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DIRECTED POLYMERS IN HEAVY-TAIL. RANDOM ENVIRONMENT

QUENTIN BERGER AND NICCOLO TORRI

ABSTRACT. We study the directed polymer model in dimension 1 + 1 when the environ-
ment is heavy-tailed, with a decay exponent a € (0,2). We give all possible scaling limits
of the model in the weak-coupling regime, i.e. when the inverse temperature temperature
B = Bn vanishes as the size of the system n goes to infinity. When « € (1/2,2), we show
that all possible transversal fluctuations y/n < h,, < n can be achieved by tuning properly
Bn, allowing to interpolate between all super-diffusive scales. Moreover, we determine the
scaling limit of the model, answering a conjecture by Dey and Zygouras [13]—we actually
identify five different regimes. On the other hand, when o < 1/2, we show that there are
only two regimes: the transversal fluctuations are either \/n or n. As a key ingredient, we
use the Entropy-controlled Last Passage Percolation (E-LPP), introduced in a companion pa-
per [7].
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1. INTRODUCTION: DIRECTED POLYMERS IN RANDOM ENVIRONMENT

1.1. General setting. We consider the directed polymer model: it has been introduced
by Huse and Henley [16] as an effective model for an interface in the Ising model with
random interactions, and is now used to describe a stretched polymer interacting with an
inhomogeneous solvent.

Let S be a nearest-neighbor simple symmetric random walk on Z?, d > 1, whose law is
denoted by P, and let (w; z);cn ez De a field of i.i.d. random variables (the environment)
with law P (w will denote a random variable which has the common distribution of the
wi z). The directed random walk (7, S;);en, represents a polymer trajectory and interacts
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DIRECTED POLYMERS IN HEAVY-TAIL RANDOM ENVIRONMENT 2

with its environment via a coupling parameter § > 0 (the inverse temperature). The model
is defined through a Gibbs measure,

dg;i’ﬁ (s) := —exp( 2w152>, 1.1

where Z} ; is the partition function of the model.
One of the main question about this model is that of the localization and super-diffusivity
of paths trajectories drawn from the measure P} ;. The transversal exponent { describes

the fluctuation of the end-point, that is EE} 5[S,| ~ n¢ as n — oo. Another quantity
of interest is the fluctuation exponent , that describes the fluctuations of log Z 5, i.e.
|log Z) 5 —Elog Zy 5| ~ nX as n — o0.

This model has been widely studied in the physical and mathematical literature (we refer
to [11, 12] for a general overview), in particular when w, , have an exponential moment.
The case of the dimension d = 1 as attracted much attention in recent years, in particular
because the model is in the KPZ universality class (log Zﬁyﬁ is seen as a discretization of
the Hopf-Cole solution of the KPZ equation). It is conjectured that the transversal and
fluctuation exponents are { = 2/3 and y = 1/3 respectively. Moreover, it is expected that
the point-to-point partition function, when properly centered and renormalized, converges
in distribution to the GUE distribution. Such scalings has been proved so far only for some
special models, cf. [6, 20].

A recent and fruitful approach to proving universality results for this model has been to
consider is weak-coupling limit, that is when the coupling parameter £ is close to criticality.
This means that we allow 5 = f3, to depend on n, with 5, — 0 as n — oo. In [1, 2] and
[10], the authors let 3, = Bn‘”, v = 1/4 for some fixed E > 0, and they prove that the
model (one may focus on its partition function Zﬁj Bn) converges to a non-trivial (i.e. dis-
ordered) continuous version of the model. This is called the intermediate disorder regime,
since it somehow interpolates between weak disorder and strong disorder behaviors. More
precisely, they showed that

log Zy, 5, —n)\(ﬁn) logZ\fﬁ, as n — oo,

where A(s) := logE[e**]. The process 3 — log Z 35 1s the so called cross-over process,

and interpolates between Gaussian and GUE scalings as B goes from 0 to oo (see [3]).
These results were obtained under the assumption that w has exponential moments, but
the universality of the limit was conjectured to hold under the assumption of six moments
[2]. In [13] Dey and Zygouras proved this conjecture, and they suggest that this result is a
part of a bigger picture (when \(s) is not defined a different centering is necessary).

1.2. The case of a heavy-tail environment. In the rest of the paper we will focus on the
dimension d = 1 for simplicity. We consider the case where the environment distribution w
is non-negative (for simplicity, nothing deep is hidden in that assumption) and has some
heavy tail distribution: there is some o > 0 and some slowly varying function L(-) such
that

P(w>=x) = L(x)z™“. (1.2)

In the case where 8 > 0 does not depend on n, the £ = 2/3, x = 1/3 picture is expected
to be modified, depending on the value of «.. According to the heuristics (and terminology)
of [9, 14], three regimes should occur, with different paths behaviors:
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(a) if a > 5, there should be a collective optimization and we should have ¢ = 2/3, KPZ
universality class, as in the finite exponential moment case;

(b) if « € (2,5), the optmization strategy should be elitist: most of the total energy
collected should be via a small fraction of the points visited by the path, and we should
have ¢ = 2t

() if a € (0,2), the strategy is individual: the polymer targets few exceptional points,
and we have £ = 1. This case is treated in [5, 15].

As suggested by [13], this is part of a larger picture, when the inverse temperature 3 is
allowed to depend on n. Setting 3,, = ﬁn‘” for some 3 > ( and some v € R then we have
three different classes of coupling. When ~ = 0 we recover the standard directed polymer
model, when v > 0 we have a weak-coupling limit, while in the case v < 0 we have a
strong-coupling limit. Let us stress that this last case has not been studied in the literature
(for no apparent reason) and should also be of interest. In [22] and in [13], the authors
suggest that the fluctuation exponent depends on «, «y in the following manner

2(1—) 5-2y 1 1
=3 .0 fora2 =, —a =71 (1.3)
1+a(l—) 5-27 2 3 .
2a—1 fora<1—775_1<7<2a-

The first part is derived in [22], based on Airy process considerations, and the second part
is derived in [13], based on a Flory argument inspired by [9]. Moreover, in the two regions
of the («, ) plane defined by (1.3), the KPZ scaling relation x = 2¢ — 1 should hold (this
has been proved in the case v = 0, « > 2 in [4]). Outside of these regions, one should have
& = 1/2 (v large) or £ = 1 (y small). This is summarized in Figure 1 below, which is the
analogous of [13, Fig. 1].

region A: § =1

region B: £ =1/2
region C: £ = %
B region D: £ = =;(l —-7)

FIGURE 1. We identify four regions in the («,y) plane. Region A with o < 2 is treated in
[5] and Region B with o > 1/2 in [13]. Regions C and D are still open, and the KPZ scaling
relation y = 2¢ — 1 should hold in these two regions. Our main result is to settle the picture
in the case a € (0,2).

This picture is far from being settled, and so far only the border cases where £ = 1
or £ = 1/2 have been studied: Dey and Zygouras [13] proved that { = 1/2 in the cases
a > 6,y =1/4and a € (1/2,6),7 = 3/2a; Auffinger and Louidor [5] proved that £ = 1
for a € (0,2) and v = 2 — 1. Here, we complete the picture in the case a € (0,2). For
a € (1/2,2) we go beyond the cases £ = 1/2 or £ = 1: we identify the correct order for
the transversal fluctuations (they interpolate between £ = 1/2 and £ = 1), and we prove
the convergence of log Z; 5 in all possible intermediate disorder regimes—this proves
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Conjecture 1.7 in [13]. For @ < 1/2 we show that a sharp transition occurs on the line
v = % — 1, between a regime where £ = 1 and a regime where £ = 1/2.

2. MAIN RESULTS: WEAK-COUPLING LIMITS IN THE CASE « € (0, 2)

From now on, we consider the case of an environment w verifying (1.2) with « € (0, 2).
For the inverse temperature, we will consider arbitrary sequences (3,),>1, but a reference
example is 3, = n~7 for some ~ € R.

For two sequences (ay)n>1, (bn)n>1, We use the notations a,, ~ by, if lim,, o a, /b, = 1,
ap < by if lim, o a,/b, = 0, and a,, = b, if 0 < liminf a,,/b,, < lim sup a,,/b,, < 0.

2.1. First definitions and heuristics. First of all, let us present a brief energy/entropy
argument to justify what the correct transversal fluctuations of the polymer should be. Let
F(x) = P(w < z) be the disorder distribution, and define the function m(z) by

m(z) = F'(1-1), so we have P(w > m(z)) = % (2.1)

Note that the second identity characterizes m(x) up to asymptotic equivalence: we have
that m(-) is a regularly varying function with exponent 1/a.

Assuming that the transversal fluctuations are of order h,, (we necessarily have \/n <
hn, < n), then the amount of weight collected by a path should be of order m(nh,) (it
should be dominated by the maximal value of w in [0, n] X [—hp, hy]). On the other hand,
thanks to moderate deviations estimates for the simple random walk, the entropic cost of
having fluctuations of order h,, is roughly h2/n at the exponential level — at least when
h, » +/nlogn, see (2.14) below. It therefore leads us to define h,, (seen as a function of
Br) up to asymptotic equivalence by the relation

Bam(nhy) ~ h2/n. (2.2)

In the case 8, = n~" and a € (1/2,2) we recover (1.3), that is we get that h,, = n¢+°()

with ¢ = 220 which is in (1/2,1) for v € (2 — 1, %). When a € (0,1/2), there is
no h, verifying (2.2) with \/n « h,, « n, leading to believe that intermediate transversal
fluctuations (i.e. £ € (1/2,1)) cannot occur. In the following, we separate the cases « €

(1/2,2) and o € (0,1/2).

