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BEYOND HAMMERSLEY’S LAST-PASSAGE PERCOLATION: A

DISCUSSION ON POSSIBLE LOCAL AND GLOBAL CONSTRAINTS

QUENTIN BERGER AND NICCOLÒ TORRI

Abstract. Hammersley’s Last-Passage Percolation (LPP), also known as Ulam’s prob-
lem, is a well-studied model that can be described as follows: consider m points chosen
uniformly and independently in r0, 1s2, then what is the maximal number Lm of points
that can be collected by an up-right path? We introduce here a generalization of this
standard LPP, in order to allow for more general constraints than the up-right condition
(a 1-Lipschitz condition after rotation by 45˝). We focus more specifically on two cases:
(i) when the constraint is a γ-Hölder (local) condition, we call it H-LPP; (ii) when the
constraint is a path-entropy (global) condition, we call it E-LPP. These generalizations
also allows us to deal with non-directed LPP. We develop motivations for directed and
non-directed constrained LPP, and we give the correct order of Lm in a general manner.

Keywords: Last-passage percolation, non-directed polymers.

2010 Mathematics Subject Classification: 60K35, 82B44.

1. Introduction

In this introduction, we recall the original Hammersley LPP problem, and we show
how to generalize this process by enlarging the set of paths allowed to collect points, by
changing the increasing constraint, to a more general compatibility condition. We point
out that the condition in the Hammersley’s LPP is local, the constraint depending only on
two consecutive points. Conversely, a global condition is a constraint that takes in account
the whole path trajectory that collects points.

In Section 2, we introduce some specific constraints of interest (local and global) in the
directed setting and we derive the correct order for the corresponding LPP problems. In
Section 3, we consider a non-directed LPP and we also derive its correct order. In Section 4,
we present some contexts where our generalized LPP can be useful—it has already proven
useful in [6]. We conclude the paper by presenting some simulations, and discuss some
conjectures, see Appendix A.

1.1. Hammersley’s Last Passage Percolation. Let us take m points independently
as uniform random variables in the square r0, 1s2, and denote the coordinates of these
points Z1 :“ pt1, x1q, Z2 :“ pt2, x2q, etc... We say that a sequence pzi`q1ď`ďk is increasing if
ti` ą ti`´1

and xi` ą xi`´1
for any 1 ď ` ď k (we set by convention i0 “ 0 and z0 “ p0, 0q).

Then, the question is to study the length of the longest increasing sequence among the m
points which is equivalent to the length of the longest increasing subsequence of a random
(uniform) permutation of length m. We denote:

Lm :“ sup
 

k ; D pi1, . . . , ikq s.t. pZi`q1ď`ďk is increasing
(

.
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Using sub-additive techniques, Hammersley [14] first proved that m´1{2Lm converges a.s.
and in L1 to some constant, that was believed to be 2. Further works then proven that the
constant was indeed 2 [20, 26]. Moreover, and quite remarkably, this model has been shown
to be exactly solvable by Baik, Deift and Johansson [2], and they identified the fluctuations
of Lm around 2

?
m, showing that the model is in the so-called KPZ universality class. More

precisely, in [2] the authors showed the following result.

Theorem. The recentered and renormalized quantity m´1{6pLm´ 2
?
mq converges in dis-

tribution to the Tracy-Widom GUE distribution.

Moreover, Johansson [18] proved that the typical transversal fluctuations of a path col-

lecting the maximal number of points is of order m´1{6. (In [18] Johansson actually consid-
ers up-right paths going from p0, 0q to pN,Nq in a Poisson Point process of intensity 1: he
shows that the typical transversal fluctuations away from the diagonal of a path collecting
the maximal number of points is of order N2{3.) We also mention that in [12], the case when
the points are not chosen uniformly in r0, 1s2 but have some given density ppx, yq has also
been solved: the limiting constant limnÑ8 Lm{

?
m and the limiting curve are identified.

1.2. General definition of path-constrained Last Passage Percolation. We now
perform a 45 degree clockwise rotation, and generalize Hammersley’s LPP by introducing
a general constraint on paths (that can be either local or global): we introduce it via a
notion of compatibility of the points that can be collected. We need three ingredients:

‚ a domain Λ;
‚ a (finite or countable) random set of points Υ Ă Λ, whose elements are denoted by
Zi “ pti, xiq, its law is denoted P;

‚ a compatibility condition, i.e. a set C of compatible subsets of Λ.

Then, we define the C-compatible Last-Passage Percolation as the maximal number of C-
compatible points in Υ, that is

(1.1) LpCqΥ “ LpCqΥ pΛq :“ sup
!

|∆| ; ∆ Ă Υ,∆ P C
)

.

Remark 1.1. This fits the definition of Hammersley’s LPP as defined above: the compat-
ibility set C being the set of all increasing subsets of r0, 1s2. After a rotation by 45˝, we end
up with the domain Λ :“

 

px, yq, 0 ă x ă
?

2, |y| ď minp1, 1 ´ tq
(

, and Υ “ Υm a set of
m independent uniform random variables in Λ. The compatibility set is then taken to be
(with the convention pt0, x0q “ p0, 0q)

C “
ď

kě0

!

∆ “ tpti, xiqu1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă
?

2,
|xi ´ xi´1|

|ti ´ ti´1|
ď 1 for all 1 ď i ď k

)

,

which corresponds to sets of points that can be collected via a 1-Lipschitz function.

Now, there are at least two reasonable ways of defining the compatibility condition: (i) by
replacing the Lipschitz condition by a Hölder constraint; (ii) by considering a path-entropy
constraint (a global constraint on the path), that also allows to deal with non-directed
paths. We restrict ourselves to the case of the dimension d “ 2 for the simplicity of the
exposition, but it can easily be extended to the case of higher dimensions.

Several other constraints can be (and have been) considered, and let us mention a few.
For instance the constraint that the path is convex has been studied in [1], and is related
to the question of counting the number of lattice convex shapes, see [5, 25, 27] and more
recently in [8]. The question of pattern-avoiding permutation has also gained some interest
recently, see in particular [15, 21, 22].
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2. Directed LPP: Hölder and entropy constraints

In this section, we consider directed paths. We work with a domain Λt,x “ r0, ts ˆ
r´x, xs, for some (fixed) t, x ą 0. Then, we let m independent r.v. uniform in Λt,x form
the set Υm. We will use Lm as a short notation for LΥm . Moreover, we say that a set
∆ “ tpti, xiqu1ďiďk Ă R` ˆR is directed if 0 ă t1 ă ¨ ¨ ¨ ă tk. We deal first with the (local)
Hölder constraint, before we turn to the (global) Entropy constraint.

2.1. Local Hölder constraint. For any γ ě 0, we can define the γ-Hölder norm of a finite
set ∆ “ pti, xiq1ďiďk (in which the points are ordered t1 ă ¨ ¨ ¨ ă tk, with the convention
pt0, x0q “ p0, 0q)

(2.1) Hγp∆q :“ sup
1ďiďk

|xi ´ xi´1|

|ti ´ ti´1|
γ
.

