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Résumé

In this paper, we consider the question of predicting the final amount of a claim

and its distribution from micro-level data. A copula model is used to describe the de-

pendence between the amount of a claim and its duration (that is the time between

its occurence and its closure). Due to the presence of censoring, we adapt classical

methodologies using a weighting scheme that corrects the bias caused by this in-

completeness in the data. Theoretical results and simulation support the validity of

the procedure. A real case coming from medical malpractice claims is presented.
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1 Introduction

Evaluating loss reserves relies on the prediction of the final amount of claims that

already happened and for which the insurer will be committed to pay. In the present

paper, we propose a new methodology to perform this analysis at a micro-level. Our aim

is to use known characteristics of a claim in order to predict its amount and the time

before its settlement. A key feature of our method is to model the dependence structure

between the amount and the duration using a copula model. Indeed, claims that take a

long time before being closed are more likely to be expensive.

The task is made more difficult by the presence of censoring. This classical problem in

survival analysis is unavoidable when dealing with duration variables. Indeed, at a given

date, two types of situations may happen for the current status of a claim : either it is

closed, in which case its final amount is known ; or it is still open, in which case the claim

is said to be censored. If one does not take censored claims into account, the danger is

to build a model based on claims that are, in average, smaller than a typical one. This is

due to the fact that, among the uncensored claims, there is an overrepresentation of small

claims that take a short time to be closed. In this paper, we propose a way to correct

this bias caused by the censoring by introducing an appropriate weighting scheme which

compensates this deficit in large claims.

In the literature of claim reserving, aggregated methods are often proposed. Chain-

Ladder type methods (see e.g. Mack (1993), Merz et al. (2013), Pigeon et al. (2014), Saluz

et al. (2014)) are a way to respond to the fact that amounts of claims are not paid right

at the time at occurrence. All of these methods are all based on a stability assumption

that may be difficult to validate. They also tend to loose the information one may have

on each individual claim.

Various techniques have been proposed in the literature to introduce information one

may have on the specificity of each claim. A first way to proceed is to make development

factors, in the Chain-Ladder approach, depend on covariates, as in Wuthrich (2017) or

Wuthrich (2016). Micro-level approaches consider each claim separately and use its cha-

racteristic to predict its amount, see Norberg (1993) and Norberg (1999), and see Jin

and Frees (2013) for a comparison between the macro and the micro approach. When

looking at IBNR (Incurred But Not Reported) claims, time is an important factor, since

the question is to estimate the delay before reporting the claim. Antonio and Plat (2010)

propose to improve the evaluation of the IBNR reserves by using Poisson processes. Zhao

and Zhou (2010) propose a copula approach to study the dependence between the delay
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of reporting and the time of occurrence of the claim. In their work, they deal with a

left-truncation phenomenon due to the absence in the datasets of some claims that are

still not reported.

In the present paper, we study the importance of the development of claims through

time, but focusing mostly on RBNS claims (Reported But Not Settled). Our main concern

is to provide a model that allows us to understand the dependence between the time be-

fore settlement (what we will call the ”lifetime” of the claim) and its amount. This is of

particular importance for some guarantees for which the settlement of a claim can take a

lot of time. For example, the dataset we consider in the real application below comes from

medical malpractice claims. When evaluating RBNS claims, most existing approaches (see

e.g. Jin (2013) or Ayuso and Santolino (2008)) study the lifetime and the amount of a

claim separately, or use multi-state modeling as in Antonio et al. (2016) to model the de-

velopment of the claims. Nevertheless some estimation bias may occur when dealing with

guarantees with large time before settlement. This is due to the censoring phenomenon

that we already mentioned : databases that are used to calibrate the distribution of the

amount of the claims lack of claims with important lifetime (since only closed claims are

used to evaluate the distribution).

Our approach aims to fill this gap, by showing how survival analysis and copula tech-

niques may be used in this context. Our methodology may contribute to complement a

chain-ladder-type approach, by improving the evaluation of RBNS claims, taking advan-

tage of all the information available on them. Apart from improving the way the reserves

are evaluated, the aim is also to furnish a data-driven approach that does not necessarily

require the intervention of an expert, sent physically to evaluate the amount. Based of a

sufficient amount of gathered information on the circumstances of the claims, the idea is

to let the model do the prediction, and send an expert only when the prediction is too

blurry (based on the evaluation of the prediction uncertainty which can also be obtained

using our method).

The paper is organized as follows. In section 2, we present the censoring model that we

consider to model the evolution of the claims, and explain our estimation and prediction

procedure. Section 3 is devoted to the theoretical behavior of the methodology, completed

by some simulation study. A real data case, corresponding to medical malpractice claims,

is shown in details in section 4. Technical results are gathered in section 6.
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2 Model and assumptions

We first present the model in section 2.1, and then focus on the estimation procedure,

decomposed into the estimation of the margins in section 2.2, and then on the dependence

structure in section 2.3. The methodology to forecast the open claims is described in

section 2.4.

2.1 Observations and setting

We consider a set of i.i.d. observations (Yi, δi, Ci, Xi, Ni)1≤i≤m, where
Yi = inf(Ti, Ci),

δi = 1Ti≤Ci ,

Ni = δiMi.

In the micro-level reserving situation, Mi is the amount of claim number i, Xi ∈ Rd are

its characteristics. Ti is the time before the claim is stabilized, that is when one finally

knows its total amount. This variable is censored by Ci, the time between the opening of

the claim and today. This means that, if Ti > Ci (which corresponds to the case δi = 0),

neither Ti or Mi is observed. This model is similar to the one studied in Lopez et al.

(2016), except that here, we assume that Ci is observed.

The reason for supposing that Ci is observed, compared to a more general censoring

model, is that we consider that the only cause for censoring is the end of the observation

period. As mentioned in section 2.5 below, the approach we propose is extended to more

general situations in which Ci may not be observed. Nevertheless, we prefer to focus on

this more simple case, in order to take advantage of the additional information we have on

the censoring. This will also allow us to obtain better asymptotic results for the estimators

we propose.

Let us also mention that, in the above setting, no partial information on the amount

of the claim is required, although it can be used if present. Indeed, according to this

model, Ni = 0 if δi = 0. If some elements are given (expertise, partial payments...), this

information can be contained in the covariates Xi ∈ Rd.

In such censoring models, an identifiability assumption is required to retrieve the

distribution of (T,M,X) from the data. Throughout this paper, we will use the following

assumption.

Assumption 1 Assume that (T,X,M) is independent of C.
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As a consequence of this assumptions, the covariates X should not be dependent on

the time at which the claim opened. Otherwise, X would be dependent of C, since C is

the difference between the date of today and the date at which the claim occurred. This

means that X should not include a time factor that could have impact on M (like some

time-depending indicators, or the year of occurrence). Therefore, the values of M have

to be considered as corrected from an inflation factor. If no indication on the inflation is

present, we discuss in section 4.2 how to remove such an inflation effect.

2.2 Estimation of the margins

In this section, we discuss how to model the conditional distribution of T |X = x, and

the distribution of M |X = x. These variables are expected to have very different types of

distributions. T is a duration variable, while M is an amount that may be very volatile.

2.2.1 Estimation of the conditional distribution of T

Various ways to estimate a regression model involving a censored variable T have been

discussed in the literature. Defining µ(t|x) = limdt→0+ dt
−1P (T ∈ [t, t+ dt]|X = x) the

conditional hazard rate function, Cox regression model assumes that µ(t|x) = µ0(t) exp(αT0 x),

where µ0 is an unknown baseline function and α0 a finite dimensional unknown parameter.

This model has the advantage to be semiparametric, since it allows us not to specify the

baseline µ0. Estimation of α0 can be performed using pseudo-likelihood maximization (see

Cox (1975)), while the cumulative hazard function M0(t) =
∫ t

0
µ0(s)ds can be estimated

nonparametrically using the Breslow estimator (see Burr (1994)).

