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Article

Collaborative multiple micro air vehicles’
localization and target tracking in
GPS-denied environment from
range–velocity measurements

Ioannis Sarras, Julien Marzat, Sylvain Bertrand and
Hélène Piet-Lahanier

Abstract

We treat the problem of simultaneous collaborative multiple micro air vehicles’ localization and target tracking using

time-varying range and (relative and absolute) velocity measurements. The proposed solution combines robustly local

nonlinear observers that estimate the relative positions between agents and their neighbors, and cooperative filters that

fuse each agent’s local estimates to globally localize them with respect to the target (and therefore to each other). These

estimates are then introduced in a dynamic consensus-type control law that ensures the global collective target tracking

while simultaneously estimating the target’s velocity, without needing any external reference which makes it applicable in

GPS-denied environments. Finally, a simulation scenario is studied in order to show the efficiency of the proposed

solution.
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Introduction

Over the last decades we have witnessed the explosion

of applications incorporating networks of robotic

vehicles. Inspired by the behavior of animals in

nature and motivated by the fact that a variety of

objectives can be more efficiently, rapidly, and robustly

accomplished collaboratively rather than independent-

ly, multiagent systems have been in the core of atten-

tion from both theoreticians and practitioners. Of

particular interest have been applications involving

multiple (aerial, ground, marine) vehicles that need to

collaborate to achieve a common goal such as to ensure

the exploration of unknown environments, to follow

targets, to seek dangerous emitting sources, or to

ensure high-precision photography.1 Note that in

order to attain the corresponding desired objective

the location of the vehicles is an information of para-

mount importance. It is exploited in the guidance, con-

trol, and estimation algorithms that ensure the

successful undertaking of the mission scenario.
However, such global information, as obtained for
example by GPS receivers, is not available in indoor
environments2 and in general, due to hardware mal-
function or unavailability of the minimum number of
GPS satellites. Instead local, low-cost sensors (cameras,
infrared sensors, sonars) are usually incorporated to
provide a sufficient localization.

This work focuses on the design of a distributed
control law which in an ideal (perfect measurements,
relative positions available) scenario ensures that a
number of multiple micro air vehicles (MAVs) track
the unknown motion of a target. Our precise objective
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is to propose a robust law based on (local) relative
distance measurements and noisy velocity measure-
ments to combine localization, target velocity estima-
tion, and target tracking algorithms to obtain a
globally exponential solution for the simultaneous col-
lective agent localization and target tracking problem.
The target can either be static, in which case this boils
down to a consensus problem, or dynamic, yielding a
setting similar to the classical leader–follower problem.
In both cases, only a set of agents (at least one) usually
has access to a relative information about the motion
of the target while each agent has only access to local
information. However, depending on the measure-
ments available and the interagent communication
characteristics, ensuring exact target tracking can be
impossible and the mission objective is relaxed into fol-
lowing the target at a certain distance. Such a scenario
arises exactly when relative distance measurements are
available, instead of relative positions. These are pos-
sibly complemented by noisy relative or absolute veloc-
ity measurements of the agents. The reason why exact
tracking cannot be achieved lies on the fact that dis-
tributed controllers frequently require relative position
information. For that to be obtained the observability
analysis reveals that a persistent relative motion
between any pair of agents has to be present.3,4 The
distributed control law has to account for this addition-
al motion.

We propose a solution to the problem of collective
target tracking for a target with unknown constant
velocity (or unknown varying velocity but known
acceleration) based on the agents’ relative distance, rel-
ative velocity, and absolute velocity measurements. The
communication topology between agents is considered
as undirected and connected, while the communication
topology between the target and the connected fol-
lowers (at least one) is directed, which yields a strongly
connected digraph. Our contribution consists of: (a)
designing a localization algorithm that provides for
every agent an estimation of the relative positions
with respect to its neighbors and the target, (b) design-
ing an estimator for each agent that provides an esti-
mate of the target’s velocity, (c) designing an estimator
that filters the noisy relative velocity measurements and
explicitly take it into account in the global stability
analysis, and (d) designing a distributed control law
that allows for the followers to collaboratively track
the target and ensures a persistent relative motion.

Concerning the localization, in the literature we dis-
tinguish two large types of scenarios5,6: (a) Mutual
localization, referring to the scenario where each
agent needs to find its own (static) position in a refer-
ence frame common to the entire network and (b) col-
laborative localization referring to the localization of a
(dynamic) target using an already mutually localized

network. Our problem is of the second type.
Depending on the community (control, robotics, sen-
sors) and the mission objective, we can have 2D or 3D
models, centralized or distributed algorithms, a variety
of available measurements, for example absolute posi-
tion (GPS), relative positions, distances, bearings or
IMU measurements, and additional known points
(anchors, markers). Additionally, the localization sol-
utions can be signal/information based or model based
which are essentially divided into optimization based
and observer based. Observer-based, distributed esti-
mation algorithms have recently been shown to present
some rather interesting robust characteristics. In par-
ticular, it was established that observers which are dis-
tributed can enhance the quality of estimation by
eliminating noise, see Tabarea et al.7 and Li and
Sanfelice,8 which is of great interest in all applications.

Hence motivated by these recent developments and
unlike the probabilistic and Kalman filter-based
approaches,9–11 which cannot in general guarantee ana-
lytical global convergence, following Sarras et al.12 we
adopt an observer-based approach to treat the problem
of multivehicle collaborative localization using time-
varying range and relative velocity measurements with-
out requiring any global positioning information. The
range measurements can be obtained using a variety of
sensors such as stereo-vision systems that typically
equip robotic vehicles13 or by combining monocular
cameras from different vehicles.14 This measurement
scenario renders our obtained algorithm applicable to
GPS-denied environments. We show that if each agent
can obtain a good estimate of the target’s velocity then
it successfully localizes itself with respect to the target
by the combination of local estimates of its neighbors’
relative positions and the fusion with the neighbors’
own estimates.

As opposed to other works, for example Bahr et
al.,15 Dandach et al.,16 Deghat et al.17 our algorithm
does not require global information (absolute position)
but rather local measurements. Compared to the rele-
vant work in Chai et al.6 that treats the collaborative
localization problem with respect to a static target,
instead of single integrators we consider double inte-
grator dynamics to model the agents’ translational
dynamics and require no knowledge on the rate of
change of the distances. Furthermore, we extend
these results to the scenario of a dynamic target and
show that by adopting an approach inspired by the
recent developments on dynamically scaled Lyapunov
functions18,19 we are able to show relative localization
with a uniform global exponential convergence using a
strict Lyapunov function.

