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Abstract

Patch-based low-rank minimization for image processing attracts much at-
tention in recent years. The minimization of the matrix rank coupled with
the Frobenius norm data fidelity can be solved by the hard thresholding fil-
ter with principle component analysis (PCA) or singular value decomposition
(SVD). Based on this idea, we propose a patch-based low-rank minimization
method for image denoising. The main denoising process is stated in three
equivalent way: PCA, SVD and low-rank minimization. Compared to recent
patch-based sparse representation methods, experiments demonstrate that
the proposed method is rather rapid, and it is effective for a variety of natu-
ral grayscale images and color images, especially for texture parts in images.
Further improvements of this method are also given. In addition, due to the
simplicity of this method, we could provide an explanation of the choice of
the threshold parameter, estimation of PSNR values, and give other insights
into this method.

Keywords: image denoising, patch-based method, low-rank minimization,
principal component analysis, singular value decomposition, hard
thresholding

1. Introduction

Image denoising is a classical image processing problem, but it still re-
mains very active nowadays with the massive and easy production of digital
images. We mention below some important works among the vast literature
which deals with image denoising.
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One category of denoising methods concerns transform-based methods,
for example [1, 2]. The main idea is to calculate wavelet coefficients of images,
shrink the coefficients and finally reconstruct images by inverse transform.
These methods apply fixed transform dictionaries to whole images. However,
fixed dictionaries do not generally represent whole images very well due to
the complexity of natural images. Many image details are lost while being
denoised.

Another category is related to patch-based methods first proposed in [3],
which explores the non-local self-similarity of natural images. Inspired by
this “patch-based” idea, the authors of K-SVD [4] and BM3D [5] proposed
to use dictionaries to represent small local patches instead of whole images
so that sparsity of coefficients can be increased, where the dictionaries are
fixed or adaptive, and compact or overcomplete. These methods greatly
improve the traditional methods [1, 2], leading to very good performance.
Since these works, many similar methods have been proposed to improve the
denoising process, such as LPG-PCA [6], ASVD [7], PLOW [8], SAIST [9],
NCSR [10], GLIDE [11], WNNM [12], ELMA[13]. However, many proposed
methods are computationally complex. For example, K-SVD uses overcom-
plete dictionaries for sparse representation, which is time-consuming. BM3D
and LPG-PCA iterate the denoising process twice; SAIST and WNNM iter-
ate about 10 times. The computational cost is directly proportional to the
number of iterations.

At the same time, the low-rank matrix approximation has been widely
studied [14, 15] and applied to image processing, such as image recovery
[16, 17], image super-resolution [18], image ranking [18, 19]. Many low-
rank models have no explicit solution. However, the paper [14] proves that
the nuclear norm minimization with the Frobenius norm data fidelity can
be solved by a soft thresholding filter. (See also the paper [12] where an
alternative proof is given.) Furthermore, with the help of Eckart-Young
theorem [20], the paper [21] demonstrates that the solution of the exact
low-rank matrix minimization problem (l0 norm) can be obtained by a hard
thresholding filter. For the convenience of the reader, we give another proof
of this assertion in Appendix.

Inspired by the above theories, we propose a denoising method, which is
simple for implementation and theoretical explanation. This method searches
similar patches to construct similarity matrices. The denoising of similarity
matrices is stated in three equivalent way: principal component analysis
(PCA), singular value decomposition(SVD), and low-rank minimization. We
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consider the exact matrix rank minimization, this method is denoted by
patch-based low-rank minimization (PLR) method. The matrix nuclear norm
minimization is also considered, which leads to the Wiener filter, denoted by
Wie.

The proposed method PLR is very rapid, since we use compact dictio-
naries which are more computationally efficient than over-completed dic-
tionaries. Experiments show that the proposed method is as good as the
state-of-the-art methods for grayscale images and color images, such as K-
SVD [4, 22], BM3D [5, 23], LPG-PCA [6], ASVD [7], PLOW [8], SAIST
[9], NL-Bayes [24], DDID [25], and NLDD [26]. Thus this method can be a
very good choice for being used in practice or preprocessing images for more
complex image processing problems. Further improvements of PLR are also
provided.