Notice that this is not the γ-Hölder norm of the linear interpolation of the points, since
(2.1) only considers consecutive points: one can think of this quantity as a local γ-Hölder
norm. In particular, the case γ ą 1 is not trivial here, and the case γ “ 0 is also of interest.
Then, for some fixed A ą 0, we define a compatibility set

(2.2) HA
γ :“

 

∆ Ă R` ˆ R ; ∆ directed, Hγp∆q ď A
(

.

The γ-Hölder Last Passage Percolation, abbreviated as Hγ-LPP, is defined as

(2.3) LpH
A
γ q

m pΛt,xq :“ sup
!

|∆| ; ∆ Ă Υm,∆ P HA
γ

)

.

We prove the following result.

Theorem 2.1. There are constants c1, c2 (depending only on γ, during the course of the

proof one finds that c1 ď cp1` γq´1{2) such that for any t, x and B, for any 1 ď k ď m

P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď

´c1At
γm

xk1`γ

¯k
,(2.4)

P
´

LpH
A
γ q

m pΛt,xq ď k
¯

ď exp

"

c2k
´

1´ c2

´Atγ

xkγ
^ 1

¯m

k

¯

*

.(2.5)

As a consequence, there is some C ą 0 such that for any fixed t, x, γ, A, P-a.s. there is
some m0 such that

1

C
ď

LpH
A
γ q

m pΛt,xq

pAtγ{xq1{p1`γqm1{p1`γq
ď C for all m ě m0 .

We stress that the constants in (2.4)-(2.5) are uniform in the parameters m,A, t, x: the
results are still valid when considering the situation when A, t, xÑ8 as mÑ8, which is
useful for some applications, see [6].

We have that LpH
A
γ q

m “ LpH
A
γ q

m pΛt,xq is of order mκ, with κ “ 1{p1 ` γq. Then, it is

very natural to expect that LpH
A
γ q

m {mκ converges a.s. to a constant as m Ñ 8: we discuss
this convergence in Section 2.3, see in particular Remark 2.6. The value of the constant is
discussed in Appendix A.

Remark 2.2. One could naturally generalize Hölder LPP to a cone-shaped LPP: define
a region R “ tpt, xq P R` ˆ R, f2ptq ď x ď f1ptqu, with f1 ď f2 two functions R` Ñ R,
and let the compatibility condition for ∆ be that for any pti´1, xi´1q, pti, xiq P ∆ we have
pti ´ ti´1, xi ´ xi´1q P R (i.e. the next point in ∆ has to be in the cone-shaped region R
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from the previous point). In this framework, Hγ-LPP is simply the cone-shaped LPP with
R “ tpt, xq,´tγ ď x ď tγu, and one could easily adapt the proof of Theorem 2.1: the key
quantity is V puq “

şu
0 |f1 ´ f2|pvqdv, the area of R close to the origin, and one finds that

Lm is of the order of V ´1p1{mq (recovering the m1{p1`γq in the Hölder case).

2.2. Global Entropy constraint. Another type of constraint that is natural to consider
is a global constraint: we talk about an entropy constraint, since it arises naturally when
considering random walk paths (the entropy being a measure of the non-likelihood of
a path). This is a generalization of the study initiated in [7], which was motivated by
applications to directed polymer in random heavy-tail environment and helped answer
Conjecture 1.7 in [13]. For any a ě b ě 0, a ą 0, we define the pa, bq-Entropy of a set
∆ “ pti, xiq1ďiďk (again, the points are ordered t1 ă ¨ ¨ ¨ ă tk, and we use the convention
pt0, x0q “ p0, 0q)

(2.6) Enta,bp∆q :“
k
ÿ

i“1

|xi ´ xi´1|
a

|ti ´ ti´1|
b
.

In particular, we are interested in two special subcases. First, when b ą 0 and a “ b ` 1:
in that case, we can generalize the notion of entropy to continuous paths s : r0, ts Ñ R, by

Entbpsq “
şt
0 |s

1puq|bdu, corresponding to the Lb norm of s1 (it is related to the p1, bq-Sobolev
norm of s) and the entropy of a set ∆ corresponds to the entropy of the linear interpolation
of ∆. Second, when b “ 0: then the entropy can be generalized to non-necessarily continuous
paths s : r0, ts Ñ R, by Entapsq “ sup

 
ř

i |sptiq ´ spti´1q|
a
(

, the supremum being over all
finite subdivisions t1 ă ¨ ¨ ¨ ă tk of r0, ts. This corresponds to the “a-variation” norm of s
(the total variation for a “ 1, and the quadratic variation for a “ 2).

For fixed B ą 0, we define a compatibility set

(2.7) EBa,b :“
!

∆ Ă R` ˆ R ; ∆ directed, Enta,bp∆q ď B
)

,

so that a set of points ∆ is compatible if it can be collected by a path with entropy smaller
than B. The path-Entropy constrained LPP, abbreviated as E-LPP, is then defined as

(2.8) L
pEBa,bq
m pΛt,xq :“ sup

!

|∆| ; ∆ Ă Υm,∆ P EBa,b
)

.

We prove the following result.

Theorem 2.3. There are constants c3, c4 (depending only on a, b) such that for any t, x
and any B, for any 1 ď k ď m

P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď

´c3pBt
b{xaq1{am

kpa`b`1q{a

¯k
,(2.9)

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď exp

"

c4k
´

1´ c4

´

pBtb{xaq1{a

kpa`bq{a
^ 1

¯m

k

¯

*

.(2.10)

As a consequence, there is a constant C such that for any fixed t, x, a, b, B, P-a.s. there is
some m0 such that

1

C
ď

L
pEBa,bq
m pΛt,xq

pBtb{xaq1{pa`b`1qma{pa`b`1q
ď C for all m ě m0 .

Again, the constants are uniform in the different parameters (and explicit, see the proof
of Theorem 2.3), and this fact could reveal to be useful, in particular for the problem
developed in Section 4.1.
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Also here, L
pEBa,bq
m “ L

pEBa,bq
m pΛt,xq is of order mκ with κ “ a{pa` b` 1q, and it is natural

to expect that L
pEBa,bq
m {mκ converges a.s. to a constant as m Ñ 8. This convergence is

discussed in Section 2.3, and the value of the constant in Appendix A. Notice that in the
case where a “ b` 1 (which is one of the most natural, since it arises from LDP of random
walks, see Remark 2.4), we find κ “ 1{2, exactly as in the case of a Lipschitz constraint.
In the case b “ 0, we find κ “ a{pa` 1q so κ “ 1{2 when a “ 1 (total variation case) and
κ “ 2{3 when a “ 2 (quadratic variation case).

