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AADL and AltaRica languages can be used to support the safety assessments of system architectures. These languages were defined with different concerns and this paper aims at presenting their principles and how they can be related. A translator from AADL to AltaRica is proposed and its prototype is applied to a simplified flight control system of a UAV. The resulting AltaRica model has been analyzed with the AltaRica safety tools and the experimental results are discussed.

Introduction

The interest of industrial community in Model-Based System Engineering (MBSE) and Model-Based Safety Assessment (MBSA) is gradually increasing. In this paper we consider two modeling languages: AADL and AltaRica.

AADL (Architecture Analysis and Design Language) is a multi-concerns modeling language dedicated to distributed real-time embedded systems [START_REF]SAE: Architecture Analysis and Design Language (AADL) AS-5506[END_REF]. It proposes several annexes to describe embedded systems behavior. The AADL Error Model V2 (EMV2) [START_REF] Delange | Architecture fault modeling with the aadl error-model annex[END_REF] is an error annex focused on Safety Analyses. It offers a terminology and an ontology to capture key features of failure/error propagations.

AltaRica [START_REF] Arnold | The altarica language and its semantics[END_REF][START_REF] Prosvirnova | The altarica 3.0 project for model-based safety assessment[END_REF] is a high level modeling language dedicated to Safety Analyses. Its formal semantics allowed the development of a set of efficient assessment tools, such as compilers to Fault Trees [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF][START_REF] Prosvirnova | Automated generation of minimal cut sets from altarica 3.0 models[END_REF] and Markov chains, stochastic and stepwise simulators. It is in the core of several commercially distributed integrated modeling and simulation environments and has been successfully used to perform industrial scale experiments [START_REF] Akerlund | Isaac, a framework for integrated safety analysis of functional, geometrical and human aspects[END_REF].

In this article we study the mapping between AADL EMV2 and AltaRica concepts. To illustrate our purpose, we use as a study case a simplified flight control system of a small UAV quadcopter with a particular focus on safety mitigation architectures, also called safety patterns. The transformation of AADL EMV2 models to AltaRica is interesting because it enables us to enlarge the set of safety assessment tools for AADL and to perform cross check verifications. Indeed, to implement the transformation we use the standardized version of Al-taRica Data-Flow, which is a subset of AltaRica 3.0 [START_REF] Prosvirnova | The altarica 3.0 project for model-based safety assessment[END_REF]. AltaRica 3.0 is supported by the OpenAltaRica platform, which is free of use for research and education purposes. This platform already includes a Fault Tree compiler and a stepwise simulator. A stochastic simulator and a sequence generator are currently under development.

The remainder of this article is organized as follows. Section 2 describes a simplified flight control system of a small UAV quadcopter which is used as a running example of this article. Section 3 gives an overview of AADL EMV2 concepts. Section 4 introduces the AltaRica modeling language. Section 5 explains AADL to AltaRica translation principles. Section 6 presents some analysis results of this study. Section 7 summarizes related works. Section 8 concludes this article.

Running example

The case study is inspired by the flight control system of a small UAV quadcopter. We address a simplified software architecture that encompasses different significant safety patterns. High level functional architecture The control is achieved by three main functions. The ComputeCommand function aims at computing the commands to control the helixes in automated or manual mode. The function needs two different flight parameters to be performed correctly in the automated mode whereas it needs at least one flight parameter and the pilot order in the manual mode. The quality of the inputs and outputs of this function is checked by the function ControlFlightParameters. The function ManageFlightMode adapts the piloting mode and the applicable order according to the checked status. Failure modes and failure conditions Each function may fail and its computation may be erroneous or lost. The loss of control is not catastrophic as long as the crash is controlled in an acceptable area. The erroneous control is a worse case because the UAV may fly away and lose the separation with other aircraft or it may crash over populated area. So the system safety assessment is needed to compute the causes and probability of occurrences of such failure conditions.

In this study we consider two failure conditions:

-FC01: "Quadcopter fly away, i.e. erratic behavior, potentially fly and crash in an unauthorized area, leading at worst to fatalities". -FC02: "Uncontrolled crash, i.e. loss of the quadcopter control".