2.2. A natural candidate for the scaling limit. Once we have identified in (2.2) the scale
hy, for the transversal fluctuations, we are able to rescale both path trajectories and the
field (w; ,), so that we can define the rescaled “entropy” and “energy” of a path, and the
corresponding continous quantities. The rescaled paths will be in the following set

2 :={s:[0,1] > R ; s continuous and a.e. differentiable}, (2.3)

and the (continuum) entropy of a path s € 2 will derive from the rate function of the
moderate deviation of the simple random walk (see [21] or (2.14) below), i.e.

1
Ent(s) = ;J (s’(t))2dt for se 2. 2.4)
0

As far as the disorder field is concerned, we let P := {(wj,t;,x;)}i>1 be a Poisson
Point Process on [0,0) x [0,1] x R of intensity p(dwdtdz) = §w™* 1y, dwdtdz. For a
quenched realization of P, the energy of a continuous path s € Z is then defined by

7T(8) = 7T’P(8> = Z w 1{(t,x)es}7 (2.5)

(w,t,z)eP
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where the notation (¢, x) € s means that s; = x.
Then, a natural guess for the continuous scaling limit of the partition function is to
consider an energy—entropy competition variational problem. For any 5 > 0 we let

Ts = sup {ﬂﬁ(s) - Ent(s)}. (2.6)
s€Z,Ent(s)<+00
This variational problem was originally introduced by Dey and Zygouras [13, Conjec-
ture 1.7], conjecturing that it was well defined as long as « € (1/2,2) and that it was
the good candidate for the scaling limit. In [7, Theorem 2.7] we show that the variational
problem (2.6) is indeed well defined as long as o € (1/2,2). In Theorem 2.4 below, we
prove the second part of [13, Conjecture 1.7].

Theorem 2.1 ([7, Thm. 2.4]). For a € (1/2,2) we have that T3 € (0, +) for all 3 > 0 a.s.
On the other hand, for o € (0,1/2] we have Tz = +0 for all 3 > 0 a.s.

Let us mention here that in [5], the authors coAnsider the case of transversal ﬂuctugtions
of order n. The natural candidate for the limit is 7, defined analogously to (2.6) by 73 = 0
for 8 =0, and for 8 > 0

~

1A

Ts = sup {7’[’(8) - —Ent(s)}. 2.7)
seLip, ﬁ

Here the supremum is taken over the set Lip; of 1-Lipschitz functions, and the entropy

f)nt(s) derives from the rate function of the large deviations for the simple random walk, i.e.

1
Ent(s) = J e(s'(t))dt withe(z) = 3(1 +2)log(l +z) + (1 —z)log(l — ).
0
2.3. Main results I : the case « € (1/2,2). Our first result deals with the transversal
fluctuations of the polymer: we prove that h,, defined in (2.2) indeed gives the correct
order for the transversal fluctuations.

Theorem 2.2. Assume that o € (1/2,2), that 8, m(n?) — 0 and that B, m(n*?) — +o0, and
define hy, as in (2.2): then \/n < h,, < n. Then, there are constants c1, cy and v > 0 such that
for any sequences A,, = 1 we have for alln > 1

P ( o (2|5 = A D) = ne_CIA%h%/n) SeA”. (2.8)

In particular, this proves that if h, defined in (2.2) is larger than a constant times
V/nlogn, then ne=c14"a/m goes to 0 as n — oo provided that A is large enough: the transver-
sal fluctuations are at most Ah,,, with high P-probability. On the other hand, if 4,, is much
smaller than +/nlogn, then this theorem does not give sharp information: we still find
that the transversal fluctuations must be smaller than A+/nlogn, with high P-probability.
Anyway, in the course of the demonstration of our results, it will be clear that the main
contribution to the partition function comes from trajectories with transversal fluctuations
of order exactly h,,.

We stress that the cases 3,m(n?) — § € (0,+w] and B,m(n%?) — B € [0,0) have
already been considered by Auffinger and Louidor [5] and Dey and Zygouras [13] respec-
tively: they find that the transversal fluctuations are of order n, resp. y/n. We state their
results below, see Theorem 2.3 and Theorem 2.8 respectively. Our first series of results con-
sist in identifying three new regimes for the transversal fluctuations (v/nlogn « h, < n,
hy, = v/nlogn, and \/n « h, <« 4/nlogn), that interpolate between the Auffinger Louidor
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regime (h,, = n) and the Dey Zygouras regime (h,, = y/n). We now describe more precisely
these five different regimes.

Regime 1: transversal fluctuations of order n. Consider the case where

Bnn_lm(n2) — B e (0,0], (RD

which corresponds to having transversal fluctuations of order n. Auffinger and Louidor
showed that, properly rescaled, log Z;; ; converges to 7 defined in (2.7).

Theorem 2.3 (Regime 1, [5]). Assume « € (0,2), and consider (3,, such that (R1) holds.
Then we have the following convergence

1 ~
v logZy 5. @, Tg asn — o0,

Bnm(n?)
with 7A}J> defined in (2.7). For a € [1/2,2), we have 7A'5 > 0 a.s. forall g > 0.

Regime 2: \/nlogn « h, < n. Consider the case when

Ban'm(n?) -0 and B, logn"'m(n®?y/logn) — w0, (R2)

which corresponds to having transversal fluctuations v/nlogn « h, < n, see (2.2). We find
that, properly rescaled, log Z;, ; converges to 7; defined in (2.6)—this proves Conjecture
1.7 in [13].

Theorem 2.4 (Regime 2). Assume that o € (1/2,2), and consider [3,, such that (R2) holds.
Defining h,, as in (2.2), then y/nlogn <« h, < n, and we have
1

d
WO% Zy 5, — nﬁnE[W]l{a>3/2}> @, Ti asn — oo, (2.9

with 77 defined in (2.6).

We stress here that we need to recenter log Z) ; by n,E[w] only when necessary, that
is when n/m(nh,) does not go to 0: in terms of the picture described in Figure 1, this can
happen only when v > 4 — 2, and in particular when « > 3/2 (this is stressed in the
statement of the theorem).

Regime 3: h,, = 4/nlogn. Consider the case

Bnlogn " m(n*?1/logn) — B € (0,x0), (R3)

which from (2.2) corresponds to transversal fluctuations h,, ~ BY2\/n logn, see (2.2). We
find the correct scaling of log Z}/ ; , which can be of two different natures (and go to +
or 0), see Theorems 2.5-2.6 below.

We first need to introduce a few more notations. For a quenched continuum energy field
P (as defined in Section 2.2), we define for a path s the number of weights w it collects:

N(S) = 2 1{(t,a:)€s} . (210)

(w,t,z)eP
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Then, we define a new energy-entropy variational problem: for a fixed realization of P,
define for any & > 1

~ ~ k
7-B(/k;) _ Ei(k) (P):=  sup {7‘((8) — Ent(s) — %},
SE_@,N(S):]C (2.11)
and 7~'6(>T) = sup %k).
k=r

When r = 0 we denote by 77'3 the quantity 773)(20). In Proposition 5.5 below, we prove that
these quantities are well defined, and that there exists 5. = [.(P) € (0,00) such that
Ts e (0,00)if B> B.and Tg = 0if B < ..
Theorem 2.5 (Regime 3-a). Assume that « € (1/2,2), and consider j3,, such that (R3) holds.
Then from (2.2) we have h,, = 4/nlogn, and
1 w (d) 5

m(log Zn,ﬁn — nﬁnE[W]l{azg/z}) — 7-5 asn — . (212)

(Recall that B,m(nhy) ~ h2/n ~ Blogn.)

If ’7'5 > 0 (8 > () the scaling limit is therefore well identified, and log Zy 5, (when

recentered) grows like B7~'ﬁ log n with 67’5 > 0. On the other hand, if 7~'5 = 0, then the above
theorem gives only a trivial limit. By an extended version of Skorokhod representation
theorem [17, Corollary 5.12], one can couple the discrete environment and the continuum
field P in order to obtain an almost sure convergence in Theorem 2.5 above. Hence, it
makes sense to work conditionally on 7221 < 0 (B8 < B.), even at the discrete level. Our
next theorem says that for 8 < f., log Z,, 3, decays polynomially, with a random exponent

BTV e (-1/2,0).
Theorem 2.6 (Regime 3-b, 7~}5 =0, 8 < Bc). Assume that o € (1/2,2) and that (R3) holds.
Then, conditionally on {7’5(21) <0} (i.e. B < Bo),
o
Brnm(nhy,)
Recalling that 3, m(nh,) ~ h2/n ~ Blogn, we note that exp(,87~'ﬁ(>1) logn) goes to 0 as
a (random) power 67’5(21) of n, with 67'5(21) € (—1/2,0).

w d) (=
log <log Z, 5, — nﬁnE[wl{w@/ﬁn}]l{am}) @, 7/'3(>1) asn — o.

Regime 4: \/n « h,, < y/nlogn. Consider the case

Bum(n®?) - o0 and B, logn~'m(n*?y/logn) — 0; (R4)

which corresponds to having transversal fluctuations y/n « h,, < y/nlogn, see (2.2). Let

us define )

~(1) 1 T
Wg = + —:= su w——1, (2.13)
’ 26 (w,:v,tI))GP { 2ﬁt}

which is a.s. positive and finite if « € (1/2,2), see Proposition 6.4 below.
Theorem 2.7 (Regime 4). Assume that « € (1/2,2), and consider (3, such that (R4) holds.
Defining h,, as in (2.2), then y/n < h,, < v/nlogn, and we have

d)

1 w (
m log <\/ﬁ<10g Zn,ﬁn — n/BnE[w:l{wSl/,Bn}]l{aZl})) — Wh
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as n — 0.

