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Abstract

More than 90% of the space objects orbiting around the earth are
space debris. Since the orbits of these debris often overlap the trajec-
tories of spacecraft, they create a potential collision risk. The problem
of removing the most dangerous space debris can be modeled as a biob-
jective time dependent traveling salesman problem (BiTDTSP).
In this paper, we study an approach based on a branch and bound
procedure to determine the Pareto frontier of the BiTDTSP.

Keywords: Space debris; Biobjective time dependent traveling sales-
man problem; Pareto Frontier; Fathoming rules

1 Introduction

Since the launch of the first satellite in 1957, an increasing number of ob-
jects has been put into orbit around the earth. The number of space objects
with diameter above 10 cm is estimated, nowadays, at about 15,000. Only
10% of these objects are operational, the other objects constitute space de-
bris. Even if future launches are suspended, the number of space debris will
continue to increase, e.g. owing to collisions between debris, making the col-
lision with an operational satellite more probable [10]. Since consequences of
collisions with debris may prove dramatic, avoidance maneuvers or missions
to remove debris are necessary [5]. As removing all space debris would be
quite expensive, the idea is to determine the debris which are more likely
to cause collisions and remove them at least cost. Removal is performed by
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achieving a space rendezvous between a moving space vehicle and each de-
bris followed by a soft capture using a robotic arm. The shuttle has to meet
each debris on its orbit until all debris have been dealt with and then return
to its initial orbit. This tour has to be achieved in the less expensive and
the fastest possible way. Most collisions are not debris/satellite but rather
debris/debris and result in an increasing number of space debris [9, 1]. So
the earlier the removal is finished, the less new debris are generated.

In this article, we study the problem of removing a list of space debris and
extend the results obtained in [12]. We propose an exact algorithm based
on a branch and bound procedure to compute the set of non dominated
(cost, duration) vectors and give for each of these vectors a feasible solution.
Two specificities that make our model more realistic are taken into account:
between each pair of targets, several transfer possibilities, with different
costs and times, are considered. These costs and times depend on the start
time from the initial target in the pair. Therefore, the problem is modeled
as a biobjective time dependent traveling salesman problem defined on a
multigraph. To the best of our knowledge, BiTDTSP has not been studied
before, although several articles study the time dependent traveling salesman
problem (TDTSP) and the biobjective traveling salesman problem (BiTSP).
TDTSP is a variant of TSP where distances depend on the arrival time to
each vertex. Malandraki and Daskin [13] described dynamic programming
(DP) algorithms for TDTSP extended by Bellman [3] and finally Held and
Karp [7]. Schneider [18] also proposed a simulated annealing heuristic to
deal with TDTSP. BiTSP has been addressed by several authors. Gendreau
et al. [4] used the ε-constraint method to efficiently generate the Pareto
front of the traveling salesman problem with profits. Schmitz and Niemann
[17] were interested in a BiTSP problem motivated by various applications
in the context of service delivery in which the second objective relates to
priorities among locations to be visited. Paquette and Stutzle [14] analyzed
algorithmic components of Stochastic local search (SLS) algorithms for the
multiobjective traveling salesman problem. Based on the insights gained,
they engineered SLS algorithms for this problem. Lust and Jaszkiewicz [11]
proposed a heuristic resolution based on the two-phase local search method
with speed-up techniques for BiTSP.

The paper is organized as follows. In Section 2, we model the problem
of removing dangerous space debris. The proposed approach is presented in
Section 3. Section 4 is devoted to implementation issues. Computational ex-
periments and results are reported in Section 5 and conclusions are provided
in a final section.

2



2 Problem description

2.1 Context and notations

Given n debris to be removed, the space shuttle has to move from its own
orbit and visit the n debris in order to collect them and then return to its
first orbit. The total quantity of fuel burned during each transfer from a
debris i to a debris j, denoted by cij , represents the transfer cost. The dura-
tion of the transfer is denoted by dij . The quantity of fuel burned during the
mission should not exceed the shuttle capacity, thus the cost cannot exceed
a fixed cost cmax. Moreover, the duration of the mission should not exceed
a fixed duration dmax. We assume here that the mission is not carried out
by an unmanned space shuttle. To remove each debris, the shuttle has to
perform a rendezvous with each debris on its orbit. Thus in the following
we associate each debris with its orbit. Costs and durations depend on the
way the rendezvous is achieved.

