, works as follows. We assume that the computation
is achieved in parallel by two different channels so that a computation error of
one channel may be detected by comparison with the other channel. If no alarm
is raised, the order computed by the command lane is applied. Otherwise, the
computed order is no more selected and the order is lost.

The mode manager is proposed to adapt as long as possible the control archi-
tecture according to the integrity and availability of its basic functions. Initially,
the engaged mode is the automated mode. When the check of the flight pa-
rameters detects that the automated flight is no longer safe, the manual mode
is engaged. A crash mode is engaged when the manual mode is also estimated
unsafe.

4

Modeling and Safety assessment needs
This case study is modeled using the AADL notation and the AltaRica formal
language to better understand each notation and the principles of the transla-
tion of the AADL model into an AltaRica one. Then the translation is applied
to produce an AltaRica model from the AADL one. AltaRica fault tree genera-
tor [9] is used for both the hand made AltaRica model and the generated one.
The comparison of the Minimal Cut Sets for FC01 and FC02 contributes to the
validation of our translation process.

3 AADL EMV2 presentation

The SAE “Architecture Analysis and Design Language” (AADL) [11] is a lan-
guage for model-based engineering of embedded real-time systems. The AADL
allows for the description of both software and hardware parts of a system. It
focuses on the definition of clear block interfaces, and separates the implemen-
tations from these interfaces. From the separate description of these blocks, one
can build an assembly of blocks that represents the full system. To take into
account the multiple ways to connect components, the AADL defines different
connection patterns: subcomponent, connection, binding.

An AADL description is made of components. Each component category
describes well-identified elements of the actual architecture, using the same vo-
cabulary of system or software engineering. The AADL standard defines soft-
ware components (data, thread, subprogram, process), execution platform
components (memory, bus, processor, device, . . .) and composite components
(system, abstract). Besides, the language defines precise legality rules for com-
ponent assemblies, and both its static and execution semantics.

The AADL defines the notion of properties. They model non-functional prop-
erties that can be attached to model elements (components, connections, fea-
tures, instances, etc.). Properties are typed attributes that specify constraints
or characteristics that apply to the elements of the architecture such as clock
frequency of a processor, execution time of a thread, bandwidth of a bus, imple-
mentation of the functional part.

From this core of elements, AADL allows the designer to attach annex el-
ements that further refine one dimension of the system. The Error Modeling
Annex V2 (EMV2) addresses safety modeling concerns. See [6] for more details.

EMV2 supports architecture fault modeling at three levels of abstraction:

– Focus on error propagation between system components and with the envi-
ronment: modeling of fault sources, along with their impact through propa-
gation. It allows for safety analysis in the form of hazard identification, fault
impact analysis, and stochastic fault analysis.

– Focus on component faults, failure modes, and fault handling: fault occur-
rences within a component, resulting fault behavior in terms of failure modes,
effects on other components, the effect of incoming propagations on the com-
ponent, and the ability of the component to recover or be repaired.

5

It allows for modeling of system degradation and fail-stop behavior, spec-
ification of redundancy and recovery strategies providing an abstract error
behavior specification of a system without requiring the presence of subsys-
tem specifications.

– Focus on compositional abstraction of system error behavior in terms of its
subsystems.

In addition, EMV2 introduces the concept of error type to characterize faults,
failures and propagations. It includes a set of predefined error types as starting
point for systematic identification of different types of error propagations pro-
viding an error propagation ontology. Users can adapt and extend this ontology
to specific domains.