Concerning the distributed control design, we follow
the control paradigm laid in Hong et al.20,21 and fol-
lowed by many others, for example Ren and Beard,1
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Cai and Huang,22 Liu and Huang,23 and references
therein. We show that in the case of known relative
positions the interconnection of a consensus-type
tracking law and a consensus-type target velocity esti-
mator provides a globally exponential tracking solu-
tion. Compared to the landmark work,21 that more
generally treats directed and switching graph topolo-
gies, we provide an alternative Lyapunov function
that does not require knowledge of the global graph
topology properties and thus, contributes in rendering
it a truly distributed solution. While Ren and Beard,1

Cai and Huang,22 Liu and Huang23 consider also cases
of nonlinear models for the agents’ dynamics and more
general graph topologies, they also assume that the rel-
ative positions are readily available and that all meas-
urements are not corrupted by measurements. Works
using mainly range measurements are focused on for-
mation control, see for example Tron et al.,5 Montijano
et al.,13 Oh and Ahn,24 and Oh et al.25

Although our results focus on target tracking, by
straighforwardly modifying the control terms to
incorporate desired distances between neighbor
agents we can obtain a solution to target tracking
with a prescribed formation of the followers and
interagent collision avoidance, for the latter see the
recent work of Franchi et al.26 and references therein.
These features are illustrated in the simulation
scenario.

Model and problem formulation

Network topology

We consider that the interconnection graph describing
the communication between the Nþ 1 agents forming
the multiagent system, target included, is formed by an
undirected graph describing the network of the N fol-
lowers and a directed graph connecting the target to
some followers. The complete (directed, strongly con-
nected) network topology can be modeled using the
Laplacian matrix L :¼ ½lij� 2 R

ðNþ1Þ�ðNþ1Þ;
i; j 2 f0; . . . ;Ng, whose elements are defined as

lij ¼

X
j2N i

wij i ¼ j

�wij i 6¼ j

8><>: (1)

where wij¼ 0 if i¼ j, wij> 0 if j 2 N i and wij¼ 0 other-
wise. In this case, N i stands for the set of agents trans-
mitting information to the ith agent. Note that, by
construction, L has zero row sum, i.e. L1Nþ1 ¼ 0,
where 1Nþ1 is a column vector of size Nþ 1 filled
with ones or, equivalently, lii �

P
j2N i

lij ¼ 0.
Following this definition, we note that the undirected

graph topology between the N followers with the N�N

(symmetric) is described by the Laplacian matrix

Lu :¼ ½lij�, for i; j 2 f1; . . . ;Ng. Further, define as B
an N�N diagonal matrix whose ith element is either

bi > 0 or 0 based on whether the ith agent receives

information from the target, i.e. belongs to the set

N 0. For more details on network topologies and their

properties refer, for example to Ren and Beard.1

Dynamic model

We consider that the dynamics of each of the Nþ 1

identical agents composing the multivehicle system of

interest can be described by the double integrator

model

_xi ¼ vi (2)

_vi ¼ ui; i ¼ f0; . . . ;Ng (3)

with xi; vi 2 R
3 denoting the position and velocity vec-

tors of the ith vehicle in the inertial frame, while ui 2 R
3

is the applied acceleration.
By the index i¼ 0 we denote the (static or dynamic)

target with respect to which the localization will be

referred. As is evident, the static scenario corresponds

to a target’s dynamics

_x0 ¼ 0 (4)

_v0 ¼ 0 (5)

In the dynamic case, we assume that the target’s

acceleration u0 is known or zero, with the latter corre-

sponding to a scenario of a noncooperative target

moving in straight line at maximal velocity.
Now, we naturally define the relative position, veloc-

ity, and acceleration between two agents as

xij ¼ xi � xj (6)

vij ¼ vi � vj (7)

uij ¼ ui � uj (8)

that yield the required relative dynamics

_xij ¼ vij (9)

_vij ¼ uij (10)

Sarras et al. 3



For our localization problem, we consider that the

available measurements consist of the relative velocities

and distancesa

yi ¼ colðvTij ; dTij Þ (11)

with the distance dij between agent i and its neighbor j

defined as

dij :¼ jxi � xjj ¼ jxijj (12)

A simple derivation provides

_dij ¼
xTij vij

dij
¼ vTij xij

dij
(13)

In conclusion, the complete model on which our

design will be based is summarized as

_xij ¼ vij (14)

_vij ¼ uij (15)

_dij ¼
vTij xij

dij
(16)

Cooperative localization

Before presenting our main results, we define some

additional notation and then remind the definition of

a persistently exciting (PE) function. The notation for a

matrix A being positive (semi-)definite is expressed by

A � 0ð�0Þ, while for the case of a positive scalar a we

write instead a> 0. We note kmðAÞ the minimal eigen-

value of a square matrix A. The notation j � j will refer,
depending on its argument, either to the absolute value

of a scalar function, to the Euclidean norm of a vector,

or to the induced two-norm of a matrix.

Definition 1. Let the function vij : R�0 ! R
3 be continu-

ous. It is PE if there exist some T> 0 and l > 0 such

that Z tþT

t

vijðsÞvTij ðsÞds�lI � 0; 8t (17)

For the distance-based localization scenario we have

at hand, we require that certain relative velocities are

PE which means that in order for an agent to be able to

reconstruct a relative position with respect to a neigh-

boring agent, it is necessary to move out of the line of

sight (straight line connecting two agents) for some

time which in fact is required for the relative position

to be observable.3,4 In practice, this condition imposes

a requirement on the applied accelerations (control

inputs) which can always be ensured for each agent

by including an excitation term but however, might

complicate the stability analysis.

Single vehicle localization from direct local

measurements: Static target

In this subsection we will consider the problem of local-

ization of each agent with respect to its neighbors by

incorporating local, noiseless measurements, and con-

sidering a static target. This will be achieved by means

of a designed nonlinear observer based on the

invariant-manifold observer methodology, see Astolfi

et al.27 and Karagiannis and Astolfi18 for the general

setting and Martin and Sarras,28 Martin and Sarras,29

and Sarras et al.12 for recent applications on MAVs.

Proposition 1. Consider the dynamical system defined in

equations (14) to (16) and assume that vij is PE. Then,

the dynamical system

_ni :¼ �Kijd
2
ij

2
uij � Kijvijv

T
ij bxij þ vij (18)

bxij :¼ ni þ
d2ij
2
Kijvij (19)

is a globally exponential observer with gain Kij> 0.

