# High Reynolds flows DDES over a square rounded cylinder using OpenFOAM

#### M. Meldi<sup>1</sup>, M. Minguez<sup>2</sup>, E. Serre<sup>3</sup>

1 Institut PPRIME, CNRS - Univ. de Poitiers - ENSMA, France <sup>2</sup> Seal Engineering (Technip subsidiary), France, <sup>3</sup> Aix-Marseille Univ., CNRS, Centrale Marseille M2P2 UMR7340, France

#### OMAE, June 19-24th 2016, Busan Corea



- An international collaborative numerical benchmark following (OMAE2013-10200) carried out at moderate Re (Re=22000).
- Flow configurations representative of full scale offshore conditions
- Collaboration between M2P2/PPRIME/SEAL engineering (Technip Subsidiary) :

 $\to$  dv of advanced methods for turbulent flows over bluff bodies  $\to$  choice of implementing some of them in OpenFOAM as an open source flexible code

• Evaluate the numerical tool through a demanding exercice: blind tests at  $Re = 10^5$  and  $Re = 10^7$  ( $Re = \frac{U_{\propto}L_D}{\nu}$ )

Provide reliable data to describe and understand the physics

## THE DOMAIN

- A square column of section D located at the the origin in x, y
- Rounded corners (r/D = 0.16, with r the corner radius)
- The physical domain:  $[-5D, \, 15D] \times [-5D, \, 5D] \times [0\,, \, 10D]$
- Heading angle  $lpha=45^\circ 
  ightarrow$  renormalization length  $L_D=1.28167D$



## THE NUMERICS: OpenFOAM

• The native *OpenFOAM* SA-DDES equations are solved using *pimpleFoam* (predictor-corrector algo merging PISO & SIMPLE):

ightarrow use an adaptative time-step with a local constraint  $max(Co) \le 1.5$ . In average  $Co \cong 0.1, 0.2$ 

- A 2<sup>nd</sup>-order implicit backward scheme for the time derivative
- A 2<sup>nd</sup>-order centered scheme for the space derivative
- Except the advection: linear-upwind stabilized transport (LUST) scheme

 $\rightarrow$  blends a 2<sup>nd</sup>-order upwind (25%) with a 2<sup>nd</sup>-order centered scheme (75%) (compromise between stability and dissipation)

• Computations have been run on 72 cores on AMU computing center over 50000 hours for about 50 sheddings time.

Meldi et al.

#### Boundary conditions for the DDES simulation

|          | U                 | р             | $\nu_T$                                   |
|----------|-------------------|---------------|-------------------------------------------|
| Inlet    | Fixed ([1, 0, 0]) | Zero gradient | Fixed 10 <sup>-5</sup> / 10 <sup>-7</sup> |
| Outlet   | Zero gradient     | Fixed (0)     | Zero gradient                             |
| Normal   | Slip              | Zero gradient | Zero gradient                             |
| Spanwise | Periodic          | Periodic      | Periodic                                  |
| Wall     | Fixed ([0, 0, 0]) | Zero gradient | Fixed (0) / Spalding law                  |

For  $\nu_T$ , the first value refers to the simulation for  $Re = 10^5$ , the second refers to the simulation for  $Re = 10^7$ .

## THE MESH

• An unique block structured mesh has been carefully designed :  $27.4 \times 10^{6}$  elements made prevalently by hexahedral elements (compromise between accuracy / numerical cost)



The resolution at the cylinder surface is uniform:

- Normal direction:  $\Delta_n = 2.13 \times 10^{-4} D$   $\rightarrow \Delta_n^+ = 1.2 \ (Re = 10^5) \text{ to}$ 98  $(Re = 10^7)$
- Streamwise direction:  $\begin{array}{l} \Delta_s = 7.36 \times 10^{-3} \, D \\ \rightarrow \Delta_s^+ = 41.5 \; (Re=10^5) \; \text{to} \\ 3389 \; (Re=10^7) \end{array}$
- Spanwise direction :  $\begin{array}{l} \Delta_z = 1.04 \times 10^{-2} \, D \\ \rightarrow \Delta_z^+ = 58.5 \ (Re=10^5) \ \text{to} \\ 4777 \ (Re=10^7) \end{array}$





## The resolution at the column: $y^+$



$$Re = 10^{7}$$





(d)

Instantaneous isocontours: (a,b) front<sub>F</sub> (c,d) back. (a,b) = a

Meldi et al.

### The resolution at the column: $y^+$



 $y^+_{{\it max}}(t)$  and  $< y^+(t)>$  average on the surface of the cylinder

The grid is stretchened when going downstream:

Considering the Kolmogorov scale  $\eta = Re^{-3/4} \times L_D$ 

for  $Re = 10^5$ :

fa

• 
$$\Delta_x = \Delta_y = 37.83 \,\eta$$
,  $\Delta_z = 75.64 \,\eta$  for  $x \le 1.1 \,L_D$   
•  $\Delta_x = \Delta_y = 75.64 \,\eta$ ,  $\Delta_z = 151.28 \,\eta$  for  $x \le 2.37 \,L_D$   
•  $\Delta_x = \Delta_y = 151.28 \,\eta$ ,  $\Delta_z = 302.56 \,\eta$  for  $x \le 3.91 \,L_D$   
for  $Re = 10^7$ :

The grid is stretchened when going downstream:

Considering the large scale structure at separation  $L_S = 20 \times Re_{L_D}^{-0.5}$ for  $Re = 10^5$ :