A space rendezvous between a debris and a space shuttle is an orbital
maneuver where both arrive at the same orbit and approach to a very close
distance. There are several ways to achieve a space rendezvous as shown in
[6, 20, 19]. In our case, we have chosen to perform a rendezvous following the
Lambert method where the shuttle moves between the two orbits undergoing
exactly two pulses. Figure 1 shows how the transfer is performed in the
Lambert elliptical case. The cost of this transfer is the quantity of fuel
burned in order to perform the first and second pulses.

Transfer arc

Initial orbit

Final orbit

The first boost

The second boost

Figure 1: The transfer orbit of the space shuttle using the elliptical maneuver

For each debris i, ti denotes the time at which the shuttle reaches the
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orbit of debris i. Once the shuttle has reached orbit i, it can immediately
start the next transfer to reach another orbit j or wait before beginning
the transfer. Indeed, waiting on an orbit may be cheaper and/or quicker to
reach the next orbit. The duration of the transfer is the sum of the waiting
time in the departure orbit and the travel time to the arrival orbit. In
the following we assume that each elementary transfer requires a minimum
duration δttrans and a minimum cost δcmin. We assume as well that the
service time on an orbit i takes a duration of δtservi .

2.2 Formulation of the problem

The studied space objects and the possible transfers between their orbits are
modeled by a complete valued digraph G = (V,A) where V represents the
set of object’s orbits numbered from 0 to n. Vertex 0 represents the shuttle
and vertices from 1 to n represent the n debris. The set A corresponds to the
set of feasible transfers between orbits. Several arcs may link each pair of
orbits depending on the moment on when the shuttle reaches the departure
orbit. To each 3-tuple (i, j, ti), corresponds a set of feasible transfers Aij(ti).
Each element of Aij(ti) induces a bivalued arc linking i to j whose value is
a pair (cij , dij) corresponding to the cost and duration of the travel. As the
arcs representing possible transfers depend on the time at which the shuttle
reaches the departure orbit, G is a dynamic multigraph. In the figure 2, we
have shown the way the digraph is constituted as the shuttle performs its
mission.

After it reaches an orbit i, the shuttle must serve it before going on.
Thus, the shuttle can leave the orbit i at least at tid = ti + δtservi . Due
to mission duration constraints, the shuttle should leave the orbit i before
an instant limit til . When the shuttle leaves i at til , it has barely time to
achieve the mission before t0 + dmax. Thus, if the shuttle reaches l after
visiting V ′ ⊂ V debris, one has
til = t0 + dmax − (n+ 1− |V ′|)× δttrans −

∑
i∈V \V ′

δtservi − δttrans

In the equation above, (n+ 1− |V ′|) × δttrans is the least time needed
to travel to each unvisited debris,

∑
i∈V \V ′

δtservi is the time needed to serve

debris and δttrans is required to go back to the first orbit. The duration of
time corresponding to possible departure times is discretized using a time
step δt. Hence, the transfer can start at any time tid +w×δt, where w ∈ I(ti)
and I(ti) determines the set of possible departure times if the shuttle reaches

orbit i at ti that is I(ti) = {0, 1, ..., b til−tidδt c}).
For each departure time several transfer durations are possible, the set

of possible durations is denoted as D. A departure time ti, w ∈ I(ti) and
transfer duration p ∈ D define a new arc allowing the shuttle to reach j at
tj = tid + dij(ti, w, p). The valuation of this arc is:
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(c) Situation after the second choice

Figure 2: Progression of the graph of the studied objects
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(cij(ti, w, p), dij(ti, w, p)).
The transfer possibilities can be seen in Figure 3.

it

tti δ+
transi tt δ+

transi tt δ.2+ transi tt δ.3+

transi ttt δδ ++

transi ttt δδ .2++

transi ttt δδ .3++

Figure 3: Transfer possibilities when the shuttle reaches orbit i at ti

3 Solution approach

3.1 Preprocessing

The cardinality of Aij(ti) depends on the number of possible departure times
from i and on the number of possible durations to perform the transfer from
i to j. Therefore Aij(ti) may contain a very large number of possible trans-
fers. The computation of the cost corresponding to each transfer possibility
using Lambert algorithm is very time-demanding (see Section 5.2.2). The
algorithm spends much more time computing transfer costs than optimizing
the shuttle trajectory. Therefore, optimizing the algorithm performances
requires limiting the number of calls to the cost computation function. This
is achieved by reducing the cardinality of Aij(ti) as will be seen in Section
5.2.1.
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3.2 The branch and bound procedure

In order to enumerate the non dominated vectors for BiTDTSP, we propose
a branch and bound enumeration scheme. In our case, each node at level k
in the search tree corresponds to a partial solution visiting k debris starting
from the shuttle orbit. Its successors are partial solutions visiting k + 1
debris. A partial solution s is characterized by:

• Vs the set of debris visited in that partial solution.