Remark 2.4. The entropy of a set ∆ as defined in (2.6) appears naturally when considering
large deviations for random walks: consider S a symmetric random walk with unbounded

jumps, with stretch exponential tail PpS1 “ xq
xÑ8
„ e´|x|

ν
, for some ν ą 0 (the case of

the usual simple random walk corresponds to taking ν “ 8). Then, when considering the
probability that a point pn, xnq (with n Ñ 8, xn "

?
n) is visited (or collected) by the

simple random walk path, we realize that

(2.11) ´ log PpSn “ xnq
nÑ8
„

#

nIpxn{nq if ν ą 1, or ν P p0, 1q and xn ! n1{p2´νq ,

Jpxnq if ν P p0, 1q and xn " n1{p2´νq,

with some LDP rate functions Ip¨q, Jp¨q. More specifically, we have Ipxq „ x2{2 as x Ñ 0
(moderate deviation regime, see [11] for the standard Cramér case, [23] for the case ν P
p0, 1q), Ipxq “ xν as x Ñ 8 (super-large deviation, see [24, Thm. 2.1]), and Jpxq “ xν

(one-jump deviation, see [24, Thm. 2.1]). Hence, the entropy defined in (2.6) is the natural
scaling limit of the log-probability that a random walk path visits a given set of points. We
chose the specific form (2.6) instead of using general LDP rate functions Ip¨q, Jp¨q because:
(i) we are able to perform computations with this formula, (ii) we can usually bound the
rate function c|x|a ď Ipxq ď c1|x|a for some a ą 0. In (2.11), we therefore have: in the first
part a “ 2, b “ 1 if xn{nÑ 0 or a “ ν, b “ ν ´ 1 (ν ą 1) if xn{nÑ8; in the second part,
a “ ν, b “ 0. However we keep the parameters a, b in the definition (2.6), to be able to deal
with all these cases at once.

2.3. Poissonian (point-to-point) version of path-constrained LPP. Similarly to the
standard LPP, we can define a Poissonian (point-to-point) version of the path constrained
LPP, reproducing the idea of Hammersley [14] to prove the convergence of Lm{

?
m.

For any λ ą 0, let Υλ be a Poisson point process of intensity λ on R2, and we define the
point-to-point version of constrained LPPs. Let us consider z “ px, yq P R2. For a given

set ∆ Ă R ˆ p0, yq, we set ∆pzq “ ∆ Y tzu so that it extends ∆ to make it end at z. We
consider the domain Λt “ r0, ts ˆ R for t ą 0, and for any A ą 0, B ą 0, we define the
point-to-point constrained LPP:

LpH
A
γ q

Υλ
ptq “ LpH

A
γ q

λ ptq :“ sup
!

|∆|; ∆ Ă Υλ X Λt,∆ directed,Hγp∆
pt,0qq ď A

)

,

L
pEBa,bq
Υλ

ptq “ L
pEBa,bq
λ ptq :“ sup

!

|∆|; ∆ Ă Υλ X Λt,∆ directed,Enta,bp∆
pt,0qq ď Bt

)

.

Let us note that the entropy constraint grows linearly in t. We realize that in both cases,
`

LpCqλ pnq
˘

ně1
forms a super-additive ergodic sequence, in the sense that

(2.12) LpCqΥλ
pn` `q ě LpCqΥλ

pnq ` LpCqθnΥλ
p`q ,

where θn is the translation operator: θnpt, xq “ pt`n, xq. The super-additivity comes from
the fact that the concatenation of two sets have: (i) a Hγ norm equal to the maximum of
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the Hγ norms of the two sets; (ii) an entropy equal to the sum of the entropies of the two
sets. Therefore, Kingman’s sub-additive ergodic theorem [19] implies the existence of the

limit limnÑ8 n
´1LpCqΥλ

pnq. In the following result we show that the limit is finite (and can

be taken along the real line).

Proposition 2.5. For any λ ą 0, the limits

(2.13) CH
λ,A “ lim

tÑ8

1

t
LpH

A
γ q

λ ptq, CE
λ,B “ lim

tÑ8

1

t
L
pEBa,bq
λ ptq

exist a.s. and in L1, and are finite, constant P-a.s. Moreover the constants CH
λ,A and CE

λ,B

satisfy the following scaling relations

(2.14) CH
λ,A “ pλAq

1
1`γ CH

1,1 ; CE
λ,Bpuq “ pλB

1{aq
a

a`b`1 CE
1,1.

We refer to Appendix A for a discussion on the value of the constants.

Proof. We have already noted that the limit along the integers n Ñ 8 exists. We can

extend the limit along the real line tÑ8, using that LpCqλ pttuq ď LpCqλ ptq ď LpCqλ prtsq.
We now prove that the constants are finite., as a consequence of our Theorems 2.1-2.3.

Let us deal only with the Hölder case, and let us set A “ 1,λ “ 1 for simplicity. The
proof is standard but we include it for the sake of completeness. Thanks to (2.16) below,
we get that L1ptq had the same distribution as Lt1`γ p1q, and to prove that the constant

in (2.13) is finite it therefore suffices to show that lim supρÑ8 ρ
´1{p1`γqLρp1q ă `8 a.s.

First, removing the point-to-point constraint gives that Lρp1q ď LpH
A
γ q

Υρ
pΛ1,8q, where the

latter is the Hγ-LPP in the domain Λ1,8 “ r0, 1sˆR with a set Υρ which is a Poisson point
process of intensity ρ, see Section 2.1. We cannot directly apply Theorem 2.1 because Λ1,8

is not bounded and Υρ does not have a fixed number of points. However, we can write

LpH
A
γ q

Υρ
pΛ1,8q “ limjÑ8 LpH

A
γ q

Υρ
pΛ1,jq with Λ1,j “ r0, 1s ˆ r´j, js, so that for any v ą 0

P
`

LpH
A
γ q

Υρ
pΛ1,8q ě vρ1{p1`γq

˘

“ lim
jÑ8

P
`

LpH
A
γ q

Υρ
pΛ1,jq ě vρ1{p1`γq

˘

.

Then, we denote N
pρq
j :“ |ΥρXΛ1,j | the number of Poisson points in Λ1,j : using Theorem 2.1

(with m “ 4ρj), we can write

P
`

LpH
A
γ q

Υρ
pΛ1,jq ě vρ1{p1`γq

˘

ď P
`

N
pρq
j ě 4ρj

˘

` P
`

L4ρjpΛ1,jq ě vρ1{p1`γq
˘

(2.15)

ď P
`

N
pρq
j ě 4ρj

˘

`

´ 4c1

v1`γ

¯vρ1{p1`γq

.

The first probability goes to 0 as j Ñ8 (N
pρq
j is a Poisson r.v. of parameter 2ρj), so that

choosing v0 “ p8c1q
1{p1`γq, we obtain that

P
`

LpH
A
γ q

Υρ
pΛ1,8q ě v0ρ

1{p1`γq
˘

ď 2´v0ρ
1{p1`γq

,

which concludes the argument.
To show the scaling relation (2.14), we consider two different scaling relations satisfied

by LpH
A
γ q

λ and L
pEBa,bq
λ . For this purpose, we start by considering the following maps:

(i) pt, xq ÞÑ pλ1{p1`γqt, λγ{p1`γqxq, which does not change the γ-Hölder norm of a set ∆;

(ii) pt, xq ÞÑ pλa{pa`b`1qt, λpb`1q{pa`b`1qxq, which multiplies the entropy of a set ∆ (and t)

by λa{pa`b`1q.



LOCAL AND GLOBAL CONSTRAINTS IN LPP 7

Therefore, since the image of Υλ through these maps has the distribution of Υ1, we obtain
the following identities in distribution

(2.16) LpH
A
γ q

λ ptq
pdq
“ LpH

A
γ q

1

`

λ1{p1`γqt
˘

and L
pEBa,bq
λ pt, tuq

pdq
“ L

pEBa,bq
1

`

λa{pa`b`1qt
˘

.

