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DIRECTED AND NON-DIRECTED

PATH CONSTRAINED LAST-PASSAGE PERCOLATION

QUENTIN BERGER AND NICCOLÒ TORRI

Abstract. Hammersley’s Last Passage Percolation (LPP), also known as Ulam’s prob-
lem, is a well-studied model that can be described as follows: consider m points chosen
uniformly and independently in r0, 1s2, then what is the maximal number Lm of points
that can be collected by an up-right path? We introduce here a generalization of this
standard LPP, in order to allow for more general constraints than the up-right condition
(a 1-Lipschitz condition after rotation by 45˝). We focus more specifically on two cases:
(i) when the constraint comes from the γ-Hölder norm of the path (a local condition),
we call it H-LPP; (ii) when the constraint comes from the entropy of a path (a global
condition), we call it E-LPP. These generalizations of the standard LPP also allows us to
deal with non-directed LPP. We develop motivations for directed and non-directed path-
constrained LPP, and we find the correct order of Lm in a general manner – as a specific
example, the maximal number of points that can be collected by a non-directed path of
total length smaller than 1 is shown to be of order

?
m. This new LPP opens the way

for many interesting problems, and we present some of its potential applications, to the
context of directed and non-directed polymers in random environment.

Keywords: Last-passage percolation, non-directed polymers.
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1. Introduction

In this introduction, we recall the original Hammersley’s LPP of the maximal number
of points that can be collected by up/right paths, also known as Ulam’s problem [14] of
the maximal increasing subsequence of a random permutation. This problem has been the
object of an intense activity over the past decades, culminating with the proof that it is
exactly solvable, and in the so-called KPZ universality class. We show how to generalize this
process by enlarging the set of paths allowed to collect points, by changing the increasing
constraint (or a 1-Lipschitz constraint, by a 45˝ rotation), to a more general compatibility
condition. Let us point out that the compatibility condition in the Hammersley’s LPP
is local, that is, the constraint to collect points depends only on two consecutive points.
Conversely, a global condition is a constraint that takes in account the whole trajectory
that we perform to collect points.

In Section 2, we introduce some specific constraints of interest (local and global) in the
directed setting, and we derive the correct order for the LPP problems. In Section 3, we
define a natural framework to be able to consider non-directed LPP, and we also derive its
correct order. Let us stress that in this article we put forward the interest of these models
and focus on simpler results, in order to provide motivations for our study. The techniques
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particular for discussing the application presented in Section 4.1.
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we use are robust, and our results already have many possible applications, as seen in [2]
or as developed in Section 4. For this reason we do not pursue for optimal constants or for
more precise convergence results, since it would bring many technicalities, and since it would
dilute our core message. We conclude the paper by presenting some simulations, which help
us to formulate a few conjectures on the convergence of the models, see Appendix A.

1.1. Hammersley’s Last Passage Percolation. Let us take m points independently
as uniform random variables in the square r0, 1s2, and denote the coordinates of these
points Z1 :“ pt1, x1q, Z2 :“ pt2, x2q, etc... We say that a sequence pzi`q1ď`ďk is increasing if
ti` ą ti`´1

and xi` ą xi`´1
for any 1 ď ` ď k (we set by convention i0 “ 0 and z0 “ p0, 0q).

Then, the question is to study the length of the longest increasing sequence among the m
points which is equivalent to the length of the longest increasing subsequence of a random
(uniform) permutation of length m. We denote:

Lm :“ sup
 

k ; D pi1, . . . , ikq s.t. pZi`q1ď`ďk is increasing
(

Using subadditive techniques, Hammersley [6] first proved that m´1{2Lm converges a.s.
and in L1 to some constant, that was believed to be 2. Further works then proven that the
constant was indeed 2 [11, 15]. Moreover, and quite remarkably, this model has been shown
to be exactly solvable by Baik, Deift and Johansson [1], and they identified the fluctuations
of Lm around 2

?
m, showing that the model is in the so-called KPZ universality class. More

precisely, in [1] the authors showed the following result.

Theorem 1.1 ([1]). We have the convergence in distribution

Lm ´ 2
?
m

m1{6

pdq
ÝÑ FGUE ,

where FGUE is the Tracy-Widom GUE distribution.

Moreover, Johansson [9] proved that the typical transversal fluctuations of a path col-

lecting the maximal number of points is of order m´1{6. Let us stress that the context
of [9] is actually slightly different: Johansson considers up-right paths going from p0, 0q
to pN,Nq in a Poisson Point process of intensity 1: he shows that the typical transversal
fluctuations (away from the diagonal) of a path collecting the maximal number of points

is of order N2{3. One recovers the setting presented above after rescaling by 1{N to reduce
to r0, 1s2, with a Poisson point process of intensity m “ N2 instead of a fixed number m
of points: it therefore tells that the transversal fluctuations of a maximal path is of order
N´1N2{3 “ m´1{6.

1.2. General definition of path-constrained Last Passage Percolation. We now
perform a 45 degree clockwise rotation, and generalize Hammersley’s LPP by introducing
a general constraint on paths (that can be either local or global): we introduce it via a
notion of compatibility of the points that can be collected. We need three ingredients:

‚ a domain Λ;
‚ a (finite or countable) random set of points Υ Ă Λ, whose elements are denoted by
Zi “ pti, xiq and its law is denoted P;

‚ a compatibility condition, i.e. a set C of compatible subsets of Λ.

Then, we define the C-compatible Last-Passage Percolation as the maximal number of C-
compatible points in Υ, that is

(1.1) LpCqΥ pΛq “ LpCqΥ :“ sup
!

|∆| ; ∆ Ă Υ,∆ P C
)

.
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Remark 1.2. This fits the definition of Hammersley’s LPP as defined above: the com-
patibility set C being the set of all increasing subsets of r0, 1s2. We can also define it, in
an equivalent manner, after a rotation by 45˝: we take the domain Λ :“

 

px, yq, 0 ă x ă
?

2, |y| ď minp1, 1´ tq
(

, and we use Υ “ Υm a set of m independent uniform random vari-
ables in Λ. The compatibility set is then taken to be (with the convention pt0, x0q “ p0, 0q)

C “
ď

kě0

!

∆ “ tpti, xiqu1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă
?

2,
|xi ´ xi´1|

|ti ´ ti´1|
ď 1 for all 1 ď i ď k

)

,

which corresponds to sets of points that can be collected via a 1-Lipschitz function. The
Poissonian (point-to-point) version of Hammersley’s also LPP can also be recovered by
considering Υ a Poisson point process on R2 with intensity λ ą 0, and Λ “ r0, ts ˆR, with
the same 1-Lipschitz compatibility condition as above.

Now, there are at least two reasonable ways of defining the compatibility condition: (i)
by replacing the Lipschitz condition by a Hölder constraint; (ii) by considering an entropy
constraint (a global constraint on the path), that can allow also to deal with non-directed
paths. We restrict ourselves to the case of the dimension d “ 2 for the simplicity of the
exposition, but all our definitions and reasoning can easily be extended to the case of higher
dimensions. We start with the case of directed paths in Section 2, and then discuss the
non-directed case in Section 3. Finally, we present some potential applications in Section
4.

2. Directed LPP: Hölder and entropy constraints

In this section, we consider directed paths. We work with a domain Λt,x “ r0, tsˆr´x, xs,
for some (fixed) t, x ą 0. Then, we consider m independent r.v. uniform in Λt,x to form
the set Υm. We will use Lm as a short notation for LΥm . Moreover, we say that a set
∆ “ tpti, xiqu1ďiďk Ă R` ˆR is directed if 0 ă t1 ă ¨ ¨ ¨ ă tk. We deal first with the Hölder
constraint, before we turn to the Entropy constraint.

2.1. Hölder constraint. The first natural generalization of the 1-Lipschitz condition is
to consider a Hölder constraint instead – the constraint is local, it depends only on two
consecutive points. For any γ ą 0, we can define the γ-Hölder norm of a set ∆ “ pti, xiq1ďiďk
(in which the points are ordered t1 ă ¨ ¨ ¨ ă tk, with the convention pt0, x0q “ p0, 0q)

(2.1) Hγp∆q :“ sup
1ďiďk

|xi ´ xi´1|

|ti ´ ti´1|
γ
.

Notice that for γ ď 1, it coincide with the γ-Hölder norm of the linear interpolation of the
points, whereas for γ ą 1 all γ-Hölder paths are constants, so that our definition is more
general. Then, for some fixed A ą 0, we define a compatibility set

(2.2) HAγ :“
 

∆ Ă R` ˆ R ; ∆ directed, Hγp∆q ď A
(

.

We then consider the γ-Hölder LPP, abbreviated as Hγ-LPP, defined as

(2.3) LpH
A
γ q

m pΛt,xq :“ sup
!

|∆| ; ∆ Ă Υm,∆ P HAγ
)

.

We prove the following result.
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Theorem 2.1. There are constants c1, c2 (depending only on γ) such that for any t, x and
B, for any 1 ď k ď m

P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď

´c1At
γm

xk1`γ

¯k
,(2.4)

P
´

LpH
A
γ q

m pΛt,xq ď k
¯

ď exp

"

c2k
´

1´ c2

´Atγ

xkγ
^ 1

¯m

k

¯

*

.(2.5)

As a consequence, there is some C ą 0 such that for any fixed t, x, γ, A, P-a.s. there is
some m0 such that

1

C
ď

LpH
A
γ q

m pΛt,xq

pAtγ{xq1{p1`γqm1{p1`γq
ď C for all m ě m0 .

We stress that the constants in (2.4)-(2.5) are uniform in the parameters m,A, t, x: the
results are still valid when considering the situation when A, t, x Ñ 8 as m Ñ 8, which
is useful for some applications. Note that we could define a point-to-point version of the
Hγ-LPP, by adding the condition that pt, 0q P ∆: a result analogous to Theorem 2.1 then
holds.

Note that we have that LpH
A
γ q

m pΛt,xq is of order mκ, with κ “ 1{p1 ` γq. Then, it is
very natural to expect that Lm{mκ converges a.s. to a constant as m Ñ 8: we discuss
this convergence in Section 2.3, see in particular Remark 2.6. The value of the constant is
discussed in Appendix A.

Figure 1. Simulation of Hγ-LPP with m “ 104 (t, x, A all set to 1). The plots represent a

maximizing path: from left to right, γ “ 1 (Lm “ 99 in the picture, m1{2
“ 100); γ “ 1{2

(Lm “ 510, m2{3
« 464); γ “ 1{4 (Lm “ 1722, m4{5

« 1585). We stress that the scale is different
in all three plots, and we see that the transversal fluctuations are much smaller than 1 in the
first case, and of order 1 in the second and third case.

Let us also discuss briefly about the (conjectured) transversal fluctuations of a maximal
path (that is a path collecting the maximal number of points). We already have that Lm
is of order mκ, with κ going to 1 as γ Ó 0. Then, the transversal fluctuations of a maximal
path should be of order m´ζ with ζ “ ζpγq decreasing as γ decreases, up to some point
where ζ reaches the value 0 (at which point a maximal path has transversal fluctuations of
order 1, see Figure 1 for an illustration). As discussed below (see in particular Section 3.3-

(b)), it is natural to conjecture that ζ “ p1´5κ{3q_0 “ γ´2{3
1`γ _0: transversal fluctuations

should be much smaller than 1 when γ ą 2{3 (κ ă 3{5) and of order 1 when γ ă 2{3
(κ ą 3{5).

Remark 2.2. One could naturally generalize Hölder LPP to a cone-shaped LPP: one can
define a region R “ tpt, xq P R` ˆ R, f2ptq ď x ď f1ptqu, with f1 ď f2 two functions
R` Ñ R, and let the compatibility condition for ∆ be that for any pti´1, xi´1q, pti, xiq P ∆
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we have pti ´ ti´1, xi ´ xi´1q P R (i.e. the next point in ∆ has to be in the cone-shaped
region R from the previous point). In this framework, Hγ-LPP is simply the cone-shaped
LPP with R “ tpt, xq,´tγ ď x ď tγu, and one could easily adapt the proof of Theorem 2.1:
the key quantity is V puq “

şu
0 |f1´f2|pvqdv, the area of R close to the origin, and one finds

that Lm is of the order of V ´1p1{mq (recovering the m1{p1`γq in the Hölder case).

