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Quantum phase transitions reflect singular changes taking place in a many-body ground state,
however, computing and analyzing large-scale critical wave functions constitutes a formidable
challenge. New physical insights into the sub-Ohmic spin-boson model are provided by the coherent
state expansion (CSE), which represents the wave function by a linear combination of classically
displaced configurations. We find that the distribution of low-energy displacements displays an
emergent symmetry in the absence of spontaneous symmetry breaking, while experiencing strong
fluctuations of the order parameter near the quantum critical point. Quantum criticality provides
two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement
and a constant universal average squeezing amplitude. These observations, confirmed by extensive
variational matrix product states (VMPS) simulations and field theory arguments, offer precious
clues into the microscopics of critical many-body states in quantum impurity models.

I. INTRODUCTION

The understanding of critical phenomena in classical
mechanics owes a great deal to the spatial representation
of critical states, whereby the order parameter experiences
statistical fluctuations on all length scales, due to a diverg-
ing correlation length [1, 2] at the critical temperature.
This scale invariance property was the starting point for
one of the most powerful tools in theoretical physics, the
renormalization group, which allowed rationalization of
classical criticality in terms of trajectories in the space
of coupling constants [3]. Today, one frontier of research
in critical phenomena lies in the quantum realm, where
criticality may govern some of the most fascinating and
complex properties found in strongly correlated materials
or cold atoms [4, 5]. One very fruitful approach is to
consider quantum criticality in light of an effective clas-
sical theory in higher dimensions [5], combining spatial
and temporal fluctuations within the path integral formal-
ism. Quantum phase transitions are then probed through
physical response functions that display a diverging cor-
relation length in space-time. However, this point of view
does not provide a full picture of the physics at play,
especially since quantum criticality pertains to a singular
change in a many-body ground state. Developing wave
function-based approaches to strong correlations is indeed
a blossoming field, ranging from quantum chemistry [6] to
quantum information [7, 8], so that hopes are high that
quantum critical states may be rationalized in a simpler
way.

Our aim in this article is to directly study the quan-

tum critical wave function of a simple toy-model, the
sub-Ohmic spin-boson Hamiltonian, and to unveil some
salient fingerprints of criticality in its ground state. In
this standard model, to be described in further details
below, a single quantized spin interacts with a contin-
uum of bosonic modes, with a spectrum of coupling con-
stants that vanishes with a power-law s < 1 at low en-
ergy. For this purpose, we shall use a combination of two
numerically-exact wave function-based methods for quan-
tum impurity models, a variational matrix-product-state
approach (VMPS) [8–11] and the coherent state expansion
(CSE) [12–15]. VMPS is an acronym for the variational
matrix-product-state (MPS) formulation of the density
matrix renomalization group (DMRG), which has been
established as a very powerful and flexible technique also
in the context of bosonic impurity models [11, 16, 17],
and will be used as a reference. Its all-purpose character
makes it hard, however, to rationalize the precise con-
tent of the wave function in simple physical terms. For
this reason, we implement the CSE variationally, which
amounts to expanding environmental states of the bath
onto a discrete set of classical-like configurations, namely
coherent states of the bosonic states in the bath (note that
an infinite discrete set is enough to ensure completeness
of the coherent state basis [18]). Thus, crucial aspects of
quantum criticality can be directly inferred by reading-off
the various superpositions of oscillator displacements that
parametrize the set of coherent states.

For a given spin orientation of the impurity, we find
that the distribution of displacements within the CSE
wave function displays an emergent symmetry (between
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positive and negative values) in the critical domain. This
implies that the average displacement decays to zero for
low-energy critical modes, with a universal exponent con-
trolled by the dynamical susceptibility. This behavior
reflects the absence of spontaneous symmetry breaking,
and the fact that the magnetization order parameter di-
rectly couples to the bosonic displacement field. Hence the
displacements of the oscillators in the critical many-body
wave function vanish in average at low energy. In addition,
the CSE wave function indicates that the distribution of
displacements admits a finite width at the quantum criti-
cal point (although its mean value vanishes algebraically
for critical modes, as mentioned above). This observation
translates physically the wide fluctuations of the order
parameter that take place in the quantum critical regime
in absence of ordering. At the level of the critical wave
function, this effects amounts to a finite average squeezing
amplitude of the quantum critical modes (averaged over
a logarithmic energy interval), which we show from field
theory arguments to take a constant universal value.

For the spin-boson model, we demonstrate that both
the MPS and CSE methodologies converge to the same
results, both away from and at the critical point. We find
that the number of coherent states required to capture
quantum critical behavior on a reasonable energy range
(at least three decades) is relatively large, of the order
of a hundred. For this reason, recent investigations of
the sub-Ohmic model with variational CSEs using fewer
states [19, 20] failed to grasp the critical exponents found
in large scale VMPS calculations [16, 17]. In contrast
to the usual Kondo problem associated with the Ohmic
spin-boson model, the sub-Ohmic case is indeed governed
by two energy scales in its delocalized phase, namely the
renormalized tunneling amplitude and the mass of a soft
bosonic collective mode which drives the transition. Cap-
turing the critical softening requires careful and extensive
numerical simulations, as we shall show by benchmarking
the VMPS and CSE against each other.