As a consequence, by using (2.13), we also get the existence of the following limits, for any
fixed t ą 0, A,B ą 0

(2.17) lim
λÑ8

1

λ1{p1`γq
LpH

A
γ q

λ ptq “ tCH
1,A; lim

λÑ8

1

λa{pa`b`1q
L
pEBa,bq
λ ptq “ tCE

1,B .

Note that we recover the same order for Lλ as in Theorems 2.1-2.3. From (2.17) we directly
obtain that

(2.18) CH
λ,A “ λ1{p1`γqCH

1,A , and CE
λ,B “ λa{pa`b`1qCE

1,B .

Applying another scaling, we can also reduce to the case where A “ 1, B “ 1. We
consider the following maps, that preserves the distribution of Υλ:

(i) pt, xq ÞÑ pA1{p1`γqt, A´1{p1`γqxq, which divides the γ-Hölder norm by A;

(ii) pt, xq ÞÑ pB1{pa`b`1qt, B´1{pa`b`1qxq, which multiplies the entropy byB´1ˆB1{pa`b`1q.
Then, we obtain that

LpH
A
γ q

λ ptq
pdq
“ LpH

1
γq

λ

`

A1{p1`γqt
˘

and L
pEBa,bq
λ ptq

pdq
“ L

pE1
a,bq

λ

`

B1{pa`b`1qt
˘

.

As a consequence, we have that

(2.19) CH
1,A “ A1{p1`γqCH

1,1, and CE
1,B “ B1{pa`b`1qCE

1,1.

In the end, (2.18), together with (2.19), give (2.14). �

Remark 2.6. When considering t “ 1 with λ “ m, this corresponds to the LPP problem
in Λ1,8 with Υ a Poisson point process of intensity m. In principle, one could use (2.17)
(with λ “ m), together with a de-Poissonization argument (cf. [14]), in order to prove the
convergence for the point-to-point version of the Hγ-LPP and E-LPP of Sections 2.1-2.2 to
the constants in (2.13). However, the argument should fail (and the constants differ) when
the transversal fluctuations of the optimal path become too large: indeed, restricting the
paths to stay in a box r0, 1s ˆ r´1, 1s is then an important constraint.

3. Non-directed LPP

The notion of compatible-LPP allows for even more general constraints, and for example
enables us to deal with non-directed cases. Let us consider a natural framework, as an
example: we work with a time horizon r0, ts, and define the Entropy of a subset ∆ “

pxiq1ďiďk of R2 (the points are considered in a given order), by considering the optimal
Entropy of a path going through the points of ∆ (in the correct order) in a time horizon t:

Enta,bpt,∆q :“ inf

" k
ÿ

i“1

}xi ´ xi´1}
a

|ti ´ ti´1|
b

; t1 ă ¨ ¨ ¨ ă tk subdivision of r0, ts

*

,(3.1)

where }¨} denotes the Euclidean norm on R2. Another way of presenting it is by saying that
Enta,bpt,∆q is smaller than A if and only if there exists a path s : r0, ts Ñ R2 collecting the
points of ∆ which has entropy smaller than A. We notice right away that we are able to
identify the optimal subdivision 0 ď t1 ă ¨ ¨ ¨ ă tk ď t used by a path to collect all points
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of ∆: the optimal choice is ti ´ ti´1 “ t}xi ´ xi´1}
a{pb`1q

`
řk
i“1 }xi ´ xi´1}

a{pb`1q
˘´1

. Then
we obtain that the Entropy of ∆ is

(3.2) Enta,bpt,∆q “
1

tb

´

k
ÿ

i“1

}xi ´ xi´1}
a{pb`1q

¯b`1
.

Here again, the case b ą 0 with a “ b ` 1 will be of particular interest for us, since it
arises naturally from a LDP for non-directed random walks to visit a certain set of points.
In the case a “ b`1, the optimal choice for the subdivision is to take ti´ ti´1 proportional
to the distance between the points, and (3.2) corresponds to the pb ` 1q-th power of the
length of the linear interpolation of the points of ∆—it can then easily be extended to
continuous curves s : r0, ts Ñ R2. The case b “ 0 also arises when considering random
walks with increments with a stretch-exponential tail, and correspond to the a-variation
norm of a curve s : r0, ts Ñ R.

We will work with the domain Λr “ tx P R2, }x} ď ru, for r ą 0 (this choice is not
crucial). For m ě 1, we let Υm be a set of m independent variables uniform in Λr. For
some fixed B ą 0, the non-directed Entropy compatible sets with time horizon r0, ts is
defined by

E t,B
a,b “

 

∆ Ă R2 ; Enta,bpt,∆q ď B
(

,

and finally the non-directed LPP is

(3.3) L
pE t,Ba,b q
m pΛrq :“ sup

!

|∆| ; ∆ Ă Υm,∆ P E B
a,bptq

)

.

(We use a curly font for L and E to visually mark the difference with the directed LPPs.)
We prove the following result, for non-directed LPP.

Theorem 3.1. There exist constants c5, c6 such that for any t, r and B, for any 1 ď k ď m

P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď

´c5pBt
b{raq2{am

k2pb`1q{a

¯k
,(3.4)

P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď e´c6m ` exp

"

c6k
´

1´ c6
ma{2pb`1q

k

`

Btb{ra
˘1{pb`1q

¯

*

.(3.5)

Finally, there is some C ą 0 such that P-a.s. there is some m0 such that

(3.6)
1

C
ď

L
pE t,Ba,b q
m pΛrq

m^ pBtb{raq
1
b`1m

a
2pb`1q

ď C for all m ě m0 .

We have that Lm is of order mκ with κ “ a
2pb`1q ^ 1: we also expect that Lm{m

κ

converges a.s. to a constant as mÑ 8. Let us highlight the fact that we find κ “ 1{2 (as
for the standard LPP) in the case a “ b` 1.

Remark 3.2. We stress that we could have defined a corresponding non-directed γ-Hölder-
LPP, the analogous of (3.2) ending up being

Hγpt,∆q “
1

tγ

´

k
ÿ

i“1

}xi ´ xi´1}
1{γ

¯γ
.

It is very similar to (3.2), with γ “ pb ` 1q{a (possibly changing the constants t, B): one
finds that the corresponding non-directed LPP Lm is of order mκ with κ “ 1

2γ ^ 1 (hence

κ “ 1{2 for a Lipschitz constraint, as in the original Hammersley LPP).
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4. Some applications of the (entropy) constrained LPP

Our main goal has been to introduce a generalized LPP, and the results we stated give
the first properties of such models, which are already useful in some contexts—it has proven
useful in [6]. We now present briefly two applications of the directed and non-directed LPPs,
to the context of polymer models.

4.1. Application I: a model for a directed polymer in Poissonian environment.
We define here a very natural variational problem, which encapsulate the energy-entropy
competition inherent to models of polymers in random environment. The random envi-
ronment is given by a Poisson point process Υλ on R` ˆ R of intensity λ ą 0 (its law is
denoted P), and for β ą 0, we define the following (point to point) variational problem

(4.1) Zλ,βptq :“ sup
s:r0,tsÑR,sp0q“sptq“0

!