An alternative to Cox regression is the Accelerated Failure Time model (AFT), where

one assumes that

µ(t|x) = α0µ0(α0t), (2.1)

where µ0 is a known baseline function, and α0 an unknown parameter. Estimation of α0

can be performed using maximum likelihood estimation (see Wei (1992)). This last type

of models will be used in section 4.

2.2.2 Estimation of the conditional distribution of M

A classical way to model the amount of a claim is to consider a Generalized Linear

Model. We here explain how to extend the estimation of a GLM model estimation to

the context of censoring. We consider a known transformation ψ(M) of M and suppose
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that it fits a GLM. This model, see Nelder and Baker (1972), consists of assuming that

Ψ(M)|X has a distribution in a fixed exponential family, and that g(E[Ψ(M)|X]) = βT0 X,

where g is a known link function. The reason for considering Ψ(M) and not merely M is

that M may be heavy-tailed in some cases. In this case, using an exponential family of

distribution is unadapted. On the other hand, a GLM assumption may be reasonable for

logM, for instance.

Estimation of the parameter β0 can be done by

β̂ = arg min
β

n∑
i=1

Wi,n log fβ(ψ(Ni)|βTXi), (2.2)

where fβ(·|βTx) denotes the conditional density of ψ(M)|X according the model with

parameter β, and where

Wi,n =
δi

nŜC(Yi)
, (2.3)

and where ŜC(t) = n−1
∑n

i=1 1Ci≥t, the empirical survival function of C, which is a

consistent estimator of SC(t) = P(C ≥ t). The reason for using (2.3) is the fact that,

under Assumption 1,

E

[
δφ(Y,N,X)

SC(Y )

]
= E [φ(T,M,X)] , (2.4)

for all functions φ such that E[|φ(T,M,X)|] <∞, and such that φ(t,m, x) = 0 if SC(t) =

0. Such type of weighting are of common use to correct the bias caused by the censoring

(see Van der Laan and Robins (2003), or Lopez et al. (2016) for some applications of these

Inverse Probability of Censoring Weights (IPCW) techniques). If the variables (Ci)1≤i≤n

are not observed, the empirical distribution function ŜC can be replaced by the Kaplan-

Meier estimator of Kaplan and Meier (1958).

Note that (2.2) is not a true maximum likelihood estimator, but it has the advantage

of relying on the maximization of a criterion which is numerically of the same complexity

as in the uncensored case. An alternative way would be to use the expression of the maxi-

mum likelihood estimator under censoring, see Fleming and Harrington (2011), which, is

more delicate to handle numerically. Hence we prefer to consider this easier optimization

problem.

This estimation procedure is n1/2−consistent under mild assumptions by a direct adap-

tation of Stute (1999), who considers the special case of a nonlinear regression model with

a quadratic loss function. We give elements, in the Appendix, to justify this extension,

see section 6.5.
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2.3 Copula modeling

Clearly, in our micro-level reserving problem, the variable T and the variable M are

dependent. Indeed, a claim with a long time T before being settled, is expected to be

associated with a large value of M, since small claims are more likely to be rapidly settled.

The advantage of considering the dependence between M and T from a copula prospective

stands in the fact that these two variables are of different nature (an amount and a time).

Hence, it would be difficult to model them jointly. Besides, the copula approach allows

us to separate the univariate modeling as in section 2.2, and then study the dependence

structure separately.

The basic idea behind copula models arises from Sklar’s Theorem (see Sklar (1959))

which states that, for two variables A and B,

FA,B(a, b) = C(FA(a), FB(b)), (2.5)

where FA,B(a, b) = P(A ≤ a,B ≤ b), FA (resp. FB) denotes the cumulative distribution

function of A (resp. B), and C is a copula function (that is a distribution function on

[0, 1]2 with uniform margins). Moreover this decomposition is unique if the variables are

continuous, which will be the case in our application. Hence, (2.5) introduces a separation

between the marginal behavior of A and B (entirely described by FA and FB) and their

dependence structure, solely contained in C.

In view of (2.5), let Cx denote the conditional copula of (T,M) given X = x. This

means that, if we consider the joint conditional function FT,M |x(t,m|x) = P(T ≤ t,M ≤
m|X = x), it decomposes into

FT,M |X(t,m|x) = Cx(FT |X(t|x), FM |X(m|x)),

where FT |X(t|x) = P(T ≤ t|X = x) and FM |X(t|x) = P(M ≤ t|X = x). In the following,

we assume that the dependence structure of (T,M) does not depend on the value of X,

that is there exists a copula function C such that, for all x, Cx = C. Moreover, we assume

that C belongs to a parametric family of copulas C = {Cθ : θ ∈ Θ}, where Θ ⊂ Rk.

We denote by cθ(u, v) the copula density associated to Cθ, that is cθ(u, v) = ∂2
u,vCθ(u, v).

Let Ui = FT |X(Ti|Xi) and Vi = FM |X(Mi|Xi). If (Ui, Vi)1≤i≤n were observed, the maximum

likelihood estimator of θ0 would be θ̂ML = arg maxθ∈Θ

∑n
i=1 log cθ(Ui, Vi). In our setting,

Ui and Vi can not be computed for two reasons. The first reason, common in copula

modeling, is that the conditional marginal distributions FT |X and FM |X are not exactly

known. However, estimators for the margins can be deduced from section 2.2, and therefore
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we have at our disposal two estimated conditional distribution functions F̂T |X and F̂M |X

that could be plugged into the maximum likelihood procedure. Nevertheless, in our case,

censoring introduces an additional complexity, since the quantities U∗i = F̂T |X(Ti|Xi) and

V ∗i = F̂M |X(Mi|Xi) can not be computed if δi = 0 (in this case, Ti and Mi are unknown).

Therefore, we define Ûi = F̂T |X(Yi|Xi) and V̂i = F̂M |X(Ni|Xi), and our copula parameter

estimator

θ̂ = arg max
θ∈Θ

n∑
i=1

Wi,n log cθ(Ûi, V̂i), (2.6)

where Wi,n is defined in (2.3). From (2.3), we see that Ûi = U∗i and V̂i = V ∗i when Wi,n 6= 0.

Moreover, introducing Wi,n is a natural way to correct the presence of the censoring from

(2.4).

Our estimator (2.6) is motivated by the same arguments as in (2.2). An alternative

procedure would be to use the estimator of Shih and Louis (1995), which is based on the

extension of maximum likelihood estimation to the censoring framework. However, the

simplicity of (2.6) (in terms of definitions but also in terms of numerical optimization)

explains why we turn to θ̂.

2.4 Prediction of the final amount of the claims

The previous approach allows us to model the distribution of (T,M)|X. The idea is

then to use this model in order to predict the final amount of each claim. More precisely,

consider an open claim (that is with δi = 0). For this claim, we already know that the

unobserved variable Ti is greater than Yi. Hence, the distribution of (T,M) given the

information we have (that is given X = Xi and T ≥ Yi) has a density that can be

estimated by

f̂Yi,Xi(t,m) =
cθ̂(F̂T |X(t|x), F̂M |X(m|x))f̂T |X(t|x)f̂M |X(m|x)1t≥Yi∫∞

u=Yi

∫∞
v=−∞ cθ̂(F̂T |X(u|x), F̂M |X(v|x))f̂T |X(u|x)f̂M |X(v|x)dudv

, (2.7)

where f̂T |X(·|x) (resp. f̂M |X(·|x)) denotes the estimated conditional density of T |X = x

(resp. of M |X = x) and F̂T |X(·|x) (resp. F̂M |X(·|x)) denotes the estimated conditional

distribution function, obtained in section 2.2.

Next, the prediction can either be performed analytically, for example by computing∫ +∞
m=0

∫∞
t=Yi

mf̂Yi,Xi(t,m)dtdm (or alternatively by looking at the median of this estimated

distribution), or using simulation. This second approach seems more convenient due to the

difficulty to find a closed form for the analytic form. Moreover, the simulation approach
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permits us to obtain easily an evaluation of the distribution of the amount of the open

claim. Indeed, for each claim for which δi = 0, the idea is to simulate a large number of

variables under the estimated density (2.7). One then can estimate the amount of claim i

by M̂i which is the empirical mean of the simulated sample, but also have insights about

the uncertainty of this estimation.