The paper is organized as follows. In Sec. II, we present
the spin-boson model, its discretization on a Wilson en-
ergy mesh, and the variational solution of its many-body
wave function using both MPS and CSE representations.
The wave function obtained by CSE is displayed to guide
physical intuition in the rest of the paper. Sec. III de-
velops the necessary analytical work that relates the dy-
namical critical exponent of the spin susceptibility to
two important features of the wave function: the average
displacement of the environmental state and the average
width (or squeezing amplitude). This allows us to eluci-
date the different behaviors of the wave function in both
the non-critical delocalized phase and at the quantum
critical point. Finally, Sec. IV shows numerical results
from the VMPS and CSE approaches, finding excellent
agreement between each other, as well as with analytical
predictions. Appendix A provides details on a new hier-
archical algorithm devised to solve the CSE in a fast and
reliable way.

II. GROUND STATE WAVE FUNCTION OF
THE SUB-OHMIC SPIN-BOSON MODEL

A. Model

Our study will be based on the spin-boson Hamilto-
nian [4, 21–24] with ∆ the quantum Larmor frequency of
a two-level system described by Pauli matrices ~σ:

H =
∆

2
σx −

σz
2

∑
k

gk(a†k + ak) +
∑
k

ωka
†
kak. (1)

The bosonic spectrum assumes a pure power-law with
exponent 0 ≤ s ≤ 1 up to a sharp high-energy cutoff ωc
(ωc = 1 in all our numerical computations):

J(ω) ≡
∑
k

πg2kδ(ω − ωk) = 2παω1−s
c ωsθ(ω)θ(ωc − ω).

(2)
The Ohmic case (s = 1) can be realized in the context of
waveguide-QED [25–28] by coupling a superconducting
qubit to a high impedance transmission line consisting
of a uniform Josephson junction array. In principle, a
precise tailoring of the capacitance network could allow
the sub-Ohmic regime to be realized as well. In terms of
quantum critical phenomena [29–33] the sub-Ohmic model
with 0 ≤ s < 1 presents a continuous quantum phase
transition at a critical coupling αc between a localized
phase (with

〈
σz
〉
6= 0 for α > αc) and a symmetric phase

(with
〈
σz
〉

= 0 for α ≤ αc), which will be our focus.

B. Wilson discretization

The bosonic bath J(ω) is discretized in a logarithmic
fashion, using a Wilson parameter Λ > 1, first on the
highest energy window close to the cutoff [Λ−1ωc, ωc], and
then iteratively on successive decreasing energy intervals
[ωn+1, ωn] with ωn = Λ−nωc [16, 29, 30]. This leads to
the so-called star-Hamiltonian, which involves the direct
coupling of the spin to all bosonic modes (and not to a
single site within an extended bosonic chain):

Hstar =
∆

2
σx −

1

2
σz

+∞∑
n=0

γn√
π

[a†n + an] +

+∞∑
n=0

ξna
†
nan. (3)

The impurity coupling strength reads

γ2n =

∫ ωn

ωn+1

dω J(ω) = 2πα
1− Λ−(s+1)

s+ 1
ω2
cΛ−n(s+1), (4)

and the typical energy ξn in each Wilson shell is

ξn =
1

γ2n

∫ ωn

ωn+1

dω ω J(ω) =
s+ 1

s+ 2

1− Λ−(s+2)

1− Λ−(s+1)
ωcΛ

−n. (5)

Note that the continuum limit is only recovered for Λ→ 1
and an infinite number of Wilson shells. However, in
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practice Λ = 2 will be used in the following, and 50 sites
will be used for both the MPS and the CSE variational
calculations. This standard choice of parameters offers a
good compromise between energy resolution and numeri-
cal costs, but our techniques can be pushed in principle
to smaller Λ values.

C. Variational matrix product states approach

One very successful approach that enables direct ac-
cess to ground-state wavefunction of low-dimensional
quantum system is the density matrix renormalization
group (DMRG) [9, 10]. Though originally developed
in the context of one-dimensional real-space systems,
the matrix-product-state formulation of this variational
method (VMPS) has been established as indispensable
tool also in the context of quantum impurity models
[8, 11, 16, 17].

Its application to the spin-boson model works as fol-
lows. First, the star Hamiltonian Hstar is mapped on
a truncated Wilson chain, where the spin- 12 impurity is
coupled to a length-N tight-binding chain model whose
hopping matrix elements decrease exponentially with site
number k. Next, one initializes a random MPS for the
Wilson chain Hamiltonian,

|ψ〉 =
∑
σ,m

A[σ]A[m0]A[m1] ... A[mN ]|σ〉|m〉 , (6)

where |↑〉, |↓〉 represents the σz eigenstates of the impurity
and |m〉 = |m0〉...|mN 〉 describes boson number eigen-
states in a truncated Fock basis, i.e., m̂k|m〉 = mk|m〉,
with mk = 0, 1, ..., dk − 1. The wave function coefficient
is split into a product of tensors A[...], which are itera-
tively varied with respect to the energy for finding the
best approximation for the ground-state wavefunction. If
the parameters such as the bond dimension D and the
Fock-space dimension dk are chosen appropriately large,
the algorithm converges the MPS to a numerically quasi-
exact representation of the ground-state wavefunction. In
practice, we use an optimal boson basis [16, 17] mapping
the local Fock basis |mk〉 to a smaller, effective bosonic
basis |m̃k〉 for efficiency reasons. Good convergence is
ensured for the delocalized phase and at the quantum
critical point for D = 60, dk = 100, and d̃k = 16.

