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In this paper, we consider the question of predicting the final amount of a claim and its distribution from micro-level data. A copula model is used to describe the dependence between the amount of a claim and its duration (that is the time between its occurence and its closure). Due to the presence of censoring, we adapt classical methodologies using a weighting scheme that corrects the bias caused by this incompleteness in the data. Theoretical results and simulation support the validity of the procedure. A real case coming from medical malpractice claims is presented.

Introduction

Evaluating loss reserves relies on the prediction of the final amount of claims that already happened and for which the insurer will be committed to pay. In the present paper, we propose a new methodology to perform this analysis at a micro-level. Our aim is to use known characteristics of a claim in order to predict its amount and the time before its settlement. A key feature of our method is to model the dependence structure between the amount and the duration using a copula model. Indeed, claims that take a long time before being closed are more likely to be expensive.

The task is made more difficult by the presence of censoring. This classical problem in survival analysis is unavoidable when dealing with duration variables. Indeed, at a given date, two types of situations may happen for the current status of a claim : either it is closed, in which case its final amount is known ; or it is still open, in which case the claim is said to be censored. If one does not take censored claims into account, the danger is to build a model based on claims that are, in average, smaller than a typical one. This is due to the fact that, among the uncensored claims, there is an overrepresentation of small claims that take a short time to be closed. In this paper, we propose a way to correct this bias caused by the censoring by introducing an appropriate weighting scheme which compensates this deficit in large claims.

In the literature of claim reserving, aggregated methods are often proposed. Chain-Ladder type methods (see e.g. [START_REF] Mack | Distribution-free calculation of the standard error of chain ladder reserve estimates[END_REF], [START_REF] Merz | Dependence modelling in multivariate claims run-off triangles[END_REF], [START_REF] Pigeon | Individual loss reserving using paid-incurred data[END_REF], [START_REF] Saluz | Bornhuetter-ferguson reserving method with repricing[END_REF]) are a way to respond to the fact that amounts of claims are not paid right at the time at occurrence. All of these methods are all based on a stability assumption that may be difficult to validate. They also tend to loose the information one may have on each individual claim.

Various techniques have been proposed in the literature to introduce information one may have on the specificity of each claim. A first way to proceed is to make development factors, in the Chain-Ladder approach, depend on covariates, as in [START_REF] Wuthrich | Neural networks applied to chain-ladder reserving[END_REF] or [START_REF] Wuthrich | Machine learning in individual claims reserving[END_REF]. Micro-level approaches consider each claim separately and use its characteristic to predict its amount, see [START_REF] Norberg | Prediction of outstanding liabilities in non-life insurance1[END_REF] and [START_REF] Norberg | Prediction of outstanding liabilities ii. model variations and extensions[END_REF], and see [START_REF] Frees | Comparing micro-and macro-level loss reserving models[END_REF] for a comparison between the macro and the micro approach. When looking at IBNR (Incurred But Not Reported) claims, time is an important factor, since the question is to estimate the delay before reporting the claim. [START_REF] Antonio | Micro-level stochastic loss reserving for general insurance[END_REF] propose to improve the evaluation of the IBNR reserves by using Poisson processes. [START_REF] Zhao | Applying copula models to individual claim loss reserving methods[END_REF] propose a copula approach to study the dependence between the delay of reporting and the time of occurrence of the claim. In their work, they deal with a left-truncation phenomenon due to the absence in the datasets of some claims that are still not reported.

In the present paper, we study the importance of the development of claims through time, but focusing mostly on RBNS claims (Reported But Not Settled). Our main concern is to provide a model that allows us to understand the dependence between the time before settlement (what we will call the "lifetime" of the claim) and its amount. This is of particular importance for some guarantees for which the settlement of a claim can take a lot of time. For example, the dataset we consider in the real application below comes from medical malpractice claims. When evaluating RBNS claims, most existing approaches (see e.g. [START_REF] Jin | Micro-level loss reserving models with applications in workers compensation insurance[END_REF] or [START_REF] Ayuso | Prediction of individual automobile rbns claim reserves in the context of solvency ii[END_REF]) study the lifetime and the amount of a claim separately, or use multi-state modeling as in [START_REF] Antonio | A multi-state approach and flexible payment distributions for micro-level reserving in general insurance[END_REF] to model the development of the claims. Nevertheless some estimation bias may occur when dealing with guarantees with large time before settlement. This is due to the censoring phenomenon that we already mentioned : databases that are used to calibrate the distribution of the amount of the claims lack of claims with important lifetime (since only closed claims are used to evaluate the distribution).

Our approach aims to fill this gap, by showing how survival analysis and copula techniques may be used in this context. Our methodology may contribute to complement a chain-ladder-type approach, by improving the evaluation of RBNS claims, taking advantage of all the information available on them. Apart from improving the way the reserves are evaluated, the aim is also to furnish a data-driven approach that does not necessarily require the intervention of an expert, sent physically to evaluate the amount. Based of a sufficient amount of gathered information on the circumstances of the claims, the idea is to let the model do the prediction, and send an expert only when the prediction is too blurry (based on the evaluation of the prediction uncertainty which can also be obtained using our method).

The paper is organized as follows. In section 2, we present the censoring model that we consider to model the evolution of the claims, and explain our estimation and prediction procedure. Section 3 is devoted to the theoretical behavior of the methodology, completed by some simulation study. A real data case, corresponding to medical malpractice claims, is shown in details in section 4. Technical results are gathered in section 6.

Model and assumptions

We first present the model in section 2.1, and then focus on the estimation procedure, decomposed into the estimation of the margins in section 2.2, and then on the dependence structure in section 2.3. The methodology to forecast the open claims is described in section 2.4.

Observations and setting

We consider a set of i.

i.d. observations (Y i , δ i , C i , X i , N i ) 1≤i≤m , where        Y i = inf(T i , C i ), δ i = 1 T i ≤C i , N i = δ i M i .
In the micro-level reserving situation, M i is the amount of claim number i, X i ∈ R d are its characteristics. T i is the time before the claim is stabilized, that is when one finally knows its total amount. This variable is censored by C i , the time between the opening of the claim and today. This means that, if T i > C i (which corresponds to the case δ i = 0), neither T i or M i is observed. This model is similar to the one studied in [START_REF] Lopez | Tree-based censored regression with applications in insurance[END_REF], except that here, we assume that C i is observed.

The reason for supposing that C i is observed, compared to a more general censoring model, is that we consider that the only cause for censoring is the end of the observation period. As mentioned in section 2.5 below, the approach we propose is extended to more general situations in which C i may not be observed. Nevertheless, we prefer to focus on this more simple case, in order to take advantage of the additional information we have on the censoring. This will also allow us to obtain better asymptotic results for the estimators we propose.

Let us also mention that, in the above setting, no partial information on the amount of the claim is required, although it can be used if present. Indeed, according to this model, N i = 0 if δ i = 0. If some elements are given (expertise, partial payments...), this information can be contained in the covariates

X i ∈ R d .
In such censoring models, an identifiability assumption is required to retrieve the distribution of (T, M, X) from the data. Throughout this paper, we will use the following assumption.

