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Drag force modelling in dilute to dense particle-laden flows with mono-disperse or binary
mixture of solid particles

Olivier Simonin, Solène Chevrier, François Audard, Pascal Fede

Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse FRANCE

Abstract

Fluid-particle momentum transfer modelling is a key issue for the simulation of gas-solid fluidized beds. In the literature, many
empirical correlations can be found for the prediction of the drag force but these correlations are generally not satisfactory for all
the flow conditions found in fluidized bed: dilute and dense regime, low and high particle Reynolds number values, mono- or poly-
disperse solid mixture. Up to now, in dense particulate flows, the validation of such correlations were performed only by comparison
with experiments using mean pressure drop, fluidization or settling velocity measurements and analytical solutions in some limit cases
(Stokes flow). Nowadays, the development of particle resolved numerical techniques, like Lattice Boltzmann Method (LBM), allows
to perform Direct Numerical Simulation (DNS) of the flow across dilute and dense particle arrays. Such simulations allow to compute
directly the forces acting on the particles which may be used to validate or develop drag force correlations. In the present paper, we
show that the simple drag correlation proposed by Gobin et al. (2003) [6], and already used extensively for circulating and dense
fluidized bed simulation, is in very good agreement with the particle-resolved immersed boundary-method results of Tenneti et al.
(2011)[15] and with the boddy-fitted DNS results of Massol [10]. An extension of the correlation is also proposed for poly-disperse
mixture based on the LBM results of Beetstra et al. (2007)[1].
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1. Introduction

Multiphase flow reactors are commonly used in many indus-
trial processes such as chemical polymerization reactors or fluid
catalytic cracking unit. Due to computational limitations, the ef-
fective modelling approach used for industrial scale reactor sim-
ulations is usually considering the fluid and particle phases as
continuous and interacting media governed by locally averaged
equations (Euler-Euler approach). For applications with a limited
number of particles, or using the Monte-Carlo method, it is also
possible to track the positions and the velocities of discrete par-
ticles by coupling with a continuous averaging approach for the
fluid (Eulerian-Lagrangian approach). In those approaches, con-
stitutive relations are used to take into account unknown terms
appearing from the averaging, fluid-particle drag, lift, history,
added-mass force. For gas-solid flows, the fluid-particle drag
force has a dominant influence on the hydrodynamic behaviour of
the flow and the simulation accuracy is strongly dependant on the
fluid-particle drag constitutive relation. Therefore, closures for
the fluid-particle drag force have been investigated since the 20th

century. Empirical correlation [3, 18] are the most widely used
to close the fluid-solid drag force. Theoretically some authors
[7, 11] have demonstrated models in specific configuration for
periodic fixed sphere, for low volume fraction and low Reynolds
number. However their domains of validity are very limited and
those models cannot be used to model the industrial-scale reac-
tors. There is also a further difficulty when the polydispersion
effect has to be taken into account. Recently, the development
of numerical techniques, such as body-fitted CFD, fictious do-
main approach, Lattice Boltzmann Method (LBM) and Immersed
Boundary Method (IBM), allows to perform DNS of the flow
across dilute and dense particle arrays. Such simulations lead
to compute directly the forces acting on the particles which may
be used to validate or develop drag force correlations.

This article focuses on a comparison between fluid-particle
drag prediction for monodisperse flows and for polydisperse
flows found in the literature. In monodisperse cases, an analysis

is done on models found in the literature [3, 18, 6, 1, 19] correla-
tion and the DNS data of Ref. [8, 9, 16, 1, 12] and the body-fitted
CFD data of Ref. [10]. In polydisperse cases, an analysis is done
on the extension developed by Beetstra et al. and Yin et al. and
an extension is proposed based on the LBM results of Beetstra et
al.

2. Modelling of momentum transfer into gas-particle flow

Let us define Ffp,i the local average force exerted by the fluid
on the particles of section p in polydisperse powder. In the frame
of the Euler-Euler approach for gas-particle flows [14], such a
force is usually written has the sum of two contributions: the
drag force, FD

fp,i and the buoyancy force,

Ffp,i = FD
fp,i − Vp

∂Pf

∂xi
(1)

where ∂Pf/∂xi is the mean fluid pressure gradient, and Vp =
πd3p/6 is the volume of the particle of diameter dp. Then, the
fluid momentum transport equation writes:

αfρf
∂Uf,i

∂t
+ αfρfUf,j

∂Uf,i

∂xj
= − αf

∂Pf

∂xi

+ αf
∂Σf,ij

∂xj
(2)

+ αfρfgi

−
∑

q

nqF
D
fq,i

where
∑

q means that the summation is performed over all par-

ticulate diameter distribution. For steady flow through arrays of
fixed particles, and without gravity, the equation becomes

−αf
∂Pf

∂xi
−

∑

q

nqF
D
fq,i = 0 (3)



Let us introducing the following quantities

xp =
αp

αs
and yp =

dp
ds

, (4)

where αs is the whole particle volume fraction (αs =
∑

q αq)

and ds is the Sauter’s diameter given by

ds =

[

∑

p

xp

dp

]

−1

. (5)

Then the total force measured in fully-resolved simulation can be
related to the drag force by equating Eqn (3) & (4) as

Ffp,i = FD
fp,i +

αs

αf
y3
p

∑

q

xq

y3
q

FD
fq,i . (6)

For the monodisperse case, xp = 1 and yp = 1, the expression
becomes

Ffp,i =
1

αf
FD
fp,i . (7)

In Ref. [1, 16, 12] the mean force exerted by the fluid on the
particle is measured from LBM simulations allowing to derive
several fluid force correlatons. Finally, in the following, we will
evaluate drag force correlations derived using various DNS ap-
proaches for dense suspension of monodisperse and polydisperse
solid mixture.

3. Drag force in a fixed array of mono-sized spherical solid
particles

The mean drag force in a fixed array of mono-sized solid
spheres may be written,

FD
fp,i = −ρf

πd2p
8

CD|Vr|Vr,i (8)

with dp the particle diameter, ρf the fluid density, Vr = Up −
Uf the mean fluid-particle relative velocity and CD ≡ CD(Rep)
the drag coefficient. The drag coefficient depends on the particle
Reynolds number Rep that is defined by

Rep =
|Vr|dp
νf

. (9)

For a single particle (αf = 1) the drag force in the Stokes limit
(Rep ≪ 1) is written,

FD
fp,i = −3πρfνfdpVr,i . (10)

Then the drag coefficient CD in the Stokes regime is given by,

CD =
24

Rep
(11)

Practical correlations of the drag coefficient may be found in the
literature such as the one proposed by Schiller & Naumann [13]
which is extensively used in gas-solid flow simulation.

By analogy with the form of a single particle drag force,
Eqn (8), the drag force in dense particle laden flows is written
as

FD
fp,i = −ρf

πd2p
8

C∗

D|Vr|Vr,i (12)

where the drag coefficient C∗

D ≡ C∗

D(Re∗p, αf ) is a given func-
tion of the particle Reynolds number Re∗p and of αf the fluid
volume fraction.

Re∗p =
αf |Vr|dp

νf
. (13)

The semi-empirical popular correlations given by Ergun [3]
and Wen & Yu [18] are evaluated in this section for mono-sized
particles. Ding & Gidaspow [2] proposed a correlation with
a transition from the Wen & Yu to the Ergun correlations for
αs > 0.2. However this correlation leads to discontinuous transi-
tion and overestimation of the drag force for αs > 0.2 and for the
particle Reynolds number > 100 encountered in gas phase olefin
polymerization reactor. This leads to Gobin & al. [6] propose a
continuous transition given in Tab. 1 according to the DNS re-
sults of Massol [10]. Recently, new forms for the monodisperse
drag force correlation were derived from DNS results such as the
ones proposed by Beetstra et al. [1] and Tenneti et al. [15], given
in Tab. [1]. Table [1] shows the different correlation proposed by
the different author in the literature. For all results presented the
drag force are normalized by the Stokes drag force,

FD(αf , Re∗p) =
|FD

fp|

3πµfdpαf |Vr|
(14)

Figure 1, shows the dimensionless drag force for low particle
Reynolds number (Re∗p =1) as a function of the solid volume
fraction, the line represent the correlations given in Table [1] and
the black symbols are the LBM numerical results from [8]. For
volume fraction larger than 0.1, LBM results are found in good
agreement with theoretical developments made by [7, 11], Gobin
et al. correlation (ie. Wen & Yu and Ergun) leads to an underes-
timation of the drag force with respect to the LBM results of Hill
et al.

This theoretical developments are valid for fixed bed, in cubic
arrays configuration (simple, body-centered and face-centered),
Hill et al. [8, 9] shown this theory are valid for random array. In
contrast when the particles are not frozen, the behaviour of flow
could be changed, and the drag force acting on the particle are
not strictly equivalent to a fixed bed.
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Figure 1: Comparison between the LBM and the different equa-
tions of dimensionless drag force apply in a fixed array of mono-
sized spherical solid particles (see Tab. [1]) (without the pres-
sure gradient) as a function of the particle volume fraction αp for
Re∗p = 1.

Figure 2, shows the dependence of the dimensionless drag
force on the solid volume fraction for several particle Reynolds
numbers Rep, comparing the predictions of the correlation func-
tions given Table [1] and the DNS results with a body fitted mesh
by Massol [10]. Results using Tenneti et al. correlation [15] and



Table 1: Relations for the normalized drag force of a monodisperse system, as function of gas volume fraction and Reynolds number
Re∗p = αf |Vr|dp/νf

Author Drag force

Ergun 1952 [3] FD
Erg =

150

18

1− αf

α2
f

+
7

4

1

18

Re∗p
α2
f

Wen and Yu 1965 [18] FD
WY = (1 + 0.15Re∗0.687p )α−3.65

f

Gobin et al. 2003 [6] FD
Gob =



















FD
WY if αp ≤ 0.3

min(FD
WY , FD

Erg) otherwise

Beetstra, Van der Hoef
& Kuipers 2007 [1]

FD
BV K = 10

1− αf

α2
f

+α2
f (1+1.5

√

1− αf )+
0.413

α2
f

Re∗p
24

[

α−1
f + 3αf (1− αf ) + 8.4Re∗−0.343

p

1 + 103(1−αf )Re
∗−0.5−2(1−αf )
p

]

Tenneti et al. 2011 [15] FD
TGS = FD

WY (Re∗p)α
1.65
f + αfF1(αf ) + αfF2(αf , Re∗p)

F1(αf ) =
5.81(1− αf )

α3
f

+ 0.48
(1− αf )

1/3

α4
f

F2(αf , Re∗p) = (1− αf )
3Re∗p

[

0.95 +
0.61(1− αf )

3

α2
f

]

DNS results from Massol [10] are very closed. We can notice that
Tenneti et al correlations are fitted from DNS results obtained us-
ing immersed boundary methods (IBM).

Gobin et al. [6] drag force correlation predictions, are really
closed to the Massol DNS results for the whole range of particle
Reynolds number and particle volume fraction shown. In par-
ticular, the proposed transition model from Wen & Yu to Ergun
correlations allows to predict accurately the drag force in dense
particle-laden flows for large particle Reynolds number values :
Re∗p ≥ 100. Hence, to develop a correlation for polydisperse
systems, a simple polydispersed correlation based Gobin et al.
[6] mono-sized drag force will be presented and evaluated.

4. Drag force in a fixed array of polydisperse spherical solid
particles

Some authors, like Van der Hoef [16] and Yin and Sundare-
san [19], developed polydisperse models using the monodisperse
force applied to a mean diameter corrected by a function of the
particle mixture properties. Van der Hoef et al. [16] propose the
following form for the normalized by Stokes force drag force for
particle type p,

FD
V BK,poly = fpoly(αf , yp)FBV K

D(αf , Re∗s) (15)

with fpoly(αf , yp) written as,

fpoly(αf , yp) = αfyp + (1− αf )y
2
p

Re∗s is the Reynolds number using the Sauter’s diameter, written:

Re∗s =
αf |Vr|ds

νf
. (16)

Yin and Sundaresan 2009[19] propose the following form,

FD
Y S,poly = C1 + fpoly(αf , yp)F

D
V BK(αf , Re∗s) (17)

fpoly(αf , yp) = ayp + (1− a)y2
p

a = 1− 2.660(1− αf ) + 9.096(1− αf )
2 − 11.338(1− αf )

3

C1 =
1

αf
+

1

αf
[ayp + (1− a)y2

p]

The monosdiperse force FD
V BK corresponds to the correlaiton de-

veloped by Van der Hoef et al. [16],

FD
V BK = 10

1− αf

α2
f

+ α2
f (1 + 1.5

√

1− αf ) (18)

The Gobin et al. drag force correlation was already used
for Euler-Euler numerical simulation of laboratory and industrial
scale gas-solid polydisperse fluidized bed [4, 5]. The correspond-
ing dimensionless drag force takes the following form,

FD
Gob,poly = ypF

D
Gob(αf , ypRe∗s) (19)

A second form more complex, accounting the separate de-
pendence on the diameter ratio yp and the gas volume fraction
αf is proposed. The function is determined by a fitting with the
LBM data using the least-squares methods,

FD
2,Gob,poly = fpoly(αf , yp)F

D
Gob(αf , ypRe∗s) (20)

The function is determined by a fitting with the LBM data using
the least-squares methods,

fpoly = yp + 0.1(yp − 1)((y1.5
p − 1) + αf (1.25− 5αf )).

This correlation focus only on the range [0:100] of particle
Reynolds number.

Figure 3, shows the normalized polydisperse drag force
divided by the normalized monodisperse drag force. These
monodisperse force for each case has been calculated with the
Reynolds number depending on the Sauter’s diameter Re∗s . The
Figure shows the dependence of the normalized polydisperse
drag force coefficient on the particle diameter ratio yp, for given
values of the Reynolds number Re∗s and of the gas volume frac-
tion αf . The different line corresponds to the correlations by the
Eqn (15), (17), (19) & (20). The point represents the LBM nu-
merical data given by these different authors [1, 12]. FD

Gob,poly
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Figure 2: Comparison between the DNS and the different equations of dimensionless drag force (see Tab. [1]) (without the pressure
gradient) as a function of of the gas volume fraction αf for different Reynolds number Rep apply in a fixed array of mono-sized
spherical solid particles.
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Figure 3: Comparison between LBM data [1] [12] and the correlations and the new correlation written in section 4. The vertical axis
corresponds to the dimensionless drag force normalized by the dimensionless monodisperse drag force using the Reynolds number
based on mean Sauter diameter Re∗s ; the horizontal axis is the dimensionless particle size ratio yp.

and FD
2,Gob,poly represent the models given in Eqn (19) and (20).

All correlation are equal to the monodisperse drag force when
the diameter is equal to the Sauter ’s diameter, yp = 1. For low
Re∗s = 1, The simple Gobin et al. correlation corresponding to
FD
Gob,poly , shows a good agreement with the LBM data. In con-

trast, the results for higher Re∗s shows an underestimation by this
simple model.



5. Conclusion

The drag force correlations developed from DNS results us-
ing Lattice Boltzmann Method (LBM) [1] and semi-empirical
functions found in the literature (Ergun [3], Wen & Yu et al.
[18], Gobin et al. [6], were compared for monodisperse flows.
The correlation of Gobin et al.[6] provides satisfactory predic-
tions and maximum discrepancies are measured for low Reynolds
number values. For polydisperse flows several correlations may
be found in the literature to take into account the dependence on
the particle diameter ratio, the particle Reynolds number and the
solid volume fraction, likes the ones of Van der Hoef [16] and
of Yin and Sundaresan [19]. The different authors proposed for
polydisperse drag force to multiply the monodisperse drag force
calculated with the Sauter mean diameter by a function depend-
ing on particle size ratio yp and gas volume fraction. The results
provided by a polydisperse applicaiton of the Gobin et al. [6]
correlation tend to slightly underestimated the drag force com-
pared to the LBM results of Beetstra [1] and to the others correla-
tion developed for polydisperse flows [16, 19] for low Reynolds
Re∗s ≤ 10. An overestimation of the drag force is observed
for large Reynolds number value Re∗s = 100. LBM data rep-
resent frozen particle suspension in a steady gas flow, but the
gas-solid suspensions are usually unstable. The particle-particle
relative motion and particle-turbulence interactions should mod-
ify the drag force correlation modelling. So, additional numerical
studies using unsteady particle resolved simulation allowing sep-
arate particle motion [17] are needed to improve the drag force
modelling accuracy in fluidized beds.
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