High Reynolds flows DDES over a square rounded cylinder using OpenFOAM

M. Meldi ${ }^{1}$, M. Minguez ${ }^{2}$, E. Serre ${ }^{3}$

1 Institut PPRIME, CNRS - Univ. de Poitiers - ENSMA, France
${ }^{2}$ Seal Engineering (Technip subsidiary), France,
${ }^{3}$ Aix-Marseille Univ., CNRS, Centrale Marseille M2P2 UMR7340, France
OMAE, June 19-24th 2016, Busan Corea

$$
\text { :os OMAE } 2016
$$

The context

- An international collaborative numerical benchmark following (OMAE2013-10200) carried out at moderate $\operatorname{Re}(\operatorname{Re}=22000)$.
- Flow configurations representative of full scale offshore conditions
- Collaboration between M2P2/PPRIME/SEAL engineering (Technip Subsidiary) :
\rightarrow dv of advanced methods for turbulent flows over bluff bodies
\rightarrow choice of implementing some of them in OpenFOAM as an open source flexible code

The objectives

(1) Evaluate the numerical tool through a demanding exercice: blind tests at $\operatorname{Re}=10^{5}$ and $\operatorname{Re}=10^{7}\left(\operatorname{Re}=\frac{U_{\alpha} L_{D}}{\nu}\right)$
(2) Provide reliable data to describe and understand the physics

The domain

- A square column of section D located at the the origin in x, y
- Rounded corners ($r / D=0.16$, with r the corner radius)
- The physical domain: $[-5 D, 15 D] \times[-5 D, 5 D] \times[0,10 D]$
- Heading angle $\alpha=45^{\circ} \rightarrow$ renormalization length $L_{D}=1.28167 D$

The numerics: OpenFOAM

- The native OpenFOAM SA-DDES equations are solved using pimpleFoam (predictor-corrector algo merging PISO \& SIMPLE):
\rightarrow use an adaptative time-step with a local constraint $\max (C o) \leq 1.5$. In average $C o \cong 0.1,0.2$
- A $2^{\text {nd }}$-order implicit backward scheme for the time derivative
- A $2^{\text {nd }}$-order centered scheme for the space derivative
- Except the advection: linear-upwind stabilized transport (LUST) scheme
\rightarrow blends a $2^{\text {nd }}$-order upwind (25%) with a $2^{\text {nd }}$-order centered scheme (75%) (compromise between stability and dissipation)
- Computations have been run on 72 cores on AMU computing center over 50000 hours for about 50 sheddings time.

The numerics: OpenFOAM

Boundary conditions for the DDES simulation

	U	p	ν_{T}
Inlet	Fixed $([1,0,0])$	Zero gradient	Fixed $10^{-5} / 10^{-7}$
Outlet	Zero gradient	Fixed (0)	Zero gradient
Normal	Slip	Zero gradient	Zero gradient
Spanwise	Periodic	Periodic	Periodic
Wall	Fixed $([0,0,0])$	Zero gradient	Fixed $(0) /$ Spalding law

For ν_{T}, the first value refers to the simulation for $R e=10^{5}$, the second refers to the simulation for $\operatorname{Re}=10^{7}$.

The mesh

- An unique block structured mesh has been carefully designed : 27.4×10^{6} elements made prevalently by hexahedral elements (compromise between accuracy / numerical cost)

The Resolution at the column

The resolution at the cylinder surface is uniform:

- Normal direction: $\Delta_{n}=2.13 \times 10^{-4} D$
$\rightarrow \Delta_{n}^{+}=1.2\left(\operatorname{Re}=10^{5}\right)$ to
$98\left(R e=10^{7}\right)$
- Streamwise direction:

$$
\begin{aligned}
& \Delta_{s}=7.36 \times 10^{-3} D \\
& \rightarrow \Delta_{s}^{+}=41.5\left(\operatorname{Re}=10^{5}\right) \text { to } \\
& 3389\left(\operatorname{Re}=10^{7}\right)
\end{aligned}
$$

- Spanwise direction :

$$
\begin{aligned}
& \Delta_{z}=1.04 \times 10^{-2} D \\
& \rightarrow \Delta_{z}^{+}=58.5\left(R e=10^{5}\right) \text { to } \\
& 4777\left(R e=10^{7}\right)
\end{aligned}
$$

The Resolution at THE COLUMN: y^{+}

Instantaneous isocontours: (a, b) front, (c, d) back.

The Resolution at the column: y^{+}

$y_{\text {max }}^{+}(t)$ and $<y^{+}(t)>$ average on the surface of the cylinder

The resolution in the near wake (a priori)

The grid is stretchened when going downstream:
Considering the Kolmogorov scale $\eta=R e^{-3 / 4} \times L_{D}$ for $\operatorname{Re}=10^{5}$:

- $\Delta_{x}=\Delta_{y}=37.83 \eta, \Delta_{z}=75.64 \eta$ for $x \leq 1.1 L_{D}$
- $\Delta_{x}=\Delta_{y}=75.64 \eta, \Delta_{z}=151.28 \eta$ for $x \leq 2.37 L_{D}$
- $\Delta_{x}=\Delta_{y}=151.28 \eta, \Delta_{z}=302.56 \eta$ for $x \leq 3.91 L_{D}$ for $\operatorname{Re}=10^{7}$:
- $\Delta_{x}=\Delta_{y}=1196 \eta, \Delta_{z}=2392 \eta$ for $x \leq 1.1 L_{D}$
- $\Delta_{x}=\Delta_{y}=2392 \eta, \Delta_{z}=4784 \eta$ for $x \leq 2.37 L_{D}$
- $\Delta_{x}=\Delta_{y}=4784 \eta, \Delta_{z}=9568 \eta$ for $x \leq 3.91 L_{D}$