Proof. First, let us define the relative position estima-

tion error

zij :¼ ni þ biðyi; byiÞ � xij ¼: bxij � xij (20)

for a certain mapping bi, that generally can also depend

on a filtered yi denoted byi, that will be properly select-

ed. At this point we examine the case where bi is a

function only of yi. Then, the general form of the zi
dynamics gives

_zij :¼ _ni þ @yibi _yi � _xij ¼ _ni þ @dijbi _dij þ @vijbi _vij � _xij

¼ _ni þ @dijbi
vTij xij

dij
þ @vijbiuij � vij

With the choice

_ni :¼ �@dijbi
vTij bxij

dij
� @vijbiuij þ vij

4 International Journal of Micro Air Vehicles 0(0)



and the bi mapping as

biðyiÞ :¼
d2ij
2
Kijvij (21)

the zi dynamics obtains the more explicit form

_zij ¼ �Kijvijv
T
ij zij (22)

From Lemma 5 of Lorı́a and Panteley30 we know
that the nominal system (22) has a uniformly global
exponentially stable (UGES) equilibrium at the origin
for a PE and uniformly bounded vij.

Remark 1. From the converse Lyapunov lemma
(Lemma 1 of Lorı́a and Panteley30) we know that
there exists a quadratic Lyapunov function

Vzi :¼
1

2
zTijPðtÞzij (23)

with P(t) such that 0 � c1I 	 PðtÞ ¼ PTðtÞ 	 c2I, the
unique solution of the equation

_P � PKijvijv
T
ij � vijv

T
ijKijP ¼ �Q (24)

with QðtÞ ¼ QTðtÞ such that 0 � c3I 	 QðtÞ 	 c4I.
This lemma will be exploited in the construction of a

strict, dynamically scaled Lyapunov function of the more
general solution that follows in the next subsection.

Remark 2. Notice that in our algorithm, we further
require that the relative acceleration between neighbor-
ing agents be either available or can be reconstructed. As
is common in the literature for example, the agents might
transmit their respective control actions (accelerations or
resulting predicted positions) to their neighbors.31 If
these signals are imperfectly known, due for example to
transmission perturbations, we can explicitly provide a
robustness analysis by treating the imperfections as addi-
tive disturbances and using our Lyapunov function in an
input-to-state stable (ISS) analysis. Alternatively, and
under the assumption that relative motion varies slowly,
we can consider that the relative acceleration is recon-
structed by numerical differentiation of the available rel-
ative velocities.

Remark 3. Let us mention that in the case where relative
orientations (rotation matrices) are available, by means
of bearing measurements, and assuming that each agent
is equipped with a gyro, we can adapt the obtained algo-
rithms to such scenario. In such case the agents do not
need to be already mutually localized and the transmitted
signals are communicated in the proper local frame of
each agent.

Single vehicle localization from filtered local
measurements: Dynamic target

In continuation of the previous scenario, we proceed to
extend the localization algorithm to the case of a dynam-
ic target in the presence of noisy velocity measurements,
without assuming any particular noise characteristics.

Proposition 2. Consider the dynamical system defined in
equations (14) to (16) and assume that vij is PE. Then,
the dynamical system

_ni:¼� Kijd
2
ij

2
ðuij � Kviðbxij; bvij; vij; rÞðbvij � vijÞÞ

� KijbvijbvTij bxij þ bvij (25)

bxij :¼ ni þ
d2ij
2
Kijbvij (26)

_r :¼ �c7ðr� 1Þ þ c22K
2
ij

c1c5
jvijj2jbvij � vijj2 (27)

_bvij :¼ uij � Kviðbxij; bvij; vij; rÞðbvij � vijÞ (28)

is a globally exponential observer, for some ci > 0, with
rð0Þ � 1 and gains

Kij :¼ c8 þ c5 þ c6 þ c7c2
c3

Kviðbxij; bvij; vij; rÞ :¼ c9Iþ ðr� 1Þ c22
c1c5

K2
ijjvijj2I

þ c22
c6r

ðK2
ijjbvijj2jbxijj2 þ 1ÞI

Proof. First, let us define the relative position estima-
tion error as in equation (20). Then, the general form of
the zi dynamics gives

_zij :¼ _ni þ @byi
bi
_byi þ @yibi _yi � _xij

¼ _ni þ @bdijbi _bdij þ @bvijbi _bvij þ @dijbi _dij þ @vijbi _vij � _xij

¼ _ni þ @bdijbi _bdij þ @bvijbi _bvij þ @dijbi
vTij xij

dij
þ @vijbiuij � vij

which with the choice

_ni :¼ �@bdij

bi
_bdij � @bvijbi _bvij � @dijbi

bvTij bxij

dij
� @vijbiuij þ bvij

Sarras et al. 5



reduces, after defining evij :¼ bvij � vij, to

_zij ¼ �@dijbi
bvTij bxij

dij
� vTij xij

dij

 !
þ bvij � vij

¼ �@dijbi
vTij
dij

zij � @dijb
bxT
ij

dij
evij þ evij

Selecting further the bi mapping as

biðyi; byiÞ :¼ d2ij
2
Kijbvij ¼ d2ij

2
Kijðvij þ evijÞ

@dijbi ¼ dijKijðvij þ evijÞ

the zi dynamics obtains the more explicit form

_zij ¼ �Kijvijv
T
ij zij � Kijevij v

T
ij zij � Kijðvij þ evijÞbxT

ij evij þ evij

¼ �Kijvijv
T
ij zij � Kijevij v

T
ij zij � ðKijbvijbxT

ij � IÞevij

Taking the function Vzi defined in equation (23) and
computing its time derivative along trajectories of the zi
dynamics yields

_Vzi :¼
1

2
zTij

_PðtÞ � PðtÞKijvijv
T
ij � vijv

T
ijKijPðtÞ

� �
zij

� zTijPðtÞKijevij v
T
ij zij � zTijPðtÞðKijbvijbxT

ij � IÞevij

 � c3

2
jzijj2 þ c2jzijj2Kijjevij jjvijj

þ c2jzijjðKijjbvijjjbxijj þ 1Þjevij j


 � c3
2
� c5 þ c6

2

� �
jzijj2 þ c22

2c5
K2

ijjvijj2jevij j2jzijj2

þ c22
c6

ðK2
ijjbvijj2jbxijj2 þ 1Þjevij j2

where we applied Young’s inequality to the two cross-
terms of the first inequality. In order to handle the last
two cross-terms in the above right-hand side we employ
a dynamic scaling of the form