• l the last visited element.

• T (s) the time spent to visit the set of debris Vs.

• C(s) the visit cost incurred to visit the set of debris Vs.

3.2.1 Branching

The branching procedure consists in choosing the next node that will be
separated and in generating its successors. This requires generating Alj(tl)
for each debris j /∈ Vs. A strategy of selection dictates which of the active
nodes in the search tree will be separated next. Different search strategies
are adopted in our case. Once a node is chosen, we generate its successors
by computing Alj(tl) for each j /∈ Vs.

3.2.2 Bounding

A bounding procedure allows deleting some partial solutions that may not
lead to efficient complete solutions. We present some fathoming rules. Fath-
oming rules can lead to substantial improvements in algorithmic perfor-
mance [2]. Given a partial solution s visiting k debris, an extension of s is
any feasible solution in which the k first visited debris are identical to s.
In the following, the set of possible extensions of a partial solution s is
denoted by Ext(s). In our context we define the two following fathoming
rules.

• First fathoming rule D1

A pool of good candidate solutions is initially generated (see Section
3.3). If the performance of the most optimistic extension of a partial
solution is dominated by one of the solutions pool, this partial solution
can be discarded. Consider a partial solution s = (Vs, l, T (s), C(s)),
the performance of any extension of s is at least
T ∗(s) = T (s) + (|V | − |Vs|+ 1)× δttrans +

∑
i∈V \Vs

δtservi + δtservl and

C∗(s) = C(s) + (|V | − |Vs|+ 1)× δcmin.
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Thus, if x is a solution from the pool corresponding to a criterion vec-
tor (C(x), T (x)) such that:

T (x) ≤ T ∗(s)

C(x) ≤ C∗(s)

then each extension of s is in the best case as good as x and can thus
be discarded.

• Second fathoming rule D2

Consider two partial solutions s = (Vs, l, T (s), C(s)) and s′ = (Vs′ , l
′, T (s′), C(s′))

such that

Vs ⊇ Vs′ , l = l′, T (s) ≤ T (s′) and C(s) ≤ C(s′)

The last rule is valid thanks to two assumptions, whose validity will be
discussed in Section 5.2.1.

Assumption 1 We assume that, for any orbits i and j, if ti and t′i are two
possible arrival times to i such that the time difference between these dates
is greater than the period of orbit i then each transfer possibility correspond-
ing to the arrival time t′i is dominated by at least one transfer possibility
corresponding to the arrival time ti.

More precisely:

∀w′ ∈ I(t′i), ∀p′ ∈ D
t′i ≥ ti + Pi ⇒ ∃w ∈ I(ti) ∃p ∈ D such that{

cij(ti, w, p) ≤ cij(t′i, w′, p′)
dij(ti, w, p) ≤ dij(t′i, w′, p′)

where Pi refers to the period of orbit i. According to this assumption,
waiting more than one period on any orbit i before traveling to orbit j does
not lead to efficient transfers.

Assumption 2 The second assumption concerns the triangle inequality of
travel costs and durations. Given three debris i, j and l, all transfers that
allow reaching l from i through j when the shuttle reaches i at t′i are domi-
nated by at least one transfer that corresponds to an earlier possible arrival
time ti to orbit i and that reaches l directly from i.

This assumption can be formalized as follows:
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∀w′1 ∈ I(t′i) ∀(p′1, p′2) ∈ D2 ∀w′2 ∈ I(t′i + δtservi + dij(t
′
i, w
′
1, p
′
1))

ti ≤ t′i ⇒ ∃w ∈ I(ti)∃p ∈ T{
ti + δtservi + dik(ti, w, p) ≤ t′i + δtservi + dij(t

′
i, w
′
1, p
′
1) + δtservj + djk(t

′
j , w

′
2, p
′
2)

cik(ti, w, p) ≤ cij(t′i, w′1, p′1) + cjk(t
′
j , w

′
2, p
′
2)

Proposition 1 Assumptions 1 and 2 ensure the validity of the fathoming
rule D2.