2.5 Discussion and extensions

In this paper, we have chosen to consider the case where the dependence structure of

(T,M)|X = x does not depend on x. This is motivated by the search for a relatively simple

model. Another argument is the difficulty of estimating a conditional copula function

without having at our disposal a sufficiently large amount of data. This issue becomes

even worse when the dimension d of X becomes large. However, the estimator (2.6) can

be modified in order to consider the more general case where Cx depends on x, by, for

example, adding kernel weights as in Abegaz et al. (2012) in the uncensored case.

Another limit of this procedure is the identifiability assumption (Assumption 1) we

have made on the censoring. A common alternative would be to assume that C is inde-

pendent of (T,M) given X. This would allow C to depend on the covariates, X. In this

case, (2.4) has to be replaced by

E

[
δφ(Y,N,X)

SC|X(Y |X)

]
= E [φ(T,M,X)] ,

where SC|X(t|x) = P(C ≥ t|X = x). The weights Wi,n must be adapted, by replacing

the estimator of the survival function of C by an estimator of the conditional survival

function SC|X(·|x).

We also considered that C was observed. If it is not the case, the procedure stays

the same, but with the empirical distribution function ŜC replaced by the Kaplan-Meier

estimator of the distribution of C (see Kaplan and Meier (1958)).

3 Consistency of the copula estimator

This section investigates the theoretical behavior of the copula estimator. Section

3.1 gathers the required assumptions, which are basically the same as in the classical

uncensored case, plus some additional ones on the tails of the distributions due to the

censoring. The consistency results are obtained in section 3.2. The simulation study in

section 3.3 illustrates the behavior of the technique for finite sample size.
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3.1 List of assumptions

Two categories of assumptions are required. First, Assumptions 2 and 3 are close to

Assumptions A.1 to A.5 present in Tsukahara (2005), who gives conditions for the consis-

tency of the maximum likelihood estimator of a copula (when the margins are estimated

separately). These assumptions are satisfied by a large number of copula families.

Before stating these two assumptions, let us introduce some notations.

We recall that a function r : (0, 1) → (0,∞) is called u−shaped if r is symmetric

about 1/2 and increasing on (0, 1/2]. For such a u−shaped function r, and for 0 < β < 1,

define

rβ(t) = r(βt)10<t≤1/2 + r(1− β(1− t))11/2<t≤1.

A reproducing u−shaped function is a u−shaped function such that rβ ≤ Mβr for all

β > 0 in a neighborhood of 0, with Mβ a finite constant.

LetR denote the set of reproducing u−shaped functions in the following, andQ denote

the set of continuous functions on [0, 1] which are positive on (0, 1), symmetric about 1/2,

increasing on [0, 1/2] and such that
∫ 1

0
q(t)−2dt <∞.

Assumption 2 gives conditions on the first order derivatives (with respect to θ) of the

log-likelihood.

Assumption 2 Let φθ(u, v) = ∇θ log cθ(u, v), φ
(1)
θ0

= ∂uφθ0(u, v), and φ
(2)
θ0

(u, v) = ∂vφθ0(u, v).

Assume that there exist functions rj ∈ R, r̃j ∈ R, and qj ∈ Q, for j = 1, 2 such that, for

all (u, v, θ),

‖φθ(u, v)‖ ≤ r1(u)r2(v),

‖φ(1)
θ0

(u, v)‖ ≤ r̃1(u)r2(v),

‖φ(2)
θ0

(u, v)‖ ≤ r1(u)r̃2(v),
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and such that

∫ {∏
i=1,2 ri(FT (t|x), FM(m|x))

}2

SC(t)

×fT (t|x)fM(m|x)dC(FT (t|x), FM(m|x)) < ∞, (3.1)∫
r̃1(FT (t|x), FM(m|x))q1(FT (t|x))r2(FT (t|x), FM(m|x))

SC(t)

×fT (t|x)fM(m|x)dC(FT (t|x), FM(m|x)) < ∞, (3.2)∫
r1(FT (t|x), FM(m|x))r̃2(FT (t|x), FM(m|x))q2(FM(m|x))

SC(t)

×fT (t|x)fM(m|x)dC(FT (t|x), FM(m|x)) < ∞. (3.3)

The conditions on the second order derivatives with respect to θ are presented in

Assumption 3.

Assumption 3 There exists a neighborhood of θ0 such that φθ(u, v) is continuously dif-

ferentiable, and such that the Hessian matrix

Σθ(u, v) = ∇2
θ log cθ(u, v),

satisfies

‖Σθ(u, v)‖ ≤ h1(u)h2(v),

with hi ∈ R for i = 1, 2 and∫
fT (t|x)fM(m|x)

SC(t)

{∏
i=1,2

hi(FT (t|x), FM(m|x))

}
dC(FT (t|x), FM(m|x)) <∞.

Moreover, assume that Σ =
∫

Σθ0(u, v)dC(u, v) is nonsingular.

The main difference with the conditions in Tsukahara (2005) is the presence of the

function SC at the denominator, which is caused by censoring. Of course, compared to an

uncensored situation, these conditions may not hold if censoring is too heavy (that is if

SC(t) decreases too fast to zero when t tends to infinity).

The second type of assumptions lists requirements on the estimation of the margins.

Indeed, in our setting, we wish to have enough flexibility to model the margins, so that the

asymptotic properties of our estimators may be obtained for a large number of situations.

Assumption 4 ensures that the margins are estimated with a sufficiently fast conver-

gence rate.
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Assumption 4 Assume that

sup
i=1,...,n

|Ûi − Ui|
q1(Ui)

+
|V̂i − Vi|
q2(Vi)

= OP (n−1/2), (3.4)

where qj for j = 1, 2 are defined in Assumption 2. Moreover, assume that

sup
i=1,...,n

Ui

Ûi
+

1− Ui
1− Ûi

+
Vi

V̂i
+

1− Vi
1− V̂i

= OP (1). (3.5)

Additionally, one requires an asymptotic representation for the estimated margins is

required.

Assumption 5 The margins are estimated so that an asymptotic representation of the

following type holds,

Ûi − Ui =
1

n

n∑
j=1

λUYi,Xi(Yj, δj, c,Xj) +R1,n, (3.6)

V̂i − Vi =
1

n

n∑
j=1

λVNi,Xi(Nj, Yj, δj, c,Xj) +R2,n, (3.7)

where sup1≤i≤n |Ri,n| = oP (n−1/2).

The next assumption imposes moment conditions on the terms in these asymptotic

representations (in order to apply a Central Limit Theorem to the terms that appear in

the asymptotic study of the estimator).

Assumption 6 Using the notations of Assumption 5,

ΛU(y, d, x) = E
[
φ

(1)
θ0

(U1, V1)λUT1,X1
(Y2, δ2, X2)|Y2 = y, δ2 = d,X2 = x

]
,

ΛV (m, y, d, x) = E
[
φ

(2)
θ0

(U1, V1)λVM1,X1
(N2, Y2, δ2, X2)|N2 = m,Y2 = y, δ2 = d,X2 = x

]
.

Assume that

E[ΛU(Yi, δi, Xi)
2] + E

[
ΛV (Mi, Yi, δi, Xi)

2
]
<∞.

Assumptions 4 to 6 can be easily checked for the estimators we consider in section 2.2,

see section 6.5.
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3.2 Asymptotic results

We now state our main result, which consists of an asymptotic representation of the

estimated association parameter θ̂. As a by-product, the asymptotic normality is obtained.