2.2. Entropy constraint. Another type of constraint that is natural to consider is a
global constraint, coming from the notion of entropy of a path: this is a generalization of
the study initiated in [2]. For any a ě b ě 0, a ą 0, we define the pa, bq-Entropy of a set
∆ “ pti, xiq1ďiďk (again, the points are ordered t1 ă ¨ ¨ ¨ ă tk, and we use the convention
pt0, x0q “ p0, 0q)

(2.6) Enta,bp∆q :“
k
ÿ

i“1

|xi ´ xi´1|
a

|ti ´ ti´1|
b
.

In particular, we will be interested in two special subcases. First, when b ą 0 and a “ b`1:
in that case, we can generalize the notion of entropy to continuous paths s : r0, ts Ñ R,

by Entbpsq “
şt
0 |s

1puq|bdu, corresponding to the Lb norm of s1 – the entropy of a set ∆
corresponds to the entropy of the linear interpolation of ∆. Second, when b “ 0: then
the entropy can also be generalized to non-necessarily continuous paths s : r0, ts Ñ R,
by Entapsq “ sup

 
ř

i |sptiq ´ spti´1q|
a
(

, the supremum being over all finite subdivisions
t1 ă ¨ ¨ ¨ ă tk of r0, ts. This corresponds to the “a-variation” norm of s (when a “ 1 this
is the total variation, and when a “ 2 this is the quadratic variation). Note also that,
considering b ą 0 and a “ b{γ in (2.6), we have that

´

Entb{γ,bp∆q
¯γ{b

“

´

k
ÿ

i“1

|xi ´ xi´1|
b{γ

|ti ´ ti´1|
b

¯γ{b
ÝÝÝÑ
bÑ8

sup
1ďiďk

|xi ´ xi´1|

|ti ´ ti´1|
γ
,

so that we formally recover the γ-Hölder norm of ∆ (2.1).
Then, for some fixed B ą 0, we define a compatibility set

(2.7) EBa,b :“
!

∆ Ă R` ˆ R ; ∆ directed, Enta,bp∆q ď B
)

,

so that a set of points is compatible if it can be collected by a path with entropy smaller
than B. We then consider the Entropy constrained LPP, abbreviated as E-LPP, as

(2.8) L
pEBa,bq
m pΛt,xq :“ sup

!

|∆| ; ∆ Ă Υm,∆ P EBa,b
)

.

We prove the following result. (Again, we could define a point-to-point version of the E-
LPP, by adding the condition that pt, 0q P ∆: an analogous result would then hold for the
point-to-point E-LPP.)

Theorem 2.3. There are constants c3, c4 (depending only on a, b) such that for any t, x
and any B, for any 1 ď k ď m

P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď

´c3pBt
b{xaq1{am

kpa`b`1q{a

¯k
,(2.9)

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď exp

"

c4k
´

1´ c4

´

pBtb{xaq1{a

kpa`bq{a
^ 1

¯m

k

¯

*

.(2.10)
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As a consequence, there is a constant C such that for any fixed t, x, a, b, B, P-a.s. there is
some m0 such that

1

C
ď

L
pEBa,bq
m pΛt,xq

pBtb{xaq1{pa`b`1qma{pa`b`1q
ď C for all m ě m0 .

Again, the constants are uniform in the different parameters, and this fact reveals to be
very useful, in particular for the applications developed in Section 4.1.

Figure 2. Simulation of E-LPP with m “ 104 (t, x,B all set to 1), via a simulated annealing
procedure (using a Glauber dynamic on paths, with transitions between paths differing by at
most 1 point). The plots represents a path which collects a number of points that approximate

Lm, with different parameters a, b: from left to right, a “ 2, b “ 1 (Lm “ 117, m1{2
“ 100),

a “ 4, b “ 1 (Lm “ 547, m2{3
« 464), a “ 1, b “ 0 (Lm “ 158, m1{2

“ 100), a “ 2, b “ 0

(Lm “ 712, m2{3
« 464). Again, we stress that the scale is different in all four plots – much

smaller than 1 in the first and third, and of order 1 in the second and forth.

Also here, L
pEBa,bq
m pΛt,xq is of order mκ with κ “ a{pa` b` 1q, and it is natural to expect

that Lm{mκ converges a.s. to a constant as m Ñ 8. This convergence is discussed in
Section 2.3, and the value of the constant in Appendix A. Notice that in the case where
a “ b` 1 (which is one of the most natural, since it arises from LDP of random walks, see
Remark 2.4), we find κ “ 1{2, exactly as in the case of a Lipschitz constraint. In the case
b “ 0, we find κ “ a{pa ` 1q so κ “ 1{2 when a “ 1 (total variation case) and κ “ 2{3
when a “ 2 (quadratic variation case). As far as the transversal fluctuations of a maximal
path are concerned, we argue in point (b) of Section 3.3 that it should be of order m´ζ ,

with ζ “ p1 ´ 5κ{3q _ 0 “ b`1´2a{3
a`b`1 _ 0: transversal fluctuations should be much smaller

than 1 for κ ă 3{5, and reach order 1 for κ ą 3{5. See Figure 2 for an illustration.

Remark 2.4. Let us stress here that the entropy of a set ∆ as defined in (2.6) appears
naturally when considering large deviations for random walks: consider S a symmetric

random walk with unbounded jumps, with stretch exponential tail PpS1 “ xq
xÑ8
„ e´|x|

ν
,

for some ν ą 0 (one may consider that ν “ 8 includes the case of the usual simple random
walk). Then, when considering the probability that a point pn, xnq (with nÑ8, xn "

?
n)

is visited (or collected) by the simple random walk path, we realize that

(2.11) ´ log PpSn “ xnq
nÑ8
„

#

nIpxn{nq if ν ą 1, or ν P p0, 1q and xn ! n1{p2´νq ,

Jpxnq if ν P p0, 1q and xn " n1{p2´νq,

with some LDP rate functions Ip¨q, Jp¨q. More specifically, we have Ipxq „ x2{2 as x Ñ 0
(moderate deviation regime, see [5] for the standard Cramér case, [12] for the case ν P
p0, 1q), Ipxq “ xν as xÑ8 (super-large deviation, one-jump deviation, see [13, Thm. 2.1]),
and Jpxq “ xν (one-jump deviation, see [13, Thm. 2.1]). As such, the entropy defined in
(2.6) is the natural scaling limit of the log-probability that a random walk path visits a
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given set of points. We chose the specific form (2.6) instead of using general LDP rate
functions Ip¨q, Jp¨q because: (i) we are able to perform computations with this formula, (ii)
we can usually bound the rate function c|x|a ď Ipxq ď c1|x|a for some a ą 0. In (2.11), we
therefore have: in the first part a “ 2, b “ 1 if xn{n Ñ 0 or a “ ν, b “ ν ´ 1 (ν ą 1) if
xn{n Ñ 8; in the second part, a “ ν, b “ 0. However we keep the parameters a, b in the
definition (2.6), to be able to deal with all these cases at once.

Remark 2.5. Let us stress here that we have a comparison between the Hölder and
Entropy LPP: indeed, we observe that for Λ Ă r0, ts ˆ R, we have HAγ Ă EBa,b with γ “

p1 ` bq{a and B “ Aat. This is due to the fact that for any ∆ “ tpti, xiqu1ďiďk with
Hγp∆q ď A, we get that, using γ “ p1` bq{a

Enta,bp∆q “
k
ÿ

i“1

|xi ´ xi´1|
a

|ti ´ ti´1|
b
ď

k
ÿ

i“1

Aa|ti ´ ti´1|
aγ´b ď Aat .

This gives that L
pEAata,b q

m pt, xq ě L
pHA
p1`bq{a

q

m pt, xq. On the other hand, it is not possible to get
the other bound simply by comparison between local and global constraints.

2.3. Poissonian (point-to-point) version of path-constrained LPP. Similarly to the
standard LPP, we can define a Poissonian (point-to-point) version of the path constrained
LPP, reproducing the idea of Hammersley [6] to prove the convergence of Lm{

?
m.

For any λ ą 0, let Υλ be a Poisson point process of intensity λ on R2, and we define
the point-to-point version of path constrained LPPs. Let us consider z “ px, yq P R2. For

a given set ∆ Ă Rˆp0, yq, we set ∆pzq “ ∆Ytzu so that it extends ∆ to make it end at z.
In the directed case, for any t ą 0 we consider the domain Λt “ r0, ts ˆ R, and we

consider the end-point pt, tuq, for u P R. For any A ą 0, B ą 0, we define

LpH
A
γ q

Υλ
pt, tuq “ LpH

A
γ q

λ pt, tuq :“ sup
!

|∆|; ∆ Ă Υλ X Λt,∆ directed,Hγp∆
pt,tuqq ď A

)

,

L
pEBa,bq
Υλ

pt, ztq “ L
pEBa,bq
λ pt, tuq :“ sup

!

|∆|; ∆ Ă Υλ X Λt,∆ directed,Enta,bp∆
pt,tuqq ď Bt

)

.

Let us note that the entropy constraint grows linearly in t. We realize that in both cases,
`

LpCqλ pn, unq
˘

ně1
forms a super-additive ergodic sequence, in the sense that

(2.12) LpCqΥλ
pn` `, pn` `quq ě LpCqΥλ

pn, nuq ` LpCqθnuΥλ
p`, `uq ,

where θnu is the translation operator: pt, xq P θnuΥλ if and only if pt` n, x` unq P Υλ. The
super-additivity comes from the fact that the concatenation of two sets have: (i) a Hγ norm
equal to the maximum of the Hγ norms of the two sets; (ii) an entropy equal to the sum
of the entropies of the two sets. Therefore, Kingman’s sub-additive ergodic theorem [10]
gives that for any u P R and any λ ą 0, the limits

(2.13) CH
λ,Apuq “ lim

tÑ8

1

t
LpH

A
γ q

λ pt, tuq, CE
λ,Bpuq “ lim

tÑ8

1

t
L
pEBa,bq
λ pt, tuq

exist a.s. and in L1, and are constant P-a.s. To extend the limit on the integers nÑ8 to

a limit on the continuum parameter tÑ8 we used that t ÞÑ LpCqλ pt, tuq is non-decreasing.

Additionally, LpH
A
γ q

λ and L
pEBa,bq
λ verify some scaling relations. For this purpose, we con-

sider the following maps:
(i) pt, xq ÞÑ pλ1{p1`γqt, λγ{p1`γqxq, which does not change the γ-Hölder norm of a set ∆;
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(ii) pt, xq ÞÑ pλa{pa`b`1qt, λpb`1q{pa`b`1qxq, which multiplies the entropy of a set ∆ (and t)

by λa{pa`b`1q.
Therefore, since the image of Υλ through these maps has the distribution of Υ1, we obtain
the following identities in distribution

LpH
A
γ q

λ pt, tuq
pdq
“ LpH

A
γ q

1

`

λ1{p1`γqt, λγ{p1`γqtu
˘

and L
pEBa,bq
λ pt, tuq

pdq
“ L

pEBa,bq
1

`

λa{pa`b`1qt, λpb`1q{pa`b`1qtu
˘

.

As a consequence, by using (2.13), we also get the existence of the following limits, for any
fixed t ą 0 and u P R, A,B ą 0

lim
λÑ8

1

λ1{p1`γq
LpH

A
γ q

λ

`

t, tuλp1´γq{p1`γq
˘

“ tCH
1,Apuq;

lim
λÑ8

1

λa{pa`b`1q
L
pEBa,bq
λ

`

t, tuλpa´pb`1qq{pa`b`1q
˘

“ tCE
1,Bpuq .

(2.14)

Note that we recover the same order for Lλ as in Theorems 2.1-2.3. Note also that the
end-point has to be scaled with λ, except when γ “ 1 or a “ b` 1.

Moreover from (2.14) we also get that CH
λ,Apuq “ λ1{p1`γqCH

1,Apuλ
´p1´γq{p1`γqq and CE

λ,Bpuq “

λa{pa`b`1qCE
1,Bpuλ

pb`1´aq{pa`b`1qq.