Recalling that 3, m(nh,) ~ hZ%/n « logn, we note that exp (W1h2/n) goes to infinity (at
some random rate), but slower than any power of n.

Regime 5: transversal fluctuations of order /n. Consider the case
Bum(n®/?) — B € [0,00) (R5)

this corresponds to having transversal fluctuations h,, of order y/n. Here, we state one of
the results obtained by Dey and Zygouras, [13, Theorem 1.4].

Theorem 2.8 (Regime 5, [13]). Assume that o € (1/2,2), and consider (3, such that (R5)
holds, that is 5, m(n*?) — B € [0, ). Then
(d)

n «
W(log Zn,ﬂn — nﬁnE[Wl{wgm(ni’)/?)}]laZl) —_— QWé ) asn — 0.

Here, W(a) is some specific a-stable random variable (defined in [13, p. 4011]).

Some comments about the different regimes. The regimes 2-3-4 have different behavior due
to the different behaviors for the local moderate deviation, see [21, Theorem 3]. We indeed
have that for \/n < h,, <« n
Pu(hn) 1= P(Sn = hn) = —— exp ( — (1 +0(1)) h’%) (2.14)
Vn 2n/’

so that we identify three main possibilities: if h,, « v/nlogn, then p,(h,) = n=/2+o(); if
hn ~ cy/nlogn then p,(hy) = n= (€02 if b s \/nlogn then py(hy) = e~ (FoW)ha/n
which decays faster than any power of n.

This is actually reflected in the behavior of the partition function. Let us denote Z;, ; =
e BnCa Z;) 5 be the renormalized (when necessary) partition function. We recall that
C. is equal either to E[w]1(,>3/2y (Regime 2 and 3-a) or to E[wly,<i/8,}]1a>1 (Regime 3-b
and 4). Then we have

e In Regimes 1 and 2, transversal fluctuations are h,, » v/nlogn, and Z,, 3, grows faster

than any power of n: roughly, it is of order ¢#7s™ in Regime 1 (for 3 < o), and of order
eTihi/n in Regime 2.

e In Regime 3, transversal fluctuations are h,, = +/nlogn, and Z, 5, goes to infinity
polynomially in Regime 3-a, and it goes to 1 with a polynomial correction in Regime 3-b.

_ =(>1) ~
This could be summarized as Z, 3, ~ 1 + nf7s" ", with 57%(21) > —1/2: the transition

between regime 3-a and 3-b occurs as 67;3(21) changes sign, at 5 = . (note that B’ﬁ(zl)

keeps a mark of the local limit theorem, see (2.11) and (2.14)).

e In Regime 4, Z,, 5, goes to 1 with a correction of order n=1/2 x eW1h/n with ¢W1hi/n
going to infinity slower than any power of n: this corresponds to the cost for a trajectory
to visit a single site, at which the supremum in W is attained. In Regime 5, Z%’ 5, 80€s to

1 with a correction of order n—%/2.

2.4. Main results II : the case « € (0,1/2). In this case, since we have n~'m(n?)/m(n’/?) —
oo, there is no sequence (3, such that 8,n~'m(n?) — 0 and 3, m(n%?) — +oco. First of all,
Theorem 2.3 already gives a result, but a phase transition has been identified in [5, 23]
when a € (0,1/2).
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Theorem 2.9 ([5, 23]). When a € (0,1/2), 7A'5 defined in (2.7) undergoes a phase transition:
there exists some (. = [B.(P) with (. € (0,00) P-a.s., such that Tg = 0if < . and Tg > 0 if
B> B

The fact that 7}

nuity of 5 +— 7?; (the proof is identical to that for 5 — 73, see [7, Section 4.5]).
In view of Theorem 2.3, the scaling limit of log Z;, ; is identified when 7A'5 > 0, and it is

= (0 was not noted in [5, 23], but simply comes from the (left) conti-

trivial when 7A'5 = 0. Again, by an extended version of Skorokhod representation theorem
[17, Corollary 5.12], we can obtain an almost sure convergence in Theorem 2.3. Hence,
it makes sense to work conditionally on 7A'5 > 0 or 7A'5 = 0, even at the discrete level. We
show here that only two regimes can hold: if 7A23 > 0, then fluctuations are of order n,
and properly rescaled, log Z}; ; converges to 7A’5 (this is Theorem 2.3); if 7A'5 = 0, then
fluctuations are of order /n, and properly rescaled, log Z;, ; converges in distribution

(conditionally on 7A’5 = 0).

Theorem 2.10. Assume o € (0,1/2), and consider 3, with B,n~'m(n?) — B € [0, +o0).
Then, on the event {7/'3 = 0} (B8 < fB. < o), transversal fluctuations are of order /n. More
precisely, for any ¢ > 0, there exists some cg,v > 0 such that, for any sequence C,, > 1 we
have

IF’< 25, (max|8i] = Covn) = em0Cirn | 75 o) <e. (2.15)
Moreover, conditionally on {773 = 0}, we have that
v log Z7, 5 9, 2Wé“) ; asn — +o. (2.16)

Bom (n3/2) 0g
where W(()a) = SR+><R><[0 1] wp(t, z)P(dw,dx,dt) with P a realization of the Poisson Point

Process defined in Section 2.2, and p(t, z) = (2mt)~Y/2e=="/2t is the Gaussian Heat kernel.

Note that Wéa) is well defined and has an a-stable distribution, with explicit character-
istic function, see Lemma 1.3 in [13]. Theorem 2.10 therefore shows that, when o < 1/2,
a very sharp phase transition occurs on the line 8, ~ fn/m(n?): for f < 8., transversal
fluctuations are of order /n whereas for 5 > Bc they are of order n.

2.5. Some comments and perspectives. We now present some possible generalizations,
and we discuss some open questions.

About the case a = 1/2. We excluded above the case o = 1/2. In that case, both n~'m(n?)
and m(n3/?) are regularly varying with index 3, and there are mostly two possibilities.

(D) If %3(/;?) — 0 (for instance if L(z) = e—(1082)" for some b € (0,1)), there are

sequences (B, )n>1 With Z,n"'m(n?) — 0 and 8, m(n%?) — +c0. The situation should be
similar to that of Section 2.3: there should be five regimes, with transversal fluctuations h,,
interpolating between 4/n and n.

(2) If wgfg? — ¢ € (0,00] (for instance if L(n) = (logx)® for some b), there is no

sequence (f,)n>1 With 3,n"'m(n?) — 0 and 3,m(n%?) — +o0. Then, the situation should
be similar to that of Section 2.4: there should be only two regimes, with transversal fluctu-
ations either /n or n.
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Toward the case o € (2,5). When « € (2,5) (more generally in region C in Figure 1), an
important difficulty is to find the correct centering term for log Zy 5, Another problem is
that the variational problem 73 defined in (2.6) is 73 = 400 a.s., since paths that collect
many small weights bring an important contribution to 73. The main objective is therefore
to prove a result of the type: there exists a function f(-) such that, for « € (2,6) and any
Br in region C of Figure 1

1 d) s
| logZy; 5 — f(Bn)) — T1,
Gy (108 i, = f(5) £ T
with h,, defined as in (2.2) and where 7; is somehow a “recentered” version of the vari-
ational problem (2.6) (that is in which the contribution of the small weights has been
canceled out). The difficulties are however serious: one needs (i) to identify the centering
term f(f3,), (ii) to make sense of the variational problem 7.

Path localization. We mention that in [5], Auffinger and Louidor show some path local-
ization: they prove that, under P s path trajectories concentrate around the (unique)
maximizer 7;7 5n of the discrete analogue of the variational problem (2.7), see Theorem 2.1
in [5]; moreover this maximizer 7:;7 5, converges in distribution to the (unique) maximizer
%’5 of the variational problem (2.7). This could theoretically be done in our setting: in [7,
Section 4.6] we prove the existence and uniqueness of the maximizer of the continuous
variational problem (2.6). Then similar techniques to those of [5] could potentially be
used, and one would obtain a result analogous to [5, Thm. 2.1]

Higher dimensions. Similarly to [5], our methods should work in any dimension 1 + d
(one temporal dimension, d transversal dimensions). The relation (2.2) is replaced by
Bnm(nhd) ~ h2/n: for paths with transversal scale h,, the energy collected should be
of order 3, m(nh?) while the entropy cost should remain of order h2 /n, at the exponential
level. For a € (0, 1+ d), and choosing 3, = n~7, we should therefore find that in dimension
d a similar picture to Figure 1 hold:

Case o€ (0,d/2) Case o€ (d/2,1 + d)
y<it -1y >t YA -1y < BT |y 5
E=1 £=1/2 =1 |e=HTe(3) | €=3

2.6. Organization of the rest of the paper. We present an overview of the main ideas
used in the paper, and describe how the proofs are organized.

x In Section 3, we recall some of the notations and results of the Entropy-controlled
Last-Passage Percolation (E-LPP) developed in [7], which will be a central tool for the rest
of the paper. In particular, we introduce a discrete energy/entropy variational problem
(3.3) (which is the discrete counterpart of (2.6)), and state its convergence toward (2.6)
in Proposition 3.1.