Proof 1 Let s = (Vs, l, T (s), C(s)) and s′ = (Vs′ , l
′, T (s′), C(s′)) be two par-

tial solutions such that:
Vs ⊇ Vs′ , l = l′, T (s) ≤ T (s′) et C(s) ≤ C(s′). Assume that the travel is
performed by a shuttle N1 in the first solution while in the second solution
it is achieved by another shuttle N2.

Case where: Vs = Vs′

Let e′ be an extension of s′.
If, in the solution e′, N2 leaves l at t such that

T (s) + δtservl ≤ t ≤ T (s) + δtservl + Pl hence N1 can wait on the orbit l
during t−(T (s)+δtservl)which is possible since this duration is smaller than
the period of orbit l.

Knowing that N1 and N2 have achieved a rendezvous with debris l and
that they are moving at the same speed, at t they will be in the same place.

Hence, it is possible for N1 to perform the same sequence of transfers
that N2 has achieved and to finish the mission in the same time than N2
at a lower cost. Thus e′ is a possible extension for s too.

If N2 leaves the orbit l at t ≥ T (s) + δtservl + Pl then, according to As-
sumption 1, there exists a transfer that leaves l at t′ ∈ [T (s) + δtservl , T (s) +
δtservl + Pl] and allows N1 to visit the next debris visited in e′ earlier and
at lower cost. This transfer brings us back to the same initial situation with
the only difference that another orbit has been visited. Repeating the same
procedure, we construct an extension of s that dominates e′.

Case where: Vs′ ( Vs

Let A = Vs − Vs′ be the set of debris visited in the solution s and not
visited in the solution s′. Let us also define B the set of debris that have to
be visited in extensions of both s and s′. Hence, an extension of s′ has to
visit the set of debris A ∪B.

Let e′ be a completion of s′ that visits the set A∪B in a given order. Thus,
the completion has the form {l, A1, B1, A2, B2, .., Ah, Bh} where A =

⋃h
i=1Ai

and B =
⋃h
i=1Bi. The idea is to construct an extension of s from e′ that

costs less and which allows to achieve the mission more quickly than e′.
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The shuttle N1 reaches l at tl = t0 + T (s) while N2 reaches it at t′l =
t0 + T (s′). tl ≤ t′l so according to the triangle inequality, there is a sequence
of transfers that allow the shuttle N1 to reach the first element visited in
B1 faster than N2. Elements of B1 have to be visited in e and e′ as well,
with a similar reasoning in the case 1, we can extends e in a way that N1
reaches the last element in B1 faster than N2. This brings us back to the
initial situation with the difference that we have visited A1 ∪B1 in addition.
By repeating this process, we construct an extension e of s that allows N1
to reach the last element to visit in Bh faster than N2.

This validates the second fathoming rule.

3.3 The Branch and Bound algorithm

A solution pool is initially generated so as to use the fathoming rule D1 as
early as possible. For the procedure to be efficient, this pool must be gener-
ated quickly while containing reasonably good solutions. For this purpose,
we compute costs and durations corresponding to solutions visiting debris in
their orbit inclination order which will form the set initializing the solution
pool. This order was chosen because it corresponds to some solutions that
promote least cost transfers. In fact, transfers that require large changes
in inclination cost more than transfers performed between near inclination
orbits [8]. Besides, numerical results show that numbering debris according
to their inclination order decreases computation time (see Section 5.2.2).
The set of these solutions is stored in an ordered list ND which is updated
each time a complete solution is generated.

A working list L contains current partial solutions. Initially L contains
one element which is the initial partial solution (∅, 0, 0, 0). As long as there
still exist elements in L, the algorithm computes successors of the first ele-
ment in the list. The separated node is then removed and its successors are
inserted in the working list L. Different orders were tested for list L. Once
a solution is complete it is inserted into ND and then we remove from ND
all dominated solutions. At the end of the algorithm, all elements stored in
ND are non dominated. For each partial solution s, Γs denotes the set of
successors of s.
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Algorithm 1: Branch and bound algorithm

Output: Set of non dominated vectors ND
begin

L← {(∅, 0, 0, 0)}
Initialize ND a set of candidate non dominated vectors
while L 6= ∅ do