The resolution in the near wake (a priori)

The grid is stretchened when going downstream:
Considering the large scale structure at separation $L_{S}=20 \times R e_{L_{D}}^{-0.5}$ for $R e=10^{5}$:

- $\Delta_{x}=\Delta_{y}=0.1724 L_{S}, \Delta_{z}=0.3447 L_{S}$ for $x \leq 1.1 L_{D}$
- $\Delta_{x}=\Delta_{y}=0.3447 L_{S}, \Delta_{z}=0.6894 L_{S}$ for $x \leq 2.37 L_{D}$
- $\Delta_{x}=\Delta_{y}=0.6894 L_{S}, \Delta_{z}=1.3789 L_{S}$ for $x \leq 3.91 L_{D}$ for $\operatorname{Re}=10^{7}$:
- $\Delta_{x}=\Delta_{y}=1.724 L_{S}, \Delta_{z}=3.447 L_{s}$ for $x \leq 1.1 L_{D}$
- $\Delta_{x}=\Delta_{y}=3.447 L_{S}, \Delta_{z}=6.894 L_{S}$ for $x \leq 2.37 L_{D}$
- $\Delta_{x}=\Delta_{y}=6.894 L_{S}, \Delta_{z}=13.79 L_{S}$ for $x \leq 3.91 L_{D}$

The drag C_{D} and the lift C_{L} coefficients

Observed over at least 10 shedding characteristic time:

$\operatorname{Re}=10^{7}$

The Strouhal number

St number based on the lift coefficient

Statistics of the bulk flow main quantities:

 NUM/EXPE| | $\overline{C_{D}}$ | C_{D}^{\prime} | $\overline{C_{L}}$ | C_{L}^{\prime} | $S t$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{R e =} \mathbf{1 0}^{\mathbf{5}}$ | | | | | |
| Expe | 1.77 | 0.22 | 0.023 | 0.44 | 0.17 |
| DDES | 1.981 | 0.155 | -0.04 | 0.6 | 0.18 |
| \% diff | $\sim+11$ | ~-30 | ~ 100 | $\sim+36$ | $\sim+5$ |
| | | | | | |
| | | | | | |
| $\mathbf{R e}=\mathbf{1 0}^{\mathbf{7}}$ | | | | | |
| Expe | 1.59 | 0.16 | -0.002 | 0.43 | 0.19 |
| DDES | 1.495 | 0.175 | -0.009 | 0.576 | 0.172 |
| \% diff | ~-6 | $\sim+11$ | $\sim+450$ | $\sim+33$ | ~-9 |

The convergence error is estimated to be $1-2 \%$ for the averaged quantities and 3% for the fluctuating quantities, respectively.

Statistics of THE PRESSURE AND RECIRCULATION LENGTH NUM/EXPE

> Two probes like in experiments at the points (front) $[0.3536 ; 0.3536 ; 5]$ and (back) $[0.3536 ; 0.3536 ; 5]$

- $C_{p}=\left(p-p_{\infty}\right) /\left(0.5 U_{\infty}^{2}\right)$ is calculated using the reference pressure p_{∞} at the inlet (max or averaged) for $y=0, z=5$.
- The separation angle θ_{s} is calculated following the direction from the x axis to the y axis.
- The recirculation length L_{r} is normalized over L_{D}

Statistics of the pressure

	$\overline{C_{p}}$ (front)	C_{p}^{\prime} (front)	$\overline{C_{p}}$ (back)	C_{p}^{\prime} (back)
Re $=\mathbf{1 0}^{\mathbf{5}}$ Expe	0.22			
DDES	$0.145(0.23)$	0.06	$-1.782(-1.7)$ $\%$ diff $\sim-34(+4.5)$	0.33
Re $=10^{7}$ Expe	0.17 DDES $\%$ diff	$0.065(0.105)$ $\sim-61(-38)$	0.07	$-1.632(-1.592)$ $\sim+7(4.7)$

The convergence error is estimated to be $1-2 \%$ for the averaged quantities and 3% for the fluctuating quantities, respectively.

Mean flow: Streamwise velocity

- A viscosity dominated flow impinges the upstream cylinder corner
- The recirculation length slighlty decreases when Re increases
- At $R e=10^{5}$ and $R e=10^{7}$, the flow separates slightly upstream and doswnstream the upper corner, respectively

Instantaneous flow：Q－isocontours at $R e=10^{5}$

－Fine disorganized structures（KH）superimposed around the VK vortex street

Instantaneous flow：Q－isocontours at $\operatorname{Re}=10^{7}$

－Fine disorganized structures（KH）superimposed around the VK vortex street

Instantaneous flow

- 3D flow
- well-defined hairpin vortex

$\operatorname{Re}=10^{7}$

Spanwise visualization of Q-isocontours

In summary

- High Reynolds flows over an inclined (45° angle of attack) square rounded shape cylinder have been modelled
- A demanding exercice for numerics: blind tests at Reynolds numbers: $R e=10^{5}$ and $\operatorname{Re}=10^{7}$
- Native OpenFOAM DDES seems to provide an appropriate modelling \rightarrow good compromise between numerical cost and accuracy, with main flow quantities in reasonnable agreement with experiments
- A more detailed analysis of the flow physics is already in progress

Statistics of the pressure and recirculation LENGTH NUM/EXPE

(a)

(b)

Figure: Spanwise averaged values of $(a-b)$ the mean pressure coefficient $\overline{C_{p}}$. The results are shown for (left column) the case $R e=10^{5}$ and (right column) the case $R e=10^{7}$.

Instantaneous flow: STREAMWISE VELOCITY