Assumption 1 Assume that (T, X, M ) is independent of C.

As a consequence of this assumptions, the covariates X should not be dependent on the time at which the claim opened. Otherwise, X would be dependent of C, since C is the difference between the date of today and the date at which the claim occurred. This means that X should not include a time factor that could have impact on M (like some time-depending indicators, or the year of occurrence). Therefore, the values of M have to be considered as corrected from an inflation factor. If no indication on the inflation is present, we discuss in section 4.2 how to remove such an inflation effect.

Estimation of the margins

In this section, we discuss how to model the conditional distribution of T |X = x, and the distribution of M |X = x. These variables are expected to have very different types of distributions. T is a duration variable, while M is an amount that may be very volatile.

Estimation of the conditional distribution of T

Various ways to estimate a regression model involving a censored variable T have been discussed in the literature. Defining µ(t|x) = lim dt→0 + dt -1 P (T ∈ [t, t + dt]|X = x) the conditional hazard rate function, Cox regression model assumes that µ(t|x) = µ 0 (t) exp(α T 0 x), where µ 0 is an unknown baseline function and α 0 a finite dimensional unknown parameter. This model has the advantage to be semiparametric, since it allows us not to specify the baseline µ 0 . Estimation of α 0 can be performed using pseudo-likelihood maximization (see [START_REF] Cox | Partial likelihood[END_REF]), while the cumulative hazard function M 0 (t) = t 0 µ 0 (s)ds can be estimated nonparametrically using the Breslow estimator (see [START_REF] Burr | On inconsistency of breslow's estimator as an estimator of the hazard rate in the cox model[END_REF]).

An alternative to Cox regression is the Accelerated Failure Time model (AFT), where one assumes that

µ(t|x) = α 0 µ 0 (α 0 t), (2.1)
where µ 0 is a known baseline function, and α 0 an unknown parameter. Estimation of α 0 can be performed using maximum likelihood estimation (see [START_REF] Wei | The accelerated failure time model : a useful alternative to the cox regression model in survival analysis[END_REF]). This last type of models will be used in section 4.

Estimation of the conditional distribution of M

A classical way to model the amount of a claim is to consider a Generalized Linear Model. We here explain how to extend the estimation of a GLM model estimation to the context of censoring. We consider a known transformation ψ(M ) of M and suppose that it fits a GLM. This model, see [START_REF] Nelder | Generalized linear models[END_REF], consists of assuming that Ψ(M )|X has a distribution in a fixed exponential family, and that g(E[Ψ(M )|X]) = β T 0 X, where g is a known link function. The reason for considering Ψ(M ) and not merely M is that M may be heavy-tailed in some cases. In this case, using an exponential family of distribution is unadapted. On the other hand, a GLM assumption may be reasonable for log M, for instance.

Estimation of the parameter β 0 can be done by β = arg min

β n i=1 W i,n log f β (ψ(N i )|β T X i ), (2.2)
where f β (•|β T x) denotes the conditional density of ψ(M )|X according the model with parameter β, and where

W i,n = δ i n ŜC (Y i ) , (2.3)
and where ŜC (t) = n -1 n i=1 1 C i ≥t , the empirical survival function of C, which is a consistent estimator of S C (t) = P(C ≥ t). The reason for using (2.3) is the fact that, under Assumption 1,

E δφ(Y, N, X) S C (Y ) = E [φ(T, M, X)] , (2.4) 
for all functions φ such that E[|φ(T, M, X)|] < ∞, and such that φ(t, m, x) = 0 if S C (t) = 0. Such type of weighting are of common use to correct the bias caused by the censoring (see [START_REF] Van Der Laan | Unified methods for censored longitudinal data and causality[END_REF], or [START_REF] Lopez | Tree-based censored regression with applications in insurance[END_REF] for some applications of these Inverse Probability of Censoring Weights (IPCW) techniques). If the variables (C i ) 1≤i≤n

are not observed, the empirical distribution function ŜC can be replaced by the Kaplan-Meier estimator of [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF].

Note that (2.2) is not a true maximum likelihood estimator, but it has the advantage of relying on the maximization of a criterion which is numerically of the same complexity as in the uncensored case. An alternative way would be to use the expression of the maximum likelihood estimator under censoring, see [START_REF] Fleming | Counting processes and survival analysis[END_REF], which, is more delicate to handle numerically. Hence we prefer to consider this easier optimization problem.

This estimation procedure is n 1/2 -consistent under mild assumptions by a direct adaptation of [START_REF] Stute | Nonlinear censored regression[END_REF], who considers the special case of a nonlinear regression model with a quadratic loss function. We give elements, in the Appendix, to justify this extension, see section 6.5.

Copula modeling

Clearly, in our micro-level reserving problem, the variable T and the variable M are dependent. Indeed, a claim with a long time T before being settled, is expected to be associated with a large value of M, since small claims are more likely to be rapidly settled.

The advantage of considering the dependence between M and T from a copula prospective stands in the fact that these two variables are of different nature (an amount and a time).

Hence, it would be difficult to model them jointly. Besides, the copula approach allows us to separate the univariate modeling as in section 2.2, and then study the dependence structure separately.

The basic idea behind copula models arises from Sklar's Theorem (see [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF])

which states that, for two variables A and B,

F A,B (a, b) = C(F A (a), F B (b)), (2.5)
where

F A,B (a, b) = P(A ≤ a, B ≤ b), F A (resp. F B ) denotes the cumulative distribution function of A (resp. B),
and C is a copula function (that is a distribution function on [0, 1] 2 with uniform margins). Moreover this decomposition is unique if the variables are continuous, which will be the case in our application. Hence, (2.5) introduces a separation between the marginal behavior of A and B (entirely described by F A and F B ) and their dependence structure, solely contained in C.

In view of (2.5), let C x denote the conditional copula of (T, M ) given X = x. This means that, if we consider the joint conditional function

F T,M |x (t, m|x) = P(T ≤ t, M ≤ m|X = x), it decomposes into F T,M |X (t, m|x) = C x (F T |X (t|x), F M |X (m|x)),
where

F T |X (t|x) = P(T ≤ t|X = x) and F M |X (t|x) = P(M ≤ t|X = x).
In the following, we assume that the dependence structure of (T, M ) does not depend on the value of X, that is there exists a copula function C such that, for all x, C x = C. Moreover, we assume that C belongs to a parametric family of copulas

C = {C θ : θ ∈ Θ}, where Θ ⊂ R k . We denote by c θ (u, v) the copula density associated to C θ , that is c θ (u, v) = ∂ 2 u,v C θ (u, v). Let U i = F T |X (T i |X i ) and V i = F M |X (M i |X i ). If (U i , V i ) 1≤i≤n
were observed, the maximum likelihood estimator of θ 0 would be θML = arg max θ∈Θ n i=1 log c θ (U i , V i ). In our setting, U i and V i can not be computed for two reasons. The first reason, common in copula modeling, is that the conditional marginal distributions F T |X and F M |X are not exactly known. However, estimators for the margins can be deduced from section 2.2, and therefore we have at our disposal two estimated conditional distribution functions FT|X and FM|X that could be plugged into the maximum likelihood procedure. Nevertheless, in our case, censoring introduces an additional complexity, since the quantities

U * i = FT|X (T i |X i ) and V * i = FM|X (M i |X i )
can not be computed if δ i = 0 (in this case, T i and M i are unknown). Therefore, we define Ûi = FT|X (Y i |X i ) and Vi = FM|X (N i |X i ), and our copula parameter

estimator θ = arg max θ∈Θ n i=1 W i,n log c θ ( Ûi , Vi ), (2.6)
where W i,n is defined in (2.3). From (2.3), we see that Ûi = U * i and Vi = V * i when W i,n = 0. Moreover, introducing W i,n is a natural way to correct the presence of the censoring from (2.4).