Theorem 3.1 Under Assumptions 2 to 6,

θ̂ − θ0 = Σ−1

(
1

n

n∑
i=1

Ψ(Yi, Ni, δi, Ci, Xi)

)
+ oP (n−1/2),

where

Ψ(y,m, d, x) = −Γφθ0 (FT |X(.|.),FM|X(.|.))(y, n, d, c, x)− ΛU(y, d, c, x)− ΛV (m, y, d, c, x),

where

Γφ(y,m, d, c, x) =
dφ(y,m, d, c, x)

SC(y)
+ E

[
φ(T,M,X)[SC(T )− 1C≥T ]

SC(T )
|C = c

]
.

Hence,

n1/2(θ̂ − θ0) =⇒ N (0,Σ−1E
[
Ψ
(
Y,M, δ, C,X)2

]
Σ−1

)
.

The function Ψ is composed of three terms. The first one (Γφθ0 ) corresponds to the

asymptotic representation we would have if the conditional margins FT |X and FM |X were

exactly known. It is itself composed of two terms : the first one, dφθ0(y,m, d, c, x)[SC(y)]−1,

is the term one would have if the distribution of the censoring SC were exactly one, while

the second one is present due to the estimation of SC by its empirical counterpart. The

terms ΛU and ΛV come from the estimation of the conditional margins, and are dependent

on the way this estimation is performed.

The asymptotic variance can naturally be estimated by replacing each expectation

and unknown quantity by its empirical counterpart (and θ0 by θ̂).

3.3 Simulation study

To assess the finite sample validity of our method, we consider the following simulation

settings. We simulate Xi = (Xi,1, Xi,2, Xi,3)T where the Xi,j are uniform over [0, 1] and

mutually independent. The variable Ti is simulated according to a log-normal distribution

conditionally to the variables Xi. More precisely, log Ti = α0,0 + (α0,1, ..., α0,3)Xi + εi,

where εi ∼ N (0, σ2). For the amount Mi, we consider a GLM model for logMi with

exponential distribution and using the identity as a link function, that is E[logMi|Xi] =
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β0,0 +(β0,1, ..., β0,3)Xi, and logMi|Xi is exponentially distributed. This produces an heavy

tail conditional distribution for Mi, since the conditional survival function of Mi|Xi has

a polynomial rate of decay. The censoring Ci is simulated independently under a Weibull

distribution of parameters k and λ, that is of density kλ−kck−1 exp(−c/λ)k1c≥0. The values

for the respective parameters involved in the simulation of the margins and of the censoring

are summarized in Table 1. We consider different values for the parameters of the censoring

in order to investigate the evolution of the performance when the strength of the censoring

(i.e. the average percentage of censored observations in the sample) increases.

Table 1 – Parameters used in the simulation of the margins

Parameter name Parameter value Proportion of censored observations

α0,0 0

α0,1 0.5

α0,2 0.2

α0,3 -0.1

β0,0 0.1

β0,1 0.03

β0,2 0.05

β0,3 -0.02

(k, λ) (2.7,3) 30%

(k, λ) (0.5,3) 50%

(k, λ) (0.15,3) 60%

We consider three copula families to describe the dependence between T and M, that is

Frank’s, Gumbel’s and Clayton’s copula families. The corresponding values of the copula

functions are summarized in Table 2. Through the use of these three different families,

we expect to observe the behavior of the technique in situations where the dependence

structure is quite different. Clayton’s family allows us to incorporate a left tail depen-

dence, while Gumbel’s family induces a right tail dependence, and Frank’s family does

not have any dependence in the tails. For each copula family, we consider two values of

the association parameter. To facilitate the comparison between the families, these two

cases correspond to values of Kendall’s τ coefficient equal to 0.5 and 0.1. We recall that

Kendall’s τ coefficient associated to a copula function C is a dependence measure that

can be expressed as τ = 4
∫ ∫

C(a, b)dC(a, b)− 1, see Nelsen (2006).

In each simulation setting, we simulate B samples using the distributions that have

14



Table 2 – Copula families, and corresponding values of Kendall’s τ coefficient

Copula family Copula function Condition on θ Kendall’s τ

Clayton 1
(a−θ+b−θ+1)1/θ

θ > 0 θ
θ+2

Frank −1
θ

log
(

1 + (exp(−θa)−1)(exp(−θb)−1)
exp(−θ)−1

)
θ 6= 0 1 + 4

θ−1
∫ θ
0

tkdt
exp(t)−1

−1

θ

Gumbel exp
(
−
[
−(log a)θ + (− log b)θ

]1/θ)
θ ≥ 1 1− θ−1

been previously described. For the b−th simulated sample, we compute the estimators

of the parameters corresponding to the margins and to the dependence structure accor-

ding to the procedures of sections 2.2 and 2.3. Then, we predict each of the censored

claims using the technique described in section 2.4. That is, for each simulated sample

(Y b
i , N

b
i , C

b
i , δ

b
i , X

b
i )1≤i≤n, we compute, for each censored claim with δbi = 0, the corres-

ponding estimated density (2.7) and simulate 1000 replications under this distribution.

Then, the prediction M̂ b
i of the amount Mi,b is taken as the mean-value of this simulated

sample.

Let Rb =
∑n

i=1(1−δi)M b
i , that is the reserve that one should constitute if the amounts

of all claims were known, and R̂b =
∑n

i=1(1 − δi)M̂ b
i denote the predicted one. Tables 3

and 4 below quantify different measurement errors, defining

E1 =
1

B

B∑
b=1

|Rb − R̂b|,

E1,r =
1

B

B∑
b=1

|Rb − R̂b|
Rb

,

E2 =
1

B

B∑
b=1

1∑n
i=1(1− δi)

n∑
i=1

(1− δi)|M̂ b
i −M b

i |.

The column E[(θ̂ − θ0)2]1/2 presents the empirical estimation of this quantity, that is

{B−1
∑B

b=1(θ̂b − θ0)2}(1/2) where θ̂b is the estimator of the copula parameter for the

simulation b.

Errors E1 and E1,r focus on the global error, that is the difference (or relative difference

for E1,r) between Rb and R̂b. Error E2 focuses on an individual version of the error (claim

by claim).

For each model, the relative error E1,r seems relatively stable in the different configu-

rations, with no major difference between the copula families. E1 tends to decrease when

the proportion of censoring increases. This is due to the fact that the number of claim
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Table 3 – Error measurement for Kendall’s τ coefficient equal to 0.1, n = 5000

Proportion of censoring Copula family E[(θ̂ − θ0)2]1/2 E1 E1,r E2

30 %

Clayton

Frank

Gumbel

0.04118

0.1314

0.01847

10.33

15.38

22.20

0.00595

0.01221

0.01258

0.1205

0.11980

0.1046

50 %

Clayton

Frank

Gumbel

0.04579

0.1544

0.0238

10.512

11.39

3.450

0.00363

0.01215

0.000846

0.1209

0.1223

0.1092

60 %

Clayton

Frank

Gumbel

0.1009

0.3027

0.0575

12.41

10.81

3.171

0.00325

0.01209

0.0009402

0.1267

0.1328

0.1202

Table 4 – Error measurement for Kendall’s τ coefficient equal to 0.5, n = 5000

Proportion of censoring Copula family E[(θ̂ − θ0)2]1/2 E1 E1,r E2

30 %

Clayton

Frank

Gumbel

0.1091

0.1869

0.05371

30.59

71.236

86.05

0.0166

0.03102

0.0455

0.1205

0.1209

0.1051

50 %

Clayton

Frank

Gumbel

0.1233

0.1787

0.1040

12.74

13.09

14.64

0.0043

0.0003760

0.00023

0.1254

0.1276

0.1105

60 %

Clayton

Frank

Gumbel

0.3113

0.2386

0.2207

12.83

11.92

1.6411

0.0034

0.003494

0.00055

0.1415

0.1474

0.1249

to predict increases : since our estimators are asymptotically unbiased, overestimation

of some claims is compensated by under estimation of others. For the individual predic-

tion, we see that the error E2 (as for the estimation of the copula parameter) tends to

increase with the proportion of censoring : with less information, the model has a poorer

performance and it leads to a negative impact on the prediction of each amount.
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4 Real data example

4.1 Description of the data

We consider a dataset containing n = 4724 observations coming from medical mal-

practice claims, covering a period of 17 years. Among these claims, 3578 are uncensored

and have their final amount known. For the 1146 censored ones, we have at our disposal an

additional base giving us the final amount. The estimators and the prediction models do

not use the information used in this control database, which will only be used to measure

the accuracy of the predictions we develop.