Safety patterns

Several safety patterns are introduced to reduce the failure occurrences or their effects. A COMMON (COMmand and MONitoring) architecture is proposed to detect and mitigate the effect of potential erroneous computations. The pattern, shown Fig. 2, works as follows. We assume that the computation is achieved in parallel by two different channels so that a computation error of one channel may be detected by comparison with the other channel. If no alarm is raised, the order computed by the command lane is applied. Otherwise, the computed order is no more selected and the order is lost.

The mode manager is proposed to adapt as long as possible the control architecture according to the integrity and availability of its basic functions. Initially, the engaged mode is the automated mode. When the check of the flight parameters detects that the automated flight is no longer safe, the manual mode is engaged. A crash mode is engaged when the manual mode is also estimated unsafe.

Modeling and Safety assessment needs

This case study is modeled using the AADL notation and the AltaRica formal language to better understand each notation and the principles of the translation of the AADL model into an AltaRica one. Then the translation is applied to produce an AltaRica model from the AADL one. AltaRica fault tree generator [START_REF] Prosvirnova | Automated generation of minimal cut sets from altarica 3.0 models[END_REF] is used for both the hand made AltaRica model and the generated one. The comparison of the Minimal Cut Sets for FC01 and FC02 contributes to the validation of our translation process.

AADL EMV2 presentation

The SAE "Architecture Analysis and Design Language" (AADL) [START_REF]SAE: Architecture Analysis and Design Language (AADL) AS-5506[END_REF] is a language for model-based engineering of embedded real-time systems. The AADL allows for the description of both software and hardware parts of a system. It focuses on the definition of clear block interfaces, and separates the implementations from these interfaces. From the separate description of these blocks, one can build an assembly of blocks that represents the full system. To take into account the multiple ways to connect components, the AADL defines different connection patterns: subcomponent, connection, binding.

An AADL description is made of components. Each component category describes well-identified elements of the actual architecture, using the same vocabulary of system or software engineering. The AADL standard defines software components (data, thread, subprogram, process), execution platform components (memory, bus, processor, device, . . . ) and composite components (system, abstract). Besides, the language defines precise legality rules for component assemblies, and both its static and execution semantics.

The AADL defines the notion of properties. They model non-functional properties that can be attached to model elements (components, connections, features, instances, etc.). Properties are typed attributes that specify constraints or characteristics that apply to the elements of the architecture such as clock frequency of a processor, execution time of a thread, bandwidth of a bus, implementation of the functional part.

From this core of elements, AADL allows the designer to attach annex elements that further refine one dimension of the system. The Error Modeling Annex V2 (EMV2) addresses safety modeling concerns. See [START_REF] Delange | Architecture fault modeling with the aadl error-model annex[END_REF] for more details.

EMV2 supports architecture fault modeling at three levels of abstraction:

-Focus on error propagation between system components and with the environment: modeling of fault sources, along with their impact through propagation. It allows for safety analysis in the form of hazard identification, fault impact analysis, and stochastic fault analysis. -Focus on component faults, failure modes, and fault handling: fault occurrences within a component, resulting fault behavior in terms of failure modes, effects on other components, the effect of incoming propagations on the component, and the ability of the component to recover or be repaired.

It allows for modeling of system degradation and fail-stop behavior, specification of redundancy and recovery strategies providing an abstract error behavior specification of a system without requiring the presence of subsystem specifications. -Focus on compositional abstraction of system error behavior in terms of its subsystems.

In addition, EMV2 introduces the concept of error type to characterize faults, failures and propagations. It includes a set of predefined error types as starting point for systematic identification of different types of error propagations providing an error propagation ontology. Users can adapt and extend this ontology to specific domains.