Applying another scaling, we can also reduce to the case where A “ 1, B “ 1. We
consider the following maps, that preserves the distribution of Υλ:

(i) pt, xq ÞÑ pA1{p1`γqt, A´1{p1`γqxq, which divides the γ-Hölder norm by A;

(ii) pt, xq ÞÑ pB1{pa`b`1qt, B´1{pa`b`1qxq, which multiplies the entropy byB´1ˆB1{pa`b`1q.
Then, we obtain that

LpH
A
γ q

λ pt, tuq
pdq
“ LpH

1
γq

λ

`

A1{p1`γqt, A´1{p1`γqtu
˘

and L
pEBa,bq
λ pt, tuq

pdq
“ L

pE1
a,bq

λ

`

B1{pa`b`1qt, B´1{pa`b`1qtu
˘

.

As a consequence, we have that CH
1,Apuq “ A1{p1`γqCH

1,1pu{A
2{p1`γqq and also CE

1,Bpuq “

B1{pa`b`1qCE
1,1pu{B

2{pa`b`1qq, so that we can conclude that

(2.15)

CH
λ,Apuq “ pλAq

1
1`γ CH

1,1

`

uλ
1´γ
1`γA

´ 2
1`γ

˘

and CE
λ,Bpuq “ pλB

1{aq
a

a`b`1 CE
1,1

`

uλ
a´b`1
a`b`1B´

2
a`b`1

˘

.

Remark 2.6. When considering t “ 1, u “ 0 with λ “ m, this correspond to considering
the LPP problem for paths s : r0, 1s Ñ R in a Poisson point process of intensity m. The-
oretically, one could therefore use (2.14) (with λ “ m), together with a de-Poissonization
argument, in order to prove the convergence for the point-to-point version of the Hγ-LPP
and E-LPP of Sections 2.1-2.2 to the constant on the r.h.s. of (2.14). We do not pursue
in this direction, since it would not bring any technical novelty or much insight on the
problem. We refer to Section 3.3-(a) for further discussion on the value of the constant.

2.4. Discrete version of the directed path constrained LPP. For the previous LPP
models, we were considering the case of a continuous domain Λ Ă R2, and a set of points Υ
that have a continuous distribution. Our idea is that these models can be thought as limits
of discrete models, where Λ is a lattice domain, and Υ is a set of point on this domain.
This is what is done in [2], where the E-LPP is considered both in the discrete and in the
continuous setting: we develop the ideas briefly here.

We let n, h P N, and we consider the (discrete) domain Λn,h “ J1, nK ˆ J´h, hK. For
1 ď m ď CardpΛn,hq, we consider Υm a set of m distinct points in Λn,h, chosen uniformly
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at random. Note that for ∆ Ă Λn,h, the definition of Hγ-Hölder norm (2.1) and entropy

(2.6) of the set ∆ still holds. We denote L
pHA

γ q
m pΛn,hq and L

pEBa,bq
m pΛn,hq the discrete analogues

of the H-LPP and E-LPP: we then have results analogous to Theorems 2.1-2.3.

Theorem 2.7. For any n, h ě 1, and any 1 ď k ď m ď 2nh, we have that

P
´

L
pHA

γ q
m pΛn,hq ě k

¯

ď

´CAnγm

hk1`γ

¯k
, P

´

L
pHA

γ q
m pΛn,hq ď k

¯

ď eck
`

1´c
`

Anγ

hkγ
^1
˘

m
k

˘

;

P
´

L
pEBa,bq
m pΛn,hq ě k

¯

ď

´CB1{anb{am

hkpa`b`1q{a

¯k
, P

´

L
pEBa,bq
m pΛn,hq ď k

¯

ď e
ck
`

1´c
`

B1{anb{a

hkpa`bq{a
^1
˘

m
k

˘

.

We recover with this result that in the discrete setting: (i) L
pHA

γ q
m pΛn,hq is of order

pAnγ{hq1{p1`γqm1{p1`γq; (ii) L
pEBa,bq
m pΛn,hq is of order pBnb{haq1{pa`b`1qma{pa`b`1q. The proof

of Theorem 2.7 is identical to those of its continuous counterparts Theorems 2.1-2.3 (see
for instance the proof of Theorem 3.1 (ii) in [2]), and we leave it to the reader.

3. Non-directed LPP

Let us now develop the fact that the notion of compatibility allows for even more general
constraints, and for example enables us to deal with non-directed paths. To do so, we
consider a natural framework: we work with a time horizon r0, ts, and define the γ-Hölder
norm and the Entropy of a subset ∆ “ pxiq1ďiďk of R2 (the points are considered in a given
order), by considering the optimal γ-Hölder norm or Entropy of a path going through the
points of ∆ (in the correct order) in a time horizon t:

Hγpt,∆q :“ inf

"

sup
1ďiďk

}xi ´ xi´1}

|ti ´ ti´1|
γ

; t1 ă ¨ ¨ ¨ ă tk subdivision of r0, ts

*

,(3.1)

Enta,bpt,∆q :“ inf

" k
ÿ

i“1

}xi ´ xi´1}
a

|ti ´ ti´1|
b

; t1 ă ¨ ¨ ¨ ă tk subdivision of r0, ts

*

,(3.2)

where } ¨ } denotes the Euclidean norm on R2. Another way of presenting it is by saying
that Hγpt,∆q (resp. Enta,bpt,∆q) is smaller than A if and only if there exists a path
s : r0, ts Ñ R2 collecting the points of ∆ which has γ-Hölder norm (resp. Entropy) smaller
than A.

Here again, the case b ą 0 with a “ b ` 1 will be of particular interest for us, since
it arises naturally from a LDP for non-directed random walks to visit a certain set of
points (i.e. considering the probability that there are some times t1 ă ¨ ¨ ¨ ă tk such that
Sti “ xi). It can be extended to continuous curves s : r0, ts Ñ R2, or more precisely, to

their traces % “ tspuq, u P r0, tsu, by taking the infimum of
şt
0 }s̃

1puq}adu over all possible

parametrization s̃ : r0, ts Ñ R2 of %. The case b “ 0 arises also when considering random
walks with increments with a stretch-exponential tail, and correspond to the a-variation
norm of a curve s : r0, ts Ñ R (which does not depend on the parametrization of the curve).

Let us notice right away that we are able to identify the optimal subdivision 0 ď t1 ă
¨ ¨ ¨ ă tk ď t used by a path to collect all points of ∆:

‚ For the Hölder case (3.1), we find that the optimal choice for the subdivision is

ti ´ ti´1 “ t}xi ´ xi´1}
1{γ

`
řk
i“1 }xi ´ xi´1}

1{γ
˘´1

(so that all terms in the sup are
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equal). Then we obtain that the γ-Hölder norm of ∆ is

(3.3) Hγpt,∆q “
1

tγ

´

k
ÿ

i“1

}xi ´ xi´1}
1{γ

¯γ
.

We note that when γ “ 1, the definition (2.1) corresponds to the total length of the
linear interpolation of the points of ∆, and can therefore be extended to continuous

curves s : r0, ts Ñ R2, by
şt
0 }s

1puq}du, the total length of the curve. It does not
depend on the parametrization but only on the trace % “ tspuq, u P r0, tsu.

‚ For the Entropy case (3.2), we find that the optimal choice for the subdivision is

ti´ti´1 “ t}xi´xi´1}
a{pb`1q

`
řk
i“1 }xi´xi´1}

a{pb`1q
˘´1

– note that when a “ b`1,
ti ´ ti´1 is just proportional to the distance between the points. Then we obtain
that the Entropy of ∆ is

(3.4) Enta,bpt,∆q “
1

tb

´

k
ÿ

i“1

}xi ´ xi´1}
a{pb`1q

¯b`1
.

Note that when a “ b` 1, (3.4) corresponds to the pb` 1q-th power of the length
of the linear interpolation of the points of ∆.

Remark 3.1. In view of (3.3)-(3.4) (and the comments below), we see that the Hγ-LPP
and the E-LPP are equivalent. We indeed have Enta,bpt,∆q “ tHγpt,∆q

a with γ “ pb`1q{a,
or also Hγpt,∆q “ t´γEnta,bpt,∆q

γ with b “ 0 and a “ 1{γ. Hence, we will focus simply
on the non-directed E-LPP, since the Entropy and Hölder constraints are easily related to
each other.

We will work with the domain Λr “ tx P R2, }x} ď ru, the disk of radius r (for symmetry
reasons, but this choice is not crucial). For m ě 1, Υm is a set of m independent variables
uniform in Λr. Then, for some fixed B ą 0, we define the non-directed Entropy compatible
sets with time horizon r0, ts,

E t,B
a,b “

 

∆ Ă R2 ; Enta,bpt,∆q ď B
(

,

and finally the non-directed LPP,

(3.5) L
pE t,Ba,b q
m pΛrq :“ sup

!

|∆| ; ∆ Ă Υm,∆ P E B
a,bptq

)

.

(We use a curly font for L and E to visually mark the difference with the directed LPPs.)
We prove the following result, for non-directed LPP.

Theorem 3.2. There exist constants c5, c6 such that for any t, r and B, for any 1 ď k ď m

P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď

´c5pBt
b{raq2{am

k2pb`1q{a

¯k
,(3.6)

P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď e´c6m ` exp

"

c6k
´

1´ c6
ma{2pb`1q

k

`

Btb{ra
˘1{pb`1q

¯

*

.(3.7)

Finally, there is some C ą 0 such that P-a.s. there is some m0 such that

(3.8)
1

C
ď

L
pE t,Ba,b q
m pΛrq

m^ pBtb{raq
1
b`1m

a
2pb`1q

ď C for all m ě m0 .
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Also here, the constants in (3.6)-(3.7) are uniform in the parameters m,B, t, r, allowing
for a dependence of these parameters on m.

In view of Remark 3.1 above, we obtain an analogous statement for non-directed Hγ-LPP

(take b “ 0, a “ 1{γ, and B “ tA1{γ in Theorem 3.2). For instance, the last statement of
Theorem 3.2 can be read (with obvious notations) as

(3.9) P´ a.s. Dm0 ą 0:
1

C
ď

L
pH t,A

γ q
m pΛrq

pAtγ{rq1{γm1{p2γq
ď C for all m ě m0 .

Figure 3. Simulation of non-directed LPP with m “ 103 in r´0.5, 0.5s2 (t, B set to 1), via
a simulated annealing procedure (using a Glauber dynamic on paths, with transitions between
paths differing by at most one point). The plots represents a path which collects a number of
points that approximates Lm with different values for γ “ pb` 1q{a: on the left, γ “ 1 (Lm “ 53

in the picture, m1{2
« 32); γ “ 3{4 (Lm “ 128, m2{3

“ 100). Note that the scale is different in
the two plots – quite smaller than 1 in the first case, of order 1 in the second case.

We have that Lm is of order mκ with κ “ a
2pb`1q ^ 1 (or κ “ 1

2γ ^ 1), and it is also

natural to expect that Lm{m
κ converges a.s. to a constant as m Ñ 8. We highlight the

fact that, in the non-directed case, we find that κ “ 1{2 (as for the standard LPP), both
for an entropy constraint with a “ b ` 1 (the standard case when considering entropy
arising from LDP of random walks) and for a Lipschitz constraint (γ “ 1, corresponding
to a length constraint, see discussion after (3.3)).

3.1. Poissonian version of the model. In the non-directed framework, we are also able
to define a Poissonian version of the model. For any z P R2 and any r ą 0, we will consider
sets ∆ and extend them to end at rz (we denote ∆przq this extension), in order to define
a point-to-point version (and use sub-additivity techniques). The main difference with the
directed case is that we need here to decide what is the time horizon tr to reach that point.
As further discussed below, the only reasonable choice is to pick tr “ r1{γ , resp. ra{pb`1q,
which is the time needed to reach rz with Hγ norm of order 1, resp. with entropy of order
tr. We will also see that the models present some interest only when γ “ 1 (the Hγ norm is
then just the length of the path) or when a “ b`1 (and the entropy derives from standard
LDP).