# In Section 4, we prove Theorem 2.2, identifying the correct transversal fluctuations.
In order to make our ideas appear clearer, we first treat the case when no centering
is needed (i.e. & < 3/2) in Section 4.1. In Section 4.2 we adapt the proof to the case
where it is needed. In the first case, we use a rough bound Py ( max;<p, |Si| = Anhn) <

Y/t Bn(maXign |Si| = Anhn), the second term being the partition function restricted to
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trajectories with max;<, |S;| = A,h,. The key idea is to decompose this quantity into sub-
parts where trajectories have a “fixed” transversal fluctuation

logy (n/hn)
Zy s, (max|S| > Auha) = Y, Zis, (max|Si| € [2 hn 2"hn))
ST k=logy An+1 ST

Then, we control each term separately. Forcing the random walk to reach the scale 2~ 1h,,
has an entropy cost exp(—c2%h2 /n) so we need to understand if the partition function,

when restricted to trajectories with max;<, |S;| < 2¥h,,, compensates this cost (cf. (4.3)):

we need to estimate the probability of having Z ; (max;<, [Si| < 2Fh,) > 2" hi/n_ This

is the purpose of Lemma 4.1, which is the central estimate of this section, and which
tediously uses estimates derived in [7] (in particular Proposition 2.6).

« In Section 5, we consider Regimes 2 and 3-a, and we prove Theorems 2.4-2.5. The
proof is decomposed into three steps. In the first step (Section 5.1), we use Theorem 2.2 in
order to restrict the partition function to path trajectories that have transversal fluctuations
smaller than Ah,, (for some large A fixed). In a second step (Section 5.2), we show that
we can keep only the largest weights in the box of height Ah, (more precisely a finite
number of them), the small-weights contribution being negligible. Finally, the third step
(Section 5.3) consists in proving the convergence of the large-weights partition function,
and relies on the convergence of the discrete variational problem of Section 3.

+ In Section 6, we treat Regime 3-b and Regime 4, and we prove Theorems 2.6-2.7. We
proceed in four steps. In the first step (Section 6.1), we again use Theorem 2.2 to restrict
the partition function to trajectories with transversal fluctuations smaller than Ay/nlogn
(for some large A fixed). The second step (Section 6.2) consists in showing that one can
restrict to large weights. In the third step (Section 6.3), we observe that since we consider a
regime log Z;; ; — 0, it is equivalent to studying the convergence of Z? ; —1: we reduce to
showing the convergence of a finite number of terms of the polynomial chaos expansion of
Zy, 5 —1, see Lemmas 6.2-6.3. We prove this convergence in a last step: in Section 6.4, we
show the convergence in Regime 3-b (Lemma 6.2), relying on the convergence of a discrete
variational problem. In Section 6.5, we show the convergence in Regime 4 (Lemma 6.3),
which is slightly more technical since we first need to reduce to trajectories with transversal
fluctuations of order h,, « y/nlogn.

+ In Section 7, we consider the case « € (0,1/2), and we prove Theorem 2.10. First, in
Section 7.1, we prove (2.15) i.e. that there cannot be intermediate transversal fluctuations
between 4/n and n. We use mostly the same ideas as in Section 4, decomposing the con-
tribution to the partition function according to the scale of the path, and controlling the
entropic cost vs. energy reward for each term. Here, some simplifications occur: one can
bound the maximal energy collected by a path at a given scale by the sum of all weights
in a box containing the path, this sum being roughly dominated by the maximal weight in
the box (this is true for o < 1). We then turn to the convergence of the partition function
in Section 7.2. The idea is similar to that of [13, Section 5], and consists in several steps:
first we reduce the partition function to trajectories that stay at scale 4/nlogn; then we
perform a polynomial chaos expansion of Z;) ; — 1 and we show that only the first term
contributes; finally, we prove the convergence of the main term, see Lemma 7.2, showing
in particular that the main contribution comes from trajectories that stay at scale /n.
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3. DISCRETE ENERGY-ENTROPY VARIATIONAL PROBLEM

We introduce here a few necessary notations, and state some useful results from [7]. Let
us consider a box A, ;, = [1,n] x [—h,h]. For any set A < A,, ,, we define the (discrete)
energy collected by A by

> wia (3.1)
(i,z)EA
We can also define the (discrete) entropy of a finite set A = {(t;,2;); 1 <i < j} < R? with
Al =jeNandwith0 <t; <ty <--- <t; (withtg = 0,29 = 0)

i i~ i)’ (3.2)

_tz 1

Ent(A

By convention, if ¢; = t;_; for some i, then Ent(A) = +oo. The set A is seen as a set
of points a (continuous or discrete) path has to go through: if A < N x Z a standard
calculation gives that P(A  §) < e (%) (A c S means that S;, = ; for all i < |A]),
where we use that P(S; = z) < e~*"/% by a standard Chernoff bound argument.

We are interested in the (discrete) variational problem, analogous to (2.6)

ﬁn,h . _
T, = Alglﬁfh {ﬁthn,h(A) Ent(A)} , (3.3)

with 3, , some function of n, h (soon to be specified).

We may rewrite the disorder in the region A,, 5, using the ordered statistic: we let Mﬁn’h)

(n,h)

be the r-th largest value of (w; )i z)en,, , and Yy € A, its position. In such a way

(Wij)(i.gyen, =ML, K(”’h))Linih‘ - (3.4)

In the following we refer to (M,(”’h) ) LA" | a5 the weight sequence. Note also that (Y, (m, h))Li"ihl

is simply a random permutation of the points of A, .
The ordered statistics allows us to redefine the energy collected by a set A — A, ,, and
its contribution by the first £ weights (with 1 < ¢ < |A,, |) by

ol (a Z M, Qun(A) = QDA (3.5)

(n, h)eA} ’
We also set Q( )(A) = Qn(A) — Qq(f)h(A) We then define analogues of (3.3) with a
restriction to the ¢ largest weights, or beyond the /-th weight

B,k (¢
7o = e (B )(A) — Ent(A)},
(3.6)
Brny(>0) (>€)
Tn,h} = Argai{h {Bnn 5 (A) —Ent(A)}.

Estimates on these quantities are given in [7, Prop. 2.6] (most useful in Section 4). The
following convergence in distribution is given in [7, Thm. 2.7], and plays a crucial role for
the convergence in Theorems 2.4—2.7 .

Proposition 3.1. Suppose that 583, ,m(nh) — v € [0,0) as n,h — oo. For every a €
(1/2,2) and for any q > 0 we have

d
ﬁTf’;; ) Tog = Séli;/) {mr( — Ent(s } asn — oo, (3.7)
S q
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with 4, := {s € 9,Ent(s) < o0, maxe[o1] |s(t)| < ¢}. We also have

% Tf’;ﬁ’(@ @), ’7;(? = sup {V?T(Z)(S) —Ent(s)} asn— o0, (3.8)
’ ’ seMy

where ©(0) .= Zf,:l M, 1y, eqy with {(M,,Y;)}r>1 the ordered statistics of P restricted to
[0,1] x [—q, q], see [7, Section 5.1] for details.

Finally, we have 77,(,? — Tyqast — o, and T, q — T, as ¢ — ©, a.s.

4. TRANSVERSAL FLUCTUATIONS: PROOF OF THEOREM 2.2

In this section, we have o € (1/2,2).
First, we partition the interval [A,h,, n] into blocks

Biy = [2" 0y, 28R,),  k=logy Ay + 1. logy(n/hy) + 1. 4.1)

In such a way,

log, (n/hn)
i (2|5 = Anhn) = > o (Max i € By ). (4.2)
h k=logy An+1 =

We first deal with the case where n/m(nh,) "= 0 for the sake of clarity of the exposi-
tion: in that case, log Z;, ; does not need to be recentered. We treat the remaining case (in
particular we have o« > 3/2) in a second step.

4.1. Case n/m(nh,)"=° 0. We observe that the assumption w > 0 implies that the parti-

tion function Z¢ 5, is larger than one. Therefore,
P75, (max|Si| € Byn) < Zj 5, (max|S;| € Bip)-
By using Cauchy-Schwarz inequality, we get that

zgﬁn(r&af 1Si| € Ba)? < P(r&af S| = 2¥"1h,,) x zz72ﬂn(%a5<|si| <2h,) . (4.3)

The first probability is bounded by 2P(|S,| > h,) < 4exp(—2%¢h2/2n) (by Levy’s in-
equality and a standard Chernov’s bound). We are going to show the following lemma,
which is the central estimate of the proof.

Lemma 4.1. There exist some constant qo > 0 and some v > 0, such that for all ¢ > qy we
have

ha,
IP’(Z"J 28 (max 1Si| < qhn) = e%q27> < q‘”(l +1A “4.4)
y4Pn i<n

Therefore, if n/m(nh,) "= 0, this lemma gives that for ¢y = 1/8 and for k large enough

(i.e. A, large enough), using (4.3),

P(Z“,jﬁ (max|S;| € By,) = 46_6022kh%/n) < (2.
wn ZSTL )
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Then, using that 3, ., 4, om0 hifn < =1 ALhL/n we get that by a union bound

P(P2 s (miax |S1] > Anhy) > 20

log, (n/hny) -
< X P(Zip(max|S| e B > 4R
b 's b
k=logy An+1 tsn

< Z 27k < cATY. (4.5)
k>logy An

We stress that in the case when n/m(nh,) "= 0, we do not need the additional » in front
of e—c14%ha/m in (2.8).

Proof of Lemma 4.1. For simplicity, we assume in the following that ¢h,, is an integer. We
fix § > 0 such that (1 + ¢)/a <2 and (1 —9)/a > 1/2, and let

h2
T = Ta(ghn) = ~¢"/*(¢*hi/m) 0= v 1 (4.6)

be a truncation level. Note that if & < (1 — §)*? then we have T = 1. We decompose the
partition function into three parts: thanks to Holder’s inequality, we can write that

w LioezCD 41z 1y (<)
log Z; 2, (max | Si| < ghn) < S10g 2,55 + S 1082, 5, + 2108 %5, (4.7)

where the three partition functions correspond to three ranges for the weights §,w; ,:

ZSGTg)" = E|exp (Z 66nwi,5i1{ﬁnwi,si>T}> 1{max|S¢\<qhn}] (4.8)
L i=1 I<n

Zil(’ég}z) =E exp (2 6B”wi75il{ﬁnwi,sie(l,ﬂ}) 1{max \Si|<qhn}] (49)
L i—1 I<n

ng(ilﬁ)n =E exp (2 6ani,5i1{ﬁnwi’sig1}> 1{max|3i\<qhn}] . (410)
L i=1 i<n

We now show that with high probability, these three partition functions cannot be large.
Note that when T = 1, the second term is equal to 1 and we do not have to deal with it.