D. Coherent state expansion

1. General methodology

More recently, an alternative representation of bosonic
environmental wave functions was proposed [12, 13],
based on a simple physical picture of the energy land-
scape in terms of classical-like configurations. These are
parametrized by multimode coherent states, | ± f (m)〉 =

e±
∑

k f
(m)
k (a†k−ak)|0〉, with f

(m)
k the displacement of mode

k for the mth variational coherent state. Note that the
index k labels momentum, while the index m = 1 . . .Mcs

represents an optimal choice of a set of discrete coherent
states, which embodies a complete basis for an infinite
number of coherent states, Mcs →∞ [18]. The expansion
for the many-body ground state wave function |GS〉 reads:

|GS〉 =

Mcs∑
m=1

[
pm|f (m)〉| ↑〉+ qm|h(m)〉| ↓〉

]
, (7)

with the normalization
〈
GS|GS

〉
= 1. Here, pm and qm

characterize the weight of the different coherent state
components within the ground state wave function for
each spin orientation. The discrete sum over the index m
can thus be interpreted as an optimal discretization of the
multidimensional integral involved in the standard over-
complete Glauber-Sudarshan representation [18] in terms
of continously varying displacement functions. We find in
practice that the coherent state representation does not
show signs of this overcompleteness once the wavefunction
is developed on a discrete sum of coherent states, as in
Eq. (7), and if the number of coherent states Mcs is typi-
cally much less than the number of states in the Hilbert
space required to capture the ground state (which corre-
sponds to the usual application of the method). There is
of course a trivial redundancy when reshuffling the indices
m of the set of coherent states for a given solution, but
apart from this, we usually find a single global minimum
in the variational procedure (although the local minima
tend to cluster in energy when more and more states are
added). Thus, the full many-body ground state of the
spin-boson model can be interpreted physically based on
the optimal variational state, a path that we will follow
here. We have also developed a new hierarchical algo-
rithm for the optimization of the systematic variational
state (7), see Appendix A.

For the spin-boson model without any magnetic field
along σz and in absence of spontaneous symmetry break-
ing (which occurs for α > αc), the system obeys a Z2

symmetry, so that the parameters for the ground state

satisfy exactly pm = −qm and f
(m)
k = −h(m)

k for all k and
m. This method was thoroughly tested for the Ohmic
spin-boson model (s = 1) [12, 13], where extremely rapid
convergence was established for a moderate number of
coherent states Mcs . 10, unless one considers the deep
Kondo regime where α→ 1.

2. Full many-body wave function

We show in Fig. 1 typical wavefunctions obtained with
the CSE near the quantum critical point (for two bath
exponents s = 0.3 and s = 0.8). Here the set of dis-

placements f
(m)
n for each oscillator mode a†n is plotted

versus the frequency ωn of the mode, with m = 1 . . .Mcs

the index in the expansion (the corresponding weight
pm are shown in the Appendix). In both plots, the
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FIG. 1. (Color online) Nearly critical wave functions from
the CSE for the case s = 0.3 (upper panel) and s = 0.8

(lower panel), represented by the set of displacements f
(m)
n

with m = 1 . . .Mcs given by the thin full lines. Thick full
lines show the average mean displacement 0.5fn, and thick
dashed lines the average width 0.5

√
κn. The critical regime

is identified in the range 10−4 < ωn < 10−2 by a constant
plateau in κn, which reflects the clearly wide distribution of
the displacements associated to the classical-like configurations
of the CSE. For frequencies ω � 10−4, the wavefunction is
no more critical and the displacements collapse onto a single
curve, so that the distribution narrows, and κn goes to zero.

critical domain lies roughly for frequencies in the range
10−4 < ωn < 10−2, which shows two striking observa-
tions. First, the distribution of displacements looks very
symmetric between positive and negative values of the set

of f
(m)
n , both in the critical regime, and in the region of

run-away flow ωn < 10−4 at lower energy. This symmetry
is clearly not obeyed for the high energy modes near the
cutoff. Because the displacement operator directly cou-
ples to the order parameter σz in Hamiltonian (1), this
symmetry nicely reflects the absence of spontaneous sym-
metry breaking at the critical point. This observation can
be substantiated mathematically by defining, from the
star Hamiltonian (3), the average fn of the displacement
fields in mode n (see Sec. III for thorough discussion):

fn ≡
〈
(a†n + an)σz

〉
(8)

= 2

MCS∑
m,m′

pmpm′
〈
f (m)|f(m′)〉(f (m)

n + f
(m′)
n

)
.

The absence of spontaneous symmetry breaking, both
at the critical point and in the whole delocalized phase,
translates in the fact that the average value fn vanishes
for ωn → 0. However, the set of displacements in the

non-critical domain (ωn < 10−4) obey a trivial symmetry,
as all displacements collapse on a single curve. In contrast,
the displacements in the critical range 10−4 < ωn < 10−2

keep fluctuating, showing a finite width of the distribution.
This width κn can be defined as follows:

κn ≡
〈
(a†n + an)2

〉
− 1 (9)

= 2

MCS∑
m,m′

pmpm′
〈
f (m)|f(m′)〉(f (m)

n + f
(m′)
n

)2

.

This plateau in κn seen in the critical domain has for
origin the strong quantum fluctuations that take place at
criticality, due to an order parameter that is nearly but
not quite localized. Alternatively, the width κn can be
interpreted as a squeezing parameter for the mode a†n.