For any A ą 0, B ą 0, we define

L
pH A

γ q

Υλ
przq “ L

pH A
γ q

λ przq :“ sup
!

|∆|; ∆ Ă Υλ,Hγptr,∆
przqq ď A

)

,

L
pEBa,bq

Υλ
przq “ L

pEBa,bq

λ przq :“ sup
!

|∆|; ∆ Ă Υλ,Enta,bptr,∆
przqq ď Btr

)

.

Let us realize right away that the two models are equivalent (on the contrary to Section 3
where the dependence on t was different for the two models, cf. Remark 2.5): (i) from (3.3),
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having Hγptr,∆q ď A is equivalent to
řk
i“1 }xi ´ xi´1}

1{γ ď A1{γtr; (ii) from (3.4), having

Enta,bptr,∆q ď Btr is equivalent to
řk
i“1 }xi´xi´1}

a{pb`1q ď B1{pb`1qtr. We therefore focus

only on the Entropy case – we set γ “ pb` 1q{a, and drop the super-script E B
a,b to ease the

notations.
In order for the sequence

`

Lλpnzq
˘

ně1
to be super-additive ergodic (i.e. verify (2.12)),

we need to have γ ď 1 so that tr ` ts ď tr`s for any r, s P R` (using that ptr ` tsq
γ ď

tγr ` tγs for γ ď 1). Indeed, super-additivity simply comes from the above remark that

Enta,bptr`s,∆q ď Btr is equivalent to
řk
i“1 }xi ´ xi´1}

1{γ ď B1{pb`1qtr`s, together with
tr ` ts ď tr`s. This gives, as for (2.13), the following convergence (a.s. and in L1),

(3.10) Cλ,Bpzq “ lim
rÑ8

1

r
Lλprzq .

Note that by symmetry, the constant Cλ,Bpzq depends only on }z}.
Additionally, Lλprzq verifies some scaling relations. Note that here, in view of the defi-

nition (3.4), we need to scale both coordinates in the same way: we use the map x ÞÑ λ1{2x,

which preserves the condition Enta,bptr,∆
prqq ď Btr thanks to our choice of tr “ r1{γ –

this is crucial here, and is the main reason for our choice of time horizon. The image of Υλ

though this map has the distribution of Υ1, so we obtain that

Lλprzq
pdq
“ L1

`

λ1{2rz
˘

.

As a consequence of this scaling relation and (3.10), for any r ą 0, we have the convergence

(3.11) lim
λÑ8

1

λ1{2
Lλprzq “ rC1,Bpzq .

Note that we recover the correct order for Lλ only when a “ b ` 1 or γ “ 1 cf. (3.8)
and (3.9), (in which case the time horizon is tr “ r), but not in other cases. This is due

to the constraint that rz has to be visited in the time horizon tr “ r1{γ : when γ ă 1,
it somehow stretches the paths, which cannot wander as much as in the “free” case. An
idea to overcome this problem would be to consider the “free end-point” version of this
non-directed Poisson LPP in some time horizon t – however preventing from the use of
super-additivity. Then, the natural question would be to determine the typical end-to-end
distance.

3.2. Discrete version. Here again, we can define a discrete version of the model (we do
it only in the entropy case), by considering the discrete domain Λd “ tx P Z2, }x} ď du.
Then, for m ď CardpΛdq we consider Υm a set of m distinct points of Λd, chosen uniformly
at random. Here we consider a discrete time horizon n, and we slightly modify the definition
of the entropy of a set ∆ Ă Λd compared to (3.2), to fit the discrete setting:

(3.12) Enta,bpn,∆q :“ inf
!

k
ÿ

i“1

}xi ´ xi´1}
a

|ni ´ ni´1|
b

; n1 ă ¨ ¨ ¨ ă nk subdivision of J1, nK
)

.

Then, we define L
pE n,Ba,b q

m pΛdq the corresponding non-directed E-LPP, and have a result
analogous to Theorem 3.2 (we display here only the analogous of (3.6)).

Theorem 3.3. We have a constant such that for any n, d, and any 1 ď k ď m ď |Λd|,

P
´

L
pE n,Ba,b q

m pΛdq ě k
¯

ď

´CpBnb{r2q1{am

k2pb`1q{a

¯k
.
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The proof of Theorem 3.3 is identical to those of its continuous counterparts Theorem 3.2,
and we leave it to the reader.

3.3. Open questions and directions. Our main goal here has been to introduce a gen-
eralized Last Passage Percolation, and the results we present here give the first properties
of such models, which are already useful in some contexts, see the two potential applica-
tions we develop in Section 4 below. However, many questions are raised, and we provide
here a few important open problems that remain – some of them seem out of reach for the
moment.

(a) Show the convergence of the LPP. We have shown that the Hγ-LPP, E-LPP or
non-directed LPP, generically denoted Lm, are of order mκ for some κ ą 0. What we did
not prove but strongly believe is that Lm{mκ converges (a.s. and in L1) to a constant C

as m Ñ 8. The next step would then be to identify this constant, and its dependence
on the parameters of the model (in particular in γ or a, b, since the dependence in t, A,B
can be derived thanks to scaling arguments, see (2.15)). In Appendix A, we present some
simulations that suggest that for the directed Hγ-LPP (with t, x,A set to 1), the constant
C does not depend on γ, and is equal to 1 – the intensity of points can be interpreted to
be λ “ m{2 since Λt,x has volume 2, so this corresponds to having the constant CH1,1p0q

appearing in (2.14) equal to 2κ. Let us observe that the Hammersley’s LPP result (cf.
Section 1.1) is obtained by setting γ “ 1 (so that κ “ 1{2), A “ 1 and t “

?
2 in (2.14)

(recovering CH1,1p0q “ 2).
For the directed E-LPP, simulations suggest that the constant C depends only on b

and not on κ – again, this corresponds to having the constant CE
1,1p0q in (2.14) equal to

cb2
κ, where cb is a constant depending only on b. In the Poissonian point-to-point LPP of

Section 2.3, another natural question is also to determine the dependence in the end-point
of the constants Cpuq appearing in (2.13).

(b) Once the constant C “ limmÑ8 Lm{mκ has been determined, the next natural step
is to identify the fluctuations of Lm around Cmκ. The question is to know whether there
is an analogue of Theorem 1.1 to the generalized LPP. As far as the directed setting is
concerned, simulations presented in Appendix A suggest that the model is still in the KPZ
universality class. It is reasonable to believe that in the Poisson setting of Section 2.3
(setting λ “ 1, A or B equal to 1, and u “ 0), the convergence in (2.13) should generalize
to the following convergence in distribution

(3.13)
L1pt, 0q ´ C1,1t

t1{3
pdq
ÝÑ FGUE .

(The dependence on γ or on a, b is hidden in the constant C1,1 and possibly in the normal-
ization of FGUE .) It is also natural to expect that the typical transversal fluctuations of a

maximal path should be of order t2{3. Applying the map pt, xq ÞÑ pm´κt,mκ´1xq as done
in Section 2.3 (with κ “ 1{p1` γq or κ “ a{pa` b` 1q), which preserve the constraints but
multiplies the intensity of the Poisson point process by m, the convergence above (with
t “ mκ) transforms to

(3.14)
Lmp1, 0q ´ C1,1m

κ

mκ{3

pdq
ÝÑ FGUE .

which is supported by the simulations of Appendix A. As far as the transversal fluctua-
tions of a maximal path are concerned, the transformation above suggest that they are
of order mκ´1 ˆ pmκq2{3 “ m5κ{3´1. When considering the directed Hγ-LPP or E-LPP of
Sections 2.1-2.2, that consider m points drawn in a domain Λt,x rather than a Poisson point
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process of intensity m{p2txq (recall |Λt,x| “ 2tx), this tells that the transversal fluctuations

of a maximal path should be of order m´ζ with ζ “ p1´ 5κ{3q_ 0. In the case κ ą 3{5 the
path is “blocked” by the border of the domain Λt,x, and oscillates much more inside the
domain. This should however not affect the constant C “ limmÑ8 Lm{mκ.

(c) As far as the non-directed setting is concerned, the above discussion is even more
far-reaching: because of its directedness, the point-to-point Poissonian version seems useless
here. However, we still expect the constant C “ limnÑ8Lm{m

κ (with κ “ a
2pb`1q or κ “ 1

2γ )

to exist. We did not perform simulations to test the value of C and its dependence on the
parameters a, b or γ, because of the high computation time even for a small number of
points m. It is still reasonable to believe that the model is also in the KPZ universality class,
that is m´κ{3pLm ´ Cmκq converges in distribution to FGUE , and that typical transversal
fluctuations for the model are of order m´ζ with ζ “ p1´ 5κ{3q _ 1.

4. Some applications of the (entropy) path-constrained LPP

We now present two applications of the directed and non-directed LPPs, to the context
of polymer models.

4.1. Application I: a model for a directed polymer in Poissonian environment.
We define here a very natural variational problem, which encapsulate the energy-entropy
competition inherent to models of polymers in random environment. The random envi-
ronment is given by a Poisson point process Υλ on R` ˆ R of intensity λ ą 0 (its law is
denoted P), and for β ą 0, we define the following (point to point) variational problem

(4.1) Zλ,βptq :“ sup
s:r0,tsÑR,sp0q“sptq“0

!

β
ˇ

ˇsXΥλ

ˇ

ˇ´ Entpsq
)

,

with Entpsq defined as in (2.6) – because Υλ is countable, Entpsq is well-defined. Here,
|sXΥλ| the number of points collected by the path, is viewed as a measure of the energy
of a trajectory s, so this variational problem constitute a simplified model to study the
energy-entropy competition of polymer models. Again, the central cases that we have in
mind is when a “ b`1 or b “ 0 in the definition of the entropy (2.6), see Remark 2.4 (when
the entropy derives from the LDP of a simple random walk, we have a “ 2, b “ 1). The idea
of this model is similar to that of [4] which considers a Brownian polymer in Poissonian
medium. However, here, we somehow consider only the ground states, that is trajectories
maximizing the energy-entropy balance, and we also allow for more general entropy than
that of the Brownian motion (for which a “ 2, b “ 1).

First of all, we notice that as in Section 2.3, Zλ,βptq is a super-additive ergodic sequence
– the entropy of the concatenation of two paths is the sum of the entropies of the two
paths –, so that Kingman’s sub-additive ergodic theorem gives that the limit

(4.2) fpλ, βq :“ lim
tÑ8

1

t
Zλ,βptq

exists a.s. and in L1, and is P-a.s. constant. We also have scaling relations for Zλ,βptq.
Indeed, consider the two following maps: (i) pt, xq ÞÑ pλ´a{pa`bqt, λ´b{pa`bqxq whose image of

Υλ has distribution Υ1 and which preserves the entropy; (ii) pt, xq ÞÑ pβ´1{pa`bqt, β1{pa`bqxq,
which multiplies the entropy by β, while preserving the distribution of Υλ. We therefore
obtain that

(4.3) Zλ,βptq
pdq
“ Z1,β

`

λ´a{pa`bqt
˘

and Zλ,βptq
pdq
“ βZλ,1

`

β´1{pa`bqt
˘

.
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A first consequence is that we get that fpλ, βq “ pβa`b`1λaq1{pa`bqfp1, 1q, where fp1, 1q is
a constant that needs to be determined. Another consequence is that, if we consider the
alternative problem where we take λ Ñ 8 (instead of t Ñ 8), we get that, for any fixed
positive t, β, the limit

(4.4) lim
λÑ`8

1

λa{pa`bq
Zλ,βptq “ tfp1, βq “ tβpa`b`1q{pa`bqfp1, 1q

exists a.s. and in L1.

We considered the Poissonian point-to-point version for the sake of simplicity (in partic-
ular to be able to use scaling relations), but one could naturally define a “m-points” version
of the model. More precisely, considering the domain Λ1,1 “ r0, 1sˆr´1, 1s, and Υm a set of
m points taken uniformly and independently in Λ1,1, we can define the variational problem,
for β ą 0

(4.5) Zm,β :“ sup
s:r0,1sÑr´1,1s

!

β|sXΥm| ´ Entpsq
)

.

Then, in view of (4.4), we expect that a “de-Poissonization” technique would enable us
to show that there is a constant Cst ą 0 such that

(4.6) lim
mÑ8

1

ma{pa`bq
Zm,β “ βpa`b`1q{pa`bqCst .

