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Abstract

Natural gas combustion in dense fluidized beds containing inert particles involves complex physical mechanisms related to the bed
hydrodynamic coupling with the gaseous combustion. In their experiments, Dounit et al. (Powder Technology, 2008) reported that for
bed temperatures lower than a critical value (< 850 ◦C), almost all the combustion takes place above the bed surface. In the present
study, detailed unsteady 3D CFD simulations of such experiments have been performed using NEPTUNE_CFD code, which is based
on an Euler-Euler approach to compute both gas and solid phases. Time-averaged quantities were computed and compared with the
available experimental measurements. The numerical results (gas temperature and gaseous-species molar fractions in and above the
bed) are found to be very sensitive to the mesh refinement in such reactive dense gas-particle flows.
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1. Introduction

Fluidized-beds reactors are widely used in many industrial
applications, especially in solid treatment applications where en-
ergy may be supplied by direct combustion of fossil fuels inside
the bed itself. Thanks to its low sulphur content, natural gas is
the least polluting fossil fuel. In addition, working at relatively
low temperature allows to minimize combustion pollutants, es-
pecially NO and NO2 emissions. Given this ecological bene-
fit, it appears of great interest to understand and master natural
gas combustion process in fluidized beds. The present study is a
theoretical/numerical investigation of air-methane combustion in
a dense fluidized-bed reactor for which experimental results are
available by the works of Dounit et al. [3, 4, 5]. The experimental
setup consisted of a reactor of 180 mm in diameter and 1400 mm
in height, above which, a disengagement section of 360 mm in
diameter is added. The experiments were conducted using sand
particles with mean diameter 350µm and density 2650 kg/m3.
In order to maintain a constant temperature in the bed, cooling
air may circulate in a double shell. A detailed description of the
experiments may be found in the aforementioned publications.

2. Modeling approach

An Euler-Euler approach is used to describe both the gaseous
and the particulate phases by solving a set of mean equations for
each phase (mass, momentum and enthalpy equations). Coupling
between the phases is accounted for through interphase transfer
terms (see Ref. [14, 15] for more details). In addition, species
transport equations and a state law are used to predict the gaseous
species evolution and the change in gas density.

2.1. Mass, momentum and enthalpy balance equations

For each phase, the balance equations are written as follows :
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In Eqn (1), αk represents the volume fraction of the phase k
(which may be either the gas and in that case k = g, or the par-
ticulate phase in which case k = p). ρk and Uk,j are the phase’s
density and velocity respectively.

In Eqn (2), Pg is the local mean gas pressure and gi is the
gravity. Ik′

→k,i accounts for the interfacial momentum transfer
between the phases and the last term is the transport due to the ve-
locity fluctuations. Details concerning the closures of these last
two terms may be found in Ref. [2, 8].

In Eqn (3), Hk represents the total enthalpy of the phase
k. The first term on the right hand side (r.h.s.) is an enthalpy
transport term written in the frame of the gradient approximation
with an effective thermal diffusivity, Kk [10, 11]. The convec-
tion/diffusion heat transfer term (Πk′

→k in the r.h.s. of Eqn (3))
is modeled according to :

−Πp→g = Πg→p = −
αpρpCpp

τT
gp

(Tp − Tg) (4)

where Tg and Tp are the local mean gaseous and particulate phase
temperatures, respectively. τT

gp is the thermal characteristic time
scale defined as :

1

τT
gp

=
6λg

ρpCpp

〈Nu〉p
d2p

(5)

in which λg is the gas thermal conductivity. The Nusselt
number of the particulate phase is defined as 〈Nu〉p = 2 +

0.55Re
1/2
p Pr1/3 where Pr = ρgνgCpg/λg is the Prandtl num-

ber and Rep = αg〈|vr|〉pdp/νg is the mean particle Reynolds
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number (vr refers to the relative velocity vector). Finally, the last
term in Eqn (3), Srad,k, represents the heat exchange due to ther-
mal radiation in the reactor. Its model is given in section (2.4).