Thanks to the theoretical simplicity of PLR, we could give more insights
into PLR. Firstly, this note gives a justification of the choice of threshold
parameter for the proposed method. The other parameters are not very
sensitive to denoising performance, therefore the choice of parameters is easy.
Secondly, we provide bias-variance analysis and compare PLR with Wie. In
addition, we demonstrate that optimization of each similarity matrix does not
necessarily lead to final improvement. Finally, we also provide an approach
to estimate PSNR values for different grayscale images to judge the denoising
performance in practice. Experiments show the estimations are close to real
PSNR values.

The rest of the note is organized as follows. In Section 2, we introduce
our method PLR for denoising grayscale images, and give an explanation
for the choice of the threshold parameter. In Section 3, deep understanding
of PLR is provided. In Section 4, we give the extension to the recovery
of color images, experimental results for grayscale images and color images,
estimation of PSNR vlaues, and further improvement of PLR. Finally, this
note is concluded in Section 5.

2. Patch-Based Low-Rank Minimization (PLR)

We consider the following noise model:

v = u+ η,

where u is the original image, v is the noisy one, and η is the Gaussian
noise with mean 0 and standard deviation σ. The images u,v,η are of size
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M×N for grayscale images, and M×N×3 for color images. Without loss of
generality, we suppose that M = N . The rest of this section is concentrated
on grayscale images.

2.1. Proposed Algorithm

Divide the noisy image v into overlapped patches of size d × d. Denote
the set of all these patches as S = {xi : i = 1, 2, · · · , (N − d+ 1)2}.

For each patch x ∈ S, called reference patch, consider all the overlapped
patches contained in its n × n neighborhood1 (the total number of such
patches is (n− d + 1)2). Then choose the m (m ≥ d2) most similar patches
(including the reference patch itself) to the reference patch among the (n−
d+1)2 patches. The similarity is determined by the Frobenius norm distance.

Next, for each reference patch, its similar patches are reshaped as column
vectors, and put one next to another to form a matrix of size d2 ×m, called
similarity matrix. The similarity matrix is denoted as S = (s1, s2, · · · , sm),
where columns of S, i.e. si, i = 1, 2, · · · ,m, are vectored similar patches.
Then all the patches in the matrix S are denoised together using the hard
thresholding method with the principal component (PC) basis, or equiva-
lently, with the singular value decomposition (SVD) basis derived from the
matrix S; the detailed process will be given afterward. For convenience, we
assume that the mean of the patches in S, denoted by sc :=

1
m

∑m
l=1 sl, is 0.

In practice, we subtract sc from si to form the matrix S, and add sc to the
final estimation s̄l of each patch.

Since the patches are overlapped, every pixel is finally estimated as the
average of repeated estimates.

The process of denoising the matrix S is shown as follows. Firstly, we
derive adaptive basis using PCA. The PC basis is the set of the eigenvectors
of SST . Write the eigenvalue decomposition2

SST = PΛP−1 (1)

with
P = (g1, g2, · · · , gd2),Λ = diag(mλ2

1,mλ2
2, · · · ,mλ2

d2),

1The reference patch is located at the center of the neighborhood, if the parities of d
and n are the same; otherwise, the reference patch is located as near as possible to the
center of the neighborhood.

2We assume that the matrix SST has full rank, and it has no identical eigenvalues,
which are generally true in practice.
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where gi denotes the i-th column of P and diag(c1, c2, · · · ) denotes the diag-
onal matrix with (c1, c2, · · · ) on the diagonal. The PC basis is the set of the
columns of P , that is, {g1, g2, · · · , gd2}.

The original patches si in the similarity matrix S are denoised as follows:

s̄l =
d2∑
k=1

ak⟨sl, gk⟩gk, l = 1, 2, · · · ,m (2)

where

ak =

{
1 if λ2

k > t2,
0 otherwise,

(3)

t being the threshold. Or equivalently, the matrix composed of estimated
patches (2) can be written as

S̄ := (s̄1, s̄2, · · · , s̄m) = Ph(Λ)P−1S, (4)

with
h(Λ) = diag(a1, a2, · · · , ad2). (5)

Note that
1

m

m∑
l=1

(⟨sl, gk⟩)2 = λ2
k (6)

after a simple calculation. Thus λk can be interpreted as the standard devi-
ation of the basis coefficients.