Our estimator (2.6) is motivated by the same arguments as in (2.2). An alternative procedure would be to use the estimator of [START_REF] Shih | Inferences on the association parameter in copula models for bivariate survival data[END_REF], which is based on the extension of maximum likelihood estimation to the censoring framework. However, the simplicity of (2.6) (in terms of definitions but also in terms of numerical optimization) explains why we turn to θ.

Prediction of the final amount of the claims

The previous approach allows us to model the distribution of (T, M )|X. The idea is then to use this model in order to predict the final amount of each claim. More precisely, consider an open claim (that is with δ i = 0). For this claim, we already know that the unobserved variable T i is greater than Y i . Hence, the distribution of (T, M ) given the information we have (that is given X = X i and T ≥ Y i ) has a density that can be estimated by Next, the prediction can either be performed analytically, for example by computing

fY i ,X i (t, m) = c θ( FT|X (t|x), FM|X (m|x)) fT|X (t|x) fM|X (m|x)1 t≥Y i ∞ u=Y i ∞ v=-∞ c θ( FT|X (u|x), FM|X (v|x)) fT|X (u|x) fM|X (v|x)dudv , ( 2 
+∞ m=0 ∞ t=Y i m fY i ,X i (t, m
)dtdm (or alternatively by looking at the median of this estimated distribution), or using simulation. This second approach seems more convenient due to the difficulty to find a closed form for the analytic form. Moreover, the simulation approach permits us to obtain easily an evaluation of the distribution of the amount of the open claim. Indeed, for each claim for which δ i = 0, the idea is to simulate a large number of variables under the estimated density (2.7). One then can estimate the amount of claim i by Mi which is the empirical mean of the simulated sample, but also have insights about the uncertainty of this estimation.

Discussion and extensions

In this paper, we have chosen to consider the case where the dependence structure of (T, M )|X = x does not depend on x. This is motivated by the search for a relatively simple model. Another argument is the difficulty of estimating a conditional copula function without having at our disposal a sufficiently large amount of data. This issue becomes even worse when the dimension d of X becomes large. However, the estimator (2.6) can be modified in order to consider the more general case where C x depends on x, by, for example, adding kernel weights as in [START_REF] Abegaz | Semiparametric estimation of conditional copulas[END_REF] in the uncensored case.

Another limit of this procedure is the identifiability assumption (Assumption 1) we have made on the censoring. A common alternative would be to assume that C is independent of (T, M ) given X. This would allow C to depend on the covariates, X. In this case, (2.4) has to be replaced by

E δφ(Y, N, X) S C|X (Y |X) = E [φ(T, M, X)] ,
where S C|X (t|x) = P(C ≥ t|X = x). The weights W i,n must be adapted, by replacing the estimator of the survival function of C by an estimator of the conditional survival function S C|X (•|x).

We also considered that C was observed. If it is not the case, the procedure stays the same, but with the empirical distribution function ŜC replaced by the Kaplan-Meier estimator of the distribution of C (see [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF]).

Consistency of the copula estimator

This section investigates the theoretical behavior of the copula estimator. Section 3.1 gathers the required assumptions, which are basically the same as in the classical uncensored case, plus some additional ones on the tails of the distributions due to the censoring. The consistency results are obtained in section 3.2. The simulation study in section 3.3 illustrates the behavior of the technique for finite sample size.

List of assumptions

Two categories of assumptions are required. First, Assumptions 2 and 3 are close to Assumptions A.1 to A.5 present in [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF], who gives conditions for the consistency of the maximum likelihood estimator of a copula (when the margins are estimated separately). These assumptions are satisfied by a large number of copula families.

Before stating these two assumptions, let us introduce some notations.

We recall that a function r : (0, 1) → (0, ∞) is called u-shaped if r is symmetric about 1/2 and increasing on (0, 1/2]. For such a u-shaped function r, and for 0 < β < 1, define

r β (t) = r(βt)1 0<t≤1/2 + r(1 -β(1 -t))1 1/2<t≤1 .
A reproducing u-shaped function is a u-shaped function such that r β ≤ M β r for all β > 0 in a neighborhood of 0, with M β a finite constant.

Let R denote the set of reproducing u-shaped functions in the following, and Q denote the set of continuous functions on [0, 1] which are positive on (0, 1), symmetric about 1/2, increasing on [0, 1/2] and such that 1 0 q(t) -2 dt < ∞. Assumption 2 gives conditions on the first order derivatives (with respect to θ) of the log-likelihood. andφ (2)

Assumption 2 Let φ θ (u, v) = ∇ θ log c θ (u, v), φ (1) 
θ 0 = ∂ u φ θ 0 (u, v),
θ 0 (u, v) = ∂ v φ θ 0 (u, v).
Assume that there exist functions r j ∈ R, rj ∈ R, and q j ∈ Q, for j = 1, 2 such that, for all (u, v, θ),

φ θ (u, v) ≤ r 1 (u)r 2 (v), φ (1) θ 0 (u, v) ≤ r1 (u)r 2 (v), φ (2) θ 0 (u, v) ≤ r 1 (u)r 2 (v), and such that i=1,2 r i (F T (t|x), F M (m|x)) 2 S C (t) ×f T (t|x)f M (m|x)dC(F T (t|x), F M (m|x)) < ∞, (3.1) r1 (F T (t|x), F M (m|x))q 1 (F T (t|x))r 2 (F T (t|x), F M (m|x)) S C (t) ×f T (t|x)f M (m|x)dC(F T (t|x), F M (m|x)) < ∞, (3.2) r 1 (F T (t|x), F M (m|x))r 2 (F T (t|x), F M (m|x))q 2 (F M (m|x)) S C (t) ×f T (t|x)f M (m|x)dC(F T (t|x), F M (m|x)) < ∞. (3.3)
The conditions on the second order derivatives with respect to θ are presented in Assumption 3.