As an illustration consider an AADL EMV2 model given below. It represents a function with an input and an output. It may be in three states: s Ok, s Erroneous and s Lost, representing respectively the nominal behavior, the erroneous behavior and the loss of the function. If the function is in the state s Ok and it receives an error on its input, it propagates it on the output. If the function is in the state s Erroneous it propagates an error on its output and so on. EMV2 follows regular convention for the description of state transition and error propagation, initial state -[trigger] → error event , that reads as follows: when the system is in state initial state , it propagates the corresponding error event . This propagation may be controlled by the trigger.

abstract

AltaRica presentation

AltaRica is a high level formal modeling language dedicated to Safety Analyses [START_REF] Arnold | The altarica language and its semantics[END_REF]. Its Data-Flow version has been created to handle industrial scale models [START_REF] Boiteau | The altarica data-flow language in use: Assessment of production availability of a multistates system[END_REF]. A number of assessment tools have been developed ( [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF], [START_REF] Teichteil-Knigsbuch | Lazy forward-chaining methods for probabilistic model-checking[END_REF]). AltaRica Data-Flow is at the core of several Modeling and Simulation tools and has been successfully used for industrial applications [START_REF] Akerlund | Isaac, a framework for integrated safety analysis of functional, geometrical and human aspects[END_REF]. In 2011, an initiative was launched to standardize the syntax of AltaRica Data-Flow.

To implement the transformation of AADL to AltaRica we use the standardized version of AltaRica Data-Flow -a subset of AltaRica 3.0 [START_REF] Prosvirnova | The altarica 3.0 project for model-based safety assessment[END_REF], supported by the OpenAltaRica platform. This platform is developed by IRT SystemX and is free of use for research and education purposes. It already includes a Fault Tree compiler [START_REF] Prosvirnova | Automated generation of minimal cut sets from altarica 3.0 models[END_REF] and a stepwise simulator. Other tools are under development.

In this article we only focus on concepts of AltaRica Data-Flow illustrated using the running example. The interested reader can refer to [START_REF] Batteux | AltaRica 3.0 specification. Tech. rep[END_REF] to know more about AltaRica 3.0.

Basic blocks

The following AltaRica code represents the behavior of a basic function.

domain BasicFunctionStatus {OK, LOST, ERRONEOUS} class BasicFunction BasicFunctionStatus status (init = OK); event fail_loss (delay = exponential(0.001)); event fail_error (delay = exponential(0.0005)); transition fail_loss: status == OK -> status := LOST; fail_error: status == OK -> status := ERRONEOUS; end States: The internal state of the function is represented by means of the state variable status, which takes its value in the domain BasicFunctionStatus. So, the function can be in three states: OK representing the nominal behavior, LOST (loss of the function), and ERRONEOUS (erroneous behavior). The initial value of the state variable is specified by the attribute init. Events: The state of the function changes under the occurrence of an event, introduced with the keyword event. In our example, the function has two failure events: fail error (erroneous behavior), and fail loss (loss of the function). A delay is associated with each event by means of the attribute delay. Delays of the events fail loss and fail error are random exponentially distributed variables. Transitions: A transition is a triple e : G → P , where e is an event, G is a Boolean expression, the so-called guard of the transition, P is an instruction, the so-called action of the transition. In the example above if the state of the function is OK, then two transitions are fireable: the transition labeled with the event fail loss and the transition labeled with the event fail error. If the delay drawn for the transition fail loss is the shortest, then this transition is fired and the variable status is switched to LOST. 

then input else status; end

There are two flow variables: input and output, taking their values in the domain BasicFunctionStatus. They represent respectively the quality of the data received and sent by the function. The assertion states that if the state of the function is OK, then its output is equal to its input, if its state is LOST then its output is also LOST, otherwise it is ERRONEOUS.

Hierarchical models

In AltaRica Data-Flow components are represented by classes. Classes can be instantiated in other classes in order to create hierarchical models. Their inputs and outputs can be connected via assertions.

The Figure 2 

. end

In this model, we define an immediate event GoToManualMode and the associated transition, which represents the reconfiguration: while in the automated mode, if the alarm is received (inputAlarm is true), then the transition is fired immediately and the mode is switched to manual.