As an illustration consider an AADL EMV2 model given below. It repre-
sents a function with an input and an output. It may be in three states: s Ok,
s Erroneous and s Lost, representing respectively the nominal behavior, the er-
roneous behavior and the loss of the function. If the function is in the state
s Ok and it receives an error on its input, it propagates it on the output. If the
function is in the state s Erroneous it propagates an error on its output and so
on.

abstract BasicInOutFunction

features

input : in feature;

output : out feature;

annex EMV2 {**

use types FunctionFailureModesLib;

use behavior FunctionFailureModesLib::ErroneousLostBehavior;

error propagations

input : in propagation{BasicFunctionFailures};

output : out propagation{BasicFunctionFailures};

end propagations;

component error behavior

propagations

s_Ok -[input]-> output;

s_Erroneous -[]-> output{ERRONEOUS};

s_Lost -[]-> output{LOST};

end component;

**};

end BasicInOutFunction;

EMV2 follows regular convention for the description of state transition and er-
ror propagation, 〈initial state〉 − [trigger] → 〈error event〉, that reads as fol-
lows: when the system is in state 〈initial state〉, it propagates the corresponding
〈error event〉. This propagation may be controlled by the trigger.

6

4 AltaRica presentation

AltaRica is a high level formal modeling language dedicated to Safety Analy-
ses [2]. Its Data-Flow version has been created to handle industrial scale mod-
els [4]. A number of assessment tools have been developed ([10], [12]). AltaR-
ica Data-Flow is at the core of several Modeling and Simulation tools and has
been successfully used for industrial applications [1]. In 2011, an initiative was
launched to standardize the syntax of AltaRica Data-Flow.

To implement the transformation of AADL to AltaRica we use the standard-
ized version of AltaRica Data-Flow – a subset of AltaRica 3.0 [8], supported by
the OpenAltaRica platform. This platform is developed by IRT SystemX and is
free of use for research and education purposes. It already includes a Fault Tree
compiler [9] and a stepwise simulator. Other tools are under development.

In this article we only focus on concepts of AltaRica Data-Flow illustrated
using the running example. The interested reader can refer to [3] to know more
about AltaRica 3.0.

Basic blocks
The following AltaRica code represents the behavior of a basic function.

domain BasicFunctionStatus {OK, LOST, ERRONEOUS}

class BasicFunction

BasicFunctionStatus status (init = OK);

event fail_loss (delay = exponential(0.001));

event fail_error (delay = exponential(0.0005));

transition

fail_loss: status == OK -> status := LOST;

fail_error: status == OK -> status := ERRONEOUS;

end

States: The internal state of the function is represented by means of the state
variable status, which takes its value in the domain BasicFunctionStatus. So, the
function can be in three states: OK representing the nominal behavior, LOST
(loss of the function), and ERRONEOUS (erroneous behavior). The initial value
of the state variable is specified by the attribute init.
Events: The state of the function changes under the occurrence of an event,
introduced with the keyword event. In our example, the function has two failure
events: fail error (erroneous behavior), and fail loss (loss of the function). A
delay is associated with each event by means of the attribute delay. Delays of
the events fail loss and fail error are random exponentially distributed variables.
Transitions: A transition is a triple e : G → P , where e is an event, G is a
Boolean expression, the so-called guard of the transition, P is an instruction,
the so-called action of the transition. In the example above if the state of the
function is OK, then two transitions are fireable: the transition labeled with the
event fail loss and the transition labeled with the event fail error. If the delay
drawn for the transition fail loss is the shortest, then this transition is fired and
the variable status is switched to LOST.

7

Flow propagations: In AltaRica the propagation of errors/failures and nominal
values is done in the same way: via flow variables and assertions. The value of
flow variables are recalculated after each transition firing by means of assertions.
Assertions are instructions as are actions of transitions. The difference is that
actions of transitions assign only state variables, while assertions assign only
flow variables. Consider, for example, the following AltaRica code:

class BasicInOutFunction

extends BasicFunction;

BasicFunctionStatus input, output (reset = LOST);

assertion

output := if (status==OK) then input else status;

end

There are two flow variables: input and output, taking their values in the do-
main BasicFunctionStatus. They represent respectively the quality of the data
received and sent by the function. The assertion states that if the state of the
function is OK, then its output is equal to its input, if its state is LOST then
its output is also LOST, otherwise it is ERRONEOUS.

Hierarchical models
In AltaRica Data-Flow components are represented by classes. Classes can be

instantiated in other classes in order to create hierarchical models. Their inputs
and outputs can be connected via assertions.