Assumption 3 There exists a neighborhood of θ 0 such that φ θ (u, v) is continuously differentiable, and such that the Hessian matrix

Σ θ (u, v) = ∇ 2 θ log c θ (u, v), satisfies Σ θ (u, v) ≤ h 1 (u)h 2 (v), with h i ∈ R for i = 1, 2 and f T (t|x)f M (m|x) S C (t) i=1,2 h i (F T (t|x), F M (m|x)) dC(F T (t|x), F M (m|x)) < ∞.
Moreover, assume that Σ = Σ θ 0 (u, v)dC(u, v) is nonsingular.

The main difference with the conditions in [START_REF] Tsukahara | Semiparametric estimation in copula models[END_REF] is the presence of the function S C at the denominator, which is caused by censoring. Of course, compared to an uncensored situation, these conditions may not hold if censoring is too heavy (that is if S C (t) decreases too fast to zero when t tends to infinity).

The second type of assumptions lists requirements on the estimation of the margins.

Indeed, in our setting, we wish to have enough flexibility to model the margins, so that the asymptotic properties of our estimators may be obtained for a large number of situations.

Assumption 4 ensures that the margins are estimated with a sufficiently fast convergence rate.

Assumption 4 Assume that

sup i=1,...,n | Ûi -U i | q 1 (U i ) + | Vi -V i | q 2 (V i ) = O P (n -1/2 ), (3.4)
where q j for j = 1, 2 are defined in Assumption 2. Moreover, assume that sup i=1,...,n

U i Ûi + 1 -U i 1 -Ûi + V i Vi + 1 -V i 1 -Vi = O P (1). (3.5)
Additionally, one requires an asymptotic representation for the estimated margins is required.

Assumption 5 The margins are estimated so that an asymptotic representation of the following type holds,

Ûi -U i = 1 n n j=1 λ U Y i ,X i (Y j , δ j , c, X j ) + R 1,n , (3.6) Vi -V i = 1 n n j=1 λ V N i ,X i (N j , Y j , δ j , c, X j ) + R 2,n , (3.7) 
where

sup 1≤i≤n |R i,n | = o P (n -1/2 ).
The next assumption imposes moment conditions on the terms in these asymptotic representations (in order to apply a Central Limit Theorem to the terms that appear in the asymptotic study of the estimator).

Assumption 6 Using the notations of Assumption 5,

Λ U (y, d, x) = E φ (1) θ 0 (U 1 , V 1 )λ U T 1 ,X 1 (Y 2 , δ 2 , X 2 )|Y 2 = y, δ 2 = d, X 2 = x , Λ V (m, y, d, x) = E φ (2) θ 0 (U 1 , V 1 )λ V M 1 ,X 1 (N 2 , Y 2 , δ 2 , X 2 )|N 2 = m, Y 2 = y, δ 2 = d, X 2 = x .
Assume that

E[Λ U (Y i , δ i , X i ) 2 ] + E Λ V (M i , Y i , δ i , X i ) 2 < ∞.
Assumptions 4 to 6 can be easily checked for the estimators we consider in section 2.2, see section 6.5.

Asymptotic results

We now state our main result, which consists of an asymptotic representation of the estimated association parameter θ. As a by-product, the asymptotic normality is obtained.

Theorem 3.1 Under Assumptions 2 to 6,

θ -θ 0 = Σ -1 1 n n i=1 Ψ(Y i , N i , δ i , C i , X i ) + o P (n -1/2 ),
where

Ψ(y, m, d, x) = -Γ φ θ 0 (F T |X (.|.),F M |X (.|.)) (y, n, d, c, x) -Λ U (y, d, c, x) -Λ V (m, y, d, c, x),
where

Γ φ (y, m, d, c, x) = dφ(y, m, d, c, x) S C (y) + E φ(T, M, X)[S C (T ) -1 C≥T ] S C (T ) |C = c .
Hence,

n 1/2 ( θ -θ 0 ) =⇒ N (0, Σ -1 E Ψ Y, M, δ, C, X) 2 Σ -1 .
The function Ψ is composed of three terms The asymptotic variance can naturally be estimated by replacing each expectation and unknown quantity by its empirical counterpart (and θ 0 by θ).

Simulation study

To assess the finite sample validity of our method, we consider the following simulation settings. We simulate X i = (X i,1 , X i,2 , X i,3 ) T where the X i,j are uniform over [0, 1] and mutually independent. The variable T i is simulated according to a log-normal distribution conditionally to the variables X i . More precisely, log

T i = α 0,0 + (α 0,1 , ..., α 0,3 )X i + ε i ,
where ε i ∼ N (0, σ 2 ). For the amount M i , we consider a GLM model for log M i with exponential distribution and using the identity as a link function, that is E[log M i |X i ] = β 0,0 + (β 0,1 , ..., β 0,3 )X i , and log M i |X i is exponentially distributed. This produces an heavy tail conditional distribution for M i , since the conditional survival function of M i |X i has a polynomial rate of decay. The censoring C i is simulated independently under a Weibull distribution of parameters k and λ, that is of density kλ -k c k-1 exp(-c/λ) k 1 c≥0 . The values for the respective parameters involved in the simulation of the margins and of the censoring are summarized in Table 1. We consider different values for the parameters of the censoring in order to investigate the evolution of the performance when the strength of the censoring (i.e. the average percentage of censored observations in the sample) increases.

Table 1 -Parameters used in the simulation of the margins Parameter name Parameter value Proportion of censored observations

α 0,0 0 α 0,1 0.5 α 0,2 0.2 α 0,3 -0.1 β 0,0 0.1 β 0,1 0.03 β 0,2 0.05 β 0,3 -0.02 (k, λ)
(2.7,3) 30%

(k, λ) (0.5,3) 50%

(k, λ) (0.15,3) 60%

We consider three copula families to describe the dependence between T and M, that is Frank's, Gumbel's and Clayton's copula families. The corresponding values of the copula functions are summarized in Table 2. Through the use of these three different families, we expect to observe the behavior of the technique in situations where the dependence structure is quite different. Clayton's family allows us to incorporate a left tail dependence, while Gumbel's family induces a right tail dependence, and Frank's family does not have any dependence in the tails. For each copula family, we consider two values of the association parameter. To facilitate the comparison between the families, these two cases correspond to values of Kendall's τ coefficient equal to 0.5 and 0.1. We recall that Kendall's τ coefficient associated to a copula function C is a dependence measure that can be expressed as τ = 4 C(a, b)dC(a, b) -1, see [START_REF] Nelsen | An introduction to copulas[END_REF].

In each simulation setting, we simulate B samples using the distributions that have 

1 (a -θ +b -θ +1) 1/θ θ > 0 θ θ+2

Frank

-1 θ log 1 + (exp(-θa)-1)(exp(-θb)-1) exp(-θ)-1

θ = 0 1 + 4 θ -1 θ 0 t k dt exp(t)-1 -1 θ Gumbel exp --(log a) θ + (-log b) θ 1/θ θ ≥ 1 1 -θ -1
been previously described. For the b-th simulated sample, we compute the estimators of the parameters corresponding to the margins and to the dependence structure according to the procedures of sections 2.2 and 2.3. Then, we predict each of the censored claims using the technique described in section 2.4. That is, for each simulated sample

(Y b i , N b i , C b i , δ b i , X b i ) 1≤i≤n
, we compute, for each censored claim with δ b i = 0, the corresponding estimated density (2.7) and simulate 1000 replications under this distribution.