Term 1. For (4.8), we prove that for any v < 2« — 1, for ¢ sufficiently large, for all n
large enough we have
2
P(log Z7(1>6Tg > Coq2%> <qv. 4.11)
b n n

We compare this truncated partition function with the partition function where we keep
the first ¢ weights in the ordered statistics (Mi(n’qhn))lgignqhn. Define

2
0 = lo(qhn) = (¢*h2/n)' ™%, so T = %ql/“ x g~ (=0 (4.12)

and set

Zg,)fiﬁn = E[exp (iGB”Mz‘(n’qhn)1{1Q<”’qh”)65})] . (4.13)
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Remark that, with the definition of T and thanks to the relation (2.2) verified by 3, we
have that for n large enough

P(,BnMg(n’qhn) - T) < P(Mg(n,qhn) > %ql/ag—(l—é)l/Z/am(nhn)>

Then, since we have ¢/¢ < 1 (see (4.12)), we can use Potter’s bound to get that for n
sufficiently large

m(nghy/l) < (q/ﬂ)(lf‘p)/am(nhn),
and we obtain that provided that ¢ is small enough

B(Subty" ") = T) < B(MI) > g™ 0 m(ngha 1)) < (cat) ™,

where we used [7, Lemma 5.1] for the last inequality. We therefore get that, with probabil-
ity larger than 1 — (cf)~%/2 (note that £~%¢/2 < ¢=9%/2 < ¢=* for n large enough), we have
that

{(i, x) € [1,n] x [—qhn, ghn]; Brwi e > T} cYy:= {Yl(n’qh”), . ,Yg(n’qh")}, 4.14)

and hence ZSG?R < fo)ﬁ 8,
We are therefore left to focus on the term Zg )6/371: recalling the definitions (3.5) and

(3.6), we get that

20 = Y U BIP(5 A T, = A)
AcYy (415)
< Y exp (68 gn, () — Bni(A)) < 2 exp (195:).
ACTg

where we used that P(A < S) < exp(—Ent(A)) as noted below (3.2).
Note that we have ¢ < 1cog?h?2 /n for n large enough (and ¢ > 1), so we get that

¢ h? 6Bn(0) _ 1 ohZ
]P’(log Zq(%)wn = coqQF") < P(Tn’ihi ) > Ecoqu) )

Then, by the definition (2.2) and thanks to Potter’s bound, for any n > 0 there exists a
constant ¢, such that for any ¢ > 1

9

4/3
(68nm(nghs)) (122 D 43\ (14m)fa—2 _ 2Pn
T LA il L S A es

where we used that for any n > 0, m(ngh,) < c%q(”")/am(nhn) provided that n is
large enough (Potter’s bound). Therefore, provided that 7 is small enough so that (1 +
n)/o < 2, an application of [7, Prop. 2.6] gives that for ¢ large enough (so that b, :=

2%0”@4/3)2*(1“7)/& is large),

4/3
66u(0) 1 ohp 66n,(£) (68nm(nghs)) .
P(Toon = Jeoa? ) < B(T0 1 = b, e )<, 416

with v = 2a — 1 — 2n. This gives (4.11), since 7 is arbitrary.

Term 2. We now turn to (4.9) We consider only the case T > 1 (and in particular we
have a > (1 — §)*2). We show that for any 7 > 0, there is a constant ¢, > 0 such that for ¢
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large enough and n large enough,

(log Z(( D > co(q 2h2/n) ) <exp (- cn(Qth/n)l/?’) . (4.17)
Again, we need to decompose Zﬁ(lﬁ’gi) according to the values of the weights. We set 0 :=
(1 -96)2/a > 1, and let

0= (PR3 n)” =0 = (05)? | with &y = £ = (¢°h2/n)'® asin (4.12)  (4.18)
) h2 . h2 i o
) .= ;”ql/o‘ X (qzhfl/n)_m(l_‘s)m/o‘ = ?"ql/o‘ (Ej) (1-0)"?/ (4.19)

for j € {0, ..., s} with « the first integer such that #* > a/(1 — §)%/2. We get that T() = T,
and T(*) < 1. Then, thanks to Holder inequality we may write

log 241D < 721 z{5 T with

T G-
Zfz(,ﬁnﬁn D= E[exp <Z 6’%6"%751'1{/3nwi,si€(T<”7T(j’1>]}> 1{max\5i|<qhn}] :
i=1 <n
To prove (4.17), it is therefore enough to prove that for any 1 < j < &, since ¢; >
(@*h7/n)' 2,

P(10g 2\ 0"V = 8u(?h2 /n) ;") < exp (= e(?h3 /n) ). (4.20)

First of all, we notice that in view of (4.18)-(4.19), with the same computation leading to
(4.14), we have that with probability larger than 1 — (cﬁj)*%/ 4

{(’L’x) < Hl’”]] x [[_qhmqhn]kﬁnwi,x > T(j_l)}
< Ty o= (Y)Y (4.21)

On this event, and using that £; = (¢;_1)1~9%* and

T(j—l) _ hfiql/agjf(lf‘s)_l/Q/Q < @ql/a€;1/2*5/5
n n

(if ¢ is small), we have

) ) L;
Zi(:g:f;f(a—n]) < E[exp (6/€T(J 1) Z {Y n,ahn) eS})] (4.22)
i=1

2
2 hy p—3/10
<TG T 4K,

with
£
n 1/&[‘1/2 5/5
D D Y P(S AT, - 4)
k:quéey/2+5/1o Achj ;| Al=k
G 45 h? ~1/2-6/5
< 7 ex (6/{—" Vey=1/2=0/5p _ inf Ent(A ) .
12 <k> P n % ACY, . |Al=k (&)
k=g &0 J12+5/1o J
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Then, we may bound (élg) < eFlo8!; ' We notice from the definition of x (and since 6 € (1, 2))

that there exists some n > 0 such that ¢; < ¢,, < (¢°h2/n)?7" for any 1 < j < k: it shows in
particular that log¢; < 622 < qz%éj_l/ 2-9/ 5, provided that n is sufficiently large and ¢ has
been fixed sufficiently small. We end up with the following bound
¢ 2
hi 19—
H; < Z exp (ch—"éj Y20y inf Ent(A)).
n

1 ACT@.,‘A‘:k
k:q%az;/%é/lo J

Then, we may use relation (2.5) of [7] (with m = ¢;, h = ghy) to get that, for any
k> qz_é£1/2+6/10
= J

1/2*5/5]{:)1/25], > k

. h% _1/9_ 00(2007
P( inf  Ent(A) < 20q2?£j 12 5/5k> < ( ! 2

ACng ,|A|:k
< (eqz 26 < (et)) M (4.23)

. . 3 _. . .

For the last inequality, we used that g2« 3 < 1, since a > 1/2 and ¢ > 1. Since we have
2 _ .

that qQ%"E ; 12=3/5 1, we get that there is a constant ¢’ > 0 such that

—46/10
/ /

2 2
_ 2hy )—1/2-6/5 _ 2hhn
Z e J4 k < c’e cq*F Kj <.

J

1
k=g @ ey F o0

Using (4.23), we therefore obtain, via a union bound (also recalling (4.21)), that provided
that n is large enough

(2 5 Y LT ()
kgt k2000
< (0@')_0‘%1'/2
This proves (4.20) since ¢; > £y = (¢*h2/n)1~°.
Term 3. For the last part (4.10), we prove that for arbitrary n > 0,

h2 —n ifa>1,
P<1Og Z(ilg > 00q24> < g2 x { minin) . (4.24)

Let us stress that in the case a < 1 we get that for n large m(nhn)(lf’”“ > (nhy,)'=%, there-
fore n/(nh, )1~ goes to 0 provided that 7 is small enough, since we are considering the

case when h,, > 4/n. Hence, we can replace the upper bound in (4.24) by 1 A (n/m(nh,)).
To prove (4.24), we use that ef"1=<1} < 1 4 eﬁxl{mgl} for any z, and we get that

(1)
vaﬁﬁn < E|:

—.

-
Il
—

(1 + 6566nwi,si1{6nwi,5i<1})] , (4.25)

—.

-
Il
—_

and EZ5) <B|[](1+ 69 5Ewlucs,]) | < o mPletoml,
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Therefore, by Markov inequality and Jensen inequality,

h2 1 _o1*Bn
P(log foﬁlgn > coq2ﬁ> < v h2 logEZ; 65) < Cg 2 hf E[wl{w@/ﬂn}]. (4.26)

It remains to estimate E[wl{w<1 /61 ]- If oo > 1 then it is bounded by E[w] < +c0: this gives
the first part of (4.24), using also (2.2). If a < 1 then for any ¢ > 0, for n large enough we
have 3, E[wl,<i1/s,1] < (=M for n large: by using (2.2) together with h2 /n > 1, this
gives the second part of (4.24).