Having clarified the physics at play in the wave function
itself, we will study these two coarse grained quantities
fn (average) and κn (width), which capture mathemat-
ically the distribution of classical configurations in the
wave function. This study will rely not only on the CSE
variational state, but also on VMPS calculations for bench-
mark, and on analytical field-theory calculations, which
we present now.

III. ANALYTICAL INSIGHTS INTO VARIOUS
WAVE FUNCTION PROPERTIES

We establish in this section a set of exact analytical
results for various wave function properties, both in the
non-critical and in the critical regimes. The properties
that we will consider concern the average displacement of
the bath oscillators, as well as their squeezing amplitude,
which can be interpreted as the variance of the oscillator
displacements. These two quantities thus give interest-
ing information on the structure of the environmental
wavefunction.

A. Average displacement

1. General formula

Owing to the linear coupling between σz and the oscilla-

tor displacement operator (a†k+ak), correlations are estab-
lished between the spin degree of freedom and its bosonic
environment. Due to the symmetry properties of Hamil-
tonian (1), the ground state wave function can be written
generically as |GS

〉
= | ↑

〉
|Ψ↑
〉
− | ↓

〉
|Ψ↓
〉
, where |Ψ↓

〉
=

P̂ |Ψ↑
〉
, with the parity operator P̂ = exp(iπ

∑
k a
†
kak).

Thus, except for the trivial non-interacting case α = 0
where the environmental wave function is in the bare vac-
uum, the qubit does not factorize from its environment.
The manner in which correlations in |Ψ↑

〉
penetrate the

bath states can be viewed equally as properties of a screen-
ing cloud [15, 28]. One goal of this paper is to illustrate
the behavior of this screening cloud in the sub-Ohmic
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model, both away from and at the quantum critical point.
Since the environmental wave function |Ψ↑

〉
is a compli-

cated object, the simplest measure of the cloud resides
in the average displacement fk that is obeyed by a given

but arbitrary mode a†k within this state. This quantity is

defined as fk ≡
〈
(a†k + ak)σz

〉
, where the average is taken

with respect to the full many-body ground state |GS
〉
.

The average displacement fk gives thus information on
how strong the order parameter fluctuates at the energy
scale ωk.

Now, we would like to show that this average displace-
ment can be related exactly to the spin-spin equilibrium
correlation function, defined in imaginary time as:

χ(τ) =
〈
GS|Tτ

σz(τ)

2

σz(0)

2
|GS

〉
, (10)

with Tτ the standard time-ordering operator, so
that TτA(τ)B(0) = θ(τ)A(τ)B(0) + θ(−τ)B(0)A(τ).
The imaginary-time evolved operators read A(τ) =
eHτAe−Hτ . For the purpose of computing fk, let us
introduce the mixed correlation function between the
spin and the displacement operator associated to a given
bosonic k-mode:

Gz,k(τ) ≡
〈
GS|Tτ [a†k(τ) + ak(τ)]σz(0)|GS

〉
, (11)

so that fk = Gz,k(0+). Taking the time derivative in
Eq. (11), one gets the equations of motion:

∂2

∂τ2
Gz,k(τ) = ω2

kGz,k(τ)− 4gkωkχ(τ). (12)

Now, going to zero-temperature (but the formula below
applies as well to finite temperature using discrete Mat-

subara frequencies), with G(iω) =
∫ +∞
−∞ dt G(τ)eiωt, one

obtains the exact relation:

Gz,k(iω) =
4gkωk
ω2 + ω2

k

χ(iω). (13)

Going back to the time domain, one finds the connection
between the average displacement of the environmental
wave function (the screening cloud) and the local spin
susceptibility:

fk =

∫
dω

2π
Gz,k(iω) = 4gkωk

∫
dω

2π

1

ω2 + ω2
k

χ(iω). (14)

From this equation, previous knowledge obtained for spin
dynamics of the sub-Ohmic model [29, 30, 33] will allow
us to make exact predictions for the average displacement
characterizing the screening cloud.

2. Asymptotic behavior of the average displacement

A change of variable in Eq. (14) gives

fk = 4gk

∫
dx

2π

1

x2 + 1
χ(iωkx), (15)

so that the small-momentum behavior of fk is determined
by the low-energy scaling of the spin-spin correlation func-
tion [29, 30, 33], which reads χ(iω) ' 1/(mR + Bs|ω|s),
with Bs = 4αω1−s

c

∫
dxxs−1/(1 + x2). Here mR is the

renormalized mass, which is finite in the delocalized phase
(α < αc) and vanishes at the quantum critical point. Thus,
two scaling laws are established in the limit k → 0:

fk '
2gk
mR

for α < αc, (16)

fk '
4As
Bs

gk
|ωk|s

for α = αc, (17)

where As =
∫

(dx/2π)x−s/(1 +x2). Let us now specialize
to the case of the Wilson energy discretization on the grid
ωn = ωcΛ

−n, in which case ωk is replaced by ξn ∝ Λ−n ∝
ωn and gk by γn/

√
π ∝ Λ−n(s+1)/2 ∝ ω

(s+1)/2
n . We thus

find the following low-energy scaling laws of the average
displacement for the modes obeying the Wilson energy
discretization:

fn ∝ ω(1+s)/2
n for α < αc, (18)

fn ∝ ω(1−s)/2
n for α = αc. (19)

The non-critical modes thus follow a different and faster
power law than the critical ones, a result that we shall
confirm from our numerics in Sec. IV. In fact, our low
frequency analysis allows us to extract the exact prefactor
of the critical average displacement. At α = αc, we find:

fn =

√
2 (s+ 2)

s (
1− Λ−(s+1)

)s+ 1
2 tan πs

2

π
√
αω

1−s
2

c (s+ 1)
s+ 1

2
(
1− Λ−(s+2)

)s ω 1−s
2

n . (20)

The prefactor is clearly non-universal, as a dependence in
the frequency cutoff ωc is present.