Then, the prediction M b i of the amount M i,b is taken as the mean-value of this simulated sample.

Let

R b = n i=1 (1-δ i )M b i
, that is the reserve that one should constitute if the amounts of all claims were known, and Rb = n i=1 (1 -δ i ) M b i denote the predicted one. Tables 3 and4 below quantify different measurement errors, defining

E 1 = 1 B B b=1 |R b -Rb |, E 1,r = 1 B B b=1 |R b -Rb | R b , E 2 = 1 B B b=1 1 n i=1 (1 -δ i ) n i=1 (1 -δ i )| M b i -M b i |.
The column E[( θ -θ 0 ) 2 ] 1/2 presents the empirical estimation of this quantity, that is

{B -1 B b=1 ( θb -θ 0 ) 2 } ( 1/2)
where θb is the estimator of the copula parameter for the simulation b.

Errors E 1 and E 1,r focus on the global error, that is the difference (or relative difference for E 1,r ) between R b and Rb . Error E 2 focuses on an individual version of the error (claim by claim).

For each model, the relative error E 1,r seems relatively stable in the different configurations, with no major difference between the copula families. E 1 tends to decrease when the proportion of censoring increases. This is due to the fact that the number of claim of some claims is compensated by under estimation of others. For the individual prediction, we see that the error E 2 (as for the estimation of the copula parameter) tends to increase with the proportion of censoring : with less information, the model has a poorer performance and it leads to a negative impact on the prediction of each amount.

Real data example 4.1 Description of the data

We consider a dataset containing n = 4724 observations coming from medical malpractice claims, covering a period of 17 years. Among these claims, 3578 are uncensored and have their final amount known. For the 1146 censored ones, we have at our disposal an additional base giving us the final amount. The estimators and the prediction models do not use the information used in this control database, which will only be used to measure the accuracy of the predictions we develop.

A preliminary treatment has been done on the database. First, the unit of the amounts has been changed in order to preserve confidentiality (multiplication by a constant). Second, some inflation factor has been removed. We explain this procedure in section 4.2 below.

As we can see in Table 5 below, the typical values taken by T when the claim is censored are globally higher than when it is not. Apparently, there is no significant difference between the values of M when δ = 0 and when δ = 1, but as we shall see in the following, a positive correlation between T and M exists, making the information on T crucial in order to predict M for the censored claims. On each claim, some characteristics related to the context of the claim are present, denoted X 1 to X 3 . In Table 6 below, we present a few descriptive statistics about the quantitative variables X 1 and X 2 . X 3 is a binary variable (equal to 1 for 29% of the observations, to 0 for the other 71%). 

Removing inflation

Various methodologies may be used to correct the effect of inflation on the costs.

Among them, using external data sources may be useful. However, this does not seem accurate in our case of medical malpractice data, since the inflation of the amounts does not follow the inflation of the common consuming products. Let M i denote the amount of a claim before removing the part due to inflation. We assume that log

M i = µd i + log M i , (4.1)
where d i is the date at which the i-th claim occurred, and µ is a drift coefficient that we estimate using our database. We assume that (M i ) 1≤i≤n are i.i.d. and independent from (d i ) 1≤i≤n . The dates d i take their value in {0, ..., D} (where D + 1 years are observed).

We then proceed in the following way :

-compute m i,j , defined as the average of the claims that occurred on the fiscal year d i , and which are settled after j years (for (i, j) such that d i + j ≤ D), and let n i,j denote the number of such claims ;

-then, under (4.1), log m i,j ≈ µd i + λ j , where

λ j = E[log M i |T i = j].
For each j, we compute μj the weighted least-square estimator of the slope µ based on the points (log m i,j , d i ) i:d i +j≤D , using the weights n i,j , that is we compute

( λj , μj ) = arg min a,b i:d i +j≤D n i,j (log m i,j -a -bd i ) 2 .
-we compute our final estimator of µ,

μ = j n -1/2 j μj j n -1/2 j ,
where n j = i n i,j .

Finally, for each i such that δ i = 1, compute log Ni = log M i -μd i , the amount of the claim, once the inflation effect has been removed. In the following, for the sake of simplicity and of clarity, we continue to use the notation N i instead of Ni , since our main task is to illustrate the copula methodology and not to focus on the inflation effect.

Remark 4.1 To materialize the inflation of the cost, we chose to consider the impact of the origin year of the claim d i , while it would be probably more natural to use the year at which the claim is settled, f i . However, this would create a supplementary difficulty, since the year of the settlement is not know in advance. The procedure described in the following permits us to predict the lifetime of the claim, but to achieve this aim, we first need to remove the inflation. Due to this constraint, modeling inflation through (4.1) seems a reasonable compromise.

Estimation of the margins

To model the conditional distribution of T |X = (X (1) , X (2) , X (3) ), we consider a standard linear model for log T with Gaussian residuals, that is

log T = α 0,0 + 3 j=1 α 0,j X (j) + ε,
where ε ∼ N (0, σ 2 ). A Gamma regression assumption is made for the conditional distribution of the logarithm of log(1 + M ) given X, that is log(1 + M )|X ∼ Γ(r(X), λ), where Γ(r, λ) denotes the distribution with density

f r,λ (m) = m r-1 Γ(r)λ r exp(-m/λ)1 m≥0 .
A parametric form is given for r(X), that is r(X) = β 0,0 + β 0,1 X (1) + β 0,2 X (1)2 + β 0,3 X (1)3 + β 0,4 X (3) .

The estimated parameters are given in Table 7.

Copula estimation

We consider three different copula models to estimate the dependence structure, from Clayton, Frank and Gumbel families. The corresponding copula functions are given in Table 2. Estimation of the association parameter is performed using the procedure of section 2.3 in each model, and the results are given in Table 8.

These three copula families lead to quite different dependence structures. A key issue is then to be able to determine which of them is more adapted to describe the distribution of data. To this purpose, we compare the resulting estimators with a nonparametric estimator of the copula function defined by [START_REF] Gribkova | Non-parametric copula estimation under bivariate censoring[END_REF]. The idea behind (1979) to a censoring framework. The estimator is defined as

Ĉ(a, b) = F ( F -1 1 (a), F -1 2 (b)),
where F (t, m) = n i=1 W i,n 1 Y i ≤t,N i ≤m is a nonparametric estimator of the joint distribution function F (y, m), F1 (t) = F (t, ∞), and F2 (m) = F (∞, m). The difference between Ĉ and C θ can be visualized in Figure 1.