(Since Λ1,1 has volume 2, we have an intensity of points λ “ m{2, so we expect that

Cst “ 2a{pa`bqfp1, 1q.) In the most standard case a “ 2, b “ 1 (deriving from LDP of
the simple random walk), we therefore find that the variational problem Zm,β is of order

β4{3m2{3 – this is much larger than
?
m which is the order when we consider the case of a

uniformly bounded entropy.
We stress that one can easily find the correct order for Zm,β thanks to the results of

Section 2.2. Indeed, we can write from (4.5) that

(4.7) Zm,β “ sup
Bě0

!

β sup
s:r0,1sÑR,Entpsq“B

 

|sXΥm|
(

´B
)

.

Then, since in Theorem 2.3 it is proven that

sup
s,EntpsqďB

 

|sXΥm|
(

— B1{pa`b`1qma{pa`b`1q ^m,

one readily sees that the maximum in (4.7) is attained for (and is of the order of) B —

pβa`b`1maq1{pa`bq ^ pβmq.
We can actually make this precise, and prove deviation bounds for Zm,β.

Proposition 4.1. There are constants c7, c8, and some K0 (depending only on a, b) such

that for any K ą K0, and provided that m is large enough so that pβmaq1{pa`bq ď m, we
have

P
´

Zm,β ě Kpβa`b`1maq1{pa`bq
¯

ď e´c7Kpβm
aq1{pa`bq ,(4.8)

P
´

Zm,β ď
1

K
pβa`b`1maq1{pa`bq

¯

ď e´c8K
b{apβmaq1{pa`bq(4.9)

As a consequence, there is some C ą 0 such that for any fixed β ą 0, P-a.s. there is some
m0 such that

1

C
ď

Zm,β

pβa`b`1maq1{pa`bq ^ pβmq
ď C , for all m ě m0 .
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Perspectives. For this model, some important questions remain unanswered:
(i) what is the value of the constant Cst (or equivalently of the constant fp1, 1q)? In

view of (4.7), and since we believe that supEntpsqďBt|s X Υm|u „ B1{pa`b`1qCmκ with

κ “ 1{pa` b` 1q and C (we used the scaling of relation (2.15) that should hold also in the

non-Poissonian case, that is, CB “ B1{pa`b`1qC), we conjecture that the supremum in (4.7)
is equal to

ca,bpβCm
κqpa`b`1q{pa`bq, where ca,b “ pa` bqpa` b` 1q´pa`b`1q{pa`bq

(the supremum is attained for B “ pβCmκ{pa` b` 1qqpa`b`1q{pa`bq). Since the simulations
of Appendix A suggest that the constant C is equal to 1, we can therefore conjecture that

lim
mÑ8

Zm,β

pβa`b`1maq1{pa`bq
“ ca,b .

(ii) what does the maximizer of Zλ,βptq (or Zm,β) look like? for example what is its
typical transversal fluctuation exponent?

We believe that this model deserves further investigation, and would lead to a better
understanding of the energy-entropy balance in polymer models.

Proof of Proposition 4.1. The proof is a relatively simple application of Theorem 2.3, and
makes use of the fact that the estimates (2.9)-(2.10) are uniform in the parameters.

• For the upper bound, we use the idea sketched above: for any v ą 0, we decompose
the variational problem by writing

Zm,β ď
`

β sup
s,EntpsqPr0,vs

 

|sXΥm|
(˘

_ sup
kě1

`

β sup
s,EntpsqPr2k´1v,2kvs

 

|sXΥm|
(

´ 2k´1v
˘

.

Hence, a union bound gives that

P
`

Zm,β ě v
˘

ď P
´

sup
Entpsqďv

 

|sXΥm|
(

ě v{β
¯

`

8
ÿ

k“1

P
´

sup
Entpsqď2kv

 

|sXΥm|
(

ě 2k´1v{β
¯

.

Since supEntpsqď2kv

 

|sXΥm|
(

ď L
pE2kv
a,b q

m , we use Theorem 2.3-(2.9) with v “ Kpβa`b`1maq1{pa`bq,
and we obtain that provided that K is large enough,

P
`

Zm,β ě Kpβa`b`1maq1{pa`bq
˘

ď

´

c3K
´pa`bq{a

¯´Kpβmaq1{pa`bq

`

8
ÿ

k“1

´

cp2kKq´pa`bq{a
¯´2kKpβmaq1{pa`bq

ď c exp
´

´Kpβmaq1{pa`bq
¯

.

• For the lower bound, this is easier: for any v ą 0, we have that

Zm,β ě β sup
s,Entpsqďv

 

|sXΥm|
(

´ v .

With v :“ p2Kq´1pβa`b`1maq1{pa`bq, we obtain that

P
´

Zm,β ď
1

K
pβa`b`1maq1{pa`bq

¯

ď P
´

sup
s,Entpsqďv

 

|sXΥm|
(

ď v{β
¯

ď exp
´

´ cK´1pβmaq1{pa`bq ˆKpa`bq{a
¯

,

where the last inequality comes from Theorem 2.3-(2.10), provided that K is large enough.
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The almost sure statement holds thanks to the previous bounds, by an easy application
of Borel-Cantelli lemma.

4.2. Application II: (continuous) non-directed polymers in heavy-tail environ-
ment. The directed E-LPP have already proved to be useful to understand the transversal
fluctuations and scaling limits of directed polymers in heavy-tail random environment, see
[2]. The continuous limit of the model is found to be an energy-entropy variational problem,
and E-LPP appears central to ascertain its well-posedness. Here, we define an analogous
variational problem in the non-directed setting, and show that it is well defined. It should
also appear as the scaling limit of some non-directed polymer model in heavy-tail random
environment – that we plan on studying more thoroughly.

As a continuum disorder field, we let P :“ tpwi, xi, yiq : i ě 1u be a Poisson Point
Process on r0,8qˆR2, of intensity µpdwdxdyq “ α

2w
´α´11twą0udwdxdy – it derives from

the scaling of a discrete field of disorder with heavy-tail distribution. For a continuous path
s : r0, 1s Ñ R2, we can then define the continuum energy it collects by summing the weights
in P “collected” by s (that is sitting on the trace of s), πpsq “

ř

pxi,yiqPs
wi. We can also

define its length `psq “
ş1
0 }s

1puq}du, and we consider `psqν for some ν ą 1 as a measure
of its entropy. Indeed, if s is a linear interpolation of a finite number of points in P, then
`psqν is nothing but the non-directed E-LPP defined in (3.4) with a “ b` 1 and b` 1 “ ν.
This choice derives from LDP for a random walk, and ν “ 2 corresponds to the moderate
deviation regime of the simple random walk.

Thanks to the non-directed LPP of Section 3, we are able to show that the energy/entropy
variational problem is well defined, when α P p2{ν, 2q.

Proposition 4.2. For any ν ą 1, the following variational problem is well defined for all
β ě 0, when α P p2{ν, 2q,

(4.10) T pνqβ :“ sup
s:r0,1sÑR2

sp0q“0, `psqă8

 

βπpsq ´ `psqν
(

.

For β ą 0, we have that T pνqβ ą 0 a.s. and ErpT pνqβ qκs ă 8 for any κ ă α´ 2{ν. Moreover,

for any α P p2{ν, 2q, we have the scaling relation

(4.11) T pνqβ

pdq
“ β

να
να´2 T pνq1 .

On the other hand, if α P p0, 2{νs, we have that T pνqβ “ `8 a.s.

Up to now, polymers in random environment have mostly been considered in the directed
framework, see [3] for a thorough review, or in the semi-directed context of stretched
polymers, see [7, 16], or [8] for a review. Proposition 4.2 therefore shows that our generalized
LPP can be useful to study non-directed polymers: the variational problem can be thought
as an energy/entropy model for a continuous polymer in continuous random environment.
The main question remaining is then to describe what a maximizer of (4.10) look like.

Perspectives. The most natural question is now to consider a (discrete) non-directed poly-
mer model in random environment (the Hamiltonian being the sum of the weights of the
sites visited by the random walk), and prove its convergence to the variational problem
of Proposition 4.2, in the case of a heavy-tail environment. More generally, the study of
non-directed polymers in random environment is of great interest, and should be pursued.
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Proof of Proposition 4.2. The proof is inspired by that in [2, Section 4]. We fix ν ą 1 in

the following, so we drop it from the notation T pνqβ “: Tβ.

˚ Scaling relations. For α P p0, 2q and ρ ą 0 we consider ϕρpw, xq :“ pρ2{αw, ρxq which

scales space by ρ and weights by ρ2{α respectively. For the Poisson point process P defined

in Section 4.2, we get that for any ρ ą 0, ϕρpPq
pdq
“ P. Then, applying this scaling with

ρ “ β´α{pνα´2q (if α ‰ 2{ν) we obtain the following scaling relation for any β ą 0

Tβ “ β
να
να´2 sup

s, `psqă8

!

β´2{pνα´2qπpsq ´
`

β´α{pνα´2q`psq
˘ν
)

pdq
“ β

να
να´2T1 .(4.12)

˚ Positivity. We show that for any β ą 0, Tβ ą 0. Moreover we show that a.s. Tβ “ `8
if α P p0, 2{νs. For any u ą 0, let us consider Du :“ r0,8q ˆ r´u, us2. We have

Tβ ě max
pw,x,yqPPXDu

 

β w
(

´ p
?

2uqν .

We observe that, by considering the ordered statistics of PXDu (see the proof of Lemma 4.3
below), we get that

max
pw,x,yqPPXDu

 

w
( pdq
“ p2uq2{αX with X

pdq
“ Expp1q´1{α.

Then, with c “ β´1p2qν{2´2{α, we obtain that

P
´

Tβ ą 0
¯

ě lim
uÑ0

P
´

X ě cuν´2{α
¯

“ 1, whenα ą 2{ν ,

P
´

Tβ “ `8
¯

ě lim
uÑ8

P
´

X ě cuν´2{α
¯

“ 1, whenα ă 2{ν .

For the case α “ 2{ν we consider the set Gu :“ rβ´1p4
?

2uq2{α,8qˆ ru, 2uq2. As before we
have that, on the event P X Gu ‰ H,

(4.13) Tβ ě max
pw,x,yqPPXGu

 

β w
(

´ p2
?

2uqν ě p4
?

2uq2{α ´ p2
?

2uqν “ p2
?

2uq2{α .

Since ϕ1{upPq
pdq
“ P we have that PpP X Gu ‰ Hq ě c ą 0, with c independent of u.

Therefore, since the events ptPXG2k ‰ HuqkPN are independent, the Borel-Cantelli lemma
gives that infinitely many of them occur with probability 1, and (4.13) leads to conclude
that a.s. Tβ “ `8.
˚ Finite moments. We define, for any interval rc, dq, the variational problem restricted

to paths of length `psq P rc, dq:

(4.14) T
`

rc, dq
˘

:“ sup
s, `psqPrc,dq

 

βπpsq ´ `psqν
(

.

Then, we can write that Tβ “ Tβpr0, 1qq _ supkě0 Tβpr2k, 2k`1qq, and observe that scaling

space by 2´pk`1q we obtain that

Tβ
`

r2k, 2k`1q
˘ pdq
“ sup

s, `psqPr1{2,1q

!

2pk`1q2{απpsqβ ´ 2pk`1qν`psqν
)

ď 2pk`1q2{αβ sup
s, `psqď1

πpsq ´ 2kν .

Below, we show the following lemma.
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Lemma 4.3. For any α ą 1{2, and any υ ă α, there is a constant cυ such that for any
t ą 1 we have

(4.15) P
´

sup
s, `psqď1

πpsq ą t
¯

ď cυt
´υ .

Hence, for α ą 1{2 and υ ă α, for any t ą 1^ β, we get by a union bound that

P
`

Tβ ą t
˘

ď P
`

Tβpr0, 1qq ą t
˘

`

`8
ÿ

k“0

P
`

Tβpr2k, 2k`1qq ą t
˘

ď P
`

sup
s, `psqď1

πpsq ą t{β
˘

`

`8
ÿ

k“0

P
´

sup
s, `psqď1

πpsq ą β´12´pk`1q2{αpt` 2kνq
¯

ď cυβ
υt´υ ` cυβ

υ
`8
ÿ

k“0

22kυ{αpt` 2kνq´υ ď c1υβ
υtυ

`

2
αν
´1
˘

.