• 
$$\Delta_x = \Delta_y = 0.1724 L_S$$
,  $\Delta_z = 0.3447 L_S$  for  $x \le 1.1 L_D$   
•  $\Delta_x = \Delta_y = 0.3447 L_S$ ,  $\Delta_z = 0.6894 L_S$  for  $x \le 2.37 L_D$   
•  $\Delta_x = \Delta_y = 0.6894 L_S$ ,  $\Delta_z = 1.3789 L_S$  for  $x \le 3.91 L_D$   
for  $Re = 10^7$ :

• 
$$\Delta_x = \Delta_y = 1.724 L_S$$
,  $\Delta_z = 3.447 L_S$  for  $x \le 1.1 L_D$   
•  $\Delta_x = \Delta_y = 3.447 L_S$ ,  $\Delta_z = 6.894 L_S$  for  $x \le 2.37 L_D$   
•  $\Delta_x = \Delta_y = 6.894 L_S$ ,  $\Delta_z = 13.79 L_S$  for  $x \le 3.91 L_D$ 

## The drag $C_D$ and the lift $C_L$ coefficients

Observed over at least 10 shedding characteristic time:



# THE STROUHAL NUMBER



St number based on the lift coefficient

< ロ > < 同 > < 三 > < 三

# STATISTICS OF THE BULK FLOW MAIN QUANTITIES: NUM/EXPE

|                                                | $\overline{C_D}$            | $C'_D$                      | $\overline{C_L}$        | $C'_L$                  | St                                                  |
|------------------------------------------------|-----------------------------|-----------------------------|-------------------------|-------------------------|-----------------------------------------------------|
| Re = 10 <sup>5</sup><br>Expe<br>DDES<br>% diff | 1.77<br>1.981<br>$\sim +11$ | $0.22 \\ 0.155 \\ \sim -30$ | 0.023<br>-0.04<br>~ 100 | $0.44$ $0.6$ $\sim +36$ | $\begin{array}{c} 0.17\\ 0.18\\ \sim +5\end{array}$ |
| Re = 10 <sup>7</sup><br>Expe<br>DDES<br>% diff | 1.59<br>1.495               | 0.16<br>0.175               | -0.002<br>-0.009        | 0.43<br>0.576           | 0.19<br>0.172                                       |

The convergence error is estimated to be 1-2% for the averaged quantities and 3% for the fluctuating quantities, respectively.

# STATISTICS OF THE PRESSURE AND RECIRCULATION LENGTH NUM/EXPE



Two probes like in experiments at the points (front) [0.3536; 0.3536; 5] and (back) [0.3536; 0.3536; 5]

- $C_p = (p p_{\infty})/(0.5 U_{\infty}^2)$  is calculated using the reference pressure  $p_{\infty}$  at the inlet (max or averaged) for y = 0, z = 5.
- The separation angle  $\theta_s$  is calculated following the direction from the x axis to the y axis.
- The recirculation length  $L_r$  is normalized over  $L_D$

|                                                | $\overline{C_{\rho}}$ (front)             | $C'_p$ (front) | $\overline{C_p}$ (back)                              | $C'_p$ (back) |
|------------------------------------------------|-------------------------------------------|----------------|------------------------------------------------------|---------------|
| Re = 10 <sup>5</sup><br>Expe<br>DDES<br>% diff | $0.22 \\ 0.145 (0.23) \\ \sim -34 (+4.5)$ | 0.06           | -1.6<br>-1.782 (-1.7)<br>$\sim$ +11 (+6)             | 0.33          |
| Re = 10 <sup>7</sup><br>Expe<br>DDES<br>% diff | 0.17<br>0.065~(0.105)<br>$\sim$ -61 (-38) | 0.07           | $^{-1.52}$<br>$^{-1.632}$ (-1.592)<br>$\sim$ +7(4.7) | 0.3           |

The convergence error is estimated to be 1-2% for the averaged quantities and 3% for the fluctuating quantities, respectively.

イロト イ理ト イヨト イヨト 二日

### MEAN FLOW: STREAMWISE VELOCITY

- A viscosity dominated flow impinges the upstream cylinder corner
- The recirculation length slighlty decreases when Re increases
- At  $Re = 10^5$  and  $Re = 10^7$ , the flow separates slightly upstream and doswnstream the upper corner, respectively





# INSTANTANEOUS FLOW: Q-ISOCONTOURS AT $Re = 10^5$

• Fine disorganized structures (KH) superimposed around the VK vortex street



# INSTANTANEOUS FLOW: Q-ISOCONTOURS AT $Re = 10^7$

• Fine disorganized structures (KH) superimposed around the VK vortex street



### INSTANTANEOUS FLOW

- 3D flow
- well-defined hairpin vortex



#### Spanwise visualization of Q-isocontours

・ロン ・四 ・ ・ ヨン ・ ヨン

- High Reynolds flows over an inclined ( $45^{\circ}$  angle of attack) square rounded shape cylinder have been modelled
- A demanding exercice for numerics: blind tests at Reynolds numbers:  $Re = 10^5$  and  $Re = 10^7$
- Native OpenFOAM DDES seems to provide an appropriate modelling  $\rightarrow$  good compromise between numerical cost and accuracy, with main flow quantities in reasonnable agreement with experiments
- A more detailed analysis of the flow physics is already in progress

Meldi et al.

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣 … 釣べ⊙

# STATISTICS OF THE PRESSURE AND RECIRCULATION LENGTH NUM/EXPE



Figure : Spanwise averaged values of (a-b) the mean pressure coefficient  $\overline{C_p}$ . The results are shown for (left column) the case  $Re = 10^5$  and (right column) the case  $Re = 10^7$ .

## INSTANTANEOUS FLOW: STREAMWISE VELOCITY

 $Re = 10^{7}$ 



Image: A matrix and A matrix

OMAE 2016 25 / 25