We then compute, for each copula family, d( Ĉ, C θ), where d denotes some distance between the copula functions. We consider two distances d 1 and d 2 as criterion,

d 1 ( Ĉ, C θ) = Ĉ -C θ ∞ , d 2 ( Ĉ, C θ) = (C(a, b) -C θ(a, b)) 2 d Ĉ(a, b) 1/2
.

The distance d 1 corresponds to a Kolmogorov-Smirnov type criterion, while d 2 is close to 9. 

Estimation of the reserve

With at hand the model we obtained for the distribution of (T, M ), we are now able to use the procedure described in section 2.4 in order to estimate the conditional distribution of the open claims (with δ i = 0). From these individual simulations, we can deduce an estimation of the distribution of the reserve R = n i=1 (1 -δ i )M i . Indeed, for each claim with δ i = 0, we simulate (T b i , M b i ) b=1,...,B according to our estimated version of (2.7). We

then compute R b = n i=1 (1 -δ i )M b i .
Figures 2 present histograms of this reserve for the three copula models that we consider, for B = 10000. For each copula model, we also compute an estimation of E[R]

(that is B -1 B b=1 R b
), which can be seen as our central scenario. This prediction is compared to the real value of R, using our second database which contains the true realizations of the claims. This real value is R = 3436.51. The results are presented in Table 10, with 95% confidence intervals deduced from the estimated distribution of R. To look at the quality of the individual prediction, we also compute the bias term

E 0 = { n i=1 (1 -δ i )[ Mi -M i ]}( n i=1 (1 -δ i ))
-1 , the error E 1 as the median of the values | Mi -M i | for i such that δ i = 0, and

E 2 = { n i=1 (1 -δ i )| Mi -M i |}( n i=1 (1 -δ i )) -1 .
Figure 2 -Distribution of the reserve obtain by simulations. From left to right and top to down : Clayton's copula, Frank's copula, Gumbel's copula.

As we can see, Frank's and Gumbel's models lead to an overestimation (3.19% of the real value for Frank and a much higher value, 8.18%, for Gumbel). This tendance of the right-tail dependence of this copula family. We can also observe that this is caused by a positive bias (0.2451) when estimating each claim amount individually. Here, the true value of the reserve does not belong to the confidence interval. On the other hand, the true value of R belongs to Frank's copula interval, although close to its lower frontier.

Clayton's model produces the closest prediction of the reserve, with a smaller negative bias. When it comes to looking at the quality of individual prediction, Clayton's model and Frank's model give similar performances in terms of errors E 2 , with a small advantage on error E 1 for Clayton. This conforts the fact that Clayton's model is a reasonable choice among these three models, as proposed at the end of section 4.4.

Conclusion and extensions

In this paper, we have presented a new methodology to predict the final amount of an open claim. The procedure is based on using the dependence structure between the amount of the claim and its "lifetime". Using a copula model is a convenient way to understand this dependence, since it allows us to model separately each margin, which is easier than studying them jointly. We have proposed a way to use this model to evaluate the distribution of the reserve corresponding to these open claims. The procedure can be a valuable tool to estimate the amount of each open claim and identify the ones that require more attention (for example by sending an expert to evaluate them). In the practical illustration we presented, no information was available on preliminary evaluations of the claims (by experts) or on partial payments or reevaluations that may occur during the development period. These additional information may be incorporated in the procedure by considering it as covariates, without changing much the structure of the procedure.

Moreover, in the model we have presented, we implicitly have considered that all claims were reported instantly to the insurer. In practice, this is of course not the case. A possibility to correct this issue is to incorporate left-truncation in our procedure. Indeed, defining τ i as the delay in reporting the i-th claim, data are composed of claims for which Y i ≥ τ i . Neglecting the left-truncation phenomenon leads to an overestimation of the typical values taken by T (and, due to the positive correlation between T and M, to a more pessimistic vision of the amount). Adaptation of our technique to left-truncation is straightforward : our estimator of S C can be replaced by the estimator of [START_REF] Tsai | A note on the product-limit estimator under right censoring and left truncation[END_REF], which changes the definition of the weights we use (see [START_REF] Sellero | Uniform representation of product-limit integrals with applications[END_REF]).

Appendix

This section is devoted to the technical arguments required to obtained the results of section 3.2. The proof of Theorem 3.1 (see section 6.4) relies on several preliminary results.

Section 6.1 furnishes general results on weighted empirical means (where the weights are designed, accordingly to our procedure, to compensate for censoring). Section 6.2 shows how to deal with pseudo-observations. Finally, section 6.3 presents consistency results and asymptotic representation that are a cornerstone of the proof of Theorem 3.1.

In the following proofs, we often refer to two classical properties of the empirical distribution function, that we list below. Recall that, sup

t≤Y (n) | ŜC (t) -S C (t)| = O P (n -1/2 ), (6.1) 
where Y (n) = max i=1,...,n Y i , from Donsker's Theorem, see for example van der Vaart (1998).

On the other hand, we also have sup

t≤Y (n) S C (t) ŜC (t) -1 = O P (1), (6.2) 
from [START_REF] Shorack | Empirical Processes with Applications to Statistics[END_REF].

Preliminary results on empirical weighted sums

We here give an uniform law of large numbers result for weighted sums (Proposition 6.1).

Proposition 6.1 Let F = {(t, m, x) → f τ (t, m, x) : τ ∈ T }, where T is a compact subset of R k , a class of R m -valued functions such that, for some τ 0 ∈ T , f τ (t, m, x) -f τ (t, m, x) ≤ τ -τ φ(t, m, x), (6.3) with E |f τ 0 (T, M, X)| S C (T ) < ∞, (6.4) E φ(T, M, X) S C (T ) < ∞. (6.5) Then, assuming that, for all τ ∈ T , f τ (t, m, x) = 0 if S C (t) = 0, sup τ ∈T n i=1 W i,n f τ (Y i , N i , X i ) -E[f τ (T, M, X)] = o P (1). Proof. Let Z n (F) = sup φ∈F | n i=1 W i,n φ(Y i , N i , X i ) -E[φ(T, M, X)]| , W * i,n = δ i S C (Y i ) -1 n -1 , and let D denote the diameter of T . Decompose Z n (F) ≤ Z * n (F) + R n (F), where Z * n (F) = sup φ∈F n i=1 W * i,n φ(Y i , N i , X i ) -E[φ(T, M, X)] , R n (F) = sup φ∈F n i=1 {W * i,n -W i,n }φ(Y i , N i , X i ) . From (2.4), we can rewrite Z * n (F) = sup g∈G |n -1 n i=1 g(δ i , Y i , N i , X i ) -E[g(δ, Y, N, X)]|, where g ∈ G = [δS C (Y ) -1 ] × F.
From Theorem 2.10.6 in van der [START_REF] Van Der Vaart | Weak convergence and empirical processes with applications to statistics[END_REF], we get that Z * n (F) = o P (1). On the other hand,

R n (F) ≤ sup t∈R | ŜC (t) -S C (t)| × sup t≤Y (n) S C (t) ŜC (t) 1 n n i=1 δ i Φ(Y i , N i , X i ) S C (Y i ) 2 ,
where Φ(t, m, x) = f τ 0 (t, m, x) + Dφ(t, m, x). Next, use (6.1) and (6.2). From (2.4) and (6.4) and (6.5), we get R n (F) = o P (1) (in fact, we even get R n (F) = O P (n -1/2 )).