The Figure 2 is a graphical view of the class COMMONPattern. This class
contains two instances of the class BasicInOutFunction, named COM and MON,
one instance of the class Selector named selector and one instance of the class
Comparator named comparator. The Comparator (cf code below) and Selector
are considered as component connectors that are free of failure modes in our
case study. Other direct connections between components are represented by
plane lines in the figure and by equality assertions linking input and output of
connected components in the class COMMONPattern.

class Comparator

BasicFunctionStatus input1 (reset=LOST);

BasicFunctionStatus input2 (reset=LOST);

Boolean alarm (reset=false);

assertion

alarm:= if (input1==input2) then false else true;

end

Flight modes and reconfigurations
Flight modes can be represented by a state variable mode which takes its

value in the domain FlightModeDomain. The reconfigurations are represented
by immediate transitions, introduced by the attribute delay equal to Dirac(0).
They are fireable as soon as their guards are true. As an illustration consider a
part of the AltaRica model representing the function ManageFlightMode of the
running example.

8

domain FlightModeDomain{AUTO, MANUAL, CRASH, DANGER}

class ManageFlightModeFunction

Boolean inputAlarm, inputCrashAlarm (reset = false);

FlightModeDomain mode(init = AUTO);

event GoToManualMode (delay = Dirac(0));

...

transition

GoToManualMode:

(mode == AUTO) and inputAlarm and not inputCrashAlarm ->

mode := MANUAL;

...

end

In this model, we define an immediate event GoToManualMode and the asso-
ciated transition, which represents the reconfiguration: while in the automated
mode, if the alarm is received (inputAlarm is true), then the transition is fired
immediately and the mode is switched to manual.

5 AADL EMV2 to AltaRica translation

Models in AADL with EMV2 and AltaRica are structurally similar so that it is
possible to translate one notation into the other. On the structural side AADL
components correspond to AltaRica classes. AADL subcomponents correspond
to AltaRica variables whose type is an AltaRica class. Thus, given an AADL
model it is possible to create an AltaRica model that exhibits the same hierar-
chical containment structure.

For safety analysis we are interested in the occurrence and propagation of
faults throughout the analyzed system. The interface of an AADL component
with regard to fault propagation is given by its error propagations as defined in
the component’s EMV2 annex subclause. Each of these EMV2 error propagations
corresponds to an AltaRica flow variable whose domain can be derived from the
set of faults that are associated with the error propagation.

Several AADL model constructs are involved in the propagation of faults from
one AADL component to another. (a) Connections modeling data and control
flow can propagate faults related to, for example, data validity and timing. (b)
Faults that occur in an execution platform component, e.g. power loss, prop-
agate to software components that are bound to, i.e. propagation via binding
properties. (c) Additional propagations without an explicit path in the architec-
tural model are defined in an EMV2 annex subclause, e.g. fault propagation due
to heat transfer between hardware components located in close proximity. All
these constructs are translated into ”external” AltaRica assertions, i.e. assertions
connecting flow variables from different classes.

The internal fault behavior of an AADL component is given using the AADL
EMV2 error behavior and component error behavior constructs. The translation
of these constructs to AltaRica proceeds as follows:

9

– An EMV2 error event describes the occurrence of an internal fault that
happens in the component. Each such event is translated into an AltaRica
event. The occurrence probability of an error event is given by the value
of property EMV2::OccurrenceDistribution which is translated into a delay
attribute for the AltaRica event.

– EMV2 error states are defined as an identifier, i.e. the state’s name. All error
states of an AADL component are translated into a single state variable in
AltaRica. The domain of this variable is the set of symbols created from the
EMV2 error state names.

– EMV2 state transitions are translated to AltaRica transitions. If the the
transition is caused by an internal fault, i.e., an error event, it is translated
into an AltaRica transition that is enabled by the corresponding AltaRica
event and uses the source state as the guard. The action assigns the target
state to the state variable. If, on the other hand, the transition is caused by
incoming fault propagations, we create an AltaRica transition that is always
enabled and translate the EMV2 error condition into the guard condition.
To enable this kind of transition we add an event with the attribute delay
equal to Dirac(0.0) (immediate event) to each AltaRica class.