/*assume ND = {p1, p2, ..., pr} where solutions are ordered
by non increasing costs*/

Select s ∈ L
L← L\{s}
if s is complete then

Dominated← false
j ← 1
while j ≤ r and C(pj) ≤ C(s)and Dominated = false
do

if T (pj) ≤ T (s) then
Dominated← true

if C(s) = C(pj) and T (s) ≤ T (pj) then
ND ← ND\{pj}

j ← j + 1

if Dominated = false then
ND ← ND ∪ {s}
while j ≤ r and T (s) ≤ T (pj) do

ND ← ND\{pj}
j ← j + 1

else
Generate Γs
Update(L, Γs, ND)

return ND

11



Algorithm 2: Procedure Update (L,L′, ND)

Input: Two lists of partial solutions L and L′ and list of pool
solutions ND

Output: Working list L updated
begin

/*assume L′ = {s′1, s′2, ..., s′q} and ND = {p1, p2, ..., ps}*/

for i← 1 to q do
Dominated← false
j ← 1
while Dominated = false and j ≤ s do

if pj D1 s
′
i then

Dominated← true

j ← j + 1

if Dominated = false then
Insert s′i in L unless it is dominated with respect to D2

Remove from L partial solutions that are dominated by s′i

Algorithm 1 returns exactly the set of non dominated vectors and pro-
vides for each non dominated vector one efficient solution. In procedure
’Update’, we first use D1 to test dominance as it is easier to verify and may
cut many branches of the search tree. Notice that the way partial solutions
are stored influences the computation time since it can limit the number of
dominance tests which will be checked. Three different orders were tested
in our case as will be seen in next section.

4 Implementation issues

4.1 Debris order

The order in which debris are numbered is a crucial implementation issue in
branch and bound procedures. We would like to number debris in an order
allowing least cost solutions to be generated first. Two elements influence
the cost of the transfer between two orbits: the difference between the two
orbits inclination and the difference between the two orbits altitudes. In the
following, we test two ways of numbering and compare them with a random
numbering:

• The orbits inclination numbering.

• The orbits altitude numbering.
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4.2 Data storage

In the solution pool, complete solutions are inserted in the lexicographic
order of the criteria vector: (cost, duration). �1 is defined as follows: Two
solutions s1 = (V1, l1, C(s1), T (s1)) and s2 = (V2, l2, C(s2), T (s2)) are such
that s1 �1 s2 if and only if:
C(s1) < C(s2) or (C(s1) = C(s2) and T (s1) ≤ T (s2))
The interest of this order is that for each pair of solutions (s1, s2) such that
s1 �1 s2, one has s2 cannot dominate s1. The way a new solution is
inserted in the solution pool is shown in Figure 4.

𝑠1 𝑠2 𝑠3 𝑠𝑙+1 𝑠𝑙+2 𝑠𝑚 𝑠𝑚+1 … 

… 

Solutions smaller than    with                          

respect to the lexicographical 

order, cannot be dominated 

by 𝑠  

Position in which  the candidate should be inserted 

Solutions greater than    with                          

respect to the lexicographical 

order, cannot dominate  

𝑠  

𝑠  

𝑠  

Figure 4: The insertion of a new solution in the solution pool

For the partial solutions, we have tested the three orders �1, �2 and �3.
The order �2 is defined for each pair (s1, s2) as follows: s1 �2 s2 if and
only if:
|V1| > |V2| or (|V1| = |V2| and C(s1) < C(s2)) or (|V1| = |V2| and C(s1) =
C(s2) and T (s1) ≤ T (s2))
The interest of this order is that it allows separating least cost partial so-
lutions from those that visit more debris first and decreases the number of
dominance tests. The insertion of a new element is done as explained in
Figure 5.
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Partial solutions 
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highest number

of debris.

Partial solutions 

visiting more 

debris than the

candidate.

Partial solutions visiting as 

many debris as the

candidate.

Partial solutions 

visiting less debris

than the

candidate.

Partial 

solutions 

visiting the

lowest number

of debris.

The

candidate 

insertion 

position

These partial solutions cannot be

dominated by the candidate since they

visit at least as many debris as the

candidate with a lower cost.

These partial solutions cannot

dominate the candidate since

they visit less debris or as many as 

the candidate with a higher cost.

The first

partial 

solution 

having a cost

greater than

the

candidate 

cost.