The following result furnishes an asymptotic representation of weighted sums. Similar type of results can be found in [START_REF] Stute | The central limit theorem under random censorship[END_REF] or [START_REF] Stute | Distributional convergence under random censorship when covariables are present[END_REF] when S C is a Kaplan-Meier estimator, but here with weaker conditions due to the fact that (C i ) 1≤i≤n are observed (which is not the case in a classical right-censoring scheme).

Theorem 6.2 Let φ denote a function such that

E φ(T, M, X) 2 S C (T ) < ∞. (6.6) Then n i=1 W i,n φ(Y i , N i , X i ) = 1 n n i=1 Γ φ (Y i , N i , δ i , C i , X i ) + o P (n -1/2 ),
where Γ φ is defined in Theorem 3.1.

Proof.

Decompose

n i=1 W i,n φ(Y i , N i , X i ) = 1 n n i=1 δ i φ(Y i , N i , X i ) S C (Y i ) + 1 n n i=1 δ i [S C (Y i ) -ŜC (Y i )]φ(Y i , N i , X i ) S C (Y i ) 2 + 1 n n i=1 δ i [S C (Y i ) -ŜC (Y i )] 2 φ(Y i , N i , X i ) S C (Y i ) 2 ŜC (Y i ) .
The third term is O P (n -1 ) using (6.1), (6.2) and (6.6). The second term can be rewritten

as 1 n 2 n i=1 n j=1 δ i [S C (Y i ) -1 C j ≥Y i ]φ(Y i , N i , X i ) S C (Y i ) 2 , which is 1 n n j=1 E φ(T, M, X)[S C (T ) -1 C≥T ] S C (T ) |C = C j + o P (n -1/2 ),
the remainder term being a degenerated second order U -statistic. (6.8) and M (θ) = E[log c θ (U i , V i )] -E[log c θ 0 (U i , V i )]. The result of Proposition 6.4 will be obtained if we show that sup θ∈Θ |M n (θ) -M (θ)| = o P (1). From a first order Taylor expansion, for some θ between θ and θ 0 , we have Lemma 6.3, (6.1) and (6.2) show that this term tends to 0. 

Lemma on pseudo-observations

U i Ûi + 1 -U i 1 -Ûi + V i Vi + 1 -V i 1 -Vi = O P (1).
M n (θ) -M (θ) = (θ -θ 0 ) n i=1 W i,n φ θ( Ûi , Vi ) -E [φ θ(U i , V i )] . Decompose n i=1 W i,n φ θ( Ûi , Vi ) -E [φ θ(U i , V i )] = n i=1 W * i,n φ θ(U i , V i ) -E[φ θ(U i , V i )] + n i=1 {W i,n -W * i,n }φ θ( Ûi , Vi ) + n i=1 W * i,n φ θ( Ûi , Vi ) -φ θ(U i , V i ) . ( 6 
(Y i , N i , δ i , C i , X i ) + 1 n n i=1 {Λ U (Y i , δ i , X i ) + Λ V (N i , Y i , δ i , X i )} + o P (n -1/2 ),
where Γ φ θ 0 (F T (.|.),F M (.|.)) is defined in Theorem 3.1.

Proposition 6.6 Let β 0 be the unique maximizer (over a set B ⊂ R ) of M m (β) = E[l(β; T, M, X)], and β = arg max β∈B n i=1 W i,n l(β; Y i , N i , X i ). Let λ(β; t, m, x) = ∇ β l(β; t, m, x) the vector of partial derivatives with respect to β, and H(β; t, m, x) = ∇ 2 β l(β; t, m, x). Assume that H(β; t, m, x) -H(β ; t, m, x) ≤ β -β φ(t, m, x), for some function φ such that E[φ(T, M, X)S C (T ) -1 ] < ∞, and E[H(β 0 ; T, M, X)S C (T ) -1 ] < ∞. Moreover, assume that E[λ(β 0 ; T, M, X) 2 S C (T ) -1 ] < ∞.

Then,

β -β 0 = E[H(β 0 ; T, M, X)] -1 × 1 n n i=1 δ i λ(β 0 ; T i , N i , X i ) S C (Y i ) +E φ(T, M, X)[S C (T ) -1 C≥T ] S C (T ) |C = C i .
The proof of Proposition 6.6 is similar to the one of Theorem 3.1, but simpler since there is no pseudo-observations involved. It is a combination of a Taylor expansion with Proposition 6.1 and Theorem 6.2. From such a representation of β, it is easy to come to a similar asymptotic representation for the pseudo-observations. Indeed, in the case of the GLM, FM|X (N i ) = F β (ψ(N i )| βT X i ) (where F β (•|β T x) is the cumulative distribution function associated to f β (•|β T x), using the notations of section 2.2.2). A linearization of F β (ψ(N i )| βT X i ) -F β 0 (ψ(N i )|β T 0 X i ) using a Taylor expansion allows to obtain the representation.

  .7) where fT|X (•|x) (resp. fM|X (•|x)) denotes the estimated conditional density of T |X = x (resp. of M |X = x) and FT|X (•|x) (resp. FM|X (•|x)) denotes the estimated conditional distribution function, obtained in section 2.2.

  . The first one (Γ φ θ 0 ) corresponds to the asymptotic representation we would have if the conditional margins F T |X and F M |X were exactly known. It is itself composed of two terms : the first one, dφ θ 0 (y, m, d, c, x)[S C (y)] -1 , is the term one would have if the distribution of the censoring S C were exactly one, while the second one is present due to the estimation of S C by its empirical counterpart. The terms Λ U and Λ V come from the estimation of the conditional margins, and are dependent on the way this estimation is performed.
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 1 Figure 1 -Difference Ĉ(a, b) -C θ(a, b). From left to right and top to down : Clayton's copula, Frank's copula, Gumbel's copula.
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 3 Let χ denote a positive function, and F a class of continuous functions such that, for all φ ∈ F,|φ(u, v)| ≤ r 1 (u)r 2 (v),where r 1 and r 2 are two functions in R, such thatsup x χ(t, m, x)f T (t|x)f M (m|x) i=1,2 r i (F T (t|x), F U (u|x)) c(F T (t|x), F M (m|x))dtdm < ∞.(6.7) Moreover, assume that ( Ûi ) 1≤i≤n and ( Vi ) 1≤i≤n are such that sup i=1,...,n {| Ûi -U i | + | Vi -V i |} = o P (1), and sup i=1,...,n

  .11) From Proposition 6.1, the first bracket converges towards 0 uniformly in θ. Indeed, the family of functions F = {(t, m, x) → φ θ (F T (t|x), F M (m|x)) : θ ∈ Θ} satisfies the assumptions of Proposition 6.1, when Assumptions 2 and 3 hold. Indeed,φ τ (t, m, x) -φ τ (t, m, x) ≤ h 1 (F T (t|x))h 2 (F M (m|x)) τ -τ ,and the integrability conditions ensure that (6.4) and 6Ûi , Vi ) -φ θ (U i , V i )|, which converges to 0 from Lemma 6.3. The second bracket in (6.11) is bounded by supt≤Y (n) | ŜC (t) -S C (t)| × sup t≤Y (n) S C (t) ŜC (t) -1 × 1 n n i=1 δ i r 1 ( Ûi )r 2 ( Vi ) S C (Y i ) .
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  φ θ 0 (F T (.|.),F M (.|.))