– EMV2 out propagation conditions determine the error type produced at an
out propagation based on the state and an error condition involved in prop-
agations. Each out propagation condition is translated to an internal AltaR-
ica assertion that sets the value of an outgoing flow variable to the symbol
representing the propagated error type.

The following two listings show a simple example in AADL, the comparator
component used in the COMMON pattern, and the AltaRica code generated by
the translator. It is easy to see the correspondence between the two models.

abstract Comparator

features

in1: in data port; -- ports defined in AADL core

in2: in data port; -- language

out0: out data port;

annex EMV2 {**

use types FailMode;

error propagations -- propagated errors defined in

-- EMV2 annex

in1: in propagation {lost, err};

in2: in propagation {lost, err};

out0: out propagation {lost, err};

end propagations;

component error behavior -- no error states needed

propagations

-- propagated error if in1 = in2

all -[in1{lost} and in2{lost}]-> out0{lost};

all -[in1{err} and in2{err}]-> out0{err};

10

-- propagated error if in1 != in2

all -[in1{noerror} and in2]-> out0{lost};

all -[in1 and in2{noerror}]-> out0{lost};

all -[in1{lost} and in2{err}]-> out0{lost};

all -[in1{err} and in2{lost}]-> out0{lost};

-- default: no error is propagated

end component;

**};

end Comparator;

Note that in EMV2 it is not possible to compare error types with each other.
For example, the Comparator class as shown in the code in Section 4 uses the
expression input1 == input2. Such comparisons must be modeled in EMV2 by
using several out propagations that enumerate all possible combinations of error
types occurring at the two propagation points.

domain domain_4 { // domain names are generated

noerror, lost, err // constants generated from error types

}

domain domain_5 {

noerror, lost, err

}

class Comparator_6

event error_propagation (delay = Dirac (0.0)); // not used

domain_4 out0 (reset = noerror); // initially no error

domain_5 in2_3;

domain_5 in1_4;

assertion

out0 := switch { // all out propagation conditions

// aggregated into one switch statement

case in1_4 == err and in2_3 == lost: lost

case in1_4 == lost and in2_3 == lost: lost

case in1_4 == lost and in2_3 == err: lost

case in1_4 == noerror and in2_3 != noerror: lost

case in1_4 != noerror and in2_3 == noerror: lost

case in1_4 == err and in2_3 == err: err

default: noerror // noerror is the default

};

end

Modeling the comparison of error types as several out propagation conditions
results in a somewhat unwieldy AltaRica assertion since the translator does not
perform any simplification of the generated code. The assertion is equivalent to

out0 := if (in1_4 == in2_3) then in1_4 else lost;

Resolution of mismatches between AADL EMV2 and AltaRica
There are a couple of differences between AADL EMV2 and AltaRica which
must be taken into account when translating between the two formalisms.

11

One difference concerns the way error types are defined in EMV2. In general
error types can be thought of as typed tokens that propagate through an archi-
tecture. However, EMV2 error types are organized in a generalization hierarchy,
and all EMV2 allows use of generalized error types wherever an error type can
occur. For example, AboveRange is a subtype of OutOfRange, which is a subtype
of DetectableValueError. The most general error in this generalization chain is
the ItemValueError. AltaRica does not support a notion of generalization in the
definition of constants used to create domains. We solve this mismatch by always
replacing generalized error types with the most specific error types. For exam-
ple, a DetectableValueError in an error propagation or condition is replaced with
the most specific error types of which DetectableValueError is a generalization,
namely OutOfBounds, BelowRange, and AboveRange.