The first

partial 

solution 

having a cost

greater than

the

candidate  

cost.

The first

partial 

solution 

having a 

cost

greater

than the

candidate 

cost.

The first

partial 

solution 

having a 

cost

greater

than the

candidate 

cost.

In the red part of the list, we have to test if the candidate is dominated while in the green one

we have to verify that partial solutions that are already inserted are not dominated.

Figure 5: The insertion of a new partial solution with respect to �2 order

The order �3 is defined for each pair (s1, s2) as follows:
s1 �3 s2 if and only if: C(s1) + T (s1) ≤ C(s2) + T (s2)
The last order has the advantage to allow less dominance tests to execute
without promoting any of the two criteria.

5 Computational experiments and results

5.1 Experimental design

To get the description of space object orbits, we use the most complete
source of orbital element information available to the public today which
is the two-line elements (TLEs) set given by NORth American aerospace
Defense command (NORAD). NORAD distributes orbital information on
a very large number of space objects in the form of two-line elements sets
(TLEs). Each TLE consists of two lines of 69 characters, containing an
object identifier, the epoch and a set of orbital elements that have been esti-
mated by NORAD. The NORAD element sets are ”mean” values obtained
by removing periodic variations in a particular way [15]. In order to obtain
good predictions, these periodic variations must be reconstructed in exactly
the same way they were removed by NORAD . Hence, The NORAD element
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Instances Trajectories starting at Trajectories starting at Trajectories starting at Trajectories starting at Trajectories starting at
ti ti + 0.25× Pi ti + 0.5× Pi ti + 0.75× Pi ti + Pi

1st instance 100 100 100 100 100

2nd instance 100 100 100 100 100

3rd instance 100 100 100 100 100

4th instance 100 100 100 100 100

5th instance 100 100 100 100 100

Table 1: The percentage of trajectories verifying the triangle inequality

sets must be used with the propagation algorithm: SGP4. In the present
article, we use this algorithm to predict debris positions.

5.2 Results

The goals of the experiments are:

• to determine the best order to sort partial solutions.

• to determine the best order for numbering debris in our approach.

• to analyse the impact of using fathoming rules.

• to compare Pareto fronts obtained with different time steps.

• to view some Pareto fronts and compare them with inital solutions
pool.

5.2.1 Preprocessing

Verification of the validity of the triangle inequality

We consider five triplets of debris orbits. For each of these triplets
(i, j, k), we compute costs and durations of efficient trajectories allowing
the shuttle to go from i to k through j given a date ti at which the shuttle
reaches orbit i. We compute the same set of trajectories when the shuttle
reaches i at ti+0.25×Pi, ti+0.5×Pi, ti+0.75×Pi and ti+Pi. The idea is
to show that these sets of trajectories are dominated by at least one transfer
of Ail(ti). For this purpose, we compute the percentage of each of these sets
dominated by at least one transfer among Ail(ti). Results are reported in
Table 1. As shown in the table, most of these transfers are dominated which
legitimizes the triangle inequality hypothesis.

Determination of transfer parameters

The computation time is directly related to the cardinality of the set of
possible transfers. Reducing the computation time requires decreasing this
set cardinality. The cardinality of Aij(ti) depends on:

• The maximum waiting duration allowed on each orbit.
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Debris pairs The % of ND transfers The % of ND transfers The % of ND transfers
obtained after waiting obtained after waiting obtained after waiting

one period two periods three periods
1st pair 100 100 100

2nd pair 85.7 100 100

3rd pair 87.5 87.5 100

4th pair 92.8 100 100

5th pair 100 100 100

6th pair 83.33 100 100

7th pair 75 100 100

8th pair 100 100 100

Table 2: The percentage of efficient transfers progression

• The number of possible transfer durations.

• Choice of the maximum transfer duration

One may allow the shuttle to take a long time in order to achieve a
transfer, but the loss on time must be compensated by a significant
gain on cost. We consider in Figure 6, five pairs of LEO debris and
study the evolution of the transfer cost depending on the transfer
duration. As shown in the figures, most transfers that take more than
10 days to be performed are dominated. In the following, we assume
that an interorbital transfer takes at most 10 days to be achieved.