B. Average width (squeezing amplitude)

1. General formula

Generalizing the previous results, we define the average

intramode squeezing amplitude as κk ≡
〈
(a†k + ak)2

〉
− 1,

such that it is exactly zero for a vacuum state. Following
the previous methodology, we introduce the intermode
Green’s function of the displacement field of the bosonic
modes:

Gk,q(τ) ≡
〈
GS|Tτ [a†k(τ) + ak(τ)][a†q(0) + aq(0)]|GS

〉
.

(21)
Applying the time-derivative twice provides exact equa-
tions of motion, which lead to the following formula in
the Matsubara domain:

Gk,q(iω) ≡ G0
k(iω)δk,q + gkgqG

0
k(iω)G0

q(iω)χ(iω), (22)

where G0
k(iω) = 2ωk/(ω

2 + ω2
k). This gives the exact

equation relating the average squeezing parameter to the
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dynamical spin-spin susceptibility:

κk =

∫
dω

2π
Gk,k(iω)−1 = 4g2kω

2
k

∫
dω

2π

1

(ω2 + ω2
k)2

χ(iω).

(23)
Again, knowledge of the spin dynamics will give informa-
tion on the average squeezing parameter for the ground
state wave function.

2. Asymptotic behavior of the average squeezing

Similar to our analysis of the average displacement, a
change of variable in Eq. (23) gives

κk =
4g2k
ωk

∫
dx

2π

1

(x2 + 1)2
χ(iωkx), (24)

resulting in the following low-energy leading order behav-
ior of the average squeezing amplitude:

κk '
g2k
mωk

for α < αc, (25)

κk '
4Cs
Bs

g2k
|ωk|1+s

for α = αc, (26)

where Cs =
∫

(dx/2π)x−s/(1 + x2)2. In the case of the
Wilson energy discretization on the grid ωn = ωcΛ

−n,
we get the explicit scaling laws for the average squeezing
amplitude:

κn ∝ ωsn for α < αc, (27)

κn = const. for α = αc.

We find a constant and universal (cutoff independent)
value of κn at the quantum critical point, as a precise
computation of the constant value for α = αc reads:

κn =
(s+ 2)

s+1 (
1− Λ−(s+1)

)s+2
tan πs

2

π (s+ 1)
s+1 (

1− Λ−(s+2)
)s+1 . (28)

Since the average displacement fn vanishes at low energy,
this means that the distribution of displacements of the
critical wave function is very broad, reflecting the strong
fluctuations of the order parameter at the quantum critical
point. We stress that κn, defined as (10), strictly vanishes
in the continuum limit Λ→ 1, but that it remains finite
when integrated over a logarithmic energy mesh.

IV. NUMERICAL RESULTS

A. General scaling behavior

We start by presenting general VMPS calculations, al-
lowing us to outline the scaling behavior and the quantum
criticality of the sub-Ohmic spin-boson model. We shall
consider two different values of the bath spectral density

10-16 10-12 10-8 10-4 100

ωn

10-16

10-12

10-8

10-4

100

f n

s=0.8

VMPS α=0.393638

VMPS α=0.387

VMPS α=0.25

10-6 10-5 10-4 10-3 10-2 10-1 100

αc−α

10-10

10-8

10-6

10-4

10-2

100

ω

s=0.8

VMPS

(αc−α)ν

FIG. 2. (Color online) The upper panel shows the average
displacement fn =

〈
(a†n + an)σz

〉
from the VMPS calculation

at s = 0.8, for three values of α = 0.25, 0.387, 0.393638 (the
last value is very close to the quantum critical interaction
strength αc). The dotted line denotes the non-critical scaling

fn ∝ ω(1+s)/2
n for ω � ω?, while the dashed line indicates the

expected critical behavior fn ∝ ω
(1−s)/2
n for ω? � ω � ωc.

The crossover scale ω? between the two scaling behaviors
is shown in the lower panel for a large selection of α values,
allowing us to extract the correlation length exponent ν ' 0.47
for s = 0.8. This value is quite different from the mean-field
result νMF = 1/s = 1.25, because the system lies below its
upper critical dimension [29, 30].

throughout the paper, s = 0.3 and s = 0.8. The for-
mer corresponds to the case where the quantum phase
transition is of mean-field type, while the latter case is
associated to an interacting fixed point [29–32]. We stress
beforehand that both the average displacement fn and
average squeezing amplitude κn are exactly related to the
dynamical susceptibility from Eqs. (14) and (23), so that
their scaling behavior as a function of momenta, both in
the non-critical and critical regimes, is determined by a
trivial s-dependent exponent.