Another difference is that EMV2 uses sets of error types to define error prop-
agations and conditions, whereas AltaRica does not support a built-in notion of
sets. This leads to difficulties when assigning a domain to an incoming flow
variable if the flow is generated based on an AADL feature that has multiple
incoming connections (fan-in). Such an AADL model is valid if the set of error
types Fi at each of the connected out propagations oi are contained in the type
set at the in propagation: ∀i ∈ {1, ..., n}Fi ⊆ E. In general all type sets Fi may
be different. To resolve this mismatch we generate multiple flow variables from
an EMV2 in propagation, one per incoming connection. As the domain we use
the domain generated from the error of the corresponding out propagation at
the other end of the connection. This way both flow variables have the same
domain as their type and can be connected using an AltaRica assertion.

Unfortunately, the 1 to n translation of in propagations to flow variables
complicates the translation of error conditions on transitions and out propaga-
tion conditions. The error conditions contain atomic terms of the form ip(C),
with C = {t1, t2, ..., tk} a set of error types. Such a term is true if and only if
one of the error types is propagated in via the in propagation ip. In the simplest
case this term is translated into the following Boolean expression in AltaRica:
ip = t1 ∨ ip = t2 ∨ ...∨ ip = tk. When the in propagation is split into several flow
variables, the resulting AltaRica expression is the disjunction of the expressions
generated for each of the new flow variables, which can become long and difficult
to read.

Another consequence of the 1 to n relationship between in propagations and
flow variables is that the number of generated flow variables is not the same
for all instances of an AADL classifier. It depends on the context in which the
component is used, in particular, how it is connected to other components in the
model. Therefore, it is not possible to generate the AltaRica classes based on
the declarative AADL model alone. Instead, we translate each AADL component
instance into an AltaRica class, potentially resulting in an AltaRica model with
several classes that are identical except for identifiers. This increases the size
of the AltaRica model but has not much influence on analyses of the models.
As an AltaRica model is ”flattened” to transform it into a guarded transition
system, it is necessary to insert a full copy of a class for each class instance. This

12

is similar to what happens during the generation of an AADL instance model,
thus resulting in essentially the same guarded transition system.

AADL EMV2 also has the concept of a typed error state. This is an error
state that has an error type associated with it. The error types allowed for a
state are enumerated in a type set given with the error state declaration. Even
though we have not included typed error states in the translation, it could be
extended to generate multiple AltaRica domain constants for each typed EMV2
error state, one per declared type token.

Implementation of the translator
We have implemented the AADL EMV2 to AltaRica translator as a plugin to OS-
ATE, the open source AADL tool environment. The translation is implemented
using the Atlas Transformation Language. The source code for our translator is
available on github6, and the plugin can be installed into OSATE from our p2
repository.7

The current version supports a subset of AADL EMV2 sufficient for the
analysis of the UAV system used in our case study. We are planning to extend
that translation to include more EMV2 concepts as needed, e.g. error detections
and stochastic state transitions.

6 Experiments

The automatically generated AltaRica model can be analyzed with the various
tools which are provided within the OpenAltaRica platform. In particular, we
can simulate the model in order to observe the effect of different failure scenarios
on the overall system. We can also analyze the potential causes of the failure
conditions by generating Fault Trees and Minimal Cut Sets (MCS).

Let us consider the failure condition FC02 (uncontrolled crash). The analysis
returns 12 MCS presented in Fig. 6.

This result fully complies with the result that we obtained with the hand-
written AltaRica model of the quadcopter. As a first remark, all the MCS are
of order 2. So, we can deduce that no single failure can lead to FC02. As we
can see, the pilot order is of prime importance. This is not surprising since
one of the main ideas behind this system is to switch from automatic mode to
manual mode in case of a problem (loss of a source for the estimation of flight
parameters, loss of the automatic command, . . .). Once the system switches
to manual mode, if the function that acquires the pilot order also fails, then
an uncontrolled crash occurs. A similar argument holds for the alarm of the
function ControlFlightParameters, which is responsible for detecting a problem
and switching to manual mode.