The conclusion of Lemma 4.1 follows by collecting the estimates (4.11)-(4.17)-(4.24) of
the three terms in (4.7). O

4.2. Remaining case (o« > 3/2). We now consider the remaining case, i.e. when we do
not have that n/m(nh,) "=" 0. In particular, we need to have that a > 3/2, and hence
E[w] =: p < +c0. Then, we do not simply use that Z;; ; > 1 to bound P ; (max;<, |Si| €
Bk,n): but instead we use a re-centered partition function Z;; 5, = e‘”ﬁn/“‘Z‘;; 5, SO that we
can write

1 n
P‘;vaﬁn ( I?gaﬁ( |Sl’ € Bk:n) = Z: 5 E[ exp ( Zl 5n<w175i - ILI/)> l{maxis” ‘SJEB}S’”}]
wn 1=
1 _
=: Z“’ o Z%},Bn ( I?gari{ |Sl| € Bk‘,n) . (427)

First, we need to get a lower bound on Z¢ 6

Lemma 4.2. For any 6 > 0, there is a constant ¢ > 0 such that for any positive sequence
n < L with g, = n=Y2(h2 /n)*=3/2+% (this goes to 0 for § small enough), and any n > 1

_ h2
]P’( b = n_166"7> >1—e ¢

We postpone the proof of this lemma to the end of this subsection, and we now complete
the proof of Theorem 2.2-(2.8). Lemma 4.2 gives that Z* g, =T 1 with overwhelming
probability: using (4.2) combined with (4.27), we get, analogously to (4.5),

a—1/2—46

— eeemhi/n, (4.28)

P(P;B(rinéag( ‘S,’ > Anhn) > ne*clA%h%/”> (4.29)

logy (n/hpn)+1
<P(Zig, <n )+ Y P(Zos(max|Si| € By = e ).
k=logy An+1 S

Then, we have a lemma which is the analogous of Lemma 4.1 for Z* 5

Lemma 4.3. There exist some constant gy > 0 and some v > 0, such that for all ¢ > ¢o we
have

P(Z?{,wn(rpgagl&l < ghy) > €t *) <q7. (4.30)
Proof. The proof follows the same lines as for Lemma 4.1: (4.7) still holds, with j,w; g,

replaced by 3, (w; 5, — 1) (outside of the indicator function). The bounds (4.11)-(4.17) for
terms 1 and 2 still hold, since one fall back to the same estimates by using that (w; g, — ) <
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w; g, It remains only to control only the third term: we prove that when p := E[w] < o,
then for any 0 > 0, provided that n is large enough,

_ h2 h2\a—3+6
P(log ZSGIB)H > COqQFn) <cqg ?xn 12 (f) 2 (4.31)
where we set analogously to (4.7)

25, = E| exp (i 680 (wi,5:. — 1) L(g05,<1) ) |- (4.32)
=1

Then, using 12 /n < n (if a > 3/2, the upper bound in (4.31) is bounded by cg~2n®~2+9
which is smaller than ¢—2 provided that § had been fixed small enough.

To prove (4.31), we use that there is a constant c such that e* < 1 + x + cz? as soon as
|z| < 6, so that we get similarly to (4.25) that

<1 "
EZ{5), < (14 BuE[@ = i) lpeerspn ] + B2E[w = 1)1 puzijs,)])
e € 2 a+6

< exp (an(l/ﬁn)ﬁn> < exp <hn (hy/n) ) . (4.33)
For the second inequality, we used that E[(w — p)1g,<1/3,}] < 0 (as soon a 1/8, > p),
and also that E[(w — p)*1¢,<1/8,1] < ¢L(1/B,)B5 2, thanks to (1.2). The last inequality
holds for any fixed ¢, provided that n is large enough, and comes from using Potter’s bound
and the relation (2.2) to get that L(1/8,)3% < ¢P(w > 1/83,) < (nhy,) " (h2/n)**°. Then,
applying Markov and Jensen inequalities as in (4.26), we get that

(<1 h2 omn shZ\ats
]P’(log wa)n > coqQF") < ¢q 2h—3<?"> ,
n

which proves (4.31). O
With Lemma 4.3 in hand, and using Cauchy-Schwarz inequality as in (4.3), we get that
7w —c022kh2 /n —v
P(2i 5 (max|Si] € By) = 26792 Hm) < (28

Plugged into (4.29), this concludes the proof of Theorem 2.2-(2.8). It therefore only re-
mains to prove Lemma 4.2.

Proof of Lemma 4.2. We need to obtain a lower bound on Z,, 4,, so we use Cauchy-Schwarz
inequality backwards: we apply Cauchy Schwarz inequality to

n

Z;Tﬁlzﬂ = E[exp (Z %(Wi,si - N)l{ﬁnwi,si>1}):|

< (Zn,ﬂn)I/QE[exp (Zn: —Bn(wiys; — M)]'{ani,si>l}>:|1/2
i=1

= (Zns,) @)

so that
Zos, > (205" 250, (4.34)

Hence, we get that

/ 1 7(<1) s 7(>1) 1/2 o
P(Zﬁﬁn <n” e“&?) < P(Zn\ > ean%) e IP(Z <n Y 65"@> ,  (435)
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and we deal with both terms separately.
For the first term, we use that analogously to (4.33) we have

B2, < (1= BB — 1)L ueryog] + B2 — 1)L pcryy])
< (14 eL(/aa) " < exp (1 (n2/n)* ).

Here, the difference with (4.33) is that we use for the second inequality that —E[(w —
ml<1/s] = E[(w — ) lgs1/8,3] < ¢L(1/B,)B5 ", thanks to (1.2). Again, the second
inequality holds for any fixed 9, provided that n is large enough. Using Markov’s inequality,
one therefore obtains that the first term in (4.35) is bounded by

(4.36)

2

P(ZY), 2 ) <o ([ (h2/m)™ — e l0) <o (e 8), @37

. . . . . —~1/2 h2 2+(S
the second inequality holding provided that &, is larger than n~"/ (7") .

As far as the second term in (4.35) is concerned, we find a lower bound on 2512513 by
restricting to a particular set of trajectories. Consider the set

O, = {(z,a;) € [n/2,n] x [Y?Nhn, 26X %h]; Brwi e = 2x2/i}.

If the set O,, is non-empty, then pick some (ig,zp) € O,, and consider trajectories which
visit this specific site: since all other weights are non-negative ((w—u)1g,,>1; = 0 provided
w < 1/5,), we get that

c 2 c hZ

x ha
> %exp <ﬂnwi0@0 — Z,—S) > %ean n . (4.38)
We used Stone’s local limit theorem [21] for the second inequality (valid provided that n
is large, using also that ig > n/2). For the last inequality, we used the definition of O,, to
bound the argument of the exponential by x3/ip > €,h2 /n. Therefore, we get that

2:1/2p,
5 (=1 c h n I
P(Zflﬁg < %egn n ) <P(O H H ( P(Bpw > 23:2/1))
i=n/2 ,_ 1/2 .
ai/thn
< (1 —P(w > 45nm(nhn)))
For the second inequality we used that 22/i > ¢,h2 /n for the range considered, together
with the relation (2.2) characterizing ,,. Then, we use the definition of m(nh,) together
with Potter’s bound to get that for any fixed § > 0, we have P(w > 4e,m(nhy)) >

ce;,®(nhy,) ™1, provided that n is large enough. Therefore, we obtain that

P(Zfb}g < %e LhQ ) < exp ( - 05;_a+6> , (4.39)

which bounds the second term in (4.35). O
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5. REGIME 2 AND REGIME 3-A

In this section we prove Theorem 2.4 and Theorem 2.5. We decompose the proof in three
steps, Step 1 and Step 2 being the same for both theorems. For the third step, we give the
details in regime 2, and adapt the reasoning to regime 3-a.

5.1. Step 1: Reduction of the set of trajectories. Recalling ;1 = E[w] (which is finite for
a > 1), we define

;5 = E[GXP (Zﬁn (wi,si — Ml{a>3/2}))] (5.1)

We show that to prove Theorem 2.4 and Theorem 2.5 we can reduce the problem to the
random walk trajectories belonging to A,, 45, for some A > 0 (large). For any A > 0, we
define

Bp(A) = {(z’,Si):-L:l: max || < Ahn} (5.2)

x

and we let

Z;, 5, (Bn(A)) [GXP (i (wis; — Ml{a>3/2})) 1Bn(A)]- (5.3)

Relation (2.8) gives that IP( . B (B (A)) > pe—aAh} /n) < oA™Y, uniformly on n €
N. This implies that

P(‘ log Z;; 5, —log Z7; 5, (Bn(A))‘ > ne~ AR/ ”) <A™, (5.4)

uniformly on n € N. Let us observe that in Regime 2 and regime 3-a we have that h2 /n >

cg log n, therefore ne~14’h%/n goes to 0 as n gets large, provided A is sufficiently large.
In such a way relation (5.4) implies

nlglgo 0z log Zy 5. = lgréo nlgrélc nz log Zy 5. (Bu(A)). (5.5)
5.2. Step 2: Restriction to large weights. In the second step of the proof we show that
we can only consider the partition function Zifi) truncated to a finite number L of large
weights, iwthL independent of n. We need some intermediate truncation steps.