However, non-trivial exponents in the interacting case
0.5 < s < 1 will show up in the α-dependence of the
correlation length ξ that is defined by the spatial extent up
to which quantum critical fluctuations penetrates within
the bath states. More precisely, the correlation length
is given by an inverse energy ξ = 1/ω?, where ω? is
such that quantum critical behavior is established for
ω? � ωk � ωc (this regime sets in only if α is quite close
to αc). This correlation length behaves as ξ ∝ |αc−α|−ν ,
with the exponent νMF = 1/s in the mean field regime
0 < s < 1/2. This can be gathered from the low-energy
behavior χ(iω) ' 1/(mR + Bs|ω|s) and the absence of
singular vertex corrections at mean-field level, giving the
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1/
ν

VMPS

1/νMF =s

FIG. 3. (Color online) The upper panel shows, similarly to
Fig. 2, the average displacement, but now for s = 0.3, with
α = 0.0326, 0.036, 0.036622 (the last value is very close to
the quantum critical point). The dotted line shows the non-

critical scaling fn ∝ ω(1+s)/2
n , while the dashed line indicates

the expected critical quantum behavior fn ∝ ω
(1−s)/2
n . The

lower panel shows the extracted correlation length exponent ν
for various values of s, which assumes the mean-field prediction
νMF = 1/s only for 0 < s < 1/2.

renormalized mass mR ∝ αc − α. However, ν assumes
non-trivial values given by a classical long-range Ising
model [29, 30] for the interacting regime 1/2 < s < 1.
This behavior is illustrated in the lower panels of Fig. 2
and Fig. 3. Thus, both the average displacement and
average squeezing amplitude (not shown here) encode
non-trivial exponents for 1/2 < s < 1, but only due
to the divergent correlation length ξ = 1/ω?. These
observations can be also summed up by scaling laws:

fn = ω(1−s)/2
n F (ωn/ω

?), (29)

κn = K(ωn/ω
?), (30)

with F (x),K(x) ∝ 1 for x � 1, and F (x),K(x) ∝ xs

for x� 1. This general scaling behavior of the average
displacement is illustrated in the upper panel of Fig. 2 for
s = 0.8, and in the upper panel of Fig. 3 for s = 0.3. We
find indeed that our VMPS data exhibits the expected
non-critical and critical scaling laws, respectively fn ∝
ω
(1+s)/2
n for α � αc (dotted line) and fn ∝ ω

(1−s)/2
n for

α = αc (dashed line). We now turn to a more detailed
analysis, with a comparison to our analytical predictions,
and with the numerics from the coherent state expansion.

B. Non-critical regime

Let us now investigate the non-critical regime, which
is established either for α� αc at all frequencies, or for

10-6 10-4 10-2 100

ωn

10-6

10-4

10-2

100

f n

s=0.3, α=0.025

VMPS
CSE Mcs =10

CSE Mcs =2

CSE Mcs =1

10-6 10-4 10-2 100

ωn

10-6

10-4

10-2

100

f n

s=0.8, α=0.25

VMPS
CSE Mcs =10

CSE Mcs =2

CSE Mcs =1

FIG. 4. (Color online) Average displacement fn of mode
a†n in the non-critical regime (α � αc) for two values of
the bath spectra, s = 0.3 (top panel, with α = 0.025) and
s = 0.8 (bottom panel, with α = 0.25). The full black line
denotes the fully converged VMPS results, while the colored
symbols show the CSE at increasing number of coherent states,
Mcs = 1, 2, 10 (bottom to top). A dotted line denotes the

expected fn ∝ ω(1+s)/2
n behavior in the non-critical regime.

α ' αc but for ω � ω?. Focusing first on the average
displacement, we consider in Fig. 4 the two cases s = 0.3
and s = 0.8 for values of α that are sufficiently away
from αc so that critical behavior is not triggered. The
comparison between the fully converged VMPS data and
CSE at increasing number Mcs of coherent states shows
that the CSE converges very quickly in this simplest
non-critical regime. In addition, the CSE captures the
exact leading behavior of the average displacement, fn ∝
ω
(1+s)/2
n , already for Mcs = 1 (the so-called Silbey-Harris

theory [34–36]), since the variational equation gives fk =
(gk/2)/(ωk + ∆R) ∝ gk/∆R for k → 0, in agreement with
the exact result (16). Note that the quantum critical

scaling fn ∝ ω(1−s)/2
n is not apparent in this plot, because

the α value is too far away from αc.
Turning to the average squeezing amplitude, we find

excellent agreement of our converged CSE results to the
expected non-critical scaling behavior κn ∝ ωsn, see Fig. 5.
However, we observe a much slower convergence of the
CSE for the average squeezing amplitude as compared to
the computation of the average displacements in Fig. 4,
especially regarding the low-energy modes. This behavior
can be understood from the Silbey-Harris theory at Mcs =
1, which predicts incorrectly κn = (fn)2 ∝ ω1+s

n instead of
the exact non-critical scaling κn ∝ ωsn. This disagreement
is not fully a surprise, because the Silbey-Harris theory is
based on a single coherent state, and is tailored to address
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FIG. 5. (Color online) Average squeezing amplitude κn of
mode a†n in the non-critical regime (α � αc) for two values
of the bath spectra, s = 0.3 (top panel, with α = 0.025) and
s = 0.8 (bottom panel, with α = 0.25). The full black line
denotes the fully converged VMPS results, while the colored
symbols show the CSE at increasing number of coherent states,
Mcs = 1, 2, 5, 10, 20, 30 (bottom to top). A dotted line denotes
the expected κn ∝ ωs

n behavior in the non-critical regime.

at best the displacement and not necessarily the squeezing
amplitude. As a matter of fact, one can prove from the
explicit form of the displacements [13] at arbitrary Mcs

values that the incorrect scaling behavior κn ∝ ω1+s
n at

vanishing ωn is found for any finite value of Mcs, which is
also clear from Fig. 5. Only in the strict limit Mcs →∞
is the correct non-critical scaling obeyed down to zero
energy. Nevertheless, if one focuses on a reasonable energy
range (typically a few decades), the correct non-critical
scaling behavior is well captured for both the average
displacement and the average squeezing amplitude in our
CSE computations. This analysis illustrates the general
fact that systematic variational calculations may lead to
the rapid convergence of some physical observables, but
not of others. This problem is particularly severe near
quantum critical points, because the deviations concern
asymptotically low-energy modes, which occupy a tiny
fraction of the total ground state energy.