AADL EMV2 to AltaRica translation

Models in AADL with EMV2 and AltaRica are structurally similar so that it is possible to translate one notation into the other. On the structural side AADL components correspond to AltaRica classes. AADL subcomponents correspond to AltaRica variables whose type is an AltaRica class. Thus, given an AADL model it is possible to create an AltaRica model that exhibits the same hierarchical containment structure.

For safety analysis we are interested in the occurrence and propagation of faults throughout the analyzed system. The interface of an AADL component with regard to fault propagation is given by its error propagations as defined in the component's EMV2 annex subclause. Each of these EMV2 error propagations corresponds to an AltaRica flow variable whose domain can be derived from the set of faults that are associated with the error propagation.

Several AADL model constructs are involved in the propagation of faults from one AADL component to another. (a) Connections modeling data and control flow can propagate faults related to, for example, data validity and timing. (b) Faults that occur in an execution platform component, e.g. power loss, propagate to software components that are bound to, i.e. propagation via binding properties. (c) Additional propagations without an explicit path in the architectural model are defined in an EMV2 annex subclause, e.g. fault propagation due to heat transfer between hardware components located in close proximity. All these constructs are translated into "external" AltaRica assertions, i.e. assertions connecting flow variables from different classes.

The internal fault behavior of an AADL component is given using the AADL EMV2 error behavior and component error behavior constructs. The translation of these constructs to AltaRica proceeds as follows:

-An EMV2 error event describes the occurrence of an internal fault that happens in the component. Each such event is translated into an AltaRica event. The occurrence probability of an error event is given by the value of property EMV2::OccurrenceDistribution which is translated into a delay attribute for the AltaRica event. -EMV2 error states are defined as an identifier, i.e. the state's name. All error states of an AADL component are translated into a single state variable in AltaRica. The domain of this variable is the set of symbols created from the EMV2 error state names. -EMV2 state transitions are translated to AltaRica transitions. If the the transition is caused by an internal fault, i.e., an error event, it is translated into an AltaRica transition that is enabled by the corresponding AltaRica event and uses the source state as the guard. The action assigns the target state to the state variable. If, on the other hand, the transition is caused by incoming fault propagations, we create an AltaRica transition that is always enabled and translate the EMV2 error condition into the guard condition.

To enable this kind of transition we add an event with the attribute delay equal to Dirac(0.0) (immediate event) to each AltaRica class. -EMV2 out propagation conditions determine the error type produced at an out propagation based on the state and an error condition involved in propagations. Each out propagation condition is translated to an internal AltaRica assertion that sets the value of an outgoing flow variable to the symbol representing the propagated error type.

The following two listings show a simple example in AADL, the comparator component used in the COMMON pattern, and the AltaRica code generated by the translator. It is easy to see the correspondence between the two models. event error_propagation (delay = Dirac (0.0)); // not used domain_4 out0 (reset = noerror); // initially no error domain_5 in2_3; domain_5 in1_4; assertion out0 := switch { // all out propagation conditions // aggregated into one switch statement case in1_4 == err and in2_3 == lost: lost case in1_4 == lost and in2_3 == lost: lost case in1_4 == lost and in2_3 == err: lost case in1_4 == noerror and in2_3 != noerror: lost case in1_4 != noerror and in2_3 == noerror: lost case in1_4 == err and in2_3 == err: err default: noerror // noerror is the default }; end Modeling the comparison of error types as several out propagation conditions results in a somewhat unwieldy AltaRica assertion since the translator does not perform any simplification of the generated code. The assertion is equivalent to out0 := if (in1_4 == in2_3) then in1_4 else lost;

Resolution of mismatches between AADL EMV2 and AltaRica

There are a couple of differences between AADL EMV2 and AltaRica which must be taken into account when translating between the two formalisms.