We start by removing the small weights. Using the notations introduced in (4.8 — 4.10)
and (4.32), Holder’s inequality gives that for any n € (0, 1)

n

1
= (>1) = (5(<1) 1
(Zm(l—n)ﬁn) (Zn,—(nfl—lmn) (5.6)
1 n
7w ~(>1) T+n (7(<1) T+n
< Zy 5, (Bn(A)) < (Zn,(l-i-n)ﬁn) ! (Z (147~1)Bn ) "
We observe that the condition 3,w > 1 implies (if u < o)

(1 =2n)Bhw < (1 =n)Bn(w —p) and (1 +n)Bu(w —p) < (1+n)bw, (5.7)

(>1) (>1)
m(i=m)fa DY Zp (1208,

in (5.6). The next lemma shows that the contribution given

provided n is large enough. In such a way, we can safely replace Z

(>1) (>1)
and Z, 7y, s DY 2y,

by log Z£L pﬂ) is negligible.
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Lemma 5.1. Let p € R. Then,

w2 " 10 gZ\=) 50, asn— . (5.8)
Proof. The case p > 0 is a consequence of the estimate in (4.25) and (4.26), while the case
p < 0 is a consequence of the estimate in (4.36) and (4.37) O

We can further reduce the partition function ngylﬁ)

(with v > 0). ,
We fix some & > 0 small, and define ¢ := (A2h2/n)'~% and also T = AV g-(1-0)"?/a
as in (4.12): then, Holder’s inequality gives that for any 7 € (0 1)

_toeven (intermediate) larger weights

(>T) (>1) 1 (>T) ((L,1])
logZy, 5, 108255, < 7 108 2y (g, 1+ 08 Z,, (1 tn-1yws, -

Then, (4.17) gives that for any fixed A > 1, and since h2/n — oo, we have that for any
p >0,

2 T logZU B o, asn — . (5.9)
Finally we show that we can only consider a finite number of large weights. We consider
T, = {Y mAhn) ..,Yé(n’Ah")} with ¢ chosen above. Using (4.14), with probability larger

1 — (ct)=042 (w1th ¢ — o0 as n — o) we have that
Hr = {(z,m) € [1,n] x [—Ahy, Ahy]; Brwi e > T} c Yy

and thus Z5L>VT ) < ng)yﬁ with high probability. We let L € N be a fixed (large) constant.

Since |Zr| — w0 as n — o in probability, we have that Y1 < =t so that, me Z/B < fo:g for
large n, with high probability. By using Holder’s inequality we get,

1 n
(L) (>T) (L) T+n (L,2) T+n
vayﬁ’ﬂ < Znﬂ/ﬁ’n < <Z"7V(1+77)5n> (Zn’y(1+7771)6n) ’

where

2 = B exp ( 2 B L gy ) | (5.10)
i=L+1

(L.0)

We now show that the contribution of Z, .

6 is negligible.
Lemma 5.2. For any ¢ € (0,1) and for any L € N and p > 0 there exists ., such that for all n
]P’(h2 logZ") > 5) < oL, (5.11)

with 6 — 0as L — 0.

Proof. We let p > 0. Recalling the definition (3.5), and using that P(A c S) < eP™(2) we
have that

1
2, < X, O n T, - )
ACTg
< Z exp <pﬁn n>th) (A) — Ent(A)) 2% exp (Tﬁiﬁ;gf”) :
ACT@
Using that £ = o(h?/n) and relation (5.5) of [7], we conclude the proof. O
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Collecting the above estimates, we can conclude that

n n

logZ (5.12)

lim v

n—o0 h%

log Z:z),ﬁn (Br(A)) = lim lim lim

v—1L—00 n—0 h%

5.3. Step 3: Regime 2. Convergence of the main term. It remains to show the conver-
gence of the partition function restricted to the large weights.

Proposition 5.3. Forany v > 0, and L > 0

L) . :
n a )T in Regime 2,
D logz®), W ma T (5.13)
h2 P 7/‘6% A in Regime 3-a,

where 7'5(2 was introduced in (3.8) and ﬁ,(};) 4 1s defined in (5.18) below.

One readily verifies that
* U 7;(1;2 (resp. v — 7'5(1;) 4) is a continuous function;

* 1(,54) — T1,4 (resp. 7~;3(’L1)’A — 7'5,17/1) as L — oo (see Proposition 3.1, resp. Proposi-

tion 5.4);
# Ti,4a — T1 (resp. T 1,4 — T3) as A — oo (see Proposition 3.1, resp. Proposition 5.4).
Therefore, the proof of Theorem 2.4 and Theorem 2.5 is a consequence of relations
(5.5), (5.12) and (5.13).

Proof. We detail the proof for the Regime 2. The Regime 3-a follows similarly using the
results in Section 5.4 below. To keep the notation lighter we let v = 1.
Lower bound. For any L € N we consider a set Ay < Yt which achieves the maximum of

Trﬁ ’xg;), resp. of Tf ’qu;) defined below in (5.17) for Regime 3-a. We have

Zg,%n = exp (Bnﬂn,Ahn (AL>> P(S M TL = AL) .

Since L is fixed, we realize that any pair of points (i, z), (j,y) € Yy satisfies the condition
li — j| = en and |z — y| > eh,, with probability at least 1 — ¢, with ¢ - 0 ase — 0. In
such a way, we can use the Stone local limit theorem [21] to get that P(S n T = Ay) =

— 18l o(1) ,~Ent(Av)

n . In the Regime 2, in which Ent(AL) = h2 /n » logn, this implies that

Z"), > exp ((1 + 0(1))T£§;§j;)). (5.14)

n,

To conclude, we use Proposition 3.1-(3.8) to obtain that Tf *;ig;) converges in distribution

to Tl(z, concluding the lower bound.
In Regime 3-a, (5.14) is replaced by
7@

W, 2 e (1 4+ o) {80 an, (&) ~ Ent(ar) - Siogn}). a5)

so that Tf’;lg;) is replaced by Tf%g;) defined in (5.17). Then the conclusion follows by
Proposition 5.4-(5.19) below.
Upper bound. We have

z®, = 3 F N BP(S ATy = A)

ACTL
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Using the Stone local limit theorem [21] we have that P(Sn Ty = A) = n— 2 +o(l) —Ent(A)

uniformly for all A ¢ Y. Since we have only a finite number of sets, we obtain that
Z\), <2 exp ((1 + 0(1))Tﬁ’;{§3), (5.16)

which concludes the proof of the upper bound, again thanks to the convergence proven
in Proposition 3.1-(3.8). In Regime 3-a, using the Stone local limit theorem, we can safely
replace Tf" ’AS:L) by T‘f"AgLLn) defined below in (5.17), and also conclude thanks to Proposi-

tion 5.4-(5.19). O

5.4. Step 3: Regime 3.a. Complements for the convergence of the main term. We end
here the proof of Theorem 2.5 by stating the results needed to complete Step 3 above in
the case of regime 3.a. In analogy with (3.3), and in view of the local limit theorem (2.14),
we define

T’B"’h i= max {B R n(A) — Ent(A) — Hlogn}

n,h ACAn,h n, n, 2 i
© N (5.17)

5B, h (€ 14

T = {Bun 0, (8) — Ent(A) — T logn}
In the next result we state the convergence of %Tf " and %Tﬁ’gh’(@, analogously to Propo-
sition 3.1.

Proposition 5.4. Suppose that 73, ym(nh) — v € (0,00) as n,h — oo and h ~ Y/2,/logn,

with 8 > 0. Then, for every a € (1/2,2) and for any ¢ > 0, { € N we have the following
convergence in distribution, as n — o0

N S (A F o B _ N(s)
2 T Tsvq = sseu}/)q {I/ﬂ'(S) Ent(s) 55 } , (5.18)
with .#, as defined in Proposition 3.1. We also have, as n — o
N Bnn(0) (d) 53¢ N(s
5 Tn’q’;: DGA 7'5(’37(1 = s;l}/) {yw(e)(s) — Ent(s) — 258) } . (5.19)
S€AMq

~ d) ~ ~ d) ~
Moreover, we have 7'5(261 9 T3uqas L — oo, and T, 4 9 T3, as ¢ — 0.

The proof is identical to the proof of Proposition 3.1 (cf. proof of [7, Theorem 2.7], using

also that 7z logn — % in regime 3), for this reason it is omitted. To conclude, let us show

that 7~'B(>T) defined in (2.11) is well defined.

Proposition 5.5. For any r > 0 the quantities ~6(>r) are well defined and for any 3 > 0
1 ~ ~
— ﬁ < 7'6(21) < T < . (5.20)

Moreover ’7’5 > 0, and we have 7]3 > 0 if and only if 773(21) > 0. Finally, there is a critical
value 3. = inf{f: 7~/'3 > 0} € (0,00).

Proof. Since 7~'ﬁ(0) = (, we obtain that 7~73 € [0, 00). As a by-product we also have that 7~’5 >0
if and only if 7~,-6’(>1) > 0; and in that case 7~'5 = 72,(21). Additionally, we have

1 ~(>1

Wz — — <
23 B

"< Ty < (Tim55) v,
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with W3 and 7; defined in (2.13) and (2.6) respectively. Proposition 6.4 and Theorem 2.1
ensure that for 3 > 0, W3 € (0, ) and 7~'1 < o, showing (5.20).

It remains to show that 3. € (0, ), by observing that 3 — SWj and 8 +— (871 —1/2) v 0
are monotone functions which converge to 0 as g — 0. O

6. REGIME 3-B AND REGIME 4

In this section we prove Theorem 2.6 and Theorem 2.7. We decompose the proof in
three steps (analogously to what is done in Section 5), Step 1 and Step 2 being the same
for both regimes 3-b and 2. For the third step, we separate regime 3-b and regime 4, which
have different behaviors. Note that in both regimes there is a constant cg > 0 such that

hn < cy/nlogn (in regime 4, we have h,, < v/nlogn).
Let us define here, analogously to (5.1), the recntered partition function

,L;iﬁn = E[eXp (Z /Bn(UJi,si — E[wlwgl/ﬁn]l{azl})] . (6.1)
=1

Then, roughly speaking, we show that log Z% , is of order n="/? exp(Xh2/n), with X =
72(21) + % in the regime 3-b (where h%/n ~ Blogn), and with X = Wj in regime 4. In all

cases, we will have log Z;j’ 8, = o(1) (recall that in regime 3-b, 77321) < 0).