β
ˇ

ˇsXΥλ

ˇ

ˇ´ Entpsq
)

,

with Entpsq defined as in (2.6)—because Υλ is countable, Entpsq is well-defined. This
variational problem constitute a simplified model to study the energy-entropy competition
of polymer models, |sXΥλ| being viewed as a measure of the energy of a trajectory s Again,
the central cases that we have in mind is when a “ b ` 1 or b “ 0 in the definition of the
entropy (2.6), see Remark 2.4 (when the entropy derives from the LDP of a simple random
walk, we have a “ 2, b “ 1). The idea of this model is similar to that of [10] which considers
a Brownian polymer in Poissonian medium. However, here, we only consider trajectories
maximizing the energy-entropy balance, and we also allow for more general entropy than
that of the Brownian motion (for which a “ 2, b “ 1).

Let us stress that the variational problem (4.1) has already appeared in [3] (in the case
a “ 2, b “ 1) as a solution for a Hamilton-Jacobi equation used to study the stationary
solutions of a Burgers equation (with a forcing induced by the points of a PPP). It has
proven to be useful for the study of the thermodynamic limit for directed polymers, cf. [4].

First of all, we notice that Zλ,βptq is a super-additive ergodic sequence, so that Kingman’s
sub-additive ergodic theorem gives that the limit

(4.2) fpλ, βq :“ lim
tÑ8

1

t
Zλ,βptq

exists a.s. and in L1, and is P-a.s. constant. The fact that fpλ, βq is finite derives from our
estimates in Theorem 2.3 (together with the argument in Section 2.3, see (2.15)), so we
skip it—we mention that this fact was an important part of the study in [3].

We also have scaling relations for Zλ,βptq. Indeed, consider the two following maps: (i)

pt, xq ÞÑ pλ´a{pa`bqt, λ´b{pa`bqxq whose image of Υλ has distribution Υ1 and which preserves

the entropy; (ii) pt, xq ÞÑ pβ´1{pa`bqt, β1{pa`bqxq, which multiplies the entropy by β, while
preserving the distribution of Υλ. We therefore obtain that

(4.3) Zλ,βptq
pdq
“ Z1,β

`

λ´a{pa`bqt
˘

and Zλ,βptq
pdq
“ βZλ,1

`

β´1{pa`bqt
˘

.

A first consequence is that we get that fpλ, βq “ pβa`b`1λaq1{pa`bqfp1, 1q, where fp1, 1q is
a constant that needs to be determined. Another consequence is that, if we consider the
alternative problem where we take λ Ñ 8 (instead of t Ñ 8), we get that, for any fixed
positive t, β, the limit

(4.4) lim
λÑ`8

1

λa{pa`bq
Zλ,βptq “ tfp1, βq “ tβpa`b`1q{pa`bqfp1, 1q

exists a.s. and in L1.
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For this model, some important questions remain unanswered: (i) what is the value of
the constant fp1, 1q? (ii) what does the maximizer of Zλ,βptq look like? For instance, what
is its typical transversal fluctuation exponent? We mention that in [3, 4], the results are
mostly qualitative, such as the existence and coalescence of semi-infinite maximizers for
this model.

4.2. Application II: non-directed polymers in heavy-tail environment. The di-
rected E-LPP have already proved to be useful to understand the transversal fluctuations
and scaling limits of directed polymers in heavy-tail random environment, see [6]. The con-
tinuous limit of the model is found to be an energy-entropy variational problem, and E-LPP
appears central to ascertain its well-posedness. Here, we define an analogous variational
problem in the non-directed setting, and show that it is well defined. It should also appear
as the scaling limit of some non-directed polymer model in heavy-tail random environment.

As a continuum disorder field, we let P :“ tpwi, xi, yiq : i ě 1u be a PPP on r0,8qˆR2,
of intensity µpdwdxdyq “ α

2w
´α´11twą0udwdxdy —it derives from the scaling of a discrete

field of disorder with heavy-tail distribution, with tail exponent α. For a continuous path
s : r0, 1s Ñ R2, we can then define its energy by summing the weights in P “collected” by

s, πpsq “
ř

pxi,yiqPs
wi. We can also define its length `psq “

ş1
0 }s

1puq}du, and we consider

`psqν for some ν ą 1 as a measure of its entropy. Indeed, if s is a linear interpolation of a
finite number of points in P, then `psqν is nothing but the non-directed entropy defined in
(3.2) with a “ b` 1 and b` 1 “ ν. This choice derives from LDP for a random walk, and
ν “ 2 corresponds to the moderate deviation regime of the simple random walk.

Thanks to the non-directed LPP of Section 3, we are able to show that the energy/entropy
variational problem is well defined, when α P p2{ν, 2q.

Proposition 4.1. For any ν ą 1, the following variational problem is well defined for all
β ě 0, when α P p2{ν, 2q,

(4.5) T pνqβ :“ sup
s:r0,1sÑR2

sp0q“0, `psqă8

 

βπpsq ´ `psqν
(

.

For β ą 0, we have that T pνqβ ą 0 a.s. and ErpT pνqβ qκs ă 8 for any κ ă α´ 2{ν. Moreover,

for any α P p2{ν, 2q, we have the scaling relation T pνqβ

pdq
“ β

να
να´2 T pνq1 . On the other hand,

if α P p0, 2{νs, we have that T pνqβ “ `8 a.s.

The proof follows exactly the same scheme as that in [7, Section 4], with Proposition 4.1
in place of [7, Theorem 2.4] so we skip it.

Polymers in random environment have mostly been considered in the directed framework,
see [9] for a thorough review, or in the semi-directed context of stretched polymers, see
[16, 28], or [17] for a review. Proposition 4.1 therefore shows that our generalized LPP can
be useful to study non-directed polymers: the variational problem can be thought as an
energy/entropy model for a polymer in continuous random environment. The most natural
question is now to consider a (discrete) non-directed polymer model in random environment
(the Hamiltonian being the sum of the weights of the sites visited by the random walk),
and prove its convergence to (4.5), in the case of a heavy-tail environment (as done in [6]).

5. Proofs of the constrained LPP results

We prove here Theorems 2.1-2.3-3.1. The almost sure statements are straightforward
applications of the first parts of the theorems (via the Borel-Cantelli lemma), so we skip
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their proof. We write the details only for the E-LPP, the H-LPP results following exactly the
same scheme—for the upper bound, the ideas are similar to those developed in [7, Part 1],
in a special case of the E-LPP. Some more technical details are needed to obtain (3.5).

5.1. Entropy-constrained LPP. We prove first (2.9), and then (2.10).

Upper bound. Define Ekpt, Bq the set of k (ordered) elements up to time-horizon t that
have an entropy bounded by B:

Ekpt, Bq “
!

pti, xiq1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă t,Enta,b
`

pti, xiq1ďiďk
˘

ď B
)

.

We are able to compute exactly the volume of Ekpt, Bq.

Lemma 5.1. For any t ą 0 and B ą 0, we have for any k ě 1

Vol
`

Ekpt, Bq
˘

“ 2k
`

1
a

˘k Γp 1
aq
k

Γ
`

k
a ` 1

˘

Γpa`ba q
k

Γ
`

k pa`bqa ` 1
˘

ˆBk{atkpa`bq{a.

In particular, it gives that there exists some constant C “ Ca,b (during the course of the

proof, one finds that Ca,b ď cpa` bq´1{2) such that

VolpEkpt, Bqq ď
´CB1{atpa`bq{a

kpa`b`1q{a

¯k
.