One difference concerns the way error types are defined in EMV2. In general error types can be thought of as typed tokens that propagate through an architecture. However, EMV2 error types are organized in a generalization hierarchy, and all EMV2 allows use of generalized error types wherever an error type can occur. For example, AboveRange is a subtype of OutOfRange, which is a subtype of DetectableValueError. The most general error in this generalization chain is the ItemValueError. AltaRica does not support a notion of generalization in the definition of constants used to create domains. We solve this mismatch by always replacing generalized error types with the most specific error types. For example, a DetectableValueError in an error propagation or condition is replaced with the most specific error types of which DetectableValueError is a generalization, namely OutOfBounds, BelowRange, and AboveRange.

Another difference is that EMV2 uses sets of error types to define error propagations and conditions, whereas AltaRica does not support a built-in notion of sets. This leads to difficulties when assigning a domain to an incoming flow variable if the flow is generated based on an AADL feature that has multiple incoming connections (fan-in). Such an AADL model is valid if the set of error types F i at each of the connected out propagations o i are contained in the type set at the in propagation: ∀i ∈ {1, ..., n}F i ⊆ E. In general all type sets F i may be different. To resolve this mismatch we generate multiple flow variables from an EMV2 in propagation, one per incoming connection. As the domain we use the domain generated from the error of the corresponding out propagation at the other end of the connection. This way both flow variables have the same domain as their type and can be connected using an AltaRica assertion.

Unfortunately, the 1 to n translation of in propagations to flow variables complicates the translation of error conditions on transitions and out propagation conditions. The error conditions contain atomic terms of the form ip(C), with C = {t 1 , t 2 , ..., t k } a set of error types. Such a term is true if and only if one of the error types is propagated in via the in propagation ip. In the simplest case this term is translated into the following Boolean expression in AltaRica:

ip = t 1 ∨ ip = t 2 ∨ ... ∨ ip = t k .
When the in propagation is split into several flow variables, the resulting AltaRica expression is the disjunction of the expressions generated for each of the new flow variables, which can become long and difficult to read.

Another consequence of the 1 to n relationship between in propagations and flow variables is that the number of generated flow variables is not the same for all instances of an AADL classifier. It depends on the context in which the component is used, in particular, how it is connected to other components in the model. Therefore, it is not possible to generate the AltaRica classes based on the declarative AADL model alone. Instead, we translate each AADL component instance into an AltaRica class, potentially resulting in an AltaRica model with several classes that are identical except for identifiers. This increases the size of the AltaRica model but has not much influence on analyses of the models. As an AltaRica model is "flattened" to transform it into a guarded transition system, it is necessary to insert a full copy of a class for each class instance. This is similar to what happens during the generation of an AADL instance model, thus resulting in essentially the same guarded transition system.

AADL EMV2 also has the concept of a typed error state. This is an error state that has an error type associated with it. The error types allowed for a state are enumerated in a type set given with the error state declaration. Even though we have not included typed error states in the translation, it could be extended to generate multiple AltaRica domain constants for each typed EMV2 error state, one per declared type token.

Implementation of the translator

We have implemented the AADL EMV2 to AltaRica translator as a plugin to OS-ATE, the open source AADL tool environment. The translation is implemented using the Atlas Transformation Language. The source code for our translator is available on github6 , and the plugin can be installed into OSATE from our p2 repository. 7The current version supports a subset of AADL EMV2 sufficient for the analysis of the UAV system used in our case study. We are planning to extend that translation to include more EMV2 concepts as needed, e.g. error detections and stochastic state transitions.

Experiments

The automatically generated AltaRica model can be analyzed with the various tools which are provided within the OpenAltaRica platform. In particular, we can simulate the model in order to observe the effect of different failure scenarios on the overall system. We can also analyze the potential causes of the failure conditions by generating Fault Trees and Minimal Cut Sets (MCS).

Let us consider the failure condition FC02 (uncontrolled crash). The analysis returns 12 MCS presented in Fig. 6.

This result fully complies with the result that we obtained with the handwritten AltaRica model of the quadcopter. As a first remark, all the MCS are of order 2. So, we can deduce that no single failure can lead to FC02. As we can see, the pilot order is of prime importance. This is not surprising since one of the main ideas behind this system is to switch from automatic mode to manual mode in case of a problem (loss of a source for the estimation of flight parameters, loss of the automatic command, . . . ). Once the system switches to manual mode, if the function that acquires the pilot order also fails, then an uncontrolled crash occurs. A similar argument holds for the alarm of the function ControlFlightParameters, which is responsible for detecting a problem and switching to manual mode.