A preliminary treatment has been done on the database. First, the unit of the amounts

has been changed in order to preserve confidentiality (multiplication by a constant). Se-

cond, some inflation factor has been removed. We explain this procedure in section 4.2

below.

As we can see in Table 5 below, the typical values taken by T when the claim is censored

are globally higher than when it is not. Apparently, there is no significant difference

between the values of M when δ = 0 and when δ = 1, but as we shall see in the following,

a positive correlation between T and M exists, making the information on T crucial in

order to predict M for the censored claims.

Table 5 – Descriptive statistics on M and T.

Variable Minimum 1st quartile Median Mean 3rd quartile Maximum

M 0.3938 1.8570 2.6820 2.7920 3.5810 8.8180

T 0.05706 2.7860 3.7800 3.937 5.2010 16.7300

M (δ = 0) 0.3938 1.7910 2.6170 2.7400 3.5160 7.8710

M (δ = 1) 0.394 1.881 2.718 2.814 3.599 8.818

T (δ = 0) 0.1819 3.240 4.010 4.2050 5.4130 16.1500

T (δ = 1) 0.05706 2.59000 3.67100 4.00600 4.99700 16.7300

On each claim, some characteristics related to the context of the claim are present,

denoted X1 to X3. In Table 6 below, we present a few descriptive statistics about the

quantitative variables X1 and X2. X3 is a binary variable (equal to 1 for 29% of the

observations, to 0 for the other 71%).
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Table 6 – Description of the continuous covariates X1 and X2.

Variable Minimum 1st quartile Median Mean 3rd quartile Maximum

X1 0 0.2188 0.3750 0.4134 0.5312 1

X2 0 0.5714 0.7143 0.6391 0.7143 1

4.2 Removing inflation

Various methodologies may be used to correct the effect of inflation on the costs.

Among them, using external data sources may be useful. However, this does not seem

accurate in our case of medical malpractice data, since the inflation of the amounts does

not follow the inflation of the common consuming products. Let M ′
i denote the amount

of a claim before removing the part due to inflation. We assume that

logM ′
i = µdi + logMi, (4.1)

where di is the date at which the i−th claim occurred, and µ is a drift coefficient that we

estimate using our database. We assume that (Mi)1≤i≤n are i.i.d. and independent from

(di)1≤i≤n. The dates di take their value in {0, ..., D} (where D + 1 years are observed).

We then proceed in the following way :

— compute mi,j, defined as the average of the claims that occurred on the fiscal year

di, and which are settled after j years (for (i, j) such that di + j ≤ D), and let ni,j

denote the number of such claims ;

— then, under (4.1), logmi,j ≈ µdi + λj, where λj = E[logMi|Ti = j]. For each j, we

compute µ̂j the weighted least-square estimator of the slope µ based on the points

(logmi,j, di)i:di+j≤D, using the weights ni,j, that is we compute

(λ̂j, µ̂j) = arg min
a,b

∑
i:di+j≤D

ni,j(logmi,j − a− bdi)2.

— we compute our final estimator of µ,

µ̂ =

∑
j n
−1/2
j µ̂j∑

j n
−1/2
j

,

where nj =
∑

i ni,j.

Finally, for each i such that δi = 1, compute log N̂i = logM ′
i − µ̂di, the amount of

the claim, once the inflation effect has been removed. In the following, for the sake of

simplicity and of clarity, we continue to use the notation Ni instead of N̂i, since our main

task is to illustrate the copula methodology and not to focus on the inflation effect.
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Remark 4.1 To materialize the inflation of the cost, we chose to consider the impact of

the origin year of the claim di, while it would be probably more natural to use the year at

which the claim is settled, fi. However, this would create a supplementary difficulty, since

the year of the settlement is not know in advance. The procedure described in the following

permits us to predict the lifetime of the claim, but to achieve this aim, we first need to

remove the inflation. Due to this constraint, modeling inflation through (4.1) seems a

reasonable compromise.

4.3 Estimation of the margins

To model the conditional distribution of T |X = (X(1), X(2), X(3)), we consider a stan-

dard linear model for log T with Gaussian residuals, that is

log T = α0,0 +
3∑
j=1

α0,jX
(j) + ε,

where ε ∼ N (0, σ2). A Gamma regression assumption is made for the conditional distri-

bution of the logarithm of log(1 +M) given X, that is log(1 +M)|X ∼ Γ(r(X), λ), where

Γ(r, λ) denotes the distribution with density

fr,λ(m) =
mr−1

Γ(r)λr
exp(−m/λ)1m≥0.

A parametric form is given for r(X), that is

r(X) = β0,0 + β0,1X
(1) + β0,2X

(1)2 + β0,3X
(1)3 + β0,4X

(3).

The estimated parameters are given in Table 7.

4.4 Copula estimation

We consider three different copula models to estimate the dependence structure, from

Clayton, Frank and Gumbel families. The corresponding copula functions are given in

Table 2. Estimation of the association parameter is performed using the procedure of

section 2.3 in each model, and the results are given in Table 8.

These three copula families lead to quite different dependence structures. A key issue is

then to be able to determine which of them is more adapted to describe the distribution

of data. To this purpose, we compare the resulting estimators with a nonparametric

estimator of the copula function defined by Gribkova and Lopez (2015). The idea behind
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Table 7 – Estimated parameters for the margins

Parameter Estimated value

α0,0 1.5268

α0,1 -0.2755

α0,2 -0.1478

α0,3 0.0515

σ 0.5970

β0,0 0.5780

β0,1 2.1310

β0,2 -4.4447

β0,3 2.6880

β0,4 0.1431

λ 3.8660

Table 8 – Estimated association parameters for the different copula models

Copula family Association parameter

Clayton 0.3343

Frank 2.3276

Gumbel 1.3479

this nonparametric estimator is to generalize the empirical copula estimator of Deheuvels

(1979) to a censoring framework. The estimator is defined as

Ĉ(a, b) = F̂ (F̂−1
1 (a), F̂−1

2 (b)),

where F̂ (t,m) =
∑n

i=1Wi,n1Yi≤t,Ni≤m is a nonparametric estimator of the joint distribu-

tion function F (y,m), F̂1(t) = F̂ (t,∞), and F̂2(m) = F̂ (∞,m). The difference between

Ĉ and Cθ̂ can be visualized in Figure 1.

We then compute, for each copula family, d(Ĉ,Cθ̂), where d denotes some distance

between the copula functions. We consider two distances d1 and d2 as criterion,

d1(Ĉ,Cθ̂) = ‖Ĉ− Cθ̂‖∞,

d2(Ĉ,Cθ̂) =

{∫
(C(a, b)− Cθ̂(a, b))

2 dĈ(a, b)

}1/2

.

The distance d1 corresponds to a Kolmogorov-Smirnov type criterion, while d2 is close to
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Figure 1 – Difference Ĉ(a, b) − Cθ̂(a, b). From left to right and top to down : Clayton’s

copula, Frank’s copula, Gumbel’s copula.

a Cramer-von Mises approach. The values for the different copula models are summarized

in Table 9.

Table 9 – Distance d1 and d2 for the three copula models.