We could also consider the singular value decomposition (SVD) of S:

S = PΣQT , (7)

where P is chosen as the same orthogonal matrix in (1), Σ is a diagonal
matrix, and Q (of size m× d2) has orthogonal columns such that QTQ = I
with I the identity matrix. Then the denoised matrix (4) is equal to

Ŝ := PHt
√
m(Σ)QT , (8)

where Ht
√
m(Σ) is a diagonal matrix, with the diagonal of Ht

√
m(Σ) obtained

by the hard thresholding operator

Ht
√
m(Σ)kk =

{
Σkk if Σkk > t

√
m,

0 otherwise,
k = 1, 2, · · · , d2. (9)
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In fact, the equality of (4) and (8) can be demonstrated as follows. By the
equations (1) and (7), we have Λ = Σ2, and P−1S = Σ QT . Furthermore,
by the equations (5) and (9), we get h(Λ)Σ = Ht

√
m(Σ). Thus it follows that

S̄ = Ŝ.
Finally, we show the denoised matrix in the low-rank minimization form.

Theorem 2.1 stated below is an unconstrained version of the Eckart-Young
theorem [20], and comes from Theorem 2(ii) in [21]. For the reader’s conve-
nience, we provide another short demonstration of the theorem in Appendix,
referring to [12]. According to Theorem 2.1, it easily follows that

Ŝ = argmin
X

∥S −X∥2F +mt2Rank(X), (10)

where the minimum is taken over all the matrices X having the same size
as S, and ∥ · ∥F is the Frobenius norm. Hence the denoised matrix Ŝ is the
solution of the exact low-rank minimization problem.

Theorem 2.1. The following low-rank minimization problem

X̂ = argmin
X

∥Y −X∥2F + µRank(X) (11)

has the solution3

X̂ = UH√
µ(Σ)V

T , (12)

where U and V are derived from the SVD of Y , that is, Y = UΣV T , and
H√

µ is the hard thresholding operator.

H√
µ(Σ)kk =

{
Σkk if Σkk >

√
µ,

0 otherwise.

2.2. Choice of the Threshold Parameter

Choice of parameters in algorithms is important. Theoretical explanation
of the choice is generally difficult. So researchers usually choose parameters
empirically. However, we could give an justification of the choice of the
threshold parameter t in (3), which is crucial for the proposed algorithm. We
study it by minimizing the mean squared error of denoised values of vectored
patches sl, (l = 1, 2, · · · ,m) in a similarity matrix S. Denote sl = ul + ηl,

3Strictly speaking, if none of the singular values of Y equals with
√
µ, the solution is

unique, which is generally true in practice.
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where ul and ηl are the vectored patches of the true image and the noise
corresponding to sl respectively.

By (2) or (4), it can be easily obtained that

∥s̄l − ul∥2 =
d2∑
k=1

(ak − 1)2(⟨gk,ul⟩)2 +
d2∑
k=1

a2k(⟨gk,ηl⟩)2. (13)

Assume that the PC basis {g1, g2, · · · , gd2} only depends on the true val-
ue vectors {u1,u2, · · · ,um} and is hence independent of {η1,η2, · · · ,ηm}.
Then

E(⟨gk,ηl⟩)2 = σ2. (14)

Let

θ2k =
1

m

m∑
l=1

(⟨gk,ul⟩)2, (15)

then by (6), we obtain
E(λ2

k) = θ2k + σ2. (16)

Thus, from (13), (14), and (15), it follows that

1

m

m∑
l=1

∥s̄l − ul∥2 ≈
d2∑
k=1

(ak − 1)2θ2k + σ2

d2∑
k=1

a2k. (17)

After a simple calculation, the optimal value for ak is

âk =

{
1 if θ2k > σ2,
0 otherwise.

Since λ2
k ≈ θ2k + σ2 by (16), the optimal value of the threshold in (3) is

t2 ≈ 2σ2. In practice, we find that t = 1.5σ is a good choice. (We choose
a litter larger threshold, since in practice, the original image contains noise,
and we remove more noise than original noise.)