Proof. Again, using a decomposition over the left-most point in Ekpt, Bq at position pu, yq
(by symmetry we can assume y ě 0): it leaves k ´ 1 points with remaining time horizon

t´ u and constraint B ´ |y|a

ub
, we obtain the key induction formula below

(5.1) Vol
`

Ekpt, Bq
˘

“ 2

ż t

u“0

ż pBubq1{a

y“0
Vol

´

Ek´1pt´ u,B ´
ya

ub
q

¯

dydu.

We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation. First of all, we have for k “ 1

VolpE1pt, Bqq “ 2

ż t

u“0

ż pBubq1{a

y“0
dudy “ 2B1{a

ż t

0
ub{adu “ 2B1{a a

a` b
tpa`bq{a .

For k ě 2, by induction, we have

Vol
`

Ekpt, Bq
˘

“ 2k´1
`

1
a

˘k´1 Γp 1
aq
k´1

Γ
`

pk ´ 1q{a` 1
˘

Γpa`ba q
k´1

Γ
`

pk ´ 1q pa`bqa ` 1
˘

ˆ

ż t

u“0

ż pBubq1{a

y“0
pt´ uqpk´1qpa`bq{a

`

B ´ ya

ub

˘pk´1q{a
dydu.

Then, by a change of variable z “ ya{pBubq, we get that

ż pBubq1{a

y“0

`

B ´ ya

ub

˘pk´1q{a
dy “ Bpk´1q{a

ż 1

0
p1´ zqpk´1q{a 1

az
1{a´1B1{aub{adz

“ 1
a A

k{aub{a
Γ
`

pk ´ 1q{a` 1
˘

Γp1{aq

Γpk{aq
.
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Moreover, we also have, with a change of variable w “ u{t
ż t

u“0
ub{apt´ uqpk´1qpa`bq{adu “ tpk´1qpa`bq{a`b{a`1

ż 1

0
wb{ap1´ wqpk´1qpa`bq{adw

“ tkpa`bq{a
Γ
`

b{a` 1
˘

Γ
`

pk ´ 1qpa` bq{a` 1
˘

Γ
`

kpa` bq{a` 1
˘ ,

and this completes the induction.
For the inequality in the second part of the lemma, we use Stirling’s formula Γp1`xq „?
2πxpx{eqx as xÑ8 to control Γ

`

kpa` bq{a` 1
˘

and Γ
`

k{a` 1
˘

, and we obtain

VolpEkpt, Bqq ď
c

k
a

1{a
a

pa` bq{a

ˆ 2
aΓp 1

aqΓp
a`b
a q ˆB

1{atpa`bq{a

`

e´1{a
˘1{a`

e´1pa` bq{a
˘pa`bq{a

k1{akpa`bq{a

˙k

.

Thanks to the asymptotics of Γpαq as αÑ `8 and αÑ 0, we find that there is a constant
c such that for all a, b

VolpEkpt, Bqq ď
a

?
a` b

ˆ

cB1{atpa`bq{a

pa` bq1{2k1{akpa`bq{a

˙k

.

�

We then use Lemma 5.1 to control the probability that L
pEBa,bq
m pΛt,xq is larger than k:

(5.2) P
´

L
pEBa,bq
m pΛt,xq ě k

¯

“ PpNk ě 1q ď ErNks,

where Nk “ Cardt∆ Ă Υm ; ∆ P EBa,bu is the number of sets of k points in Υm that are

EBa,b-compatible. Since all the points of Υm “ tZ1, . . . , Zmu are exchangeable, we have

ErNks “

ˆ

m

k

˙

P
´

D σ P Sk s.t. pZσp1q, . . . , Zσpkqq P Ekpt, Bq
¯

.

Since the pZiq1ďiďm are i.i.d. uniform in Λt,x “ r0, tsˆ r´x, xs (of volume 2tx), we get that

(5.3) ErNks “

ˆ

m

k

˙

ˆ
Vol

`

Ekpt, Bq
˘

p2txqk{k!
,

where the k! comes from the fact that we rearrange the Zi’s so that 0 ă t1 ă ¨ ¨ ¨ ă tk ă t.
Using Lemma 5.1 together with

`

m
k

˘

ď mk{k1, we therefore obtain that

(5.4) P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď

ˆ

m

k

˙

ˆ
Vol

`

Ekpt, Bq
˘

p2txqk{k!
ď

ˆ

CB1{atpa`bq{am

txkpa`b`1q{a

˙k

.

This gives the upper bound (2.9).

Lower bound. For any k ě 1, consider for 1 ď i ď 4k the sub-boxes of Λt,x

Bi :“
”

pi´ 1qt

4k
,
it

4k

¯

ˆ

”

´
B1{apt{4qb{a

2kpb`1q{a
^ x,

B1{apt{4qb{a

2kpb`1q{a
^ x

ı

.

Then, notice that if there are at least k boxes among tB2iu1ďiď2k containing (at least) one
point, then this set of k points has an entropy which is bounded by

k ˆ
pB1{apt{4qb{ak´pb`1q{aqa

pt{4kqb
ď B.
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Hence, we get that

(5.5) P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď P
´

2k
ÿ

i“1

1t|ΥmXB2i|ě1u ď k
¯

“ P
´

2k
ÿ

i“1

1t|ΥmXB2i|“0u ď k
¯

.

For the last probability, we use a union bound and the fact that the 1t|ΥmXB2i|“0u are
exchangeable, to get that

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď

ˆ

2k

k

˙

P
´

Υm X

k
ď

i“1

Bi “ H
¯

ď 22k
´

1´
B1{atb{a

4b{akpa`bq{ax
^

1

4

¯m
.(5.6)

In the second inequality we used that Υm is a set of m independent random variables

uniform in Λt,x (of volume 2tx), and that
Ťk
i“1 Bi has volume B1{apt{4qpa`bq{a

kpb`1q{a ^ tx
2 . Therefore,

using also that 1´ x ď e´x we obtain that

(5.7) P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď exp

"

ck
´

1´ c
´ B1{atb{a

xkpa`bq{a
^ 1

¯m

k

¯

*

,

which concludes the proof of the (2.10).

5.2. Hölder-constrained LPP. We only give a brief outline of the proof.

Upper bound. We define

Hkpt, Aq “
!

pti, xiq1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă t,Hγ

`

pti, xiq1ďiďk
˘

ď A
)

.

Then, as above, we are able to compute exactly the volume of Hkpt, Aq: for any t ą 0 and
A ą 0, we have for any k ě 1

Vol
`

Hkpt, Aq
˘

“ p2Aqk
Γp1` γqk

Γ
`

kp1` γq ` 1
˘ tkp1`γq.

We do not develop the proof, which comes from an induction formula analogous to (5.1):

Vol
`

Hkpt, Aq
˘

“ 2

ż t

u“0

ż Auγ

y“0
Vol

`

Hk´1pt´ u,Aq
˘

dydu.

As a consequence of Stirling’s formula, there exist constants c, C such that

(5.8) VolpHkpt, Aqq ď c

ˆ

2AΓp1` γqt1`γ
`

p1` γq{e
˘1`γ

k1`γ

˙k

ď

ˆ

CAt1`γ

p1` γq1{2k1`γ

˙k

.