2.2. Combustion modeling

Methane combustion is described by the following global
two-step mechanism :

CH4 + 3/2 O2 → CO + 2H2O (6)

CO + 1/2 O2 → CO2 (7)

which is modeled by the following two-step kinetic mechanism
proposed by Dryer and Glassman [6] :

R1 = 1010.2exp

(

−
48400

RgTg

)

[CH4]
0.7[O2]

0.8 (8)

R2 = 1010.25exp

(

−
43000

RgTg

)

[CO][H2O]0.5[O2]
0.25 (9)

In Eqn (8 and 9), the kinetic rates (R1 and R2) have units
of mol/m3/s and the species molar concentrations are given in
mol/m3. Rg is the ideal gas constant (8.314 J mol−1 K−1).

2.3. Balance of species of the gaseous mixture

In the numerical simulations, the gaseous mixture is com-
posed of N = 6 species which are : methane, oxygen, nitrogen,
carbon dioxide, carbon monoxide and water vapor.

The gaseous mixture mass conservation and the local compo-
sition evolution were predicted using only 5 (rather than 6) trans-
port equations. In addition, knowing that the atomic species are
always conserved during any chemical process, it was then de-
cided to transport the atomic mass fractions of the atomic species
C, H and N . They are related to the mass fractions of the mix-
ture gas species by the following relations : YC = 12/16 YCH4

+
12/28 YCO + 12/44 YCO2

, YH = 4/16 YCH4
+ 2/18 YH2O

and YN = YN2
. The remaining two species computed by the nu-

merical simulations are CH4 and CO. The transport equation of
each species is written as follows :
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In the above equation, Yα represents the mass fraction of the
transported species while Dg is the turbulent diffusion coeffi-
cient. The last r.h.s. term accounts for the change in species mass
fraction due to the reactions. Such a source term is equal to zero
for the atomic species mass fractions (ΨC = ΨH = ΨN = 0).
The vanishing rate of methane (in kg/m3/s) due to the reaction
(6), is modeled according with Eqn (8) :

ΨCH4
= −αgWCH4

R1 (11)

and the rate of change of carbon monoxide mass fraction has to
account for both appearance and vanishing of such a species due
to the reactions (6) and (7). It is modeled according with Eqn (9):

ΨCO = αgWCO(R1 −R2) (12)

The carbon dioxide and water vapor mass fractions (YCO2

and YH2O) are deduced from the transported species while the
oxygen mass fraction is computed according to the following
conservation law :

YO2
= 1− (YCH4

+ YH2O + YCO2
+ YCO + YN2

) (13)

With the assumption of a mixture of ideal gases within the
reactor, the density of the gaseous mixture is governed by :

ρg =
Pref

RgTg

N
∑

α=1

Yα

Wα
(14)

where Wα is the molar mass of the gaseous species α and Pref

is the reference pressure which is set to 101325 Pa.

2.4. Thermal radiation model

A simplified thermal radiation model was used in this study.
It assumes that the gas does not absorb radiation and each radi-
ating point has an unobstructed isotropic view of the surrounding
cold [1]. Then, the radiation heat loss rate per unit volume may
be written as follows :

Srad,g = 4σ

n
∑

α=1

Pαβαǫbulk(T
4

bulk − T 4

g ) (15)

where σ is the Stefan-Boltzmann constant (5.669×10−8 W m−2

K−1). Pα and βα are the partial pressure in atmosphere unit and
the Planck mean absorption coefficient of the species α, respec-
tively. Tbulk and ǫbulk are the surrounding medium temperature
and emissivity, respectively. Tbulk is either the local mean parti-
cle temperature Tp or the reactor wall temperature TW , according
to a critical value of the solid volume fraction. In this study, we
set:

(Tbulk, ǫbulk) =

{

(Tp, ǫp) if αp ≥ 0.02

(TW , ǫW ) otherwise
(16)

ǫp and ǫW are the particles and the wall emissivities, respectively.
Four species (n = 4 in Eqn (15)) are retained in the calcula-
tion and they are water vapor, carbon dioxide, carbon monoxide
and methane. Their absorption coefficients are made varying as
a function of the gas temperature according to the curve fits pro-
posed in the literature [1, 9, 16]. Regarding the solid phase, the
heat loss due to the particles’ radiation toward the reactor walls
is taken into account only in the dilute regions (αp < 0.02) and
it is computed as follows :

Srad,p = 4σβpǫW (T 4

W − T 4

p ) (17)

where the particle absorption coefficient is βp = 3ǫpαp/(2dp).