Copula family d1(Ĉ,Cθ̂) d2(Ĉ,Cθ̂)

Clayton 0.02827 0.00784

Frank 0.05109 0.02038

Gumbel 0.05695 0.02347

Clayton’s copula model leads to the smallest distance according to both criteria d1

and d2. Although this is only an heuristic argument in view of choosing the proper model,

empirical results on the prediction of the reserve, as we shall see in section 4.5, also

advocate for this model.
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4.5 Estimation of the reserve

With at hand the model we obtained for the distribution of (T,M), we are now able to

use the procedure described in section 2.4 in order to estimate the conditional distribution

of the open claims (with δi = 0). From these individual simulations, we can deduce an

estimation of the distribution of the reserve R =
∑n

i=1(1− δi)Mi. Indeed, for each claim

with δi = 0, we simulate (T bi ,M
b
i )b=1,...,B according to our estimated version of (2.7). We

then compute Rb =
∑n

i=1(1− δi)M b
i .

Figures 2 present histograms of this reserve for the three copula models that we consi-

der, for B = 10000. For each copula model, we also compute an estimation of E[R]

(that is B−1
∑B

b=1 R
b), which can be seen as our central scenario. This prediction is

compared to the real value of R, using our second database which contains the true

realizations of the claims. This real value is R = 3436.51. The results are presented

in Table 10, with 95% confidence intervals deduced from the estimated distribution of

R. To look at the quality of the individual prediction, we also compute the bias term

E0 = {
∑n

i=1(1− δi)[M̂i −Mi]}(
∑n

i=1(1− δi))−1, the error E1 as the median of the values

|M̂i −Mi| for i such that δi = 0, and E2 = {
∑n

i=1(1− δi)|M̂i −Mi|}(
∑n

i=1(1− δi))−1.

Figure 2 – Distribution of the reserve obtain by simulations. From left to right and top

to down : Clayton’s copula, Frank’s copula, Gumbel’s copula.

As we can see, Frank’s and Gumbel’s models lead to an overestimation (3.19% of

the real value for Frank and a much higher value, 8.18%, for Gumbel). This tendance of

22



Table 10 – Estimation of the reserve and confidence intervals.
Copula family E[R] 95% confidence interval E0 E1 E2

Clayton 3386.03 [3246.43,3539.08] -0.0440 0.8541 0.9297

Frank 3546.30 [3401.20,3704.53] 0.09580 0.8722 0.9251

Gumbel 3717.49 [3552.77,3901.84] 0.2451 0.9087 0.9944

obtaining a larger estimator of the reserve by the Gumbel model was expected, due to

the right-tail dependence of this copula family. We can also observe that this is caused by

a positive bias (0.2451) when estimating each claim amount individually. Here, the true

value of the reserve does not belong to the confidence interval. On the other hand, the

true value of R belongs to Frank’s copula interval, although close to its lower frontier.

Clayton’s model produces the closest prediction of the reserve, with a smaller negative

bias. When it comes to looking at the quality of individual prediction, Clayton’s model

and Frank’s model give similar performances in terms of errors E2, with a small advantage

on error E1 for Clayton. This conforts the fact that Clayton’s model is a reasonable choice

among these three models, as proposed at the end of section 4.4.

5 Conclusion and extensions

In this paper, we have presented a new methodology to predict the final amount of

an open claim. The procedure is based on using the dependence structure between the

amount of the claim and its ”lifetime”. Using a copula model is a convenient way to

understand this dependence, since it allows us to model separately each margin, which is

easier than studying them jointly. We have proposed a way to use this model to evaluate

the distribution of the reserve corresponding to these open claims. The procedure can be a

valuable tool to estimate the amount of each open claim and identify the ones that require

more attention (for example by sending an expert to evaluate them). In the practical

illustration we presented, no information was available on preliminary evaluations of the

claims (by experts) or on partial payments or reevaluations that may occur during the

development period. These additional information may be incorporated in the procedure

by considering it as covariates, without changing much the structure of the procedure.

Moreover, in the model we have presented, we implicitly have considered that all

claims were reported instantly to the insurer. In practice, this is of course not the case. A

possibility to correct this issue is to incorporate left-truncation in our procedure. Indeed,
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defining τi as the delay in reporting the i−th claim, data are composed of claims for

which Yi ≥ τi. Neglecting the left-truncation phenomenon leads to an overestimation of

the typical values taken by T (and, due to the positive correlation between T and M, to

a more pessimistic vision of the amount). Adaptation of our technique to left-truncation

is straightforward : our estimator of SC can be replaced by the estimator of Tsai et al.

(1987), which changes the definition of the weights we use (see Sellero et al. (2005)).

6 Appendix

This section is devoted to the technical arguments required to obtained the results of

section 3.2. The proof of Theorem 3.1 (see section 6.4) relies on several preliminary results.

Section 6.1 furnishes general results on weighted empirical means (where the weights are

designed, accordingly to our procedure, to compensate for censoring). Section 6.2 shows

how to deal with pseudo-observations. Finally, section 6.3 presents consistency results and

asymptotic representation that are a cornerstone of the proof of Theorem 3.1.

In the following proofs, we often refer to two classical properties of the empirical

distribution function, that we list below. Recall that,

sup
t≤Y(n)

|ŜC(t)− SC(t)| = OP (n−1/2), (6.1)

where Y(n) = maxi=1,...,n Yi, from Donsker’s Theorem, see for example van der Vaart (1998).

On the other hand, we also have

sup
t≤Y(n)

SC(t)ŜC(t)−1 = OP (1), (6.2)

from Shorack and Wellner (2009).

6.1 Preliminary results on empirical weighted sums

We here give an uniform law of large numbers result for weighted sums (Proposition

6.1).

Proposition 6.1 Let F = {(t,m, x)→ fτ (t,m, x) : τ ∈ T }, where T is a compact subset

of Rk, a class of Rm−valued functions such that, for some τ0 ∈ T ,

‖fτ (t,m, x)− fτ ′(t,m, x)‖ ≤ ‖τ − τ ′‖φ(t,m, x), (6.3)
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with

E

[
|fτ0(T,M,X)|

SC(T )

]
< ∞, (6.4)

E

[
φ(T,M,X)

SC(T )

]
< ∞. (6.5)

Then, assuming that, for all τ ∈ T , fτ (t,m, x) = 0 if SC(t) = 0,

sup
τ∈T

∣∣∣∣∣
n∑
i=1

Wi,nfτ (Yi, Ni, Xi)− E[fτ (T,M,X)]

∣∣∣∣∣ = oP (1).

Proof. Let Zn(F) = supφ∈F |
∑n

i=1 Wi,nφ(Yi, Ni, Xi)− E[φ(T,M,X)]| ,
W ∗
i,n = δiSC(Yi)

−1n−1, and let D denote the diameter of T . Decompose Zn(F) ≤ Z∗n(F)+

Rn(F), where

Z∗n(F) = sup
φ∈F

∣∣∣∣∣
n∑
i=1

W ∗
i,nφ(Yi, Ni, Xi)− E[φ(T,M,X)]

∣∣∣∣∣ ,
Rn(F) = sup

φ∈F

∣∣∣∣∣
n∑
i=1

{W ∗
i,n −Wi,n}φ(Yi, Ni, Xi)

∣∣∣∣∣ .
From (2.4), we can rewrite Z∗n(F) = supg∈G |n−1

∑n
i=1 g(δi, Yi, Ni, Xi)− E[g(δ, Y,N,X)]|,

where g ∈ G = [δSC(Y )−1] × F . From Theorem 2.10.6 in van der Vaart and Wellner

(1996), we get that Z∗n(F) = oP (1).

On the other hand,

Rn(F) ≤ sup
t∈R
|ŜC(t)− SC(t)| × sup

t≤Y(n)

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ 1

n

n∑
i=1

δiΦ(Yi, Ni, Xi)

SC(Yi)2
,

where Φ(t,m, x) = fτ0(t,m, x) + Dφ(t,m, x). Next, use (6.1) and (6.2). From (2.4) and

(6.4) and (6.5), we get Rn(F) = oP (1) (in fact, we even get Rn(F) = OP (n−1/2)).

The following result furnishes an asymptotic representation of weighted sums. Similar

type of results can be found in Stute (1995) or Stute (1996) when SC is a Kaplan-Meier

estimator, but here with weaker conditions due to the fact that (Ci)1≤i≤n are observed

(which is not the case in a classical right-censoring scheme).