3. Deep Understanding of PLR

Thanks to the theoretical simplicity of our method PLR, we could gain
more insights into PLR. In this section, we obtain bias-variance decomposi-
tion and compare PLR and Wie. Moreover, we show the results in case of
optimization for each similarity matrix.
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3.1. Bias-Variance Analysis

In the following, we obtain the Wiener filter, provide bias-variance anal-
ysis, and compare PLR and the Wiener filter.

If we replace the rank by the nuclear norm in (10), and consider the
following minimization problem,

Ŝ = argmin
X

∥S −X∥2F +mt2∥X∥∗, (18)

then the solution [14] is

Ŝ = PSt
√
m(Σ)QT , (19)

with
St

√
m(Σ)kk = (Σkk −mt2/2)+ k = 1, 2, · · · , d2. (20)

Following similar discussion to the last subsection, the optimal choice of the
threshold is also t2 ≈ 2σ2, which is the Wiener filter, the shrinkage method
adopted by [27], denoted here by Wie. For Wie, denoised patches contained
in Ŝ can also be expressed as

s̄l =
d2∑
k=1

ak⟨sl, gk⟩gk, with ak =
(λ2

k − σ2)+
λ2
k

, l = 1, 2, · · · ,m. (21)

Due to (2) and (21), we now use the same expression for PLR and Wie,
with ak different. Assume again that the PC basis {g1, g2, · · · , gd2} only
depends on the true value vectors {u1,u2, · · · ,um} and is hence independent
of {η1,η2, · · · ,ηm}. With (2) or (21),

Es̄l =
d2∑
k=1

ak⟨ul, gk⟩gk, l = 1, 2, · · · ,m. (22)

Since

ul =
d2∑
k=1

⟨ul, gk⟩gk, l = 1, 2, · · · ,m, (23)

we get the sum of bias

∥Es̄l − ul∥2 =
d2∑
k=1

(ak − 1)2(⟨ul, gk⟩)2, l = 1, 2, · · · ,m. (24)
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Figure 1: Densities of distribution of bias and sum of variance for PLR and Wie.

Since
s̄l = Ph(Λ)P−1sl, (25)

we obtain the covariance matrix, and further the sum of variance

Ds̄l = σ2Ph(Λ)2P−1, Trace(Ds̄l) = σ2Trace(h(Λ)2) = σ2

d2∑
k=1

a2k. (26)

On the other side,

E∥s̄l − ul∥2 =
d2∑
k=1

(ak − 1)2(⟨gk,ul⟩)2 + σ2

d2∑
k=1

a2k, (27)

which is thus the bias-variance decomposition.
We compare the densities of distribution of bias and the sum of variance

for PLR and Wie. For bias, we use the true gray scale value, that is, we
calculate the square of error for each element in all the similarity matrices,
the number of which is d2mns, with ns the number of similarity matrix. The
variance is estimated by (26). The densities of distributions are tested with
House image, produced by histograms and displayed in Fig.1, which show
that PLR generally has smaller bias and variance.

3.2. Optimization for Each Similarity Matrix

In this section, we show that optimization for each similarity matrix could
not improve our PLR method.
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Table 1: Comparison of PSNR values with oracle threshod of grayscale images.
Image Lena Barbara Boats Cameraman House Peppers

σ = 10
PLR 35.96 35.14 33.84 33.79 36.61 34.35

PLR-Orc 36.05 35.31 33.82 33.48 36.64 34.50
PLR-Wie-Orc 35.82 34.94 33.69 33.77 36.26 34.24

σ = 20
PLR 33.01 31.9 30.69 30.18 33.44 30.94

PLR-Orc 33.09 32.02 30.69 30.01 33.48 30.98
PLR-Wie-Orc 32.62 31.43 30.31 29.95 33.09 30.70

According to (13), the optimal choice for ak is

ak =

{
1 if

∑m
l=1(⟨gk,ul⟩)2 >

∑m
l=1(⟨gk,ηl⟩)2,

0 otherwise.

which is not available in practice. We test this oracle choice in experiments,
with the results shown in Table 1. It can be seen that this oracle choice,
called PLR-Orc, improves little or does not improve the original results.
More generally, if we do not restrict ak to be 0 or 1 in (2), then the mean
squared error for each patch is

∥s̄l − ul∥2 =
d2∑
k=1

(ak − 1)2(⟨gk,ul⟩)2 +
d2∑
k=1

a2k(⟨gk,ηl⟩)2

+2
d2∑
k=1

(ak − 1)ak⟨gk,ul⟩⟨gk,ηl⟩.