Wzi :¼
Vzi

r
(29)

with r dynamics given, with rð0Þ � 1, as

_r :¼ �c7ðr� 1Þ þ c22
c1c5

K2
ijjvijj2jevij j2

Then, the time derivative of Wzi can be shown to be

_Wzi ¼
_Vzi

r
�Wzi

_r

r



_Vzi

r
þ c2jzijj2c7 ðr� 1Þ

r

�c1
jzijj2
r

c22
c1c5

K2
ijjvijj2jevij j2


 � c3
2
� c5 þ c6 þ c7c2

2

� � jzijj2
r

þ c22
c6

ðK2
ijjv̂ijj2jx̂ijj2 þ 1Þ jevij j

2

r

with the last right-hand side term depending on the
error between the filtered bvij and the true measurements
vij.

Choosing

_bvij :¼ uij � Kviðbxij; bvij; vij; rÞevij (30)

with Kvi a (free) positive gain function of bxij; bvij; vij; r,
yields the dynamics of the filtering error evij :¼ bvij � vij

_evij :¼ �Kviðbxij; bvij; vij; rÞevij (31)

By simple derivations one can show that the follow-
ing function

Vev :¼
1

2
jevij j2 (32)

is a Lyapunov function for the evij dynamics since it
satisfies

_Vev ¼ �eTvijKviðbxij; bvij; vij; rÞevij
and hence, ensuring global exponential convergence of
the estimate bvij to vij. Similarly, for the r dynamics we
take the function

Vr :¼ 1

2
ðr� 1Þ2 (33)

that gives

_Vr ¼ �c7ðr� 1Þ2 þ ðr� 1Þ c22
c1c5

K2
ijjvijj2jevij j2

Selecting then the functions

Kij :¼ c8I; c8 > c3 � c5 þ c6 þ c7c2

6 International Journal of Micro Air Vehicles 0(0)



and

Kviðbxij; bvij; vij; rÞ :¼ c9Iþ ðr� 1Þ c22
c1c5

K2
ijjvijj2I

þ c22
c6r

ðK2
ijjbvijj2jbxijj2 þ 1ÞI

with c9 > 0, we can finally establish that the composite

function Wzi þ Vev þ Vr serves as a Lyapunov function

for the complete dynamics with

Wzi þ Vev þ Vr

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{:


 �c8
jzijj2
r

� c7ðr� 1Þ2 � c9jevij j2

which establishes UGES of the origin.

Remark 4. Notice that in the case where the mapping bi
is simply defined as

biðyiÞ :¼
d2ij
2
Kijvij

then the resulting error dynamics is described as

_zij ¼ �Kijvijv
T
ij zij � evij

Then, using the PE condition, UGES of the nominal zi
system with respect to the origin, and UGES of the origin

for the evij system we can immediately conclude, for

example from cascaded systems32 or ISS arguments,6

UGES of the interconnected system.

Collaborative localization from fusion of local

estimates and measurements

In this subsection, we take advantage of the collabora-

tive setting between the agents, which share informa-

tion with their local neighbors, in order to enhance the

localization capabilities of the agents, in particular,

that do not have direct relative measurements with

respect to the target. Of course for a static target the

measurement vi of each agent suffices.
To this end, define the fused estimate of the relative

coordinates between agent j and the target as

bxj
i0 :¼ qj � bxij (34)

q0 :¼ 0 (35)

Then, the proposed consensus-based estimation

mechanism for agent i, that exploits the fusion of its

own estimate with the ones of its neighbors to produce
a more accurate fused estimate, is given by

_qi :¼ vi � bvi0 þ k0
X
j2N i

ðbxj
i0 � qiÞ; k0 > 0 (36)

with bvi0 an estimation of the target’s velocity v0 by the
ith agent to be defined in the following section.

We now state the following result.

Proposition 3. Consider the dynamical system defined in
equations (14) to (16) and assume that vij is PE. Then,
the dynamical system

_ni:¼� Kijd
2
ij

2
ðuij � Kviðbxij; bvij; vij; rÞðbvij � vijÞÞ

� KijbvijbvTij bxij þ bvij (37)

bxij :¼ ni þ
d2ij
2
Kijbvij (38)

_r :¼ �c7ðr� 1Þ þ c22
c1c5

K2
ijjvijj2jbvij � vijj2 (39)

_bvij :¼ uij � Kviðbxij; bvij; vij; rÞðbvij � vijÞ (40)

_qi :¼ vi � bvi0 þ k0
X
j2N i

ðbxj
i0 � qiÞ (41)

with rð0Þ � 1, ensures that when bvi0 is such that v0
�bvi0 ! 0 every agent is globally exponentially local-
ized with respect to the target, for some ci > 0 and
with gains

Kij :¼ c8 þ c5 þ c6 þ c7c2
c3

Kviðbxij; bvij; vij; rÞ :¼ c9Iþ ðr� 1Þ c22
c1c5

K2
ijjvijj2I

þ c22
c6r

ðK2
ijjbvijj2jbxijj2 þ 1ÞI

Furthermore, when v0 � bvi0 is bounded the localization
error is bounded.

Proof. For i ¼ 1; . . .N, we define

ri :¼ qi � xi0 (42)

r0 :¼ 0; _r0 ¼ 0 (43)
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Then we obtain the consensus system

_ri ¼ �k0
X
j2N i

ðri � rjÞ þ k0
X
j2N i

ðbxij � xijÞ þ v0 � bvi0
¼ �k0

X
j2N i

ðri � rjÞ þ k0
X
j2N i

zij þ v0 � bvi0
with ri seen as the individual states of the N agents

and r0 the state of a leader, while the last two terms

are seen as external signals. Defining the stacked

variables

r :¼ colðr0; . . . ; rNÞ
si :¼

X
j2N i

zij

s :¼ colðs0; . . . ; sNÞ
w :¼ colðv0; . . . ; vNÞ � colðbv00; . . . ; bvN0 Þ; bv00 :¼ 0

we obtain the dynamics

_r :¼ �k0ðL � I3Þrþ k0sþ w (44)

As is well known, from the properties of the

assumed underlying graph topology, we have that

the nominal system _r ¼ �k0ðL � I3Þr has a UGES

equilibrium at the origin. Furthermore, we know

there exists a quadratic Lyapunov function, defined

here as

Vr :¼ rTðN� I3Þr; N ¼ NT � 0 (45)

that establishes the claim of the nominal system. The

first part of the proof is concluded by standard argu-

ments on cascaded systems (see e.g. Lemma 2.1 or

Proposition 2.3 of Lorı́a and Panteley32) since the com-

plete error system consists of two nominal UGES sub-

systems interconnected through the terms s, w that

satisfy a linear growth condition. The second part of

the proof follows immediately from the observation

that the r system is ISS with v0 � bvi0 as an input.