• Choice of the maximum waiting duration

The departure possibilities number must be limited. For this purpose,
we test all the possible waiting durations using an increment of 30
minutes and less than ten times the period of the departure orbit. We
then determine the costs of the transfers that depart from each of these
positions and take complete days to be achieved without exceeding
one month. We retain only non dominated transfers. The percentage
of the non dominated transfers already obtained after a number of
periods is then computed. We show in Table 2 the evolution of the
efficient transfers duration obtained with eight different pairs of orbits.
As shown in the table, the majority of non dominated transfers is
already obtained after testing departure positions allowed by waiting
one period. Therefore, in the following, we assume that the waiting
time in any orbit cannot exceed the period of this orbit.

5.2.2 The impact of partial solutions sorting order and of debris
numbering

We compare here the performance the algorithm when partial solutions are
inserted in the three orders and when we number debris in their orbit in-
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�1 �2 �3
Instance Altitude order inclination order Altitude order inclination order Altitude order inclination order

size B & B global B & B global B & B global B & B global B & B global B & B global
time time time time time time time time time time time time

3 2 34 2 29 2 30 2 26 2 37 2 39
4 3 167 3 145 3 143 2 132 3 174 4 163
5 7 768 6 679 5 645 5 630 8 701 7 689
6 25 1568 23 1481 21 1206 18 1250 28 1591 27 1390
7 67 5423 51 5360 53 4493 52 4199 63 4839 61 5951
8 154 8456 116 7855 135 7813 105 7600 140 8810 154 8721
9 456 9874 449 9324 330 9804 371 9341 510 10549 511 10034
10 680 11569 632 11429 653 10345 658 10321 743 11600 734 11003

Table 3: The obtained computation time using different orders

Instance With D1 With D2 With D = D1 ∪D2
size B & B global B & B global B & B global

time time time time time time
3 3 32 3 35 2 26
4 3 145 3 159 2 132
5 5 756 6 680 5 630
6 23 1373 22 1327 18 1250
7 67 5643 62 5472 52 4199
8 156 8340 134 7983 105 7600
9 463 10376 423 10562 371 9341
10 714 11540 702 11582 658 10321

Table 4: The impact of fathoming rules use on computation time

clination order or in their orbit altitude order. The time step is set to 15
minutes.
As shown in Table 3, the best order to sort partial solutions is �2 which is
the lexicographic order of (|V |, cost, duration). Furthermore the best way of
numbering the orbits is the inclination order. The lexicographic order pro-
motes partial solutions visiting more debris which accelerates the construc-
tion of complete solutions which improves the solutions pool and strengthen
the first fathoming rule. Furthermore numbering debris in their inclination
order promotes least cost solutions to appear first.

5.2.3 Impact of fathoming rules

We use here the �2 to sort partial solutions, and we number debris in their
inclination order. To view the impact of fathoming rules, we compare the
computation time with and without each fathoming rule. As shown in Ta-
ble 4 the use of fathoming rules decrease notably the computation time in
the two cases. The best computation time is obtained when both of the
fathoming rules are used.

5.2.4 Impact of time step

In order to view the impact of the time step, we insert partial solutions
in the order �2, use both of dominance relations and number debris in
their orbit inclination order. For several instance sizes, we generate the set
of non dominated solutions obtained with each instance and compute the
number of non dominated vectors, and the corresponding computation time.
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Size of the 15’ 25’ 35’
instance |ND| Computation |ND| Computation εmoy |ND| Computation εmoy

time time time
3 54 26 38 23 0.06 33 17 0.25
4 63 132 43 103 0.06 39 90 0.4
5 84 630 63 549 0.05 49 465 0.44
6 135 1250 127 1278 0.07 63 1130 0.35
7 169 4199 157 3745 0.07 112 3087 0.27
8 250 7600 237 7620 0.04 183 5145 0.42
9 343 9341 365 9273 0.06 312 7652 0.42
10 483 10321 389 10492 0.08 369 8622 0.34

Table 5: The impact of time step on computation time

We increase the time step and compute the set of non dominated vectors
obtained using greater time steps.

The idea is to compare the quality of these sets of non dominated debris.
We use the ε-approximation relation introduced in [21]: for a given accuracy
ε > 0, an (1 + ε)-approximation is a subset of solutions which contains, for
each efficient solution, a solution that is at most at a factor (1 + ε) on both
objective values. Thus, to evaluate the quality of the Pareto front obtained
with greater time steps, we compute the least value of ε such that the second
Pareto front is an ε-approximation of the first one. As shown in Table 5, the
use of greater time steps decreases the computation time but deteriorates
notably the quality of non dominated set.