The last inequality holds by separating the terms 2kν ă t (k ď 1
ν log2 t) and 2kν ě t

(k ď 1
ν log2 t) in the last sum. Since υ can be arbitrarily close to α, for any κ ă α´ 2{ν we

have that there exists a constant cκ “ cκpβq such that for any t ě 1

(4.16) P
`

Tβ ą t
˘

ď cκt
´κ .

This concludes the proof that ErpTβqκs ă 8 for any κ ă α ´ 2{ν, and it only remains to
prove Lemma 4.3.

Proof of Lemma 4.3. Since we consider the optimization problem with length smaller than 1,
we can restrict the Poisson point process P to the disk D1 “ tx P R2, }x} ď 1u. We can
then rewrite a realization of P using its ordered statistic P “ pMi, Xiqiě1, where Mi

is the i-th largest weight, and Xi its position. The distribution of pMi, Xiqiě1 can be
given as follows: pMiqiě1 and pXiqiě1 are independent, Xi are i.i.d. uniform in D1, and

Mi “ π1{αpE1 ` ¨ ¨ ¨ ` Eiq
´1{α, where pEiqiě1 are i.i.d. Expp1q random variables.

Then, we have that πpsq “
ř8
i“1Mi1tXiPsu, and using that Mi is non-decreasing, we get

that

(4.17) πpsq “
8
ÿ

j“0

2j`1
ÿ

i“2j

Mi1tXiPsu ď

8
ÿ

j“0

M2jL2j`1 ,

where Lm is the non-directed LPP defined in (3.5), with set of points Υm :“ tX1, . . . , Xmu

(with r “ 1, t “ 1, b “ 0, a “ 1, B “ 1). Now, we will use that Li is of order
?
i and Mi of

order i´1{α. Since α ă 2, we can fix some δ ą 0 (small) such that 1{α ´ 1{2 ą 2δ, and by
a union bound, we get that

P
`

sup
s, `psqď1

πpsq ą t
˘

ď

8
ÿ

j“0

P
´

M2jL2j`1 ą cδ tp2
jq1{2´1{α`2δ

¯

(4.18)

where cδ “ p
ř

jě0p2
jq1{2´1{α`2δq´1.

Then, we use Theorem 3.2-(3.6) to get that there is a constant c0, independent of C,
such that

(4.19) P
`

L2j`1 ą C log tp2jq1{2`δ
˘

ď e´c0C log tp2jqδ ď t´c0Cp2
jqδ .
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On the other hand, we also have that i1{αMi “ π1{α
`

pE1 ` ¨ ¨ ¨ ` Eiq{i
˘´1{α

, so that

Erpi1{αMiq
p1´δqαs is bounded by a constant that depends only on δ. Markov’s inequality

then gives that for any C 1

(4.20) P
´

M2j ą C 1
t

log t
p2jq´1{α`δ

¯

ď
c

C 1p1´δqα
plog tqp1´δqαt´p1´δqαp2jq´δp1´δqα .

Combining (4.19)-(4.20), we get that

P
´

M2jL2j`1 ącδ tp2
jq1{2´1{α`2δ

¯

ď P
´

L2j`1 ą C log tp2jq1{2`δ
¯

` P
´

M2j ą
cδ
C

t

log t
p2jq´1{α`δ

¯

ď t´c0Cp2
jqδ ` c2δt

´p1´2δqαp2jq´δp1´δqδ ,

so that summing over j in (4.18), we get that

P
´

sup
s, `psqď1

πpsq ą t
¯

ď t´c
1
0C ` c1δt

´p1´2δqα ď 2c1δt
´p1´2δqα .

The last inequality holds provided that C has been fixed large enough. This concludes the
proof, since δ is arbitrary. �

5. Proofs of the path-constrained LPP bounds

We prove here Theorems 2.1-2.3-3.2. The almost sure statements are straightforward
applications of the first parts of the theorems (via the Borel-Cantelli lemma), so we skip
their proof. The ideas are similar to those developed in [2, Part 1], in a special case of the
E-LPP.

5.1. Hölder-constrained LPP. We prove first (2.4), and then (2.5).

Upper bound. Define Hkpt, Aq the set of k (ordered) elements up to time-horizon t that
have a γ-Hölder norm bounded by A:

Hkpt, Aq “
!

pti, xiq1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă t,Hγ

`

pti, xiq1ďiďk
˘

ď A
)

.

Then, we are able to compute exactly the volume of Hkpt, Aq.

Lemma 5.1. For any t ą 0 and A ą 0, we have for any k ě 1

Vol
`

Hkpt, Aq
˘

“ p2Aqk
Γp1` γqk

Γ
`

kp1` γq ` 1
˘ tkp1`γq.

In particular, it gives that there exists some constant C “ Cγ such that

VolpHkpt, Aqq ď
´CAt1`γ

k1`γ

¯k
.

Proof. The key to the computation is the induction formula below, based on the decompo-
sition over the left-most point in Hkpt, Aq at position pu, yq (by symmetry we can assume
y ě 0): it leaves k ´ 1 points with remaining time horizon t´ u:

Vol
`

Hkpt, Aq
˘

“ 2

ż t

u“0

ż Auγ

y“0
Vol

`

Hk´1pt´ u,Aq
˘

dydu “ 2A

ż t

0
uγVol

`

Hk´1pt´ u,Aq
˘

du.

We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation.
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For k “ 1, the computation is easy:

VolpH1pt, Bqq “ 2

ż t

u“0

ż Auγ

y“0
dudy “ 2A

ż t

0
uγdu “

2A

1` γ
t1`γ .

For k ě 2, by induction, we have

Vol
`

Hkpt, Aq
˘

“ p2Aqk
Γp1` γqk´1

Γ
`

pk ´ 1qp1` γq ` 1
˘ ˆ

ż t

u“0
uγpt´ uqpk´1qp1`γqdu.

Then, by a change of variable w “ u{t, we get

ż t

u“0
uγpt´ uqpk´1qp1`γqdu “ tpk´1qp1`γq`γ`1

ż 1

0
wγp1´ wqpk´1qp1`γqdw

“ tkp1`γq
Γ
`

γ ` 1
˘

Γ
`

pk ´ 1qp1` γq ` 1
˘

Γ
`

kp1` γq ` 1
˘ ,

and this completes the induction.

For the inequality in the second part of the lemma, we use Stirling’s formula to get that
for any α ą 0, there is a constant c ą 0 such that Γ

`

kα ` 1
˘

ě pckqαk. Hence, with the
formula for VolpHkpt, Aqq, we end up with the bound

VolpHkpt, Aqq ď

ˆ

2AΓp1` γqt1`γ

ck1`γ

˙k

.

�

We then use this Lemma to control the probability that LpH
A
γ q

m pΛt,xq is larger than some k:

(5.1) P
´

LpH
A
γ q

m pΛt,xq ě k
¯

“ PpNk ě 1q ď ErNks,

where Nk “ Cardt∆ Ă Υm ; ∆ P HAγ u is the number of sets of k points in Υm that are

HAγ -compatible. Since all the points of Υm “ tZ1, . . . , Zmu are exchangeable, we have

ErNks “
ˆ

m

k

˙

P
´

D σ P Sk s.t. pZσp1q, . . . , Zσpkqq P Hkpt, Aq
¯

.

Since the pZiq1ďiďm are i.i.d. uniform in Λt,x “ r0, tsˆ r´x, xs (of volume 2tx), we get that

(5.2) ErNks “

ˆ

m

k

˙

ˆ
Vol

`

Hkpt, Aq
˘

p2txqk{k!
,

where the k! comes from the fact that we rearrange the Zi’s so that 0 ă t1 ă ¨ ¨ ¨ ă tk ă t.
Using Lemma 5.1 together with

`

m
k

˘

ď mk{k1, we therefore obtain that

(5.3) P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď

ˆ

CAtγm

xk1`γ

˙k

.

This gives the upper bound (2.9).
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Lower bound. For any k ě 1, let us consider the following sub-boxes of Λt,x, for 1 ď i ď 4k:

Bi :“
”

pi´ 1qt

4k
,
it

4k

¯

ˆ

”

´
Apt{kqγ

2
^ x,

Apt{kqγ

2
^ x

ı

.

Then, we realize that if there are at least k boxes among tB2iu1ďiď2k containing (at
least) one point, then this set of k points has a γ-Hölder norm which is bounded by
Apk{tqγ{pt{kqγ ď A. Hence, we get that

(5.4) P
´

LpH
A
γ q

m pΛt,xq ě k
¯

ď P
´

2k
ÿ

i“1

1t|ΥmXB2i|ě1u ď k
¯

“ P
´

2k
ÿ

i“1

1t|ΥmXB2i|“0u ď k
¯

.

For the last probability, we use a union bound and the fact that the 1t|ΥmXB2i|“0u are
exchangeable, to get that

1´ P
´

2k
ÿ

i“1

1t|ΥmXB2i|“0u ď k
¯

ď

ˆ

2k

k

˙

P
´

Υm X

k
ď

i“1

Bi “ H
¯

ď 22k
´

1´
Atγ

8kγx
^

1

4

¯m
.(5.5)

In the second inequality we used that Υm is a set of m independent random variables

uniform in Λt,x (of volume 2tx), and that
Ťk
i“1 Bi has a volume of p1

4At
1`γk´γq^ tx

2 . Then,
we use that 1´ x ď e´x for any x, to get that

P
´

LpH
A
γ q

m pΛt,xq ď k
¯

ď exp

"

ck
´

1´ c
´Atγ{x

kγ
^ 1

¯m

k

¯

*

,

which concludes the proof of the (2.5).

5.2. Entropy-constrained LPP. We prove first (2.9), and then (2.10). The proofs are
analogous to that of the Hölder case (and to what is done in [2, Section 3]), we give the
details for the sake of completeness.

Upper bound. Define Ekpt, Bq the set of k (ordered) elements up to time-horizon t that
have an entropy bounded by B:

Ekpt, Bq “
!

pti, xiq1ďiďk ; 0 ă t1 ă ¨ ¨ ¨ ă tk ă t,Enta,b
`

pti, xiq1ďiďk
˘

ď B
)

.

Then, analogously to Lemma 5.1, we are able to compute exactly the volume of Ekpt, Bq.

Lemma 5.2. For any t ą 0 and B ą 0, we have for any k ě 1

Vol
`

Ekpt, Bq
˘

“ 2k
`

1
a

˘k Γp 1
aq
k

Γ
`

k
a ` 1

˘

Γpa`ba q
k

Γ
`

k pa`bqa ` 1
˘

ˆBk{atkpa`bq{a.

In particular, it gives that there exists some constant C “ Ca,b such that

VolpEkpt, Bqq ď
´CB1{atpa`bq{a

kpa`b`1q{a

¯k
.

Proof. Again, using a decomposition over the left-most point in Ekpt, Bq at position pu, yq
(by symmetry we can assume y ě 0): it leaves k ´ 1 points with remaining time horizon

t´ u and constraint B ´ |y|a

ub
, we obtain the key induction formula below

Vol
`

Ekpt, Bq
˘

“ 2

ż t

u“0

ż pBubq1{a

y“0
Vol

´

Ek´1pt´ u,B ´
ya

ub
q

¯

dydu.
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We give the details of the induction for the sake of completeness, but the proof is a straight-
forward calculation (slightly more involved than that of the previous section).

First of all, we have for k “ 1

VolpE1pt, Bqq “ 2

ż t

u“0

ż pBubq1{a

y“0
dudy “ 2B1{a

ż t

0
ub{adu “ 2B1{a a

a` b
tpa`bq{a .

For k ě 2, by induction, we have

Vol
`

Ekpt, Bq
˘

“ 2k´1
`

1
a

˘k´1 Γp 1
aq
k´1

Γ
`

pk ´ 1q{a` 1
˘

Γpa`ba q
k´1

Γ
`

pk ´ 1q pa`bqa ` 1
˘

ˆ

ż t

u“0

ż pBubq1{a

y“0
pt´ uqpk´1qpa`bq{a

`

B ´ ya

ub

˘pk´1q{a
dydu.