Remark 5. Although not presented here, notice that our

results are also applicable for switched communication

graphs (due e.g. to loss of communication link or meas-

urements) under the additional assumption of uniform

connectivity as is done, for example for the single-

landmark multiagent localization in the recent work of

Chai et al.6 We stress again that in our setting, however,

the derivative of the relative distances is not required and

furthermore, measurement noise is explicitly treated by

means of additional filters.

Remark 6. Notice that in an all-to-all communication

scenario it is not mandatory to have different scaling

dynamics _r for every pair of neighboring agents. A

single one is sufficient by modifying the right-hand

side of equation (39) to include the sum of all terms
c2
2

c1c5
K2

ijjvijj2jbvij � vijj2 for all neighbors i and j.

Collaborative tracking control with

unknown target velocity

We now examine a distributed control law that ensures

the tracking of a target with unknown velocity.

Furthermore, the target’s velocity needs to be estimated

by means of a (globally) converging observer. Finally,

we will modify the proposed control law by adding an

additional term in order to impose a motion to each

agent such that the persistence-of-excitation condition

(17), required by the localization algorithm, is readily

satisfied.
For ease of reference we remind the main working

assumptions:

1. The acceleration u0 of the target is known or zero.
2. The interagent communication is defined by a static

undirected, connected graph topology modeled by

its Laplacian Lu :¼ ½lij� as in (1) but for

i; j 2 f1; . . . ;Ng.
3. The topology between target and agents (at least

one) is described by a directed path (at least one)

and as such the complete topology is strongly

connected.

Case: Known relative positions

In this subsection we consider first the ideal scenario

where the relative positions xij are measured. This is

summarized in the following assumption.

Assumption 1. The relative positions xij between agents

are available and at least one agent has access to its

relative position with respect to the target.

This assumption will naturally be removed when we

consider the interconnection between the localization

algorithm and the control law.
Let us first define by bvi0 the estimate of the target’s

velocity v0 by agent i. Now, similarly to Hong et al.,21

we define the control law as

ui ¼ u0 � kvðvi � bvi0Þ � kx
X
j2N i

lijxij þ
X
k2N 0

bkxk0

0@ 1A
(46)
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with positive constants kx, kv, while the observer that
provides the target’s velocity v0 for agent i is selected as

_bvi0 :¼ u0 � kv
kx

X
j2N i

lijxij þ
X
k2N 0

bkxk0

0@ 1A (47)

Furthermore, define the error variablesb

X :¼ colðx1; . . . ; xNÞ � 1N � x0 (48)

V :¼ colðv1; . . . ; vNÞ � 1N � v0 (49)

S :¼ �colðbv10; . . . ; bvN0 Þ þ 1N � v0 (50)

The error dynamics can then be shown to take the
following form

_S ¼ kx
kv

ððLu þ BÞ � I3ÞX (51)

_X ¼ V (52)

_V ¼ �kxððLu þ BÞ � I3ÞX � kvV � kvS (53)

Proposition 4. Consider the error dynamics given in
equations (51) to (53). Then, the origin is uniformly
globally exponentially stable for kx; kv > 0.

Proof. In order to establish the convergence properties
we consider the following Lyapunov function, that is
composed of four parts

V1 :¼ 1

2
ðSTP1S þ XTP2X þ VTP3VÞ (54)

V2 :¼ �2XTV (55)

V3 :¼ �3STV (56)

V4 :¼ �4XTS (57)

V :¼ V1 þ V2 þ V3 þ V4 (58)

Its time derivative along trajectories of the error
dynamics gives

_V:¼� kv�3jSj2 � kx
kv

ð�2kv � �4ÞXTððLu þ BÞ � I3ÞX

� VTðP3 � �2IÞV

þ ST kx
1

kv
P1 � �3I

� �
ððLu þ BÞ � I3Þ � �2kvI

� �
X

� VTðP3 þ �3kvI� �4IÞS

þ VTðP2 � �2kvI� kx P3 � �3
kv

I

� �
ððLu þ BÞ � I3ÞÞX

Then with the selection

P1 :¼ kv�3Iþ kv�2
kx

ððLu þ BÞ�1 � I3Þ (59)

P2 :¼ kv�2Iþ kx �1 � �3
kv

� �
ð�0 � I3Þ (60)

P3 :¼ �1I (61)

�0 :¼ �ðLu þ BÞ � I3 (62)

all cross-terms disappear apart from the one in S; V.
In order to establish our claim we need to ensure

that the Lyapunov function V in equation (58) is

positive definite with respect to the state (S;X ;V)
and that the negative terms in _V dominate the

remaining cross-term. The former is ensured if the

matrix

P1 �4I �3I

�4I P2 �2I

�3I �2I P3

2664
3775 � 0 (63)

while the latter if the matrix

�1 � �2
1

2
ðkvð�1 þ �3Þ � �4Þ

1

2
ðkvð�1 þ �3Þ � �4Þ �3kv

2664
3775��5I

(64)

for some (gain adjustable) �5 > 0. By applying Schur’s

complement to the above matrices we obtain the suffi-

cient conditions

�1 > �2 (65)

�2 � 1; �3 � 1 �4 � 1 (66)

kv >
minð�3; �4Þ

�1
(67)
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We finally obtain

_V 
 ��5ðjSj2j þ Vj2Þ � kx
kv

ð�2kv � �4Þ

� kmðLu þ BÞjXj2 < 0; 8ðS;X ;VÞ 6¼ ð0; 0; 0Þ

which concludes the proof of global exponential stabil-

ity of the origin. h

Remark 7. Let us stress the fact that the proposed strict

Lyapunov function is derived with gain conditions inde-

pendent of the network topology characteristics, apart of

course from the fact that the multiagent system is con-

nected. Notice instead that in Chai et al.6 a strict

Lyapunov was obtained under conditions on the gains

kx, kv (denoted k, l in that reference) that depend on

the minimum and maximum eigenvalues of the matrix

Lu þ B, which signifies that knowledge of the entire net-

work topology is a priori required.