Since the last term in the above equation approximates 0, we can omit this
term. So the optimal choice is

ak =

∑m
l=1(⟨gk,ul⟩)2∑m

l=1(⟨gk,ul⟩)2 + (⟨gk,ηl⟩)2
,

which is the oracle choice for the Wiener filter. We also test this choice with
the true original image, called PLR-Wie-Orc. The results are also shown in
Table 1, which generally do not improve original algorithm.

In fact, to give an explanation to this phenomenon, the minimizer of MSE
for each similarity matrix does not necessarily coincide with the minimizer
of MSE for average of multiple estimate.
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4. Experimental Results

In this section, we demonstrate the performance of our PLR method: our
method is very fast and has similar performance to state-of-the-art methods
for grayscale images and color images. Moreover, we provide estimations
of PSNR values of the denoised grayscale images by the proposed method,
which are close to the real values. In addition, further improvements of PLR
are also given.

For simulations, we test the grayscale images used in SAIST [9] and NCSR
[10]4, and test the color images utilized in BM3D [5]5. The level of noise is
supposed to be known, otherwise there are methods to estimate it; see e.g.
[28]. To produce noisy images, we use same noise matrix for each tested
image as done in the code of BM3D.6

To extend the proposed method PLR to recover color images, we adopt
the strategy in[5, 24]. The RGB channels of a color image are transformed
by the orthogonal matrix 1/

√
3 1/

√
3 1/

√
3

1/
√
2 0 −1/

√
2

1/
√
6 −2/

√
6 1/

√
6

 .

The first transformed component is the average of three channels; it is used
to determine the locations of similarity matrices. Then with the same loca-
tions of similarity matrices, the three transformed components are denoised
respectively, and finally are transformed to RGB channels.

4.1. Comparisons of Denoising Performance

For the proposed algorithm, we use same parameters for grayscale im-
ages and transformed components of color images. The threshold parameter
is set to t = 1.5σ as stated before. Other parameters are not very sensitive
to denoising performance: the patch size is set to d = 7, the size of neigh-
borhoods for selecting similar patches is set to n = 43, and the number of

4http://see.xidian.edu.cn/faculty/wsdong/Data/NCSR.rar
5http://www.cs.tut.fi/∼foi/GCF-BM3D/index.html#ref software
6For C++ codes(K-SVD[22], NL-Bayes[24], NLDD[26]), as original codes treat noisy

images as output variables, we change original codes slightly, and transfer the same noisy
images in Matlab into PNG type images as input variables.
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similar patches in a similarity matrix is chosen as m = 5d2. Image bound-
aries are handled by assuming symmetric boundary conditions. For the sake
of computational efficiency, the moving step from one reference patch to its
neighbors both horizontally and vertically is chosen as the size of patches 7.
For other comparison algorithms, we utilize the original codes released by
theirs authors.

In Tables 2 and 3, we compare the PSNR (Peak Signal-to-Noise Ra-
tio) values of our PLR method with other methods for grayscale images
and color images respectively. The PSNR value is defined by PSNR (v̄) =
20 log10(255N/∥v̄ − u∥F )dB, where u is the original image and v̄ the re-
stored one. It can be seen that, for grayscale images, PLR is better than
K-SVD [4, 22], LPG-PCA [6], ASVD [7] and PLOW [8]. The average PSNR
value of PLR is closed to that of BM3D [5] and DDID [25]. Comparing to
SAIST [9] and WNNM [12], which have excellent performance, PLR has lit-
tle difference. The comparisons show the good performance of our method.
Furthermore, our method is also good for the visual comparisons. For exam-
ple, as can be seen in Figures.2, 3 and 4, our method preserves the texture
parts in Lena and Barbara the best among all the methods.