3. Numerical simulation

Unsteady three dimensional numerical simulations of the
fluidized-bed reactor are performed using the Eulerian N-fluid
modeling approach for fluid-particle turbulent polydispersed re-
active flows implemented in NEPTUNE_CFD V1.08@Tlse ver-
sion by IMFT (Institut de Mécanique des Fluides de Toulouse).
NEPTUNE_CFD is a computational multiphase flow software
developed in the framework of the NEPTUNE project, financially
supported by CEA (Commissariat à l’Énergie Atomique), EDF
(Electricité de France), IRSN (Institut de Radioprotection et de
Sûreté Nucléaire) and AREVA-NP. The performances of NEP-
TUNE_CFD for high parallel computing are highlighted in Ref.
[12].

3.1. Configuration and mesh

A sketch of the retained configuration is shown by Fig. 1(a).
It consists of a cylindrical reactor of diameter 180 mm and height
1400 mm completed with an above disengaging section of di-
ameter 360 mm and height 520 mm. Concerning the reactor
mesh, four grid refinements were tested. They are referred to as
MESH0, MESH1, MESH2 and MESH3 and their characteristics
are summarized in Table 1. For the last three meshes, ∆z is set to
the value indicated in Table 1 for a coordinate z ≤ 80 cm while
it is chosen as 2.5 cm for z ≥ 90 cm and a gradual connection



inside the range 80 < z < 90 cm is realized. As an example,
MESH1 is depicted in Fig. 1(b).

Table 1: Mesh characteristics

Units in cm Number of cells
∆x ∆y ∆z

MESH0 0.820 1.560 2.500 31185
MESH1 0.820 1.560 1.250 45979
MESH2 0.820 1.560 0.625 72114
MESH3 0.400 0.740 0.300 583071

Figure 1: (a) Reactor geometry, (b) Reactor MESH1.

3.2. Numerical parameters

The quantities of interest for the numerical simulations are
summarized in Tables 2 and 3. Only one class of sand particles
was retained with a diameter representing the mean diameter of
the sample used in the experiments (ranging between 315 and
400 µm [4]). In the experiments, a distributer composed of a
perforated plate of 0.4% porosity is used. Its effect in the numer-
ical simulations is reproduced by assuming a perfect air-methane
mixing at the reactor inlet. Such an assumption is justified by the
fact that the pressure drop induced by the distributer is compara-
ble to that induced by the particle bed (which suggests a uniform
gas distribution at the reactor inlet).

Table 2: Thermodynamic gaseous species properties

Species Cp (J mol−1 K−1) ∆H0

f (kJ mol−1)
CH4 35.796 −74.8
H2O 35.744 −241.82
CO2 39.089 −393.52
CO 29.195 −110.58
O2 29.426 0
N2 29.173 0

At the initialization, a solid mass of 12 kg and a bed tem-
perature of 700 ◦C were imposed. Found to be very effective
boundary conditions in dense fluidized beds for spherical parti-
cles bouncing on a very rough wall [7], no-slip condition for the
mean particle velocity combined with zero-flux condition for the
particle kinetic energy were selected in our simulations. For all
the numerical simulations, the same kinetic mechanism of Dryer
and Glassman [6] (as presented in section 2.2) is used. Numerical
simulations will thus refer to as DG_700_MESH0,1,2 and 3.

3.3. Results and discussions

All simulations have been made run for 80 seconds in order to
ensure to reach a permanent regime. In such a regime, particles
and the fluid properties are supposed to be statistically station-
ary and mean (time-averaged) quantities may be computed for an
analysis purpose. Figure 2 shows the mean pressure drop along
the reactor height as predicted from the numerical simulations,
compared to the experimental data. Globally, the pressure-drop
slop is very well reproduced. Some differences in value are in-
stead observed (and estimated to be around 5 %) at the bottom
bed. These differences may be attributed to the elutriation phe-
nomenon and to the uncertainty in experimental measurements.
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Figure 2: Numerical against experimental mean pressure drop