The same analysis has been performed for the failure condition FC01. Again,
the result is similar to the result obtained from the hand-written model. For this
failure condition, there are 2 MCS of order 1, which correspond to the erroneous

6 at http://github.com/osate/aadl2altarica
7 at http://aadl.info/aadl/osate/experimental

13

AcquirePilOrder.loss CommandAuto.COMMON.COM.error

AcquirePilOrder.loss CommandAuto.COMMON.COM.loss

AcquirePilOrder.loss CommandAuto.COMMON.MON.error

AcquirePilOrder.loss CommandAuto.COMMON.MON.loss

AcquirePilOrder.loss EstimFlightParam1.loss

AcquirePilOrder.loss EstimFlightParam2.loss

ContrlFlightParam.Alarm.loss EstimFlightParam1.loss

ContrlFlightParam.Alarm.loss EstimFlightParam2.loss

ContrlFlightParam.Alarm.loss CommandAuto.COMMON.COM.error

ContrlFlightParam.Alarm.loss CommandAuto.COMMON.COM.loss

ContrlFlightParam.Alarm.loss CommandAuto.COMMON.MON.error

ContrlFlightParam.Alarm.loss CommandAuto.COMMON.MON.loss

Fig. 3. Minimal cut sets for FC2: uncontrolled crash

behavior of each of the sources for the estimation of the flight parameters. This
was expected since the system does not implement any mitigation for this specific
failure (contrary to the loss of one source, or the erroneous behavior of the
command computation).

We have obtained the same results for the handwritten and the automatically
generated AltaRica models. It is a first validation step for our translator.

7 Related work

Another translation of AADL to AltaRica, based on the definition of ontologies,
has been proposed in [7].

Translations of AADL models into classical safety models exist (see e.g. [6]).
It is worth noting that each type of translation takes advantage of different
features of the AADL model according to the targeted safety models. For in-
stance, the translation into a Fault Tree requires the features composite error
behavior and error events. Such features describe static dependencies between
failure modes of components and are well suited for the compilation into Boolean
formulas. Component error behavior gives a more dynamic view of the failure
propagation and is useful for the computation of probability of occurrences of
states of Markov chains or stochastic processes. AltaRica has been designed to
integrate in one formalism both static and dynamic features of the failure propa-
gation; it supports not only the computation of the probability of occurrences of
states but also the computation of sets/sequences of events leading to undesired
states. So, the proposed translation should ease the analysis of reconfigurable
systems with multiple modes as our flight control system.

A translation of an AADL subset into NuSMV formal language is a pioneer
work to achieve more powerful safety analysis in the framework of the COMPASS
project [5]. NuSMV language is close to AltaRica Data-Flow: they have similar
expressive power. Several safety tools have been developed for NuSMV. However,
AltaRica was designed to support safety analysis whereas NuSMV is a more

14

general language. Specific annotations are introduced in a native NuSMV model
to distinguish error concepts that should appear in a safety report. The available
tools are effective [1], but the annotation process raises practical questions when
mixed with AADL view. First versions of COMPASS built the annotations by
asking end users to extend AADL nominal models in the COMPASS framework.
It could be clearer for end users to perform the model extension in an AADL
framework compliant both with the principle of the AADL Error Annex and the
level of rigor requested by NuSMV as experimented in our work.

8 Conclusions

The AADL is a language that is used to describe the software and hardware
architectures of system. The AADL EMV2 enables the extension of the archi-
tecture models with artefacts that are relevant to generate safety related models.
For instance, Fault Trees can be generated from models extended according the
principle of the EMV2. AltaRica is a formal language specifically defined to
support advanced safety analysis of complex systems that integrate modes and
dynamic reconfiguration on specific conditions.

We have presented an example of a simplified version of such a kind of dy-
namic systems and we have modeled it both in AltaRica and in the AADL
as starting point. This first activity has enabled a better understanding of the
philosophy of both approaches. Both languages have to deal with failure prop-
agations inside a system architecture. In the AADL, the failure extension of a
component is flexible and it enables the connexion of components that are sub-
ject to heterogeneous failure modes. As a counterpart, end users need to be quite
explicit on the various cases of composition of the failure modes. In AltaRica,
the connexion of component shall be compliant with stronger typing rules. So
end users can less easily propagate heterogeneous failure modes. As a counter-
part, the connexion is straight forward and the propagation between connected
components results directly from the language semantics.