Then, by a change of variable z “ ya{pBubq, we get that

ż pBubq1{a

y“0

`

B ´ ya

ub

˘pk´1q{a
dy “ Bpk´1q{a

ż 1

0
p1´ zqpk´1q{a 1

az
1{a´1B1{aub{adz

“ 1
a A

k{aub{a
Γ
`

pk ´ 1q{a` 1
˘

Γp1{aq

Γpk{aq
.

Moreover, we also have, with a change of variable w “ u{t
ż t

u“0
ub{apt´ uqpk´1qpa`bq{adu “ tpk´1qpa`bq{a`b{a`1

ż 1

0
wb{ap1´ wqpk´1qpa`bq{adw

“ tkpa`bq{a
Γ
`

b{a` 1
˘

Γ
`

pk ´ 1qpa` bq{a` 1
˘

Γ
`

kpa` bq{a` 1
˘ ,

and this completes the induction.

For the inequality in the second part of the lemma, we use again Stirling’s formula to
control Γ

`

kpa` bq{a` 1
˘

ě pckqkpa`bq{a, and we obtain

VolpEkpt, Bqq ď

ˆ 2
aΓp 1

aqΓp
a`b
a q ˆB

1{atpa`bq{a

ck1{akpa`bq{a

˙k

.

�

Again, as for the Hölder case, we use this Lemma to control the probability that

L
pEBa,bq
m pΛt,xq is larger than some k: similarly to (5.1)-(5.2), we get that

P
´

L
pEBa,bq
m pΛt,xq ě k

¯

ď

ˆ

m

k

˙

ˆ
Vol

`

Ekpt, Bq
˘

p2txqk{k!
ď

ˆ

CB1{atpa`bq{am

txkpa`b`1q{a

˙k

,

where we used Lemma 5.2 together with
`

m
k

˘

ď mk{k!. This gives the upper bound (2.9).

Lower bound. The proof is very similar to that in the Hölder case: for any k ě 1, consider
for 1 ď i ď 4k the sub-boxes of Λt,x

Bi :“
”

pi´ 1qt

4k
,
it

4k

¯

ˆ

”

´
B1{apt{4qb{a

2kpb`1q{a
^ x,

B1{apt{4qb{a

2kpb`1q{a
^ x

ı

.
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Then, notice that if there are at least k boxes among tB2iu1ďiď2k containing (at least) one
point, then this set of k points has an entropy which is bounded by

k ˆ
pB1{apt{4qb{ak´pb`1q{aqa

pt{4kqb
ď B.

Hence, we get similarly to (5.4)-(5.5) that

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď

ˆ

2k

k

˙

P
´

Υm X

k
ď

i“1

Bi “ H
¯

ď 22k
´

1´
B1{atb{a

4b{akpa`bq{ax
^

1

4

¯m
.(5.6)

In the second inequality we again used that Υm is a set of m independent random variables

uniform in Λt,x (of volume 2tx), and that
Ťk
i“1 Bi has here a volume of B1{apt{4qpa`bq{a

kpb`1q{a ^ tx
2 .

Therefore, we obtain that

P
´

L
pEBa,bq
m pΛt,xq ď k

¯

ď exp

"

ck
´

1´ c
´ B1{atb{a

xkpa`bq{a
^ 1

¯m

k

¯

*

,

which concludes the proof of (2.10).

5.3. Non-directed E-LPP. We proceed analogously to the two previous sections. The
calculations are similar to the Section 5.1-5.2. Recall that we only deal with the Entropy
case, since the Hölder case is identical, see (3.3)-(3.4).

Upper bound. Let us define the sets of k elements (with order) of R2 that have an entropy
up to time horizon t smaller than B,

Ekpt, Bq “
!

∆ “ pxiq1ďiďk ; Enta,bpt,∆q ď B
)

“

!

∆ “ pxiq1ďiďk ;
k
ÿ

i“1

}xi ´ xi´1}
a{pb`1q ď D

)

“: Ẽk
`

D
˘

,

with D “ pBtbq1{pb`1q – we used (3.4) to get the second equality. Here again, we are able to

compute the volume of Ẽk
`

D
˘

. For simplicity, let us set γ “ pb` 1q{a (as in Remark 3.1).

Lemma 5.3. For any D ą 0, we have for any k ě 1

Vol
`

ẼkpDq
˘

“ p2πγqk
Γp2γqk

Γp2kγ ` 1q
D2kγ .

In particular, recalling γ “ pb` 1q{a and D “ pBtbq1{pb`1q, it gives that there exists some
constant C “ Ca,b such that

VolpEkpt, Bqq ď
´CpBtbq2{a

k2pb`1q{a

¯k
.

Proof. We prove the first part of Lemma 5.3 by iteration. Note that we easily have that
Ẽ1pDq is a disk of radius Dγ , so that Vol

`

Ẽ1pDq
˘

“ πD2γ . For the iteration, we use for
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k ě 2 the recursion formula

Vol
`

ẼkpDq
˘

“

ż Dγ

0
2πrVol

`

Ẽk´1pD ´ r
1{γq

˘

dr

“ p2πqkγk´1 Γp2γqk´1

Γp2pk ´ 1qγ ` 1q

ż Dγ

0
r
`

D ´ r1{γ
˘2pk´1qγ

dr .

Then a change of variable u “ D´1r1{γ gives that

ż Dγ

0
r
`

D´r1{γ
˘2pk´1qγ

dr “ γD2kγ

ż 1

0
u2γ´1p1´uq2pk´1qγdu “ γD2kγ Γp2γqΓp2pk ´ 1qγ ` 1q

Γp2kγ ` 1q
,

which concludes the induction.

For the second part of the lemma, we use again Stirling’s formula to get that Γp2kγ`1q ě
pckq2kγ , and we obtain

Vol
`

ẼkpDq
˘

ď

´2πγΓp2γqD2γ

ck2γ

¯k
.

Recalling D “ pBtbq1{pb`1q and γ “ pb` 1q{a, we get the conclusion. �

We then use this Lemma to control the probability that L
pE t,Ba,b q
m pΛrq is larger than

some k: similarly to (5.1)-(5.2), we get that

P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď ErNks “ mkP
`

pZiq1ďiďk P Ekpt, Bq
˘

.

Here, Nk is the number of k-uples in Υm that are E t,B
a,b ptq compatible, and pZiq1ďiďk are

i.i.d. random variables, uniform in Λr the disk of radius r. Then, with Lemma 5.3, we get
that

(5.7) P
´

L
pE t,Ba,b q
m pΛrq ě k

¯

ď mkVol
`

Ekpt, Bq
˘

pπr2qk
ď

ˆ

CpBtbq2{am

r2k2pb`1q{a

˙k

.

This gives the upper bound (3.6).

Lower bound. The proof is analogous to that in the directed context, with some adaptations
to deal with the non-directedness which make the proof more technical.

We consider a partition of the plan into small squares of side δ :“ πr{
?
m: for any

x P pδZq2 we let Bx be the square of side δ centered at x. It is easy to see that there
are at least m{4 disjoint squares Bx (provided that m is large enough) that can be placed
into a rectangle (inscribed in Λr) ordered as follow: we let x0 “ 0 and then we enumerate
x1, . . . , xm{4 following a spiral in a clockwise way, in order to have that any two consecutive
Bxi ,Bxi`1 are adjacent (see Figure 4).

Then, since a square Bx has volume π2r2{m (and recalling Λr has volume πr2), Bx
contains at least one point of Υm with probability 1 ´ p1 ´ π{mqm ě 1 ´ e´π. We define
Qm{4 the number of non-empty squares among Bx0 , . . . ,Bxm{4 , and we define iteratively the
indices Ij of the non-empty squares, by I0 “ 0 and for 1 ď j ď Qm{4

Ij “ inf
 

i ą Ij´1 ; Bxi XΥm ‰ Hu .
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x1

x2 x3

x0

x4

x5

Figure 4. In the picture we put m “ 24 points uniformly on Λr and we consider a rectangle
built by 6 “ m{4 squares Bx0 , ¨ ¨ ¨ ,Bx5 enumerated following a spiral in a clockwise way starting
from the origin. Then we consider the non-empty rectangles (in orange) and their indices. In this
example we have I1 “ 1, I2 “ 2, I3 “ 5. Finally we draw a path starting from the origin and
collecting one point in exactly all BI1 , ¨ ¨ ¨ ,BI3 .

For k ě 1, and if Qm{4 ě k, we may consider a path ∆ collecting one point in exactly
all BxI1 , . . . ,BxIk : the entropy of such ∆ is bounded by (see Figure 4)

1

tb

´

k
ÿ

j“1

`

4pIj ´ Ij´1qδ
˘a{pb`1q

¯b`1
ď

4ara

tbma{2

´

k
ÿ

j“1

Uj

¯b`1
,

where we set Uj :“ pIj ´ Ij´1q
a{pb`1q. Therefore, for L

pE t,Ba,b q
m pΛrq to be smaller or equal

than k, one needs to have either Qm{4 ă k or that the entropy of ∆ chosen above is larger
than B: this leads to

(5.8) P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď P
`

Qm{4 ă k
˘

` P
´

Qm{4 ě k ,
k
ÿ

j“1

Uj ą
´Btbma{2

4ara

¯1{pb`1q¯

.

For the first term, and for k ď ε2m{4 (with ε ą 0 small, fixed in a moment), we realize
that Qm{4 ă k implies that there are at least p1´ ε2qm{4 empty squares, which gives by a
union bound that

P
`

Qm{4 ă k
˘

ď

ˆ

m{4

p1´ ε2qm{4

˙

P
´

Υm X

p1´ε2qm{4
ď

i“1

Bxi “ H
¯

ď ecεm
´

1´
p1´ ε2qπ

4

¯m

where for the second inequality, we used that the volume of
Ťp1´ε2qm{4
i“1 Bxi is p1´ε2qπ2r2{4.

We note that the constant cε goes to 0 as ε goes to 0: we can therefore fix ε ą 0 sufficiently
small so that

(5.9) P
`

Qm{4 ă k
˘

ď e´πm{8 for all k ď ε2m{4.

For the second term in (5.8), let us write V :“ k´1
`

Btbma{2{ra
˘1{pb`1q

– we will consider
only the case when V is large –, so that we need to bound
(5.10)

P
´

Qm{4 ď k ,
k
ÿ

j“1

Uj ą kV
¯

ď P
`

Nk ą εm
˘

` P
´

Qm{4 ď k ,Nk ď εm ,
k
ÿ

j“1

Uj ą kV
¯

,
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where Nk denotes the total number of points in the non-empty squares BxI1 , . . . ,BxIk . We

easily have that

P
`

Nk ą εm
˘

ď
1

e´ck

ˆ

m

εm

˙

´πk

m

¯εm
ď eck

pπkqεm

pεmq!
,

where the denominator in the first inequality comes from the fact that we work conditionally
on the fact that k squares are non-empty (which has probability bounded below by e´ck).
Hence, since we work with k ď ε2m{4, and provided that ε has been fixed small enough,
we get that there is a constant c ą 0 such that PpNk ą εmq ď e´cm.

For the last part, note that since the squares Bx are exchangeable, we can control for
1 ď i1 ă ¨ ¨ ¨ ă ik ď m{4

P
`

I1 “ i1, . . . , Ik “ ik;Nk ď εm
˘

“
ÿ

n1,...,nk
1ďn1`¨¨¨`nkďεm

ˆ

m

n1, . . . , nk

˙

´ π

m

¯n1`¨¨¨`nk
´

1´
πik
m

¯m´pn1`¨¨¨`nkq

ď

´

1´
πik
m

¯p1´εqm ÿ

n1,...,nk
1ďn1`¨¨¨`nkďεm

πn1

n1!
¨ ¨ ¨

πnk

nk!
ď e´p1´εqπikeπk .