Theorem 6.2 Let φ denote a function such that

E

[
φ(T,M,X)2

SC(T )

]
<∞. (6.6)
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Then
n∑
i=1

Wi,nφ(Yi, Ni, Xi) =
1

n

n∑
i=1

Γφ(Yi, Ni, δi, Ci, Xi) + oP (n−1/2),

where Γφ is defined in Theorem 3.1.

Proof. Decompose

n∑
i=1

Wi,nφ(Yi, Ni, Xi) =
1

n

n∑
i=1

δiφ(Yi, Ni, Xi)

SC(Yi)
+

1

n

n∑
i=1

δi[SC(Yi)− ŜC(Yi)]φ(Yi, Ni, Xi)

SC(Yi)2

+
1

n

n∑
i=1

δi[SC(Yi)− ŜC(Yi)]
2φ(Yi, Ni, Xi)

SC(Yi)2ŜC(Yi)
.

The third term is OP (n−1) using (6.1), (6.2) and (6.6). The second term can be rewritten

as
1

n2

n∑
i=1

n∑
j=1

δi[SC(Yi)− 1Cj≥Yi ]φ(Yi, Ni, Xi)

SC(Yi)2
,

which is
1

n

n∑
j=1

E

[
φ(T,M,X)[SC(T )− 1C≥T ]

SC(T )
|C = Cj

]
+ oP (n−1/2),

the remainder term being a degenerated second order U−statistic.

6.2 Lemma on pseudo-observations

Lemma 6.3 Let χ denote a positive function, and F a class of continuous functions such

that, for all φ ∈ F ,
|φ(u, v)| ≤ r1(u)r2(v),

where r1 and r2 are two functions in R, such that

sup
x

∫
χ(t,m, x)fT (t|x)fM(m|x)

{∏
i=1,2

ri(FT (t|x), FU(u|x))

}
c(FT (t|x), FM(m|x))dtdm <∞.

(6.7)

Moreover, assume that (Ûi)1≤i≤n and (V̂i)1≤i≤n are such that

sup
i=1,...,n

{|Ûi − Ui|+ |V̂i − Vi|} = oP (1),

and

sup
i=1,...,n

∣∣∣∣UiÛi +
1− Ui
1− Ûi

∣∣∣∣+

∣∣∣∣ViV̂i +
1− Vi
1− V̂i

∣∣∣∣ = OP (1). (6.8)
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Then,

sup
φ∈F

1

n

n∑
i=1

δiχ(Yi, Ni, Xi)

SC(Yi)
|φ(Ûi, V̂i)| = OP (1), (6.9)

sup
φ∈F

1

n

n∑
i=1

δiχ(Yi, Ni, Xi)

SC(Yi)
|φ(Ûi, V̂i)− φ(Ui, Vi)| = oP (1). (6.10)

Proof. For M > 0, define the event

EM,n =

{
inf

1≤i≤n
inf

(
Ûi
Ui
,
1− Ûi
1− Ui

)
≥ 1

M

}
∩

{
inf

1≤i≤n
inf

(
V̂i
Vi
,
1− V̂i
1− Vi

)
≥ 1

M

}
.

On EM,n, the left hand side in (6.9) is bounded by

M2

n

n∑
i=1

δiχ(Yi, Ni, Xi)

SC(Yi−)
r1(Ui)r2(Vi),

which as finite expectation from (6.7). Since limM→∞ ¯limnP(EM,n)→ 0 from (6.8), we get

(6.9).

Similarly for (6.10), the left hand-side tends to 0 on EM,n (the expectation tends

to zero from Lebesgue’s dominated convergence theorem). Once again, one uses that

limM→∞ ¯limnP(EM,n)→ 0 to conclude.

6.3 Auxiliary results

Proposition 6.4 is a preliminary result that ensures consistency of the estimator of the

association parameter, while Proposition 6.5 furnishes an asymptotic representation of a

term which appears in the proof of Theorem 3.1.

Proposition 6.4 Under Assumptions 2 and 3,

θ̂ − θ0 = oP (1).

Proof. For the sake of simplicity, we consider the case θ ∈ R. The general case can

be obtained by looking at each component separately. Let

Mn(θ) =
n∑
i=1

Wi,n log

{
cθ(Ûi, V̂i)

cθ0(Ûi, V̂i)

}
,
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and M(θ) = E[log cθ(Ui, Vi)] − E[log cθ0(Ui, Vi)]. The result of Proposition 6.4 will be

obtained if we show that supθ∈Θ |Mn(θ) − M(θ)| = oP (1). From a first order Taylor

expansion, for some θ̃ between θ and θ0, we have

Mn(θ)−M(θ) = (θ − θ0)

{
n∑
i=1

Wi,nφθ̃(Ûi, V̂i)− E [φθ̃(Ui, Vi)]

}
.

Decompose

n∑
i=1

Wi,nφθ̃(Ûi, V̂i)− E [φθ̃(Ui, Vi)] =

{
n∑
i=1

W ∗
i,nφθ̃(Ui, Vi)− E[φθ̃(Ui, Vi)]

}

+

{
n∑
i=1

{Wi,n −W ∗
i,n}φθ̃(Ûi, V̂i)

}

+

{
n∑
i=1

W ∗
i,n

{
φθ̃(Ûi, V̂i)− φθ̃(Ui, Vi)

}}
.(6.11)

From Proposition 6.1, the first bracket converges towards 0 uniformly in θ. Indeed, the

family of functions F = {(t,m, x)→ φθ(FT (t|x), FM(m|x)) : θ ∈ Θ} satisfies the assump-

tions of Proposition 6.1, when Assumptions 2 and 3 hold. Indeed,

‖φτ (t,m, x)− φτ ′(t,m, x)‖ ≤ h1(FT (t|x))h2(FM(m|x))‖τ − τ ′‖,

and the integrability conditions ensure that (6.4) and 6.5 hold.

The third bracket in (6.11) is bounded by

1

n

n∑
i=1

δi
SC(Yi)

sup
θ∈Θ
|φθ(Ûi, V̂i)− φθ(Ui, Vi)|,

which converges to 0 from Lemma 6.3. The second bracket in (6.11) is bounded by

sup
t≤Y(n)

|ŜC(t)− SC(t)| × sup
t≤Y(n)

SC(t)ŜC(t)−1 × 1

n

n∑
i=1

δir1(Ûi)r2(V̂i)

SC(Yi)
.

Lemma 6.3, (6.1) and (6.2) show that this term tends to 0.

Proposition 6.5 Under Assumptions 2 to 6,

n∑
i=1

Wi,nφθ0(Ûi, V̂i) =
1

n

n∑
i=1

Γφθ0 (FT (.|.),FM (.|.))(Yi, Ni, δi, Ci, Xi)

+
1

n

n∑
i=1

{ΛU(Yi, δi, Xi) + ΛV (Ni, Yi, δi, Xi)}+ oP (n−1/2),

where Γφθ0 (FT (.|.),FM (.|.)) is defined in Theorem 3.1.
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Proof. From a first order Taylor expansion,

n∑
i=1

Wi,nφθ0(Ûi, V̂i) =
n∑
i=1

Wi,nφθ0(Ui, Vi) +
n∑
i=1

Wi,n[Ûi − Ui]φ(1)
θ0

(Ũi, V̂i)

+
n∑
i=1

Wi,n[V̂i − Vi]φ(2)
θ0

(Ûi, Ṽi),

where Ũi (resp. Ṽi) is between Ui and Ûi (resp. Vi and V̂i). The asymptotic expansion of

the first term is covered by Theorem 6.2. We only study the first of the two other terms,

since both are similar. We have

n∑
i=1

Wi,n[Ûi − Ui]φ(1)
θ0

(Ũi, V̂i) =
n∑
i=1

W ∗
i,n[Ûi − Ui]φ(1)

θ0
(Ũi, V̂i)

+
n∑
i=1

[Wi,n −W ∗
i,n][Ûi − Ui]φ(1)

θ0
(Ũi, V̂i)

=: A1,n +B1,n.