4.2. Comparison of Running Time

To have a clear comparison of complexities of different methods, we com-
pare the average CPU time to remove noise with σ = 20 for the tested
grayscale images of size 256× 256: Peppers, House and Cameraman. All the
codes are written in M-files and run in the platform of MATLAB R2011a on
a 3.40GHz Intel Core i7 CPU processor. We do not include BM3D for com-
parison since the original code of BM3D contains MEX-files. The running
time is displayed in second in Table 4. The comparisons clearly show that
the proposed method is much faster than the others.

4.3. Estimation of PSNR Values

To have an estimation of the denoising performance of our method with-
out referring to true images, we provide a method to get estimated PSNR
values for grayscale images.
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Original Noisy BM3D[5]

SAIST[9] WNNM [12] PLR

Figure 2: Compare denoised grayscale images Lena for σ = 20. To make the differences
clearer, the bottom row and the second row display parts of the hat in Lena image extracted
from the top row and the third row respectively.
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Original Noisy BM3D[5]

SAIST[9] WNNM [12] PLR

Figure 3: Compare denoised grayscale images Barbara for σ = 20. To make the differences
clearer, the bottom row and the second row display parts of Barbara images extracted from
the top row and the third row respectively.
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Table 2: PSNR values of grayscale images. The last column is the mean PSNR values of
all the tested images. From left to right, the images are Lena, Monarch, Barbara, Boats,
Cameraman, Couple, Fingerprint, Hill, House, Man, Peppers, and Straw.

Image Lena Mon Bar Boa Cam Cou Fin Hill Hou Man Pep Str mean
σ = 10

K-SVD[4] 35.51 33.67 34.47 33.65 33.75 33.55 32.41 33.38 35.97 33.62 34.24 30.96 33.76
K-SVD[22] 34.72 33.69 33.69 33.47 33.15 33.35 32.47 33.23 35.0 33.36 33.91 30.97 33.42
LPGPCA[6] 35.75 34.0 35.07 33.65 33.7 33.6 32.64 33.4 36.17 33.68 34.05 31.33 33.92
ASVD[7] 35.62 33.02 34.92 33.31 31.63 33.0 31.93 32.85 36.46 32.84 33.55 29.99 33.26
PLOW[8] 35.32 32.84 33.79 32.99 33.16 33.13 31.04 32.63 36.23 32.95 33.57 28.36 33.0
DDID [25] 35.81 34.17 34.67 33.74 34.05 33.87 31.84 33.56 36.5 34.02 34.56 31.24 34.0
BM3D[5] 35.93 34.12 34.98 33.92 34.19 34.04 32.46 33.62 36.71 33.98 34.68 30.92 34.13
SAIST[9] 35.9 34.76 35.24 33.91 34.3 33.96 32.69 33.65 36.66 34.12 34.82 31.6 34.3

WNNM[12] 36.05 35.04 35.52 34.07 34.42 34.13 32.81 33.75 36.93 34.2 34.95 31.72 34.46
PLR 35.96 34.02 35.14 33.84 33.79 33.8 32.59 33.63 36.61 33.93 34.35 31.1 34.06

PLR-W 35.99 34.33 35.27 33.92 34.05 33.91 32.64 33.69 36.66 34.03 34.53 31.29 34.19
PLR-Iter 35.99 34.5 35.38 33.92 34.1 33.92 32.69 33.64 36.72 34.04 34.57 31.45 34.24

σ = 20
K-SVD[4] 32.39 29.92 30.88 30.39 30.0 30.01 28.45 30.19 33.15 30.14 30.79 26.91 30.27
K-SVD[22] 30.31 29.34 29.3 29.36 28.9 29.11 28.6 29.44 30.4 29.33 29.55 26.86 29.21
LPGPCA[6] 32.63 30.01 31.43 30.29 29.78 30.05 28.59 30.23 33.11 30.12 30.51 27.08 30.32
ASVD[7] 32.95 29.69 31.94 30.48 29.35 30.23 28.47 30.44 33.46 30.09 30.54 26.88 30.38
PLOW[8] 32.73 29.52 30.98 30.39 29.61 30.22 27.76 30.32 33.55 30.13 30.52 25.8 30.13
DDID [25] 33.09 30.49 31.8 30.77 30.52 30.62 28.44 30.62 33.6 30.63 31.33 27.48 30.78
BM3D[5] 33.05 30.35 31.78 30.88 30.49 30.76 28.81 30.72 33.77 30.59 31.29 27.08 30.8
SAIST[9] 33.08 30.76 32.16 30.84 30.45 30.66 29.01 30.69 33.75 30.67 31.32 27.58 30.91