Case: Estimated relative positions

We now couple the proposed control law with the

observer for relative positions. The control law (46)

and the target velocity estimator become

ui ¼ u0 � kvðvi � bvi0Þ � kx
X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A
(68)

_bvi0 :¼ u0 � kv
kx

X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A (69)

To this end, and in order to simplify notation, we

define the column stack of the relative position esti-

mates as

Z :¼ col½zij� (70)

Then, we can write compactly the complete closed-

loop system as

_r :¼ �k0ðL � I3Þrþ k0sþ S
_S ¼ kx

kv
ððLu þ BÞ � I3ÞX þ kx

kv
Brþ kx

kv
AZ

_X ¼ V
_V ¼ �kxððLu þ BÞ � I3ÞX � kvV � kvS � kxBr

� kxAZ
with A, B constant matrices of appropriate dimensions

while the Z terms are seen as exponentially decaying

perturbations. The global exponential stability of the

composite system is concluded either by a spectral anal-

ysis or by a straightforward direct Lyapunov analysis

based on the sum of the Lyapunov functions for each

subsystem (local estimator for bxij, fusion for bxi0, target

velocity v0 estimator and controlled system).

Imposing the PE condition through the control

Now we consider an additive term to our control law

that should be defined in a way to enforce the PE con-

dition, i.e. produce a sufficiently rich motion for every

pair of neighboring agents, but conserve the network’s

stability properties.
The modified control law for each agent now takes

the form

ui ¼ uiPE þ u0 � kvðvi � bvi0Þ
� kx

X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A (71)

_bvi0 :¼ u0 � kv
kx

X
j2N i

lijbxij þ
X
k2N 0

bkqk

0@ 1A (72)

For the stability analysis we define the stack of all

uPE :¼ colð½uijPE�Þ :¼ colð½uiPE � ujPE�Þ; 8j 2 N i

Then we write the complete closed-loop system as

_r :¼ �k0ðL � I3Þrþ k0sþ S
_S ¼ kx

kv
ððLu þ BÞ � I3ÞX þ kx

kv
Brþ kx

kv
AZ

_X ¼ V
_V ¼ �kxððLu þ BÞ � I3ÞX � kvV � kvS � kxBr

� kxAZ þ uPE

Based on the analysis of the previous subsection and

by treating the input uPE as a disturbance, we can show

that our closed-loop system is ISS with respect to uPE
from which we can conclude practically global expo-

nential stability since convergence is ensured to a neigh-

borhood of the desired equilibrium trajectory that can

be made (by assignment of the free function uPE) very

small but not identically zero.

Remark 8.We remind that the main results in Chai et al.6

and Hong et al.21 on which we are based hold also for

switched graphs, under of course a condition of uniform

connectivity, and as such our algorithm is also applicable

to the case of switching communication graphs.
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Simulation results

In this section we study the efficiency of the obtained
algorithms by means of numerical simulations that
serve as proof of concept. We will consider a two-
dimensional scenario with three agents pursuing a
target with constant linear motion. This motion is
selected so that the target does not contribute to the
satisfaction of the PE condition but rather is a task to
be ensured by the agents. Additionally, we consider that
the target is (and stays) in the field of view of only the
first agent which is thus the only agent having available
information about the target. We consider that all (rel-
ative, absolute) velocity measurements and accelera-
tions are corrupted by Gaussian white noise.

The initial positions (in m) and velocities (in m/s) of
the agents are, respectively, given as x0ð0Þ ¼ ½20; 0�T;
x1ð0Þ ¼ ½2; 0�T; x2ð0Þ ¼ ½10;�5�T; x3ð0Þ ¼ ½3sinðp=8Þ; 5
cosðp=8Þ�T; v0ð0Þ ¼ ½3�T; v1ð0Þ ¼ ½0; 2�T; v2ð0Þ ¼ ½1; 1�T;
v3ð0Þ ¼ ½2cosðp=8Þ;�2sinðp=8Þ�T. The parameters
related to the observer are chosen as c1 ¼ c3 ¼ 0:9; c2
¼ c4 ¼ c9 ¼ 1; c5 ¼ c6 ¼ c8 ¼ 0:01; c7 ¼ 0:005 and the
observer gains as K10 ¼ c8 þ ðc5 þ c6 þ c7c2Þ=c3;
K12 ¼ K13 ¼ K21 ¼ K23 ¼ K31 ¼ K32 ¼ 0:03. The gains
were given small values to reduce the effect of noise and
avoid unwanted phenomena such as overshooting but
high enough to ensure an acceptably fast convergence.
This was ensured by properly selecting the eigenvalues
of the linearized error system to have negative real part.

We assume that we do not have any prior knowledge
on the relative positions and thus, choose the estimates
as bxijð0Þ ¼ 0 which translates to initial observer states

given by nið0Þ ¼ � d2ijð0Þ
2 Kijvijð0Þ. In addition, the initial

conditions for the fused estimates are again taken as q1
ð0Þ ¼ ½0; 0�T; q2ð0Þ ¼ ½0; 0�T while the initial condition
for the dynamic scaling r(t) is selected as rð0Þ ¼ 1. We
also select the fusion gain k0 ¼ 2 and the initial estima-
tions of the target’s velocity as bvi0ð0Þ ¼ 0.

Furthermore, we consider the standard scenario
where velocity measurements are corrupted by band-
limited Gaussian white noise nij (although any type of
noise can be considered) with noise power intensity
rm ¼ 10�4=5 ðm=sÞ2=Hz and a sampling period of
Ts ¼ 10�3 ðsÞ.

On the other hand, the control gains for the distrib-
uted law are chosen, respectively, as kx¼ 1 and kv ¼ 0:5.
Finally, the persistent terms in the controllers are
chosen as u1PE ¼ ½�2cosðtÞ;�2sinðtÞ�T; u2PE ¼
� 1

5 sin
t
5

� �þ sinðtÞsin	
t
5

� �� 1
5 cosðtÞcos t

5

� �
; 15 cos

t
5

� �� sin
ðtÞcos t

5

� �� 1
5
cosðtÞsin t

5

� ��T, u3PE ¼ 4sin tþ p
2

� �
;

	
�4sinð2tÞ�T. These were selected with different frequen-
cies and amplitudes in order to illustrate the effect in
both estimation and tracking as will be shown in the
figures below. Of course the richer (larger, faster) the
motion of each agent the faster the convergence of

the local estimates and consequently, of the localization
error and the tracking error.