To obtain (2.4), one then follows exactly the same scheme as in (5.2)–(5.4) above, using
(5.8) in place of Lemma 5.1.

Lower bound. For any k ě 1, we consider for 1 ď i ď 4k the sub-boxes of Λt,x:

Bi :“
”

pi´ 1qt

4k
,
it

4k

¯

ˆ

”

´
Apt{kqγ

2
^ x,

Apt{kqγ

2
^ x

ı

.

Note that, if there are at least k boxes among tB2iu1ďiď2k containing (at least) one point,
then this set of k points has a γ-Hölder norm which is bounded by Apk{tqγ{pt{kqγ ď A.
Then, we obtain (2.5) exactly as above, see (5.5)–(5.7) above.
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5.3. Non-directed E-LPP. We proceed analogously to the two previous sections, some
details differing for the lower bound.

Upper bound. We define

Ekpt, Bq “
!

∆ “ pxiq1ďiďk ; Enta,bpt,∆q ď B
)

“

!

∆ “ pxiq1ďiďk ;
k
ÿ

i“1

}xi ´ xi´1}
a{pb`1q ď D

)

“: Ẽk
`

D
˘

,

with D “ pBtbq1{pb`1q —we used (3.2) to get the second equality. As above, we are able
to obtain its volume: setting γ “ pb ` 1q{a for simplicity, we have for any D ą 0 and any
k ě 1

Vol
`

ẼkpDq
˘

“ p2πγqk
Γp2γqk

Γp2kγ ` 1q
D2kγ .

This is easily proven by iteration, using the recursion formula, for k ě 2

Vol
`

ẼkpDq
˘

“

ż Dγ

0
2πrVol

`

Ẽk´1pD ´ r
1{γq

˘

dr .

We leave the details to the reader. Then, an easy application of Stirling’s formula gives
that there exists some constant C such that

(5.9) VolpEkpt, Bqq ď
´CpBtbq2{a

k2pb`1q{a

¯k
.

The upper bound (3.4) then comes from the exact same scheme as for (5.2)–(5.4) above,
using (5.9) in place of Lemma 5.1.

Lower bound. The idea of the proof is similar to the one in the directed context, with more
technicalities due to the non-directedness. We consider a partition of the plane into small
squares of side δ :“ πr{

?
m: for any x P pδZq2 we let Bx be the square of side δ centered

at x. It is easy to see that there are at least m{4 disjoint squares Bx (provided that m is
large enough) that can be placed into a rectangle (inscribed in Λr) ordered as follows: we
let x0 “ 0 and then we enumerate x1, . . . , xm{4 following a spiral in a clockwise way, in
order to have that any two consecutive Bxi ,Bxi`1 are adjacent (see Figure 1).

Note that a square Bx has volume π2r2{m (and recalling Λr has volume πr2), Bx contains
at least one point of Υm with probability 1´ p1´ π{mqm ě 1´ e´π. We define Qm{4 the
number of non-empty squares among Bx0 , . . . ,Bxm{4 , and we define iteratively the indices Ij
of the non-empty squares, by I0 “ 0 and for 1 ď j ď Qm{4

Ij “ inf
 

i ą Ij´1 ; Bxi XΥm ‰ Hu .

For k ě 1, and if Qm{4 ě k, we may consider a path ∆ collecting one point in exactly
all BxI1 , . . . ,BxIk : the entropy of such ∆ is bounded by (see Figure 1)

1

tb

´

k
ÿ

j“1

`

4pIj ´ Ij´1qδ
˘a{pb`1q

¯b`1
ď

4ara

tbma{2

´

k
ÿ

j“1

Uj

¯b`1
,

where we set Uj :“ pIj ´ Ij´1q
a{pb`1q. Therefore, for L

pE t,Ba,b q
m pΛrq to be smaller or equal

than k, one needs to have either Qm{4 ă k or that the entropy of ∆ chosen above is larger
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x1

x2 x3

x0

x4

x5

Figure 1. In the picture we put m “ 24 points uniformly on Λr and we consider a rectangle
built by 6 “ m{4 squares Bx0 , ¨ ¨ ¨ ,Bx5 enumerated following a spiral in a clockwise way starting
from the origin. Then we consider the non-empty rectangles (in orange) and their indices. In this
example we have I1 “ 1, I2 “ 2, I3 “ 5. Finally we draw a path starting from the origin and
collecting one point in exactly all BI1 , ¨ ¨ ¨ ,BI3 .

than B: this leads to

(5.10) P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď P
`

Qm{4 ă k
˘

`P
´

Qm{4 ě k ,
k
ÿ

j“1

Uj ą
´Btbma{2

4ara

¯1{pb`1q¯

.

For the first term, and for k ď ε2m{4 (with ε ą 0 small, fixed in a moment), we realize
that Qm{4 ă k implies that there are at least p1´ ε2qm{4 empty squares, which gives by a
union bound that

P
`

Qm{4 ă k
˘

ď

ˆ

m{4

p1´ ε2qm{4

˙

P
´

Υm X

p1´ε2qm{4
ď

i“1

Bxi “ H
¯

ď ecεm
´

1´
p1´ ε2qπ

4

¯m
.

For the second inequality, we used that the volume of
Ťp1´ε2qm{4
i“1 Bxi is p1´ ε2qπ2r2{4. We

note that the constant cε goes to 0 as ε goes to 0: we can therefore fix ε ą 0 sufficiently
small so that

(5.11) P
`

Qm{4 ă k
˘

ď e´πm{8 for all k ď ε2m{4.

For the second term in (5.10), let us write V :“ k´1
`

Btbma{2{ra
˘1{pb`1q

—we will con-
sider only the case when V is large—, so that we need to bound
(5.12)

P
´

Qm{4 ď k ,
k
ÿ

j“1

Uj ą kV
¯

ď P
`

Nk ą εm
˘

` P
´

Qm{4 ď k ,Nk ď εm ,
k
ÿ

j“1

Uj ą kV
¯

,

where Nk denotes the total number of points in the non-empty squares BxI1 , . . . ,BxIk . We

easily have that

P
`

Nk ą εm
˘

ď
1

e´ck

ˆ

m

εm

˙

´πk

m

¯εm
ď eck

pπkqεm

pεmq!
,

where the denominator in the first inequality comes from the fact that we work conditionally
on the fact that k squares are non-empty (which has probability bounded below by e´ck).
Hence, since we work with k ď ε2m{4, and provided that ε has been fixed small enough,
we get that there is a constant c ą 0 such that PpNk ą εmq ď e´cm.
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For the last part, note that since the squares Bx are exchangeable, we can control for
1 ď i1 ă ¨ ¨ ¨ ă ik ď m{4

P
`

I1 “ i1, . . . , Ik “ ik;Nk ď εm
˘

“
ÿ

n1,...,nk
1ďn1`¨¨¨`nkďεm

ˆ

m

n1, . . . , nk

˙

´ π

m

¯n1`¨¨¨`nk
´

1´
πik
m

¯m´pn1`¨¨¨`nkq

ď

´

1´
πik
m

¯p1´εqm ÿ

n1,...,nk
1ďn1`¨¨¨`nkďεm

πn1

n1!
¨ ¨ ¨

πnk

nk!
ď e´p1´εqπikeπk .