To show that the term B1,n is negligible, observe that

|B1,n| ≤ sup
1≤i≤n

|Ûi − Ui|
q1(Ui)

× sup
t≤Y(n)

|ŜC(t)−SC(t)|× sup
t≤Y(n)

SC(t)

ŜC(t)
×

[
1

n

n∑
i=1

δi|φ(1)
θ0

(Ũi, V̂i)|q1(Ui)

SC(Yi−)2

]
.

(6.12)

Since Assumption 4 ensures that sup1≤i≤n |Ûi−Ui|q1(Ui)
−1 = oP (1), and using (6.1)-(6.2),

we get |B1,n| = oP (n−1/2) as long as the bracket term in (6.12) is OP (1), which is obtained

using Lemma 6.3.

On the other hand, A1,n can be decomposed into A1,n = A2,n +B2,n, where

A2,n =
1

n

n∑
i=1

δi
SC(Yi)

[Ûi − Ui]φ(1)
θ0

(Ui, Vi),

B2,n =
1

n

n∑
i=1

δi
SC(Yi)

[Ûi − Ui]
{
φ

(1)
θ0

(Ui, Vi)− φ(1)
θ0

(Ũi, V̂i)
}
.

We have |B2,n| ≤ supi=1,...,n |Ûi − Ui|q1(Ui)
−1 × n−1

∑n
i=1 δiq1(Ui)SC(Yi)

−1{φ(1)
θ0

(Ui, Vi) −
φ

(1)
θ0

(Ũi, V̂i)}. Assumption 4 (equation (3.4)) and Lemma 6.3 show that |B2,n| = oP (n−1/2).

Next, using the decomposition (3.6) of Ûi − Ui,

A2,n =
1

n2

n∑
i=1

n∑
j=1

{
δiφ

(1)
θ0

(Ui, Vi)λ
U
(Yi,Xi)

(Yj, Xj)

SC(Yi)
− ΛU(Yj, Xj)

}
+

1

n

n∑
j=1

ΛU(Yj, Xj)+oP (n−1/2).
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The first term can be decomposed as the sum of a degenerated second order U−statistic

1

n2

∑
i 6=j

{
δiφ

(1)
θ0

(Ui, Vi)λ
U
(Yi,Xi)

(Yj, Xj)

SC(Yi)
− ΛU(Yj, Xj)

}
,

which isOP (n−1) from Nolan and Pollard (1987), and n−2
∑n

i=1{δiφ
(1)
θ0

(Ui, Vi)λ
U
(Yi,Xi)

(Yi, Xi)SC(Yi)
−1−

ΛU(Yi, Xi)} = OP (n−1).

6.4 Proof of Theorem 3.1

For the sake of simplicity, we consider the case where Θ ⊂ R. The general case can be

obtained studying component by component.

From a second order Taylor expansion,{
n∑
i=1

Wi,nΣθ̃(Ûi, V̂i)

}
(θ̂ − θ0) = −

n∑
i=1

Wi,nφθ0(Ûi, V̂i), (6.13)

where θ̃ is between θ0 and θ̂. Hence, from Proposition 6.4, θ̃− θ0 = oP (1). An asymptotic

expansion of the right-hand side of (6.13) is obtained from Proposition 6.5.

Next, decompose

n∑
i=1

Wi,nΣθ̃(Ûi, V̂i) =
1

n

n∑
i=1

δi
SC(Yi)

Σθ̃(Ûi, V̂i) +
n∑
i=1

(Wi,n −W ∗
i,n)Σθ̃(Ûi, V̂i).

From Lemma 6.3, the first term is Σ + oP (1), while the second can be bounded by

sup
t≤Y(n)

|ŜC(t)− SC(t)| × sup
t≤Y(n)

SC(t)

ŜC(t)
× 1

n

n∑
i=1

δi
SC(Yi)2

Σθ̃(Ûi, V̂i).

Using again Lemma 6.3 and (6.1)-(6.2), we get that this term is OP (n−1/2).

To summarize, we have

(Σ + oP (1))(θ̂ − θ0) =
1

n

n∑
i=1

Ψ(Yi, Ni, δi, Ci, Xi) + oP (n−1/2),

and the result follows from the fact that Σ > 0.

6.5 Results for the estimation of the margins

In this section, we give some arguments to justify that estimators of the type (2.2) are

n1/2−consistent (under some appropriate conditions) and admit an asymptotic represen-

tation similar to the one of Assumption 5. The result of Proposition 6.6 below, is similar

to the results of Stute (1999).
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Proposition 6.6 Let β0 be the unique maximizer (over a set B ⊂ Rk) of Mm(β) =

E[l(β;T,M,X)], and β̂ = arg maxβ∈B
∑n

i=1Wi,nl(β;Yi, Ni, Xi). Let λ(β; t,m, x) = ∇βl(β; t,m, x)

the vector of partial derivatives with respect to β, and H(β; t,m, x) = ∇2
βl(β; t,m, x). As-

sume that

‖H(β; t,m, x)−H(β′; t,m, x)‖ ≤ ‖β − β′‖φ(t,m, x),

for some function φ such that E[φ(T,M,X)SC(T )−1] <∞, and E[H(β0;T,M,X)SC(T )−1] <

∞. Moreover, assume that E[λ(β0;T,M,X)2SC(T )−1] <∞.
Then,

β̂ − β0 = E[H(β0;T,M,X)]−1 ×

(
1

n

n∑
i=1

δiλ(β0;Ti, Ni, Xi)

SC(Yi)

+E

[
φ(T,M,X)[SC(T )− 1C≥T ]

SC(T )
|C = Ci

])
.

The proof of Proposition 6.6 is similar to the one of Theorem 3.1, but simpler since

there is no pseudo-observations involved. It is a combination of a Taylor expansion with

Proposition 6.1 and Theorem 6.2. From such a representation of β̂, it is easy to come to

a similar asymptotic representation for the pseudo-observations. Indeed, in the case of

the GLM, F̂M |X(Ni) = Fβ̂(ψ(Ni)|β̂TXi) (where Fβ(·|βTx) is the cumulative distribution

function associated to fβ(·|βTx), using the notations of section 2.2.2). A linearization

of Fβ̂(ψ(Ni)|β̂TXi) − Fβ0(ψ(Ni)|βT0 Xi) using a Taylor expansion allows to obtain the

representation.
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Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst.

Statist. Univ. Paris, 8 :229–231.

Stute, W. (1995). The central limit theorem under random censorship. Ann. Statist.,

23(2) :422–439.

Stute, W. (1996). Distributional convergence under random censorship when covariables

are present. Scand. J. Statist., 23(4) :461–471.

Stute, W. (1999). Nonlinear censored regression. Statistica Sinica, pages 1089–1102.

Tsai, W.-Y., Jewell, N. P., and Wang, M.-C. (1987). A note on the product-limit estimator

under right censoring and left truncation. Biometrika, 74(4) :883–886.

Tsukahara, H. (2005). Semiparametric estimation in copula models. Canadian Journal

of Statistics, 33(3) :357–375.

33



Van der Laan, M. J. and Robins, J. M. (2003). Unified methods for censored longitudinal

data and causality. Springer Science & Business Media.

van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes

with applications to statistics. Springer Series in Statistics. Springer-Verlag, New York.

Wei, L.-J. (1992). The accelerated failure time model : a useful alternative to the cox

regression model in survival analysis. Statistics in medicine, 11(14-15) :1871–1879.

Wuthrich, M. V. (2016). Machine learning in individual claims reserving.

http ://dx.doi.org/10.2139/ssrn.2867897.

Wuthrich, M. V. (2017). Neural networks applied to chain-ladder reserving.

http ://dx.doi.org/10.2139/ssrn.2966126.

Zhao, X. and Zhou, X. (2010). Applying copula models to individual claim loss reserving

methods. Insurance : Mathematics and Economics, 46(2) :290 – 299.

34