Table 2 -

 2 Copula families, and corresponding values of Kendall's τ coefficient

	Copula family	Copula function	Condition on θ	Kendall's τ
	Clayton			

Table 3 -

 3 Error measurement for Kendall's τ coefficient equal to 0.1, n = 5000 Proportion of censoring Copula family E[( θ -θ 0 ) 2 ] 1/2

	E 1	E 1,r	E 2

Table 4 -

 4 Error measurement for Kendall's τ coefficient equal to 0.5, n = 5000 Proportion of censoring Copula family E[( θ -θ 0 ) 2 ] 1/2

	E 1	E 1,r	E 2

Table 5 -

 5 Descriptive statistics on M and T.

	Variable	Minimum 1st quartile Median Mean 3rd quartile Maximum
	M	0.3938	1.8570	2.6820	2.7920	3.5810	8.8180
	T	0.05706	2.7860	3.7800	3.937	5.2010	16.7300
	M (δ = 0)	0.3938	1.7910	2.6170	2.7400	3.5160	7.8710
	M (δ = 1)	0.394	1.881	2.718	2.814	3.599	8.818
	T (δ = 0)	0.1819	3.240	4.010	4.2050	5.4130	16.1500
	T (δ = 1)	0.05706	2.59000	3.67100 4.00600	4.99700	16.7300

Table 6 -

 6 Description of the continuous covariates X 1 and X 2 . Variable Minimum 1st quartile Median Mean 3rd quartile Maximum

	X 1	0	0.2188	0.3750 0.4134	0.5312	1
	X 2	0	0.5714	0.7143 0.6391	0.7143	1

Table 7 -

 7 Estimated parameters for the margins Parameter Estimated value

	α 0,0	1.5268
	α 0,1	-0.2755
	α 0,2	-0.1478
	α 0,3	0.0515
	σ	0.5970
	β 0,0	0.5780
	β 0,1	2.1310
	β 0,2	-4.4447
	β 0,3	2.6880
	β 0,4	0.1431
	λ	3.8660
	Table 8 -Estimated association parameters for the different copula models
	Copula family Association parameter
	Clayton	0.3343
	Frank	2.3276
	Gumbel	1.3479
	this nonparametric estimator is to generalize the empirical copula estimator of Deheuvels

Table 9 -

 9 Distance d 1 and d 2 for the three copula models. Copula family d 1 ( Ĉ, C θ) d 2 ( Ĉ, C θ)

	Clayton	0.02827	0.00784
	Frank	0.05109	0.02038
	Gumbel	0.05695	0.02347
	Clayton's copula model leads to the smallest distance according to both criteria d 1
	and d 2 . Although this is only an heuristic argument in view of choosing the proper model,
	empirical results on the prediction of the reserve, as we shall see in section 4.5, also
	advocate for this model.		

Table 10 -

 10 Estimation of the reserve and confidence intervals.

	Copula family	E[R]	95% confidence interval	E 0	E 1	E 2
	Clayton	3386.03	[3246.43,3539.08]	-0.0440 0.8541 0.9297
	Frank	3546.30	[3401.20,3704.53]	0.09580 0.8722 0.9251
	Gumbel	3717.49	[3552.77,3901.84]	0.2451 0.9087 0.9944
	obtaining a larger estimator of the reserve by the Gumbel model was expected, due to

Then,

|φ( Ûi , Vi )| = O P (1), (6.9)

(6.10)

Proof. For M > 0, define the event

On E M,n , the left hand side in (6.9) is bounded by

which as finite expectation from (6.7). Since lim M →∞ lim n P(E M,n ) → 0 from (6.8), we get (6.9).

Similarly for (6.10), the left hand-side tends to 0 on E M,n (the expectation tends to zero from Lebesgue's dominated convergence theorem). Once again, one uses that lim M →∞ lim n P(E M,n ) → 0 to conclude.

Auxiliary results

Proposition 6.4 is a preliminary result that ensures consistency of the estimator of the association parameter, while Proposition 6.5 furnishes an asymptotic representation of a term which appears in the proof of Theorem 3.1.

Proposition 6.4 Under Assumptions 2 and 3,

Proof. For the sake of simplicity, we consider the case θ ∈ R. The general case can be obtained by looking at each component separately. Let

Proof. From a first order Taylor expansion,

where Ũi (resp. Ṽi ) is between U i and Ûi (resp. V i and Vi ). The asymptotic expansion of the first term is covered by Theorem 6.2. We only study the first of the two other terms, since both are similar. We have

(1)

(1)

(1)

To show that the term B 1,n is negligible, observe that

(6.12)

Since Assumption 4 ensures that sup 1≤i≤n | Ûi -U i |q 1 (U i ) -1 = o P (1), and using (6.1)-(6.2), we get |B 1,n | = o P (n -1/2 ) as long as the bracket term in (6.12) is O P (1), which is obtained using Lemma 6.3.

On the other hand, A 1,n can be decomposed into A 1,n = A 2,n + B 2,n , where

Next, using the decomposition (3.6) of Ûi -U i ,

The first term can be decomposed as the sum of a degenerated second order U -statistic

which is O P (n -1 ) from [START_REF] Nolan | u-processes : Rates of convergence[END_REF], and n -2 n i=1 {δ i φ

(1)

Proof of Theorem 3.1

For the sake of simplicity, we consider the case where Θ ⊂ R. The general case can be obtained studying component by component.

From a second order Taylor expansion, (6.13) where θ is between θ 0 and θ. Hence, from Proposition 6.4, θ -θ 0 = o P (1). An asymptotic expansion of the right-hand side of (6.13) is obtained from Proposition 6.5.

Next, decompose

From Lemma 6.3, the first term is Σ + o P (1), while the second can be bounded by sup

Using again Lemma 6.3 and (6.1)-(6.2), we get that this term is O P (n -1/2 ).

To summarize, we have

and the result follows from the fact that Σ > 0.

Results for the estimation of the margins

In this section, we give some arguments to justify that estimators of the type (2.2) are n 1/2 -consistent (under some appropriate conditions) and admit an asymptotic representation similar to the one of Assumption 5. The result of Proposition 6.6 below, is similar to the results of [START_REF] Stute | Nonlinear censored regression[END_REF].