C. Critical regime

We now consider the quantum critical point, where the
dissipation strength α = αc is such that the correlation
length ξ = 1/ω? diverges. In practice we fine tune αc −α
to more than 7 digits so that ξ is larger than 1010, as
can be seen from the VMPS data of Fig. 2. The coher-

ent state expansion offers, alternatively, a more pictorial
view of the quantum critical wave function, which can be
fully represented by a set of classical-like displacement
configurations, as shown previously in Fig. 1.

While the average critical displacement fn ∝ ω(1−s)/2
n

vanishes (with the expected exponent) at low energy, we
showed analytically Eq. (28) that the average squeezing
amplitude κn =

〈
(a†n + an)2

〉
− 1 is constant at the quan-

tum critical point. Thus κn can be viewed as the average
fluctuation of the displacements within the many-body
wave function. Therefore we conclude that κn � (fn)2 at
the quantum critical point, which reflects the strong fluc-
tuations of the order parameter. This expected physical
picture is very clear in Fig. 1: in the intermediate energy
range 10−4 < ω < 10−2, the distribution of displacements
is nearly symmetric around zero, and thus almost van-
ishes on average (this behavior is more pronounced for
s = 0.3 than for s = 0.8, because the average displace-

ment vanishes as ω
(1−s)/2
n ). In contrast, the width of the

distribution of displacements has roughly a constant value
in the critical domain. Away from the critical domain,
namely for very low frequencies ω � ω?, the distribution
of the classical-like configurations becomes very narrow as
all displacements collapse onto the same curve. Thus the
average squeezing amplitude should vanish, with the non-
critical scaling behavior κn ∝ ωsn. However, due to the
finite size of the coherent state basis set used here, we find
for this computation the different behavior κn ∝ ω1+s

n as
discussed previously.

Let us finally check in more detail the precise scaling
behavior of the critical average displacement in Fig. 6.
Again we find excellent convergence of the CSE to the
VMPS curves, and we are able to match quantitatively
the expected scaling law Eq. (20), including the analytic

prefactor Fs in front of the power law ω
(1−s)/2
n . Due to

the construction of the CSE based on coherent states,
one sees again that any truncation to finite Mcs produces

an incorrect scaling fn ∝ ω
(1+s)/2
n at vanishing energy.

But the correct power law is typically obeyed on several
decades for a moderate numerical effort. The same type
of behavior is also found in the critical average squeezing
amplitude κn, which shows the expected constant plateau,
see Fig. 7, and that matches the analytical prediction of
Eq. (28) nicely. We have assessed the general prediction
of the power-law dependance of the critical average dis-

placement fn ∝ ω
(1−s)/2
n by fitting the low energy tails

of our converged data for a wide selection of the bath
exponent s in the range 0 < s < 1. We found that the
critical exponent (1−s)/2 is very well obeyed, both in the
mean-field and interacting regimes, with an accuracy of a
few percent. This reflects the peculiarity of the spin-boson
model, which does not present anomalous exponents in
the spin-spin correlation function [29, 30, 33], even below
its upper critical dimension.
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FIG. 6. (Color online) Average displacement fn of mode
a†n at the critical point (α = αc) for two values of the bath
spectra, s = 0.3 (top panel, with α = 0.03662) and s =
0.8 (bottom panel, with α = 0.393638). The full black line
denotes the fully converged VMPS results, while the colored
symbols show the CSE at increasing number of coherent states,
Mcs = 1, 2, 5, 10, 20, 35 (bottom to top) for s = 0.3 and Mcs =
1, 2, 5, 10, 20, 30, 40 for s = 0.8. A dashed line denotes the

expected fn ' Fsω
(1−s)/2
n scaling behavior in the critical

regime, including the analytical prefactor Fs given in Eq. (20).

V. CONCLUSION

We have investigated physical properties of ground-
state wave functions in a simple model of quantum criti-
cality, the sub-Ohmic spin-boson Hamiltonian. For this
purpose, a combination of variational matrix product
states and an extensive coherent state expansion have
been performed and compared very precisely. The co-
herent state approach allows a direct representation of
many-body wave functions in terms of a collection of
classical-like trajectories associated to a set of displace-
ments. Focusing on the quantum critical regime, the
wave function displays a nearly symmetric distribution of
displacements at low energy. However its width, related
to a squeezing amplitude of the low-energy modes defined
on a logarithmic energy interval, remains finite with a
universal value. This behavior strikingly reflects the wide
fluctuations of the order parameter at the quantum criti-
cal point in absence of spontaneous symmetry breaking, in
analogy with strong statistical fluctuations near classical
phase transitions. Detailed analytical predictions have
been made using exact field theory results, which match
very well all the obtained numerical data, both in the
non-critical and critical regimes. Similar analysis should
be possible for various extensions of dissipative impurity