5.2.5 Studying some Pareto fronts

In this paragraph, we propose to view some Pareto fronts obtained with sev-
eral instance sizes. In each case we compare the quality of the non dominated
vectors set and the solutions pool used in the beginning of the algorithm. To
compare these two sets quality a worst case criterion is used. Hence we com-
pute the least value of ε such that the solutions pool is an ε-approximation
of the final set of non dominated vectors.

In Figure 7, we present the set of non dominated vectors obtained with a
six debris instance (solutions marked with ’+’) and performances of the pool
of solutions initially generated for the same instance (solutions marked with
points). As can be seen in the figures, solutions that visit debris according
to their inclination order present a good approximation of the set of non
dominated vectors. Hence, the least value of the ε for which the solutions
pool is an ε-approximation of the final set of non dominated vectors is 0.49
for the 6 debris instance, 0.33 for the seven’s 0.22 for the eight’s and 0.13
for the nine debris instance. In addition, the order of the visit in the set of
non dominated vectors obtained in each case is not very different from the
inclination order. Thus, most of the non dominated vectors differ from the
set of solutions pool by less than three swaps.
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6 Conclusions

The purpose of this work was to propose a new modeling of the problem of
removing potentially dangerous space debris. The problem was presented as
a time dependent biobjective traveling salesman problem. The BiTDTSP
has not been studied in the literature before.

To efficiently solve the BiTDTSP, we proposed a branch and bound
approach. The use of dominance relations avoids exploring some partial
solutions that would not lead to non dominated vectors, and the limitation
of the ’on orbit waiting durations’ gives a good approximation of the set of
non dominated vectors in less time. As a perspective of this work, we will
study more deeply the interesting area in each non dominated solution set
by using smaller time steps. As removing all space debris is too expensive
another perspective of this work is to model and efficiently solve the problem
of determining the most troublesome debris.
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[4] J.F. Bérubé, M. Gendreau, and J.Y. Potvin. An exact-constraint
method for bi-objective combinatorial optimization problems: Applica-
tion to the traveling salesman problem with profits. European Journal
of Operational Research, pages 39–50, 2009.

[5] R. Crowther. Orbital debris: a growing threat to space operations.
Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 361(1802):157–168,
2003.

[6] A. E. Petropoulos and R. P. Russell. Low-thrust transfers using primer
vector theory and a second-order penalty method. In AIAA/AAS As-
trodynamics Specialist Conference, pages 18–21, 2003.

[7] M. Held and R.M. Karp. A dynamic programming approach to se-
quencing problems. Journal of the Society for Industrial and Applied
Mathematics, 10(1):196–210, 1962.

19



[8] B. J. Wadsley and R. G. Melton. Optimal visitation order for spacecraft
servicing missions. Advances in the astronautical sciences, 129(3):2705–
2720, 2008.

[9] D.J. Kessler. Collisional cascading: The limits of population growth in
low earth orbit. Advances in Space Research, 11(12):63–66, 1991.

[10] J.-C. Liou. Collision activities in the future orbital debris environment.
Advances in Space Research, 38(9):2102–2106, 2006.

[11] T. Lust and A. Jaszkiewicz. Speed-up techniques for solving large-
scale biobjective tsp. Computers & Operations Research, 37(3):521–533,
2010.

[12] D. Madakat, J. Morio, and D. Vanderpooten. Biobjective planning of
an active debris removal mission. Acta Astronautica, 84:182 – 188, 2013.

[13] C. Malandraki and R.B. Dial. A restricted dynamic programming
heuristic algorithm for the time dependent traveling salesman problem.
European Journal of Operational Research, 90(1):45–55, 1996.
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(a) Instance 1

(b) Instance 2

(c) Instance 3

(d) Instance 4

(e) Instance 5

Figure 6: Changes in transfer cost depending on travel duration
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(a) The set of non dominated vectors and pool solutions
obtained with an instance of 6 debris

(b) The set of non dominated vectors and pool solutions
obtained with an instance of 7 debris

(c) The set of non dominated vectors and pool solutions
obtained with an instance of 8 debris

(d) The set of non dominated vectors and pool solutions
obtained with an instance of 9 debris

Figure 7: Non dominated vectors and pool solutions for different instances
of debris
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