Where we used that in order to have I1 “ i1, . . . , Ik “ ik there must be exactly k non-
empty squares among the first ik (with n1, . . . , nk points in them) and ik ´ k empty ones.
The remaining m ´ pn1 ` ¨ ¨ ¨ ` nkq points must be outside the first ik squares. For the
second inequality, we used that n1` ¨ ¨ ¨ `nk ď εm, and that the multinomial coefficient is
bounded by mn1`¨¨¨`nk{pn1! ¨ ¨ ¨nk!q. Hence, there is a constant c such that

P
`

I1 “ i1, . . . , Ik “ ik;Nk ď εm
˘

ď eck ˆ P
`

Gj “ ij ´ ij´1 for all 1 ď j ď k
˘

,

where pGjqjě1 are i.i.d. geometric random variables, of parameter 1´e´p1´εqπ. We therefore
obtain that, provided that V is large enough

P
´

Qm{4 ď k ,Nk ď εm ,
k
ÿ

j“1

Uj ą kV
¯

ď eckP
´

k
ÿ

j“1

pGjq
a{pb`1q ą kV

¯

ď e´c
1kV .

To conclude, we have obtained that there are constants such that for k ď ε2m{4, and

for V :“ k´1
`

Btbma{2{ra
˘1{pb`1q

large enough,

(5.13) P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď e´cm ` e´c
1kV .

One obtains (3.5) by observing that when V is small e´ckpV´1q is larger than 1. The
statements holds for all k ď m by adjusting the constants.

Appendix A. Further simulations and conjectures

In this appendix, we present some simulations, that help us make some predictions
on the values of the constants in (2.13), and support the belief that the model is in the
KPZ universality class. We treat only the directed case because in the non-directed case
simulations are much more greedy and do not bring any convincing insight—our algorithm
could probably be improved, but our goal is simply to hint for some conjectures, and our
simulations fill that role perfectly.

A.1. Directed Hγ-LPP. For the Hγ-LPP, we performed simulations in the Poissonian
context of Section 2.3: we work with intensity λ “ 1 and constraint A “ 1, so we write

Lptq for LpH
A
γ q

λ ptq to simplify notations.

(1) Value of the constant. Let us present here the results of our simulations to test the
value of the constant C “ C1,1 “ limtÑ8 t

´1Lptq in (2.17). We ran simulations for t “ 1000,

in the box r0, ts ˆ r´t2{3, t2{3s (with λ “ 1 and A “ 1).
Our simulations are in accordance with the fact that 1

tLptq converges a.s. to some con-
stant, whose dependence on γ is presented in Figure 3 (we present the result of only one
simulation, but several simulations give values for 1

tLptq very close to those presented here).
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Figure 2. Optimal paths for the Hγ-LPP with t “ 1000, for different values of γ. The same
set of points is used in all four simulations. For γ “ 0 we have here Lptq “ 2707, for γ “ 0.5
Lptq “ 1715, for γ “ 1 Lptq “ 1408, and for γ “ 1.5 Lptq “ 1238.

Figure 3. Approximated values of the Hγ-LPP constant: the function represents the value
of t´1Lptq with t “ 1000, for different values of γ P r0, 3s. The dotted grey line represents the

function γ ÞÑ 23{2

1`γ
Γp1` γq1{p1`γq, which seems to fit quite well the values of t´1Lptq.

In view of the dependence on γ of the constant c1 in Theorem 2.1 (see in particular (5.8)),

a wild guess is that the constant is proportional to p1 ` γq´1Γp1 ` γq1{p1`γq: the dotted

grey line in Figure 3 represents the function γ ÞÑ 23{2

1`γΓp1 ` γq1{p1`γq —the factor 23{2 is

chosen so that it fits the value
?

2 when γ “ 1, corresponding to the standard Lipschitz
LPP (the missing factor

?
2 comes from the length of the diagonal in Hammersley’s LPP

process). The two curves match quite closely, but they seem to disagree when γ “ 0 (the

constant C1,1 seems very close to 2.75, whereas 23{2 « 2.83).

(2) Convergence of the recentered and renormalized LPP. In order to test the convergence

in distribution of t´1{3pLptq ´ C1,1tq, we performed 1000 simulations for the point-to-point
Hγ-LPP with t “ 500, for the three values γ “ 0, γ “ 0.5 and γ “ 1.5.

(a) γ “ 0. (b) γ “ 0.5. (c) γ “ 2.

Figure 4. Histograms of k “ 103 simulations of the point-to-point Hγ-LPP with t “ 500.
The three subfigures (a), (b) and (c) correspond to the cases γ “ 0, γ “ 1{2 and γ “ 3{2
respectively. In each case, we superimpose the graph of the Tracy-Widom GUE density, after a
recentering by Cγt (with Cγ « 2.75, 1.75, 1.26 from left to right), and a renormalization by cγt

1{3

(with cγ « 2.5, 1.3, 0.65 from left to right).
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The histograms presented in Figure 4 seem to confirm the convergence to a Tracy-Widom
distribution, leading to a (far-reaching) conjecture, for the (point-to-point) Hγ-LPP.

Conjecture A.1. For every γ ě 0, there exists a constant Cγ (equal to 23{2

1`γΓp1`γq1{p1`γq?)

and a constant cγ such that, for the point-to-point Hγ-LPP in Poisson environment with
intensity λ “ 1 and γ-Hölder constraint A “ 1, we have

(A.1)
Lptq ´ Cγ t

cγ t1{3
pdq
ÝÝÑ FGUE as tÑ `8 .

A.2. Directed E-LPP. As far as the directed E-LPP is concerned, we also performed
simulations in the setting of Section 2.3 with t “ 100, with a Poisson intensity λ “ 1
and a constraint B “ 1. Simulations are much less efficient, and the simulated annealing

procedure only gives an approximate (under-estimated) value for Lptq “ L
pEBa,bq
λ pt, 0q.

Figure 5. Simulation of Poisson point-to-point E-LPP with t “ 100, via a simulated annealing
procedure. The plots represents a path which collects a number of points that approximate Lptq,
with different parameters a, b. From left to right we have: a “ 2, b “ 1 (C1,1 « 1.83), a “ 4, b “ 1
(C1,1 « 1.96), a “ 1, b “ 0 (C1,1 « 2.08), a “ 2, b “ 0 (C1,1 « 2.55).

Figure 5 presents some simulations to test the dependence of the constant C1,1 “

limtÑ8
1
tLptq on the parameters a, b. The only conjecture we may risk to formulate (thanks

to simulations for others values of a, b that we do not present here) is that the constant
should be non-decreasing in a and non-increasing in b. Further conclusions are hard to
draw from our simulations.

Figure 6. Histogram of 1000 realizations of Lptq for t “ 100 (with λ “ 1, B “ 1), with
a “ 2, b “ 1. We also plotted the graph of the GUE density, centered by Ca,bt with Ca,b « 1.89,

and rescaled by ca,b t
1{3 with ca,b « 1.4.

The histogram presented in Figure 6 makes it natural to conjecture that the Poisson
point-to-point E-LPP, when properly recentered and renormalized, converges in distribu-
tion to a Tracy-Widom GUE distribution.
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