The same analysis has been performed for the failure condition FC01. Again, the result is similar to the result obtained from the hand-written model. For this failure condition, there are 2 MCS of order 1, which correspond to the erroneous Fig. 3. Minimal cut sets for FC2: uncontrolled crash behavior of each of the sources for the estimation of the flight parameters. This was expected since the system does not implement any mitigation for this specific failure (contrary to the loss of one source, or the erroneous behavior of the command computation).

We have obtained the same results for the handwritten and the automatically generated AltaRica models. It is a first validation step for our translator.

Related work

Another translation of AADL to AltaRica, based on the definition of ontologies, has been proposed in [START_REF] Mokos | Towards compositional safety analysis via semantic representation of component failure behaviour[END_REF].

Translations of AADL models into classical safety models exist (see e.g. [START_REF] Delange | Architecture fault modeling with the aadl error-model annex[END_REF]). It is worth noting that each type of translation takes advantage of different features of the AADL model according to the targeted safety models. For instance, the translation into a Fault Tree requires the features composite error behavior and error events. Such features describe static dependencies between failure modes of components and are well suited for the compilation into Boolean formulas. Component error behavior gives a more dynamic view of the failure propagation and is useful for the computation of probability of occurrences of states of Markov chains or stochastic processes. AltaRica has been designed to integrate in one formalism both static and dynamic features of the failure propagation; it supports not only the computation of the probability of occurrences of states but also the computation of sets/sequences of events leading to undesired states. So, the proposed translation should ease the analysis of reconfigurable systems with multiple modes as our flight control system.

A translation of an AADL subset into NuSMV formal language is a pioneer work to achieve more powerful safety analysis in the framework of the COMPASS project [START_REF] Bozzano | Safety, dependability and performance analysis of extended aadl models[END_REF]. NuSMV language is close to AltaRica Data-Flow: they have similar expressive power. Several safety tools have been developed for NuSMV. However, AltaRica was designed to support safety analysis whereas NuSMV is a more general language. Specific annotations are introduced in a native NuSMV model to distinguish error concepts that should appear in a safety report. The available tools are effective [START_REF] Akerlund | Isaac, a framework for integrated safety analysis of functional, geometrical and human aspects[END_REF], but the annotation process raises practical questions when mixed with AADL view. First versions of COMPASS built the annotations by asking end users to extend AADL nominal models in the COMPASS framework. It could be clearer for end users to perform the model extension in an AADL framework compliant both with the principle of the AADL Error Annex and the level of rigor requested by NuSMV as experimented in our work.

Conclusions

The AADL is a language that is used to describe the software and hardware architectures of system. The AADL EMV2 enables the extension of the architecture models with artefacts that are relevant to generate safety related models. For instance, Fault Trees can be generated from models extended according the principle of the EMV2. AltaRica is a formal language specifically defined to support advanced safety analysis of complex systems that integrate modes and dynamic reconfiguration on specific conditions. We have presented an example of a simplified version of such a kind of dynamic systems and we have modeled it both in AltaRica and in the AADL as starting point. This first activity has enabled a better understanding of the philosophy of both approaches. Both languages have to deal with failure propagations inside a system architecture. In the AADL, the failure extension of a component is flexible and it enables the connexion of components that are subject to heterogeneous failure modes. As a counterpart, end users need to be quite explicit on the various cases of composition of the failure modes. In AltaRica, the connexion of component shall be compliant with stronger typing rules. So end users can less easily propagate heterogeneous failure modes. As a counterpart, the connexion is straight forward and the propagation between connected components results directly from the language semantics. Then we have developed a translator from the AADL EMV2 into AltaRica and we have generated an AltaRica model for our case study. The manual Al-taRica model and the generated one have been simulated and analyzed. They have produced the same results. This is a first encouraging validation step for our translator. Moreover, the analysis exhibits relevant sequences of causes of the undesired events for a multi-mode system. Thus the AADL model can be analyzed with latest generation of safety assessment tools. Further works will aim at short term to more widely validate the translator and the benefit of the coupled approach. At longer term, the AADL EMV2 could be updated to ease modeling in the spirit of some interesting AltaRica features. Conversely, the flexibility of the failure type definition in AltaRica could be extended to better account for extension approach like in the AADL EMV2.