Where we used that in order to have I1 “ i1, . . . , Ik “ ik there must be exactly k non-
empty squares among the first ik (with n1, . . . , nk points in them) and ik ´ k empty. The
remaining m´ pn1 ` ¨ ¨ ¨ ` nkq points must be outside the first ik squares. For the second
inequality, we used that n1`¨ ¨ ¨`nk ď εm, and that the multinomial coefficient is bounded
by mn1`¨¨¨`nk{pn1! ¨ ¨ ¨nk!q. Hence, there is a constant c such that

P
`

I1 “ i1, . . . , Ik “ ik;Nk ď εm
˘

ď eck ˆ P
`

Gj “ ij ´ ij´1 for all 1 ď j ď k
˘

,

where pGjqjě1 are i.i.d. geometric random variables, of parameter 1´e´p1´εqπ. We therefore
obtain that, provided that V is large enough

P
´

Qm{4 ď k ,Nk ď εm ,
k
ÿ

j“1

Uj ą kV
¯

ď eckP
´

k
ÿ

j“1

pGjq
a{pb`1q ą kV

¯

ď e´c
1kV .(5.11)

To conclude, we have obtained that there are constants such that for k ď ε2m{4, and

for V :“ k´1
`

Btbma{2{ra
˘1{pb`1q

large enough,

(5.12) P
´

L
pE t,Ba,b q
m pΛrq ď k

¯

ď e´cm ` e´c
1kV .

One obtains (3.7) by observing that when V is small e´ckpV´1q is larger than 1. The
statements holds for all k ď m by adjusting the constants.

Appendix A. Further simulations and conjectures

In this appendix, we present further simulations, that help us make some predictions
on the values of the constants in (2.13), and support the belief that the model is in the
KPZ universality class. We treat only the directed case because in the non-directed case
simulations are much more greedy and do not bring any convincing insight – we admit that
our algorithm could be improved, but our goal is simply to hint for some conjectures, and
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our simulations fills that role perfectly. We start by commenting simulations in the Hγ-LPP
case, where simulations are exact (and efficient), before we turn to the E-LPP case.

A.1. Directed Hγ-LPP. For the Hγ-LPP, we performed two different simulations. In
order to be able to guess the value of the constant C “ C1,1p0q “ limλÑ8 Lλ{λκ in (2.14)
(recall κ “ 1{p1` γq), and test the convergence in distribution of the recentered Hγ-LPP,

λ´κ{3pLλ ´ Cλκq. We focused on the point-to-point Hγ-LPP:

(1) We ran (a few) simulations for m “ 105 (with t, x “ 1 hence with an intensity of
points λ “ m{2, and A “ 1), in order to test the value of the constant. The results
are collected in Table 1, and commented in further details below.

(2) We built histograms by running k “ 1000 simulations of the Hγ-LPP for m “ 104

(with t, x “ 1, and A “ 1), for three values γ “ 1, γ “ 3{4 and γ “ 1{2 –
corresponding to κ “ 1{2, κ “ 4{7 and κ “ 2{3, respectively. The results are
collected in Figure 5, and commented below.

(1) Value of the constant. Let us present here our results for simulations for the value of the
constant, performed for m “ 105, in the box Λ1,1 “ r0, 1s ˆ r´1, 1s, and with a constraint
A “ 1.

Value of γ 1.0 0.9 0.8 0.7 0.6 0.5

Lm 309 to 323 417 to 435 600 to 616 893 to 912 1406 to 1429 2318 to 2368

Lm{mκ 0.98 to 1.02 0.97 to 1.02 1.00 to 1.03 1.02 to 1.04 1.05 to 1.07 1.07 to 1.10

Lm´mκ

mκ{3
— ´0.56 — ´0.77 — 1.01 — 3.19 — 7.35 — 14.07

Table 1. Simulations for the Hγ-LPP with m “ 105. For each value of γ we performed 5
simulations, and we give the minimal and maximal values in the table. For the last line, we give
the mean value of m´κ{3pLm ´mκ

q over the 5 simulations.

The results of Table 1 suggest that in all cases Lm{mκ converges to 1 a.s., which in view
of the fact that the intensity of points is here λ “ m{2 (since the volume of Λ1,1 is 2)
suggests that the constant C1,1p0q in (2.14) is equal to 2κ. Moreover, when recentering by

mκ, we find that pLm ´mκq is of order mκ{3, with a constant that grows as γ decreases.

(2) Convergence of the recentered and renormalized LPP. In order to test the convergence

in distribution of m´κ{3pLm ´mκq, we performed 1000 simulations for the point-to-point
Hγ-LPP with m “ 104 (again with t, x,A set to 1), for three values γ “ 1, γ “ 3{4 and
γ “ 1{2 (corresponding to κ “ 1{2, κ “ 4{7 and κ “ 2{3).

The histograms presented in Figure 5 seem to confirm the convergence in distribution to
a Tracy-Widom GUE limit. Let us tell a bit more about the recentering and renormalization
we used to superimpose the GUE density fpxq on top of the histograms: the graph of the

function is that of x ÞÑ mκ ` pm{2q´κ{3
`

c ` fppm{2qκ{3 xq
˘

, with c a constant used to
adjust the recentering term (for the histograms presented in Figure 5, we used c “ 0.4 for
γ “ 1, c “ 1.5 for γ “ 3{4, c “ 6.4 for γ “ 1{2). This confirms the observation presented in

Table 1 that after recentering Lm by mκ, further recentering is needed, by a factor cmκ{3.
Furthermore, we stress that the same renormalization is used in all three cases of Figure 5,
that is we scale the GUE density fpxq by pm{2qκ{3 – i.e. λκ{3 where λ “ m{2 is the intensity
of points –, and in particular there is no additional γ-dependent renormalization for the
GUE random variable.
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(a) Hγ-LPP for m “ 104 with γ “ 1, κ “ 1{2. (Lm “ 100 on the left, mκ
“ 100.)

(b) Hγ-LPP for m “ 104 with γ “ 3{4, κ “ 4{7. (Lm “ 192 on the left, mκ
« 193.)

(c) Hγ-LPP for m “ 104 with γ “ 1{2, κ “ 2{3. (Lm “ 499 on the left, mκ
« 464.)

Figure 5. Exact simulation of point-to-point Hγ-LPP with t, x, A “ 1 and m “ 104 (intensity
of points λ “ m{2), and with γ “ 1, γ “ 3{4, γ “ 1{2 in subfigures (a), (b), (c) respectively.
In each case, we present: on the left a realization of a maximal path (with Lm given in the
caption of each figure); on the right, a histogram of k “ 103 realizations of the Hγ-LPP, together

with the graph of the Tracy-Widom GUE density (after a recentering by mκ
` cmκ{3, and a

renormalization by pm{2qκ{3).

All together, this leads to a (far-reaching) conjecture, for the (point-to-point) Hγ-LPP.

Conjecture A.1. There exists a sequence uγpmqmě1 which is opmκq such that

(A.1)
LmpΛ1,1q ´m

κ ´ uγpmq

pm{2qκ{3
pdq
ÝÑ FGUE as mÑ8 .

From the above simulations, we may expect that
uγpmq

mκ{3
Ñ cγ (in particular cγ “ 0 for

γ “ 1), with cγ increasing as γ Ó 0.

For the point-to-point Poissonian version of the Hγ-LPP of Section 2.3, this translates
into (for A “ 1)

Lλp1, 0q ´ p2λqκ

λκ{3
pdq
ÝÝÝÑ
λÑ8

FGUE , or also
L1pt, 0q ´ 2κt

t1{3
pdq
ÝÝÝÑ
tÑ8

FGUE .
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A.2. Directed E-LPP. As far as the directed E-LPP is concerned, simulations are much
less efficient, and the simulated annealing procedure only gives an approximate (under-
estimated) value for the value of Lm. For this reason, we were only able to build an his-
togram for the case a “ 2, b “ 1 (with 400 realizations), for m “ 105 (with t, x “ 1 and
B “ 1), that we present in Figure 6. We also performed 100 simulations, for different values
of the parameters of a, b corresponding to κ “ 1{2, κ “ 4{7 and κ “ 2{3 (the same values of
κ as in Figure 5(a),(b),(c)), in order to test the value of the constant C “ limmÑ8 Lm{mκ

or CE1,1p0q “ limλÑ8 Lλ{λκ.

(a) E-LPP for m “ 104 with b “ 1 and from left to right a “ 2, a “ 8{3, a “ 4;
corresponding to κ “ 1{2, κ “ 4{7, κ “ 2{3. From left to right Lm “ 121, Lm “ 241,
Lm “ 586; the ratio Lm{mκ is approximately equal to 1.21, 1.25, 1.26 respectively.
For 100 simulations, the mean value of Lm{mκ is 1.26, 1.29, 1.29 respectively.

(b) E-LPP for m “ 104 with b “ 0 and from left to right a “ 1, a “ 4{3, a “ 2;
corresponding to κ “ 1{2, κ “ 4{7, κ “ 2{3. From left to right Lm “ 150, Lm “ 303,
Lm “ 690; the ratio Lm{mκ is approximately equal to 1.5, 1.57, 1.49 respectively. For
100 simulations, the mean value of Lm{mκ is 1.54, 1.59, 1.52 respectively.

Figure 6. Simulation of point-to-point E-LPP with t, x,B “ 1 for m “ 104 (with intensity of
points m{2), via a simulated annealing procedure. We performed 100 simulations for each value
of a, b, and we present the mean values of Lm{mκ in each case (the variation is approximately
of order 0.05 around the mean value). We notice that Lm{mκ seems constant in subfigure (a)
(b “ 1) and also approximately constant in subfigure (b), so the limiting ratio limmÑ8 Lm{mκ

appears to depend only on b and not on the value of κ.

Figure 6 hints that the limit limmÑ8 Lm{mκ “: cb is a constant that depends only on b
and not on the value of κ – in view of the fact that the intensity is here λ “ m{2, this
suggests that in (2.14) the constant CE1,1p0q is equal to cb2

κ. In order to test the dependence
of the constant cb on the value of b, we performed simulations for a wide range of values
for b, with a varying accordingly to keep the value of κ constant (again κ “ 1{2, κ “ 4{7
and κ “ 2{3). The results are collected in the graphs of Figure 7. First, they confirm the
observation of Figure 6 that the constant cb “ limmÑ8 Lm{mκ depends only on b and not
on the value of κ. Moreover, the constant cb appears to be decreasing and go to 1 as bÑ8
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(which is expected, since one is then supposed to formally recover the Hγ-LPP, where the
constant is equal to 1).

Figure 7. Simulations for the E-LPP (with t, x,B “ 1) for m “ 104, for different values of b,
with a adjusted to keep constant κ “ 1{2 (a “ b ` 1), κ “ 4{7 (a “ 4pb ` 1q{3) and κ “ 2{3
(a “ 2pb`1q). For each value of b we took the mean value of Lm{mκ over 10 simulations, and the
graphs represents this mean value as a function of b (with κ kept constant), as an approximation
of cb: the three graphs correspond to κ “ 1{2, κ “ 4{7 and κ “ 2{3, and they appear to be
relatively close. We observe that the function decreases to 1 as b increases – as a side note, we

noticed that the function b ÞÑ 2
2

3pb`1q (appearing as a dotted line) fits the plots quite well.

To conclude, we present the histogram we managed to build in the case a “ 2, b “ 1 in
Figure 8 (for m “ 104, 400 realizations of Lm). We realize that the histogram is centered
around the value « 126, and is much more spread out than that of the Hγ-LPP of Figure 5.
Indeed, for the renormalization of the GUE density, we used a stronger renormalization
(by a constant times mκ{3, the precise value of the constant, « 1.35, seeming meaningless).
It is therefore natural to conjecture that for the point-to-point E-LPP, we also have the
convergence in distribution

Lm ´ cbm
κ ´ ua,bpmq

ca,bmκ{3

pdq
ÝÝÑ FGUE as mÑ8 ,

where ua,bpmq “ opmκq is an additional recentering sequence (we expect that ua,bpmq{m
κ{3

converges to a constant), and ca,b is a renormalization constant.

Figure 8. Histogram of 400 realizations of Lm for m “ 104 (still t, x,B set to 1), with
a “ 2, b “ 1 (κ “ 1{2). We also plotted the graph of the GUE density, properly centered, and

rescaled by cmκ{3 with c « 1.35.
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