For all the simulations, mean gas temperature profiles are de-
picted in Fig. 3(a) (at the center, X = 0 m) and Fig. 3(b) (at the
wall, X = 0.09 m). Experimental measurements are also dis-
played for comparison. Pre et al. [13] and Dounit et al. [3, 4, 5]
pointed out that for bed temperatures lower than 850 ◦C, the com-
bustion zone moves towards the freeboard region and over. At the
operating point of 700 ◦C, one expects that most of the combus-
tion takes place at the freeboard. This is indeed what observed
when looking at the results illustrated by Fig. 3. However, some
differences are found when comparing numerical results with ex-
perimental measurements. The first difference concerns the max-
imum of the gas temperature as predicted at the freeboard. A
substantial deviation from the experiments is observed when the
coarsest grid is used (MESH0). For this mesh, the gas tempera-
ture exhibits strong radial inhomogeneities. In particular, temper-
ature predictions near the wall are strongly overestimated. Such
a poor resolution has in fact an important effect on the model-
ing of the solid near the wall. The correct prediction of the local
solid amount is in fact crucial in order to accurately reproduce
the combustion process. Improved results are obtained when us-
ing finer grids. For instance, the gas temperature radial inho-
mogeneities are drastically reduced when MESH2 is employed,
which leads to obtain very close maxima of the temperature at
the freeboard. Comparing the maxima of gas temperature as pre-
dicted by the coarsest and the finest grids (DG_700_MESH0 and
DG_700_MESH3) a difference of about 115 ◦C and 340 ◦C is



Table 3: Gas and particle properties

Gas properties Particle properties
Mixture composition Air and methane Density, ρp 2650 kg m−3

Total flow rate 14.6 Nm3 h−1 Mean diameter, dp 350 µm
Air factor, Φ 1.2 Restitution coefficient, ec 0.9
Fluidizing velocity, Uf 2Umf at 298 K Radiative emissivity, ǫ 0.6
Minimum fluidization velocity, Umf 0.08 m s−1 at 298 K

found at the center and near the wall, respectively. This difference
is noteworthy. Despite the ability of all the meshes to reproduce
the good bed expansion for this class of particles, accurate heat
transfers may only be obtained by a finer grid refinement. This is
due to the necessity to reproduce the local particulate behavior as
better as possible in order to ensure accurate local heat exchanges
and thus correct combustion ignition.
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Figure 3: Numerical against experimental mean gas temperature

A second difference between the numerical results and the
experimental measurements concerns the position of the combus-
tion zone. Globally, for the finest grids, such a position is quite
well predicted near the wall. However, a moving towards the bed
is observed at the reactor center. In the experiments, cooling air
is circulating in a double shell which encloses the reactor over a
height of about 80 cm in order to maintain a constant temperature
in the bed. In our simulations, heat exchanges with the wall in
the bed were not accounted for. It is well known that finer re-
finements make it possible to predict the bubbling behavior into
the bed and the eruption behavior at the freeboard with a high fi-
delity. This leads to better reproduce the gas pockets in the bed
and their explosion at the bed surface. It is also well known that in
the gas pockets the combustion process is enhanced and that the

solid acts instead like a quenching for the combustion. As an ev-
idence of such a mechanism, snapshots of the instantaneous gas
temperature and solid volume fraction are depicted in Fig. 4 for
MESH3. In the figure, inverted transfer functions are used for the
color map, thus light zones correspond to high gas temperature
(on the left) and low solid volume fraction (on the right).

Figure 4: Snapshots of the instantaneous gas temperature (◦C)
and the instantaneous particle volume fraction, at time = 65.2 s.

Instantaneous fields show that, into the bed, the temperature
is higher in the gas pockets meaning that combustion is favoured
in such zones, leading to a faster conversion rate. For the same
instant (t=65.2 s), a scatter plot of the instantaneous gas temper-
ature (Tg − Tbed) versus the solid volume fraction is computed
for MESH3 into the bed (z ≤ 40 cm) and results depicted in
Fig. 5. Results show that the lower is the particle volume frac-
tion (corresponding to the bubble zones) the higher is the tem-
perature into the bed. Consistent results are found concerning
the fuel conversion. In the experiments, gas samples are taken at
the center of the reactor using sampling tubes connected to the
cooling unit in order to eliminate the steam. Species molar frac-
tions are then measured by means of infrared or paramagnetic
type analyzers depending on the species. In Fig. 6, profiles of the
mean methane molar fractions at the reactor center are shown.