WNNM[12] 33.12 31.11 32.2 30.98 30.74 30.8 29.01 30.78 34.03 30.74 31.55 27.63 31.06
PLR 33.01 30.25 31.9 30.69 30.18 30.46 28.96 30.64 33.44 30.57 30.94 27.35 30.7

PLR-W 32.92 30.46 31.94 30.67 30.36 30.48 28.97 30.6 33.51 30.56 31.04 27.45 30.75
PLR-Iter 33.08 30.61 32.14 30.72 30.36 30.55 28.91 30.58 33.59 30.57 31.1 27.52 30.81
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Table 3: PSNR values for removing noise for color images. The last column is the mean
PSNR values of all the test images.

Image Lena Peppers House F16 Baboon mean
σ = 10

PLOW[8] 34.72 33.86 35.58 35.47 30.25 33.98
BM3D[5] 35.21 33.78 36.23 36.68 30.64 34.51

NL-Bayes[24] 35.26 33.81 35.82 36.71 31.00 34.52
NLDD[26] 35.05 33.59 35.56 36.45 30.52 34.23

PLR 35.16 33.83 36.00 36.72 30.65 34.47
PLR-W 35.22 33.87 36.10 36.80 30.76 34.56

σ = 20
PLOW[8] 32.07 31.41 32.77 32.25 26.19 30.94
BM3D[5] 33.01 31.82 33.83 33.76 26.97 31.88

NL-Bayes[24] 32.90 31.53 33.28 33.84 27.45 31.80
NLDD[26] 32.92 31.54 33.32 33.93 27.34 31.81

PLR 32.93 31.62 33.38 33.92 27.07 31.78
PLR-W 32.96 31.66 33.42 33.96 27.16 31.84

Table 4: Running time in second with grayscale images of size 256× 256.
K-SVD LPG-PCA ASVD PLOW SAIST WNNM PLR
210 138 337 43 25 134 2
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Original Noisy BM3D[5]

PLOW[8] NLDD[26] PLR

Figure 4: Compare denoised color images Lena for σ = 20. To make the differences clearer,
the second row and the bottom row display parts of the hat in Lena image extracted from
the top row and the third row respectively.
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By means of (17), we obtain the mean squared error of vectored patches
s̄l in similarity matrices, where θ2k is estimated by max{λ2

k − σ2, 0}. That is,

1

d2m

m∑
l=1

∥s̄l − ul∥2 (28)

≈ 1

d2

( d2∑
k=1

(ak − 1)2 max{λ2
k − σ2, 0}+ σ2

d2∑
k=1

a2k

)
. (29)

Denote the set of all the similarity matrices by {Si : i = 1, 2, · · · , ns} with
ns the number of similarity matrices. Let ei be the estimation (29) for Si.
Then we can have an initial mean squared error estimation for the whole
image by averaging ei, e =

1
ns

∑
i ei.

The final denoised gray value for each pixel is the average of denoised
values obtained by denoising similarity matrices. Therefore, the estimation
of mean squared error e is greater than the true one. The difference, denoted
by δ, depends on the inner relation of the image. We consider correlation
coefficients to measure the relation. Denote by ci the mean correlation co-
efficient of all the pairwise patches in the similarity matrix Si. Let c be
the average of ci, c = 1

ns

∑
i ci. For simplicity, we suppose that c and δ are

linearly related.
To obtain the relation of c and δ, we train the images from Berkeley

Segmentation Database7 which do not include our tested images. By exper-
iments, the best linear relation in L2 sense is δ = 47.5599c + 5.3905 in the
case of σ = 10, and δ = 275.8265c + 19.1569 in the case of σ = 20. Hence,
the final mean squared error of denoised image can be estimated by e − δ,
and the estimated PSNR value is then 10 log10(255

2/(e− δ)).
We get estimated PSNR values for 6 tested images in the cases σ = 10, 20

and compare them with the true PSNR values in Fig.5, which shows that
the estimated values are close to the real ones.