The resulting positions of the target and the agents
are depicted in Figure 1. In the ideal scenario where the
relative positions would be available, and hence not
requiring a persistent motion of the agents, and with
no measurement noise, the positions of all agents
would exactly converge to the target’s position.
However, since a persisting motion is required to suc-
cessfully estimate the relative positions, the positions of
all agents converge in neighborhoods around the tar-
get’s position with their size depending on the ampli-
tude of the corresponding persistent input. Of course,
the smaller the amplitude of the persistent input the
slower the convergence of the estimated relative
positions.

From Figure 2 we see that the velocities are PE (and
linearly independent) and thus, we can obtain converg-
ing local estimates of the relative positions (see Figures
3 to 5). Figure 6 depicts the noisy, estimated and true
values of the relative velocity v10 in order to illustrate

Figure 1. Positions of the target and the agents.

Figure 2. Agents’ true velocities.
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the persistent excitation and the effect of the applied

filtering. In particular, by zooming on a specific time

interval we observe the effect of the noise as well as the

result of the filtering. Of course, the former can be

further adjusted by proper selection of the filter gains.
Similar effects are observed for the other relative and
absolute velocities. In addition, notice in both compo-
nents the effect of the persistent motion required in
order to be able to estimate the relative position. As
such, this persistent motion (and its magnitude) is
imposed by the persistent part of the ith agent’s
(agent 1 for this figure) control law (u1PE) that leads
to the persistent relative velocity of the figure.
Finally, we can visualize the fused estimates for the
three agents in Figure 7. We observe that all agents
are successfully localized with respect to the target
and furthermore, that the effect of the noisy measure-
ments has been significantly removed (although some
slight oscillations do appear). Hence, the transient
behavior is quite smooth and the convergence is expo-
nential as was proposed by the theoretical analysis.

Figure 3. Estimation error for x10.

Figure 4. Estimation error for x23.

Figure 5. Estimation error for x13.

Figure 6. Relative (noisy, estimated, true) velocity v10 (upper:
first component, lower: second component).

Figure 7. Error between fused estimates qi and true relative
positions xi0 (left column: first component, right column: second
component).
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Now, in order to show the robustness of the pro-
posed approach and how it can be adapted to other
scenarios of interest, we consider the same scenario,
with same initial conditions, noises, and gains, but
now taking into account a desired formation geometry
and the interagent collision avoidance. For the former
requirement we need only to modify the control law
and the target velocity estimator in order to include
the desired distances (relative positions), which we
simply select as xd ¼ ½3; 4�T; xd12 ¼ xd; xd21 ¼
�xd12; x

d
13 ¼ xd; xd31 ¼ �xd13; x

d
23 ¼ xd; xd32 ¼ �xd23. For

the latter requirement to be satisfied, we add in the
control law an additional term inspired by the avoid-
ance strategy in Kahn et al.,33 call it uic for the ith agent,
which for our scenario gives

u1c ¼
kc
q
ðexpð�bxT

10bx10=qÞbx10

þ expð�bxT
12bx12=qÞbx12 þ expð�bxT

13bx13=qÞbx13Þ

u2c ¼
kc
q
ðexpð�bxT

21bx21=qÞbx21

þ expð�bxT
23bx23=qÞbx23Þ

u3c ¼
kc
q
ðexpð�bxT

31bx31=qÞbx31

þ expð�bxT
32bx32=qÞbx32Þ

with gain kc¼ 10 and the parameter q¼ 5 that defines
the repulsion distance. Finally we slightly decrease the
amplitude of the persistent terms uPE as, u1PE ¼
½�cosðtÞ;�sinðtÞ�T, u2PE ¼ ½� 1

5 sinðt5Þ þ sinðtÞsinðt5Þ�
1
5
cosðtÞcosðt

5
Þ; 1

5
cosðt

5
Þ � sinðtÞcosðt

5
Þ � 1

5
cosðtÞsinðt

5
Þ�T,

u3PE ¼ ½23 sinð2tþ p
2Þ; � 2

3 sinð2tÞ�T, to show its impact on
the convergence of the estimated relative positions, that
will be larger.

The evolution of the agents’ positions, the geometric
formation of the followers in different time instances,
and the relative distances are depicted in Figures 8 to
10, respectively. We observe that the additional
requirements (formation and interagent collision
avoidance) are readily satisfied and that the relative
distances among followers converge around the desired
nominal value. The discrepancies observed are due to
the contribution of the persistent terms, that are
required to ensure the observability, and the desired
formation geometry.

For completeness, we illustrate also the time evolu-
tion of the true velocities of all agents in Figure 11 as
well as the fused estimates for the relative positions in
Figure 12. As expected, the estimates have a slower
convergence with respect to the previous scenario and
present some slight oscillations due to noise around the
true values.

Figure 8. Formation scenario: positions of the target and the
agents.

Figure 9. Formation scenario: evolution of the formation of
follower agents ((x�y) in (m)).

Figure 10. Formation scenario: relative distances.
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Conclusions

We have proposed a robust algorithm for simultaneous
collaborative localization and target tracking problem.
The localization mechanism exploits (local) relative dis-
tances and noisy velocity measurements so that each
agent first obtains an estimation of the relative posi-
tions with respect to its neighbors and then fuses this
estimate with the ones communicated by the neighbors.
These estimates are then fed to a consensus-type dis-
tributed control law that includes an estimation of the
target’s velocity, to achieve exact target tracking. Our
algorithm is designed to ensure the observability of the
system, represented by a persistence-of-excitation con-
dition on the relative motion of the agents, and the
attenuation of noise. The stability properties induced
by our algorithm are established through a thorough
Lyapunov analysis. Finally, the performance of our
scheme is analyzed by means of two simulation scenar-
ios that show among others the robustness to

unaccounted acceleration measurement noise and the

possibility to consider a formation geometry and inter-

agent collision avoidance.
In the near future, these theoretical results are

expected to be tested experimentally on our fleet of

quadrotors and under realistic environmental and com-

munication scenarios.
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Notes

a. With some slight abuse of notation we denote the relative

measurements for each agent as yi instead of the more

correct yij. Similarly, in what follows we define the state

of the observer as ni instead of the more appropriate nij
that would be coherent also with the notation of the cor-

responding vector xij. The same notation will be adopted

for the mapping bi.
b. Observe that compared to Hong et al.21 we define slightly

differently the error variable S.