As expected, methane conversion is overestimated into the bed
for MESH3 while it is quite well reproduced for the other grid
refinements (even the coarsest one). Above the bed, results show
that the methane molar fraction is underestimated by all the simu-
lations since methane have already reacted. For the coarser grids,
this is consistent with the observations about the gas temperature
overestimate at the freeboard; in this region, methane conversion
is faster compared to the experimental measurements.

Figure 5: Scatter plot of the instantaneous gas temperature
(Tg − Tbed) as a function of the particle volume fraction into
the bed (z ≤ 40 cm).

The effect of the mesh size on thermodynamics and reactions
may also be observed by Fig. 7 in which iso-contours of the lo-
cal and instantaneous gas temperature are superposed to local and
instantaneous solid volume-fraction fields for two different mesh
sizes (MESH0 and MESH3). Once again, higher temperatures
are found into the bed when the finest mesh is used because of
the better resolution of the bed hydrodynamics. It is clear that the
latter has a strong effect on the temperature predictions inside the
bed and at the freeboard as well.
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Figure 6: Numerical against experimental methane mean molar
fraction

In order to quantify the effect of the bed hydrodynamics (i.e.,
the local particle volume fraction resolution) on the temperature
predictions, a total enthalpy budget analysis of the gas-solid mix-
ture is carried out in the region including the freeboard (spanning
from 30 cm to 55 cm). For both the gas and the particle phases,
Eqn (3) is written in a conservative form and the total enthalpy
equation (particles+gas) is computed and integrated over such a

region when the permanent regime is reached. After simplifica-
tions, a final equation using mean quantities is written as follows:

∆T g = −
∆H0

f

Cpg

−
αpρpUp

+

αgρgUg

Cpp∆Tp

Cpg

−
(Srad,p + Srad,g)V

αgρgUgCpgA

(18)

where T g and T p are mean (spatial and temporal averaged) gas
and particle temperatures, Cpg is the mean gas specific heat ca-
pacity, V and A are the region volume and the normal to axial
direction area, and Srad,p and Srad,g the mean amount of all the
radiative terms. Equation (18) shows that the mean gas tempera-
ture increment is mainly due to three contributions which are the
heat release from combustion, a contribution due to the bed hy-
drodynamics and a radiative source term. This equation may be
written in the synthetic form as:

∆T g = ∆T g,COMB −∆T g,HY DR −∆T g,RAD (19)

The above three contributions were estimated in all the simula-
tions. Results obtained from MESH0 and MESH2 are here given,
as an example:

MESH0:
∆T g,COMB=1864 K; ∆T g,HY DR=604 K; ∆T g,RAD=183 K

MESH2:
∆T g,COMB=1762 K; ∆T g,HY DR=791 K; ∆T g,RAD=234 K

As expected, the combustion contribution for MESH0 is larger
than that computed from MESH2. This is consistent with the
observations about the gas temperature overestimate at the free-
board for MESH0. But most important, results show that the hy-
drodynamic contribution plays an important role in the gas tem-
perature predictions, more than the radiative contribution, and
that an accurate prediction of the bed hydrodynamic is manda-
tory for accurately predict reactive fluidized beds.

4. Conclusion

In this study, an Euler-Euler approach was used to perform
unsteady 3D numerical simulations of methane combustion in
a fluidized-bed reactor containing inert particles. Four meshes
were tested in order to investigate the influence of the mesh re-
finement on the combustion. Comparisons between numerical
and experimental data pointed out a strong dependency of the
gas temperature predictions on the mesh refinement. This depen-
dency is attributable to the hydrodynamic resolution of the bed.
Finer mesh make it possible to reproduce the bubble-eruption be-
havior of the mixture, strongly affecting the heat exchange into
the bed and at the bed surface. Numerical results also showed
that when a refined mesh is used, because of the better resolu-
tion of the gas pockets into the bed which implies an increase
of the gas temperature at such locations, heat exchanges between
the bed and the wall have to be accounted for by an appropriate
model in order to maintain the operational bed temperature. This
point is crucial and deserves to be further investigated.
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Figure 7: Snapshots of the instantaneous gas temperature (◦C)
and the instantaneous particle volume fraction, at time = 65.2 s.
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