6.1. Step 1. Reduction of the set of trajectories. We proceed as for Step 1 in Section 5:
for any A > 0 (fixed large in a moment), we define

Ap = {(i,Si) : m<aX|Si| < A«/nlogn}. (6.2)

Then, we let Zﬁ 5, (Ay,) be the (normalized) partition function restricted to trajectories
in A,,. Relation (2.8) gives that, analogously to (5.4)

P <‘ log Zy 5 —log Zy 5 (An)

_ 2 _
> ne~ a4 10%”) < gAML, (6.3)

Hence, we fix A large enough so that e—c0A%logn < =3 This shows that with high prob-
ability log Z) 5 = log Z) 5 (A,) + O(n~2). In such a way, in the following we can safely
focus only on the partition function with trajectories restricted to A,,.

6.2. Step 2. Restriction to large weights. We now fix n € (0, 1), small. The same Hoélder
inequalities as in (5.6) hold for Z% 6n (A,), so that we can write, with similar notations as
in (4.8)-(4.10) (the restriction to trajectories in .4,, does not appear in the notations)

1 (>1) n 7(<1)
_ < 1+n log Zn,(1+n)ﬁn + 1+7 log Zn,(1+n*1)ﬂn ’
log Z¥ 5 (Ay) o ; - (6.4)
> 7 (<
= 1— n 1Og Zn7(1_2"7)6n o 1— n log Znyf(nilfl)ﬁn ’
7(>1) (>1) ;
We used also (5.7) to be able to bound below Zn’(lfn)ﬁn b Zn7(172n)5n (using that BnE[wl{wglmn}] <

1 when a > 1). Then, we need to get a more precise statement than Lemma 5.1 to deal

s (1)
with Zn,pﬁn'

Lemma 6.1. For any p e R,

h2\ —3a _
<—") v/nlog prlﬁ) £o, asn — 0.
n b} n



DIRECTED POLYMERS IN HEAVY-TAIL RANDOM ENVIRONMENT 26

Proof. We will simply control the first moment of foplgn —1. The idea is similar to that used

to obtain (4.24) and (4.31). We divide the proof into two cases: when « < 1 so that there
is no renormalization necessary in (6.1), and when « € [1, 2).

Let us start with the case a < 1: using that |p|S8,w; s, < |p| on the event {5,w; 5, < 1},
we get that there exists a constant c, such that

n

Z?: pB’ﬂ"Ji, ,Ll nw; g.<
o=l Sil{Bnwi s, <1} < H (1 + Cpﬁnwz‘,sil{ﬂ,Lwi,si<1}) ) (6.5)
i=1

By independence, and since P(w > t) is regularly varying, we get that for n sufficiently
large

1/Bn
ElBawialipe, . <1)] < f BP(w > 1)dt < ¢ L(1/B,) 5
0

/

2\ 2o
< Plu>1/8,) < o (Mn)* (6.6)

nhy, \ n

For the last inequality we used Potter’s bound, and the definition of 3, i.e. the fact that

Bn ~ %m(nhn) Therefore, in view of (6.5) and using that h,, > /n, we get that for n
sufficiently large (how large depends on p)

2 2a n 2 a
el -1 = (1o ) g (B )

This concludes the proof in the case a < 1 by using Markov’s inequality, since h2 /n — +o0.
In the case a € [1,2), we use the expansion ¢® < 1 + x + c,2? for all |z| < 2|p|, to get
analogously to (6.5), and setting u, := E[wli,<i1/5,1] < 1/Bn,

E[Z050, | < (14 pBaE(w = ) Lwcrpuy] + coB2E[ (@ = i) Luzisany])
h2 2a
—-1/2("n
< exp (cnP(w>1/ﬁn)> <l+4+ecn (n) )

obtaining the same upper bound as in (6.7). To obtain the above inequality, we used that

E[(w — pn) Lwst /gl = inPw > 1/B,) < B, 'P(w > 1/8,),
El(w = tn)*Liw<1/pny] < Elw*liuci/pg] < eL(1/82)B8572,

where the last inequality follows similarly to (6.6). One concludes that (6.7) also holds
when « > 1, and the lemma follows by Markov’s inequality. O

Therefore, in view of (6.4) and Lemma 6.1, we have that for both regimes 3-b and 4

. n 7w T . n (>1)
Jgr;oh—%log (ﬁlog Z;) 5, (.An)> = lim lim h—%log (ﬁlog Zn,uﬁn> . (6.8)

v—1n—o0

Note that in the case of regime 3-b, h2 /n ~ Blogn, so the limit is that of

1 (>1) 1
Blogn log (loan,Vﬁn) + 55

For simplicity of notations, we will consider only the case v = 1 in the following.
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6.3. Step 3. Reduction of the main term. In both regimes 3-b and 4, we show that

log Zﬁfﬁl 3 goes to 0, and we identify at which rate: to do so, it is equivalent to identify the

1)

rate at which Zfﬁ — 1 goes to 0. The behavior for regimes 3-b and 4 are different, since

the main contribution to ngﬁlz — 1 may come from several large weights in regime 3-b,

whereas it comes from a single large weight in regime 4, as it will be reflected in the proof.
Let us define ¢/ = ¢(w) the number of (i,z) € A, 4, = [1,n] x [-Ay, Ay] (with the
notation A, = Ay/nlogn for simplicity) such that 3,w;, = 1, and let us denote

n

{(6,2) € Ay Buwia = 1} = T im (Y4 v o)y (6.9)

with YZ.("’A”) the ordered statistic, as in Section 3. We have that
3/2 hay2e 1
E[f] = Y P(Buwi.>1)<24n «/logn(;") - (6.10)

)
nh
(ivx)EAn,An "

where we used that P(w > 1/3,) < (h?/n)?**(nh,)~! for n large enough, thanks to (2.2)
and Potter’s bound. Since h2/n < clogn, h, » /n, (6.10) implies that ¢ < (logn)3® with
probability going to 1 (we also used that % + 2a < 3a).

Hence, decomposing Zfﬁl )

for any fixed kg > 0,

according to the number of sites in Y, visited, we can write

n

ko 0
Sup<z(y) 1= U, (6.11)
k=1 k=1
with Uy, := Z eﬁnﬂn,An(A)P(s AT, = A) _
ACY A=k

In regime 3-b, the main contribution comes from one of the U,’s for some k > 1, whereas
in regime 4 only the term U; will contribute.

Let us now show that, with high probability, we can replace the upper bound in (6.11)
by considering only a finite number of terms. For this purpose, notice that £ < (logn)3®
and min{|i — j|, (i,z) # (j,y) € Yo} = n/(logn)'®* with probability going to 1. Then, we
can use the Stone local limit theorem [21] to have that for any A < T

P(SnT,=A)< en—(z—mIAl ,~Ent(A) ’

where 7 > 0 is independent of A and can be chosen arbitrary small (by changing the value
of the constant ¢).
As a consequence, using that (;) < ¢* and / < (logn)>*, we have for any 1 < k1 < ¢

14 14
DUp=> > PSS aT, = A) (6.12)
k=Fk; k=ki ACT,,|A|=k

4
B 1 B 1
< eTann E gk‘ n*k(gfﬁ) < ceTn,TjAn n*kl(fn’)

Recalling Proposition 3.1 (and the fact that h%/n < clogn) we have that Tf ", S Clogn
with probability going to 1 as C — oo. Therefore, we obtain that (6.12) is O(n~?) with
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probability close to 1, provided that k; is sufficiently large — this will turn out to be negli-
gible, see Lemma 6.2. Hence, we have shown that with probability close to 1, we can keep
a finite number of terms in (6.11).

This can actually be improved in regime 4, where we can keep only one term: indeed,
since in that case h2/n = o(logn), we get that for any fixed v > 0, Tffhn < vlogn with
probability going to one. Hence, we get that in regime 4, we can take k; = 2 in (6.12)
and obtain that Zi:z U;, = O(n~%/*) with probability close to 1, which will turn out to be
negligible, see Lemma 6.3.

It remains to show the following lemmas, proving the convergence of the main term in
regimes 3-b and 4.

Lemma 6.2. In regime 3 (R3) (recall h?/n ~ Blogn), for any K > 0 we have that

K
n (d) (k)
— 1 E — 1
ha, og(k:1 Uk) 1<SE£K7%’A’ (©13)

where 7/'6,(]2 1= SUDgse 4, N(s)=k 17(5) — Ent(s) — %} , with ./ 4 defined below (5.18).

Note that we have sup;-, 773(]2 < 0 in regime 3-b: this lemma proves that Zle Uy, goes

to 0 in probability, and hence Zn>513 — 1 also goes to 0 in probability. This is needed to

replace the study of log Zfﬁlz by that of foﬁlz — 1, and it is actually the only place where

the definition of regime 3-b is used.

Lemma 6.3. In regime 4 (R4), we have that
n d
1 108 <\/EU1) D (6.14)
with Wy defined in (2.13).

Here also, this proves that U; — 0 in probability, and hence so does foﬁlz —1.

6.4. Regime 3-b: convergence of the main term. In this section, we prove Lemma 6.2.

Reduction to finitely many weights. First of all, we fix some L large and show that the main
contribution comes from the L largest weights. We define

U]E:L) c= Z eﬁnﬂn,An(A)P(S a) TZ = A) s (6.15)
ACTL,|Al=k

where Y1 = {Yln’A", .. ,YL"’A"} is the set of L largest weights in A, 4, (note that Tr, < T,
for n large enough). Then we have that U, > ULL), and Zszl Uy, is bounded by

K
Z Z Z eﬁnQn,An (A)J"Bngn,An(A/)P(S a) T€ = A (U] A,)
k=1 AcTy,|A|l=k A'CY\TL,|A/|<K

K
< Z Z eