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. An extension of the correlation is also proposed for poly-disperse mixture based on the LBM results of Beetstra et al. (2007)[1].

Introduction

Multiphase flow reactors are commonly used in many industrial processes such as chemical polymerization reactors or fluid catalytic cracking unit. Due to computational limitations, the effective modelling approach used for industrial scale reactor simulations is usually considering the fluid and particle phases as continuous and interacting media governed by locally averaged equations (Euler-Euler approach). For applications with a limited number of particles, or using the Monte-Carlo method, it is also possible to track the positions and the velocities of discrete particles by coupling with a continuous averaging approach for the fluid (Eulerian-Lagrangian approach). In those approaches, constitutive relations are used to take into account unknown terms appearing from the averaging, fluid-particle drag, lift, history, added-mass force. For gas-solid flows, the fluid-particle drag force has a dominant influence on the hydrodynamic behaviour of the flow and the simulation accuracy is strongly dependant on the fluid-particle drag constitutive relation. Therefore, closures for the fluid-particle drag force have been investigated since the 20 th century. Empirical correlation [START_REF] Ergun | Fluid flow through packed columns[END_REF][START_REF] Wen | Mechanics of fluidization[END_REF] are the most widely used to close the fluid-solid drag force. Theoretically some authors [START_REF] Hasimoto | On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres[END_REF][START_REF] Sangani | Slow flow through a periodic array of spheres[END_REF] have demonstrated models in specific configuration for periodic fixed sphere, for low volume fraction and low Reynolds number. However their domains of validity are very limited and those models cannot be used to model the industrial-scale reactors. There is also a further difficulty when the polydispersion effect has to be taken into account. Recently, the development of numerical techniques, such as body-fitted CFD, fictious domain approach, Lattice Boltzmann Method (LBM) and Immersed Boundary Method (IBM), allows to perform DNS of the flow across dilute and dense particle arrays. Such simulations lead to compute directly the forces acting on the particles which may be used to validate or develop drag force correlations.

This article focuses on a comparison between fluid-particle drag prediction for monodisperse flows and for polydisperse flows found in the literature. In monodisperse cases, an analysis is done on models found in the literature [START_REF] Ergun | Fluid flow through packed columns[END_REF][START_REF] Wen | Mechanics of fluidization[END_REF][START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF][START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF][START_REF] Yin | Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions[END_REF] correlation and the DNS data of Ref. [START_REF] Hill | The first effects of fluid inertia on flows in ordered and random arrays of spheres[END_REF][START_REF] Hill | Moderate-reynoldsnumber flows in ordered and random arrays of spheres[END_REF][START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF][START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF][START_REF] Sarkar | Fluidparticle interaction from lattice boltzmann simulations for flow through polydisperse random arrays of spheres[END_REF] and the body-fitted CFD data of Ref. [START_REF] Massol | Simulations numériques d'écoulements à travers des réseaux fixes de sphères monodisperses et bidisperses, pour des nombres de Reynolds modérés[END_REF]. In polydisperse cases, an analysis is done on the extension developed by Beetstra et al. and Yin et al. and an extension is proposed based on the LBM results of Beetstra et al.

Modelling of momentum transfer into gas-particle flow

Let us define F f p,i the local average force exerted by the fluid on the particles of section p in polydisperse powder. In the frame of the Euler-Euler approach for gas-particle flows [START_REF] Simonin | Combustion and turbulence in two-phase flows[END_REF], such a force is usually written has the sum of two contributions: the drag force, F D f p,i and the buoyancy force,

F f p,i = F D f p,i -Vp ∂P f ∂xi (1) 
where ∂P f /∂xi is the mean fluid pressure gradient, and Vp = πd 3 p /6 is the volume of the particle of diameter dp. Then, the fluid momentum transport equation writes:

α f ρ f ∂U f,i ∂t + α f ρ f U f,j ∂U f,i ∂xj = -α f ∂P f ∂xi + α f ∂Σ f,ij ∂xj (2) 
+ α f ρ f gi - q nqF D f q,i
where q means that the summation is performed over all particulate diameter distribution. For steady flow through arrays of fixed particles, and without gravity, the equation becomes

-α f ∂P f ∂xi - q nqF D f q,i = 0 (3) 
Let us introducing the following quantities

xp = αp αs and yp = dp ds , (4) 
where αs is the whole particle volume fraction (αs = q αq) and ds is the Sauter's diameter given by

ds = p xp dp -1
.
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Then the total force measured in fully-resolved simulation can be related to the drag force by equating Eqn (3) & (4) as

F f p,i = F D f p,i + αs α f y 3 p q xq y 3 q F D f q,i . (6) 
For the monodisperse case, xp = 1 and yp = 1, the expression becomes

F f p,i = 1 α f F D f p,i . (7) 
In Ref. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF][START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF][START_REF] Sarkar | Fluidparticle interaction from lattice boltzmann simulations for flow through polydisperse random arrays of spheres[END_REF] the mean force exerted by the fluid on the particle is measured from LBM simulations allowing to derive several fluid force correlatons. Finally, in the following, we will evaluate drag force correlations derived using various DNS approaches for dense suspension of monodisperse and polydisperse solid mixture.

Drag force in a fixed array of mono-sized spherical solid particles

The mean drag force in a fixed array of mono-sized solid spheres may be written,

F D f p,i = -ρ f πd 2 p 8 CD|Vr|Vr,i (8) 
with dp the particle diameter, ρ f the fluid density, Vr = Up -U f the mean fluid-particle relative velocity and CD ≡ CD(Rep) the drag coefficient. The drag coefficient depends on the particle Reynolds number Rep that is defined by

Rep = |Vr|dp ν f . (9) 
For a single particle (α f = 1) the drag force in the Stokes limit (Rep ≪ 1) is written,

F D f p,i = -3πρ f ν f dpVr,i . (10) 
Then the drag coefficient CD in the Stokes regime is given by,

CD = 24 Rep (11) 
Practical correlations of the drag coefficient may be found in the literature such as the one proposed by Schiller & Naumann [START_REF] Schiller | A drag coefficient correlation[END_REF] which is extensively used in gas-solid flow simulation. By analogy with the form of a single particle drag force, Eqn (8), the drag force in dense particle laden flows is written as

F D f p,i = -ρ f πd 2 p 8 C * D |Vr|Vr,i (12) 
where the drag coefficient

C * D ≡ C * D (Re * p , α f
) is a given function of the particle Reynolds number Re * p and of α f the fluid volume fraction.

Re * p = α f |Vr|dp ν f . ( 13 
)
The semi-empirical popular correlations given by Ergun [START_REF] Ergun | Fluid flow through packed columns[END_REF] and Wen & Yu [START_REF] Wen | Mechanics of fluidization[END_REF] are evaluated in this section for mono-sized particles. Ding & Gidaspow [START_REF] Ding | A bubbling fluidization model using kinetic theory of granular flow[END_REF] proposed a correlation with a transition from the Wen & Yu to the Ergun correlations for αs > 0.2. However this correlation leads to discontinuous transition and overestimation of the drag force for αs > 0.2 and for the particle Reynolds number > 100 encountered in gas phase olefin polymerization reactor. This leads to Gobin & al. [6] propose a continuous transition given in Tab. 1 according to the DNS results of Massol [START_REF] Massol | Simulations numériques d'écoulements à travers des réseaux fixes de sphères monodisperses et bidisperses, pour des nombres de Reynolds modérés[END_REF]. Recently, new forms for the monodisperse drag force correlation were derived from DNS results such as the ones proposed by Beetstra et al. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] and Tenneti et al. [START_REF] Tenneti | Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres[END_REF], given in Tab. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF]. Table [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] shows the different correlation proposed by the different author in the literature. For all results presented the drag force are normalized by the Stokes drag force,

F D (α f , Re * p ) = |F D f p | 3πµ f dpα f |Vr| (14) 
Figure 1, shows the dimensionless drag force for low particle Reynolds number (Re * p =1) as a function of the solid volume fraction, the line represent the correlations given in Table [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] and the black symbols are the LBM numerical results from [START_REF] Hill | The first effects of fluid inertia on flows in ordered and random arrays of spheres[END_REF]. For volume fraction larger than 0.1, LBM results are found in good agreement with theoretical developments made by [START_REF] Hasimoto | On the periodic fundamental solutions of the stokes equations and their application to viscous flow past a cubic array of spheres[END_REF][START_REF] Sangani | Slow flow through a periodic array of spheres[END_REF] This theoretical developments are valid for fixed bed, in cubic arrays configuration (simple, body-centered and face-centered), Hill et al. [START_REF] Hill | The first effects of fluid inertia on flows in ordered and random arrays of spheres[END_REF][START_REF] Hill | Moderate-reynoldsnumber flows in ordered and random arrays of spheres[END_REF] shown this theory are valid for random array. In contrast when the particles are not frozen, the behaviour of flow could be changed, and the drag force acting on the particle are not strictly equivalent to a fixed bed. Wen & Yu [START_REF] Wen | Mechanics of fluidization[END_REF] Ergun [START_REF] Ergun | Fluid flow through packed columns[END_REF] Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF] Beetstra et al. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] Tenneti et al. [START_REF] Tenneti | Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres[END_REF] Hill et al. [START_REF] Hill | The first effects of fluid inertia on flows in ordered and random arrays of spheres[END_REF] Figure 1: Comparison between the LBM and the different equations of dimensionless drag force apply in a fixed array of monosized spherical solid particles (see Tab. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF]) (without the pressure gradient) as a function of the particle volume fraction αp for Re * p = 1.

Figure 2, shows the dependence of the dimensionless drag force on the solid volume fraction for several particle Reynolds numbers Rep, comparing the predictions of the correlation functions given Table [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] and the DNS results with a body fitted mesh by Massol [START_REF] Massol | Simulations numériques d'écoulements à travers des réseaux fixes de sphères monodisperses et bidisperses, pour des nombres de Reynolds modérés[END_REF]. Results using Tenneti et al. correlation [START_REF] Tenneti | Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres[END_REF] and 

F D Gob =          F D W Y if αp ≤ 0.3 min(F D W Y , F D Erg ) otherwise Beetstra, Van der Hoef & Kuipers 2007 [1]
F D BV K = 10 1 -α f α 2 f +α 2 f (1+1.5 1 -α f )+ 0.413 α 2 f Re * p 24 α -1 f + 3α f (1 -α f ) + 8.4Re * -0.343 p 1 + 10 3(1-α f ) Re * -0.5-2(1-α f ) p Tenneti et al. 2011 [15] F D T GS = F D W Y (Re * p )α 1.65 f + α f F1(α f ) + α f F2(α f , Re * p ) F1(α f ) = 5.81(1 -α f ) α 3 f + 0.48 (1 -α f ) 1/3 α 4 f F2(α f , Re * p ) = (1 -α f ) 3 Re * p 0.95 + 0.61(1 -α f ) 3 α 2 f
DNS results from Massol [START_REF] Massol | Simulations numériques d'écoulements à travers des réseaux fixes de sphères monodisperses et bidisperses, pour des nombres de Reynolds modérés[END_REF] are very closed. We can notice that Tenneti et al correlations are fitted from DNS results obtained using immersed boundary methods (IBM). Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF] drag force correlation predictions, are really closed to the Massol DNS results for the whole range of particle Reynolds number and particle volume fraction shown. In particular, the proposed transition model from Wen & Yu to Ergun correlations allows to predict accurately the drag force in dense particle-laden flows for large particle Reynolds number values : Re * p ≥ 100. Hence, to develop a correlation for polydisperse systems, a simple polydispersed correlation based Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF] mono-sized drag force will be presented and evaluated.

Drag force in a fixed array of polydisperse spherical solid particles

Some authors, like Van der Hoef [START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF] and Yin and Sundaresan [START_REF] Yin | Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions[END_REF], developed polydisperse models using the monodisperse force applied to a mean diameter corrected by a function of the particle mixture properties. Van der Hoef et al. [START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF] propose the following form for the normalized by Stokes force drag force for particle type p,

F D V BK,poly = f poly (α f , yp)FBV K D (α f , Re * s ) (15) 
with f poly (α f , yp) written as,

f poly (α f , yp) = α f yp + (1 -α f )y 2 p
Re * s is the Reynolds number using the Sauter's diameter, written:

Re * s = α f |Vr|ds ν f . ( 16 
)
Yin and Sundaresan 2009 [START_REF] Yin | Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions[END_REF] propose the following form,

F D Y S,poly = C1 + f poly (α f , yp)F D V BK (α f , Re * s ) (17) 
f poly (α f , yp) = ayp + (1 -a)y 2 p a = 1 -2.660(1 -α f ) + 9.096(1 -α f ) 2 -11.338(1 -α f ) 3 C1 = 1 α f + 1 α f [ayp + (1 -a)y 2 p ]
The monosdiperse force F D V BK corresponds to the correlaiton developed by Van der Hoef et al. [START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF],

F D V BK = 10 1 -α f α 2 f + α 2 f (1 + 1.5 1 -α f ) (18) 
The Gobin et al. drag force correlation was already used for Euler-Euler numerical simulation of laboratory and industrial scale gas-solid polydisperse fluidized bed [START_REF] Fede | 3d numerical simulation of polydisperse pressurized gas-solid fluidized bed[END_REF][START_REF] Fotovat | Sand-assisted fluidization of large cylindrical and spherical biomass particles: Experiments and simulation[END_REF]. The corresponding dimensionless drag force takes the following form,

F D Gob,poly = ypF D Gob (α f , ypRe * s ) (19) 
A second form more complex, accounting the separate dependence on the diameter ratio yp and the gas volume fraction α f is proposed. The function is determined by a fitting with the LBM data using the least-squares methods,

F D 2,Gob,poly = f poly (α f , yp)F D Gob (α f , ypRe * s ) ( 20 
)
The function is determined by a fitting with the LBM data using the least-squares methods,

f poly = yp + 0.1(yp -1)((y 1.5 p -1) + α f (1.25 -5α f ))
. This correlation focus only on the range [0:100] of particle Reynolds number.

Figure 3, shows the normalized polydisperse drag force divided by the normalized monodisperse drag force. These monodisperse force for each case has been calculated with the Reynolds number depending on the Sauter's diameter Re * s . The Figure shows the dependence of the normalized polydisperse drag force coefficient on the particle diameter ratio yp, for given values of the Reynolds number Re * s and of the gas volume fraction α f . The different line corresponds to the correlations by the Eqn ( 15), ( 17), ( 19) & (20). The point represents the LBM numerical data given by these different authors [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF][START_REF] Sarkar | Fluidparticle interaction from lattice boltzmann simulations for flow through polydisperse random arrays of spheres[END_REF]. Wen & Yu [START_REF] Wen | Mechanics of fluidization[END_REF] Ergun [START_REF] Ergun | Fluid flow through packed columns[END_REF] Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF] Beetstra et al. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] Tenneti et al. [START_REF] Tenneti | Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres[END_REF] Massol [START_REF] Massol | Simulations numériques d'écoulements à travers des réseaux fixes de sphères monodisperses et bidisperses, pour des nombres de Reynolds modérés[END_REF] Figure 2: Comparison between the DNS and the different equations of dimensionless drag force (see Tab. [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF]) (without the pressure gradient) as a function of of the gas volume fraction α f for different Reynolds number Rep apply in a fixed array of mono-sized spherical solid particles. Gob,poly , shows a good agreement with the LBM data. In con-trast, the results for higher Re * s shows an underestimation by this simple model.

Conclusion

The drag force correlations developed from DNS results using Lattice Boltzmann Method (LBM) [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] and semi-empirical functions found in the literature (Ergun [START_REF] Ergun | Fluid flow through packed columns[END_REF], Wen & Yu et al. [START_REF] Wen | Mechanics of fluidization[END_REF], Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF], were compared for monodisperse flows. The correlation of Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF] provides satisfactory predictions and maximum discrepancies are measured for low Reynolds number values. For polydisperse flows several correlations may be found in the literature to take into account the dependence on the particle diameter ratio, the particle Reynolds number and the solid volume fraction, likes the ones of Van der Hoef [START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF] and of Yin and Sundaresan [START_REF] Yin | Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions[END_REF]. The different authors proposed for polydisperse drag force to multiply the monodisperse drag force calculated with the Sauter mean diameter by a function depending on particle size ratio yp and gas volume fraction. The results provided by a polydisperse applicaiton of the Gobin et al. [START_REF] Gobin | Fluid dynamic numerical simulation of a gas phase polymerisation reactor[END_REF] correlation tend to slightly underestimated the drag force compared to the LBM results of Beetstra [START_REF] Beetstra | Drag force of intermediate reynolds number flow past mono-and bidisperse arrays of spheres[END_REF] and to the others correlation developed for polydisperse flows [START_REF] Van Der Hoef | Lattice-boltzmann simulations of low-reynolds-number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force[END_REF][START_REF] Yin | Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions[END_REF] for low Reynolds Re * s ≤ 10. An overestimation of the drag force is observed for large Reynolds number value Re * s = 100. LBM data represent frozen particle suspension in a steady gas flow, but the gas-solid suspensions are usually unstable. The particle-particle relative motion and particle-turbulence interactions should modify the drag force correlation modelling. So, additional numerical studies using unsteady particle resolved simulation allowing separate particle motion [START_REF] Vincent | A lagrangian vof tensorial penalty method for the dns of resolved particle-laden flows[END_REF] are needed to improve the drag force modelling accuracy in fluidized beds.
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 3 Figure 3: Comparison between LBM data [1][START_REF] Sarkar | Fluidparticle interaction from lattice boltzmann simulations for flow through polydisperse random arrays of spheres[END_REF] and the correlations and the new correlation written in section 4. The vertical axis corresponds to the dimensionless drag force normalized by the dimensionless monodisperse drag force using the Reynolds number based on mean Sauter diameter Re * s ; the horizontal axis is the dimensionless particle size ratio yp.

Table 1 :

 1 Relations for the normalized drag force of a monodisperse system, as function of gas volume fraction and Reynolds number Re * p = α f |Vr|dp/ν f

	Author						Drag force
	Ergun 1952 [3]	F D Erg =	150 18	1 -α f α 2 f	+	7 4	1 18	Re * p α 2 f
	Wen and Yu 1965 [18]	F D W Y = (1 + 0.15Re * 0.687 p	)α -3.65 f
	Gobin et al. 2003 [6]