4.4. Further Improvements

To further improve the performance, we can use weighted average for the
final restoration. We use the inverse of the estimated mean squared error as

7http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping
/segbench/; We utilize the 200 images in the ”train” directory, transfer them to grayscale
images, and take the largest squared region from left-upper corner for each image for
simplicity.
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Estimated PSNR σ=20

True PSNR σ=20

Estimated PSNR σ=10

True PSNR σ=10

Figure 5: Estimation of PSNR values and true PSNR values.

the weight for each similarity matrix, that is,

1∑d2

k=1(ak − 1)2max{λ2
k − σ2, 0}+ σ2

∑d2

k=1 a
2
k

.

About the choice of parameters, this algorithm, denoted by PLR-W, uses the
threshold t = 1.6σ, while other parameters remain the same as PLR. The
PSNR values by PLR-W are also listed in Tables 2 and 3, which demonstrate
the improvement. Note that for color images, the average performance of
PLR-W is the best or nearly the best among the comparing methods.

Moreover, if we use denoised image to determine the similarity matrix,
the denoising performance can be further improved especially when the noise
level is high. The initial denoised image is constructed with t = 1.6σ, the size
of column of similarity matrices m = 300; the final restoration uses t = 1.8σ,
m = 100. Other parameters stay the same as PLR. This algorithm is denoted
by PLR-Iter. It improves denoising results further for grayvalue images, and
the average performance is comparable to BM3D, which can be seen in Table
2.

5. Conclusion

In this note, a patch-based low-rank minimization method for image de-
noising is proposed, where the choice of the threshold parameter is justi-
fied and other parameters are not very sensitive to denoising performance.
Compared to recently reported methods, the proposed method is very rapid

19



and has good denoising performance for grayscale images and color images.
Therefore, this method can be a very good choice for being employed for im-
age denoising in practice or preprocessing images to deal with more complex
problems. Further improvements are also given. Moreover, we provide an
effective approach to estimate PSNR values for grayscale images, which can
help to judge denoising performance in practice.

Appendix A. Proof of the Theorem 2.1

Since orthogonal matrices U, V don’t change the F-norm and the Rank
of matrices, the problem (11) and the solution (12) are equivalent to

Σ̂ = argmin
B

∥Σ−B∥2F + µRank(B), (A.1)

and
Σ̂ = H√

µ(Σ), X̂ = UΣ̂V T . (A.2)

For the problem (A.1), it is easy to verify that, (A.2) holds for diagonal
matrices B, that is,

H√
µ(Σ) = argmin

B
{∥Σ−B∥2F + µRank(B) : B is diagonal}. (A.3)

Next, consider the general case. Let B = U1DV1 be the SVD of B. By
(A.3), to obtain (12), it suffices to prove that

∥Σ− U1DV T
1 ∥2F ≥ ∥Σ−D∥2F (A.4)

due to Rank(U1DV T
1 ) = Rank(D).

Note that

∥Σ− U1DV T
1 ∥2F

= Tr
(
(Σ− U1DV T

1 )(Σ− U1DV T
1 )T

)
= Tr(ΣΣT ) + Tr(DDT )− 2Tr(U1DV T

1 ΣT ), (A.5)

where Tr represents the matrix trace. Denote by γk(A) and σk(A) the k-th
eigenvalue and singular value of the matrix A respectively, then we get

Tr(U1DV T
1 ΣT ) ≤ |Tr(U1DV T

1 ΣT )| ≤
∑
k

|γk(U1DV T
1 ΣT )|. (A.6)
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By Theorem 3.3.13 and Theorem 3.3.14 in [29], we have∑
k

|γk(U1DV T
1 ΣT )| ≤

∑
k

σk(U1DV T
1 ΣT )

≤
∑
k

σk(U1DV T
1 )σk(Σ

T )

=
∑
k

σk(D)σk(Σ
T )

= Tr(DΣT ). (A.7)

Thus by (A.5), (A.6) and (A.7), the inequality (A.4) holds. The proof is
completed.
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