Fig. 1 .

 1 Fig. 1. Overview of the flight control software architecture

Fig. 2 .

 2 Fig. 2. Command and Monitoring pattern

  Flow propagations: In AltaRica the propagation of errors/failures and nominal values is done in the same way: via flow variables and assertions. The value of flow variables are recalculated after each transition firing by means of assertions. Assertions are instructions as are actions of transitions. The difference is that actions of transitions assign only state variables, while assertions assign only flow variables. Consider, for example, the following AltaRica code: class BasicInOutFunction extends BasicFunction; BasicFunctionStatus input, output (reset = LOST); assertion output := if (status==OK)

  is a graphical view of the class COMMONPattern. This class contains two instances of the class BasicInOutFunction, named COM and MON, one instance of the class Selector named selector and one instance of the class Comparator named comparator. The Comparator (cf code below) and Selector are considered as component connectors that are free of failure modes in our case study. Other direct connections between components are represented by plane lines in the figure and by equality assertions linking input and output of connected components in the class COMMONPattern. class Comparator BasicFunctionStatus input1 (reset=LOST); BasicFunctionStatus input2 (reset=LOST); Boolean alarm (reset=false); assertion alarm:= if (input1==input2) then false else true; end Flight modes and reconfigurations Flight modes can be represented by a state variable mode which takes its value in the domain FlightModeDomain. The reconfigurations are represented by immediate transitions, introduced by the attribute delay equal to Dirac(0). They are fireable as soon as their guards are true. As an illustration consider a part of the AltaRica model representing the function ManageFlightMode of the running example. domain FlightModeDomain{AUTO, MANUAL, CRASH, DANGER} class ManageFlightModeFunction Boolean inputAlarm, inputCrashAlarm (reset = false); FlightModeDomain mode(init = AUTO); event GoToManualMode (delay = Dirac(0)); ... transition GoToManualMode:(mode == AUTO) and inputAlarm and not inputCrashAlarm -> mode := MANUAL; ..

  Note that in EMV2 it is not possible to compare error types with each other. For example, the Comparator class as shown in the code in Section 4 uses the expression input1 == input2. Such comparisons must be modeled in EMV2 by using several out propagations that enumerate all possible combinations of error types occurring at the two propagation points.

		--propagated error if in1 != in2
	all -[in1{noerror} and in2]-> out0{lost};
	all -[in1 and in2{noerror}]-> out0{lost};
	all -[in1{lost} and in2{err}]-> out0{lost};
	all -[in1{err} and in2{lost}]-> out0{lost};
		--default: no error is propagated
	end component;	
	**};	
	end Comparator;	
	domain domain_4 {	// domain names are generated
	noerror, lost, err	// constants generated from error types
	}	
	domain domain_5 {	
	noerror, lost, err	
	}	
	class Comparator_6	
	abstract Comparator	
	features	
	in1: in data port;	--ports defined in AADL core
	in2: in data port;	--language
	out0: out data port;
	annex EMV2 {**	
	use types FailMode;
	error propagations	--propagated errors defined in
		--EMV2 annex
	in1: in propagation {lost, err};
	in2: in propagation {lost, err};
	out0: out propagation {lost, err};
	end propagations;	
	component error behavior --no error states needed
	propagations	
		--propagated error if in1 = in2
	all -[in1{lost} and in2{lost}]-> out0{lost};
	all -[in1{err} and in2{err}]-> out0{err};

at http://github.com/osate/aadl2altarica

at http://aadl.info/aadl/osate/experimental
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