10-6 10-4 10-2 100

ωn

10-6

10-4

10-2

100

n

s=0.3, α=0.036622

VMPS
CSE Mcs =35

CSE Mcs =1

10-6 10-4 10-2 100

ωn

10-4

10-2

100

n

s=0.8, α=0.393638

VMPS
CSE Mcs =40

CSE Mcs =1

FIG. 7. (Color online) Average squeezing amplitude κn of
mode a†n at the critical point (α = αc) for two values of
the bath spectra, s = 0.3 (top panel, with α = 0.03662)
and s = 0.8 (bottom panel, with α = 0.393638). The full
black line denotes the fully converged VMPS results, while
the colored symbols show the CSE at increasing number of
coherent states, Mcs = 1, 2, 5, 10, 20, 35 (bottom to top) for
s = 0.3 and Mcs = 1, 2, 5, 10, 20, 30, 40 for s = 0.8. A dashed
line denotes the expected universal constant value of κn given
by Eq. (28) in the critical regime.

model, such as the two-bath case [16, 17], which presents
new classes of interacting fixed points. It should be appli-
cable also to fermionic models, both with impurities or
with bulk interactions, using a similar decomposition of
the many-body wavefunction in terms of a distribution of
one- or two-body phase shifts [38].
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Appendix A: Hierarchical algorithm for the CSE

We present here a new algorithm for finding the many-
body ground state (7) of the spin-boson model (1), which
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radically improves the methodology developed previously
in Refs. [12, 13], allowing us to incorporate a large num-
ber Mcs of coherent states. This new scheme, devised to
optimize efficiently the energy functional, is only based on
fast local minimization routines. Indeed, while global min-
imization routines such as simulated annealing can give
the most reliable estimates, they do not scale favorably
in the case of a large number of variational parameters.
However, blind application of local routines, for instance
L-BFGS or conjugate gradients [37], do not guarantee
convergence to the lowest energy minimum. Hence, phys-
ical insight must be used as a guide to implement a fast
and reliable local optimization method.

Here, we use the fact that the coherent state decom-
position (7) is an expansion that displays a hierarchical
structure. Indeed, our simulations demonstrate that the
weight pM of a newly added coherent state is typically
smaller than the majority of the weights pm of the preced-
ing states. This hierarchical structure is clearly apparent
in Fig. 8.

This feature is exploited as follows in our numerical
implementation. The algorithm starts with the solution
for a single coherent state (the so-called Silbey-Harris
Ansatz) with Mcs = 1, which is reliably obtained by a

local routine, providing a first estimate of f
(1)
k . Then

the energy is minimized for Mcs = 2 with two coherent

states, using the previously determined f
(1)
k as an initial

guess, f
(2)
k = 0, and p2 = p1/2. Both displacements

(and their corresponding weights) are then optimized
together. The algorithm continues in the same manner
by increasing Mcs by one unit at a time, and using the
previous displacements and weights as an initial guess for
the next minimization stage. For completeness, we give
below all the required analytical expressions used in our
simulations.

1 10 20 30 40 50

m

10-2

10-1

100

p
m

s=0.3

s=0.8

FIG. 8. (Color online) Weights pm of the coherent state |f (m)
〉

in the coherent state expansion (7), as a function of index m,
for s = 0.3 (triangles) and s = 0.8 (circles), with the same
parameters as in Fig. 1. The fast exponential decay of the
weights illustrates the hierarchical structure of the CSE.

1. Explicit form of the energy functional

We focus here on the case of Z2 symmetry, so that
the averaged Hamiltonian from the systematic variational
state (7) reads:

〈
H
〉

= −∆

Mcs∑
n,m=1

pnpm
〈
f (n)| − f (m)

〉
(A1)

+

Mcs∑
n,m=1

pnpm
〈
f (n)|f (m)

〉∑
q

2ωqf
(n)
q f (m)

q

−
Mcs∑

n,m=1

pnpm
〈
f (n)|f (m)

〉∑
q

gq

(
f (n)q + f (m)

q

)
.

The overlaps obey the usual coherent state alge-

bra (all displacements f
(n)
q and weights pn are

real in the ground state), namely
〈
f (n)|f (m)

〉
=

e−(1/2)
∑

q(f
(n)
q −f(m)

q )2 . The minimization is performed on
the energy E =

〈
H
〉
/N with the norm N =

〈
GS|GS

〉
=

2
∑Mcs

n,m=1 pnpm
〈
f (n)|f (m)

〉
.

2. Energy gradients

Standard optimization routines gain a huge computing
advantage by using an explicit expression for the gradient
of the function to be minimized. We thus provide here the
gradients with respect to the weight pM and displacement

f
(M)
k :



11

∂E

∂pM
=

2

N

Mcs∑
n=1

pn

{
−∆

〈
f (n)| − f (M)

〉
+
〈
f (n)|f (M)

〉[∑
q

(
2ωqf

(n)
q f (M)

q − gq
(
f (n)q + f (M)

q

))
− 2E

]}
, (A2)

∂E

∂f
(M)
k

=
2pM
N

Mcs∑
n=1

pn

{
∆
〈
f (n)| − f (M)

〉(
f
(n)
k + f

(M)
k

)
+
〈
f (n)|f (M)

〉(
2ωkf

(n)
k − gk

)
(A3)

+
〈
f (n)|f (M)

〉(
f
(n)
k − f (M)

k

)[∑
q

(
2ωqf

(n)
q f (M)

q − gq
(
f (n)q + f (M)

q

))
− 2E

]}
.
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