Then we have developed a translator from the AADL EMV2 into AltaRica
and we have generated an AltaRica model for our case study. The manual Al-
taRica model and the generated one have been simulated and analyzed. They
have produced the same results. This is a first encouraging validation step for
our translator. Moreover, the analysis exhibits relevant sequences of causes of
the undesired events for a multi-mode system. Thus the AADL model can be
analyzed with latest generation of safety assessment tools.

Further works will aim at short term to more widely validate the translator
and the benefit of the coupled approach. At longer term, the AADL EMV2 could
be updated to ease modeling in the spirit of some interesting AltaRica features.
Conversely, the flexibility of the failure type definition in AltaRica could be
extended to better account for extension approach like in the AADL EMV2.

15

Acknowledgements

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute, a federally funded
research and development center. [Distribution Statement A] This material has
been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution. DM-0004294

References

1. Akerlund, O., Bieber, P., Boede, E., Bozzano, M., Bretschneider, M., Castel, C.,
Cavallo, A., Cifaldi, M., Gauthier, J., Griffault, A., Lisagor, O., Luedtke, A., Metge,
S., Papadopoulos, C., Peikenkamp, T., Sagaspe, L., Seguin, C., Trivedi, H., Valacca,
L.: Isaac, a framework for integrated safety analysis of functional, geometrical and
human aspects. In: Proceedings of 3rd European Congress Embedded Real Time
Software, ERTS 2006. Toulouse (France) (2006)

2. Arnold, A., Griffault, A., Point, G., Rauzy, A.: The altarica language and its se-
mantics. Fundamenta Informaticae 34, 109–124 (2000)

3. Batteux, M., Prosvirnova, T., Rauzy, A.: AltaRica 3.0 specification. Tech. rep.,
AltaRica Association (2015), http://openaltarica.fr/docs/AltaRica 3.0 Language
Specification.pdf

4. Boiteau, M., Dutuit, Y., Rauzy, A., Signoret, J.P.: The altarica data-flow language
in use: Assessment of production availability of a multistates system. Reliability
Engineering and System Safety 91, 747–755 (2006)

5. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended aadl models. Comput. J. 54(5),
754–775 (May 2011), http://dx.doi.org/10.1093/comjnl/bxq024

6. Delange, J., Feiler, P.: Architecture fault modeling with the aadl error-model annex.
In: 40th Euromicro Conference on Software Engineering and Advanced Applica-
tions. IEEE (2014)

7. Mokos, K., Katsaros, P., Bassiliades, N., Vassiliadis, V., Perrotin, M.: Towards
compositional safety analysis via semantic representation of component failure be-
haviour. In: Proceedings of the 2008 Conference on Knowledge-Based Software
Engineering. pp. 405–414. Amsterdam, The Netherlands, The Netherlands (2008)

8. Prosvirnova, T., Batteux, M., Brameret, P.A., Cherfi, A., Friedlhuber, T., Roussel,
J.M., Rauzy, A.: The altarica 3.0 project for model-based safety assessment. In:
Proceedings of 4th IFAC Workshop on Dependable Control of Discrete Systems,
DCDS 2013. IFAC, York (Great Britain) (September 2013)

9. Prosvirnova, T., Rauzy, A.: Automated generation of minimal cut sets from altarica
3.0 models. IJCCBS 6(1), 50–80 (2015)

10. Rauzy, A.: Mode automata and their compilation into fault trees. Reliability En-
gineering and System Safety 78, 1–12 (2002)

11. SAE: Architecture Analysis and Design Language (AADL) AS-5506B. Tech.
rep., The Engineering Society For Advancing Mobility Land Sea Air and Space,
Aerospace Information Report, Version 2.1 (September 2012)

12. Teichteil-Knigsbuch, F., Infantes, G., Seguin, C.: Lazy forward-chaining meth-
ods for probabilistic model-checking. In: Advances in Safety, Reliability
and Risk Management, pp. 318–326. Informa UK Limited (Aug 2011),
http://dx.doi.org/10.1201/b11433-47