References

1. Ren W and Beard RW. Distributed consensus in multi-

vehicle cooperative control. London: Springer-Verlag,

2008.
2. Bachrach A, He R and Roy N. Autonomous flight in

unknown indoor environments. Int J Micro Air Veh

2009; 1: 217–228.
3. Bishop AN, Fidan B, Anderson BDO, et al. Optimality

analysis of sensor-target localization geometries.

Automatica 2010; 46: 479–492.
4. Jauffret C and Pillon D. Observability in passive target

motion analysis. IEEE Trans Aerosp Electron Syst 1996;

32: 1290–1300.
5. Tron R, Thomas J, Loianno G, et al. A distributed opti-

mization framework for localization and formation con-

trol: applications to vision-based measurements. IEEE

Control Syst Mag 2016; 36: 22–44.
6. Chai G, Lin C, Lin Z, et al. Single landmark based col-

laborative multi-agent localization with time-varying

Figure 12. Formation scenario: error between fused estimates
qi and true relative positions xi0 (left column: first component,
right column: second component).

Figure 11. Formation scenario: agents’ true velocities.

14 International Journal of Micro Air Vehicles 0(0)



range measurements and information sharing. Syst

Control Lett 2016; 87: 56–63.
7. Tabarea N, Slotine JJ and Pham QC. How synchroniza-

tion protects from noise. PLoS Comput Biol 2010; 6: 1–9.
8. Li Y and Sanfelice RG. Interconnected observers for

robust decentralized estimation with performance guar-
antees and optimized connectivity graph. IEEE Trans

Control Netw Syst 2016; 3: 1–11.
9. Fox D, Burgard W, Kruppa H, et al. A probabilistic

approach to collaborative multi-robot localization.
Auton Robots 2000; 81: 325–344.

10. Roumeliotis SI and Bekey GA. Distributed multirobot
localization. IEEE Trans Robot 2002; 18: 781–795.

11. Kia SS, Rounds S and Martinez S. Cooperative localiza-
tion for mobile agents: a recursive decentralized algo-
rithm based on Kalman-filter decoupling. IEEE Control

Syst Mag 2016; 36: 86–101.
12. Sarras I, Marzat J, Bertrand S, et al. Collaborative multi-

vehicle localization with respect to static/dynamic target

from range and velocity measurements. In: International
conference on unmanned aircraft systems (ICUAS),
Miami, FL, USA, 13–16 June 2017, pp.850–859.

13. Montijano E, Cristofalo E, Zhou D, et al. Vision-based
distributed formation control without an external posi-
tioning system. IEEE Trans Robot 2016; 32: 339–351.

14. Piasco N, Marzat J and Sanfourche M. Collaborative
localization and formation flying using distributed
stereo-vision. In: IEEE international conference on robot-

ics and automation, Stockholm, Sweden, 16–21 May 2016,
pp.1202–1207.

15. Bahr A, Leonard JJ and Fallon MF. Cooperative local-
ization for autonomous underwater vehicles. Int J Robot

Res 2009; 28: 714–728.
16. Dandach SH, Fidan B, Dasgupta S, et al. A continuous

time linear adaptive source localization algorithm, robust
to pesristent drift. Syst Control Lett 2009; 58: 7–16.

17. Deghat SH, Shames I, Anderson BD, et al. Localization
and circumnavigation of a slowly moving target using
bearing measurements. IEEE Trans Autom Control

2014; 59: 2182–2188.
18. Karagiannis D and Astolfi A. Dynamic scaling and

observer design with application to adaptive control.
Automatica 2009; 45: 2883–2889.

19. Praly L, Carnevale D and Astolfi A. Dynamic versus
static weighting of Lyapunov functions. IEEE Trans

Autom Control 2013; 58: 1557–1561.

20. Hong Y, Hu J and Gao L. Tracking control for multi-
agent consensus with an active leader and variable topol-
ogy. Automatica 2006; 42: 1177–1182.

21. Hong Y, Chen G and Bushnell L. Distributed observers
design for leader-following control of multi-agent net-
works. Automatica 2008; 44: 846–850.

22. Cai H and Huang J. The leader-following consensus for
multiple uncertain Euler-Lagrange systems with an adap-
tive observer. IEEE Trans Autom Control 2016; 61:
3152–3157.

23. Liu W and Huang J. Adaptive leader-following consen-
sus for a class of higher-order nonlinear multi-agent sys-
tems with directed switching networks. Automatica 2017;
79: 84–92.

24. Oh KK and Ahn HS. Formation control of mobile agents
based on inter-agent distance dynamics. Automatica

2011; 47: 2306–2312.
25. Oh KK, Park M and Ahn HS. A survey of multi-agent

formation control. Automatica 2015; 53: 424–440.

26. Franchi A, Stegagno P and Oriolo G. Decentralized
multi-robot encirclement of a 3D target with guaranteed
collision avoidance. Auton Robot 2016; 40: 245–265.

27. Astolfi A, Karagiannis D and Ortega R. Nonlinear and

adaptive control. London: Springer-Verlag, 2008.
28. Martin P and Sarras I. A simple model-based estimator

for the quadrotor using only inertial measurements. In:
IEEE 55th Conference on Decision and Control (CDC),
Las Vegas, NV, USA, 12–14 December 2016, pp.7123–

7128.
29. Martin P and Sarras I. A global observer for attitude and

gyro biases from vector measurements. In: Twentieth

IFAC world congress, Toulouse, France, 9–14 July,
2017, pp.15979–15986.

30. Lorı́a A and Panteley E. Uniform exponential stability of
linear time-varying systems: revisited. Syst Control Lett
2002; 47: 13–24.

31. Rochefort Y, Piet-Lahanier H, Bertrand S, et al. Model
predictive control of cooperative vehicles using systemat-
ic search approach. Control Eng Pract 2014; 32: 204–217.

32. Lorı́a A and Panteley E. Cascaded nonlinear time-
varying systems: analysis and design. Lect Notes

Control Inform Sci 2005; 311: 23–64.
33. Kahn A, Marzat J, Piet-Lahanier H, et al. Cooperative

estimation and fleet reconfiguration for multi-agent sys-
tems. In: Proceedings of the IFAC workshop on multive-

hicle systems, Genova, Italy, 18 May 2015, pp.11–16.

Sarras et al. 15


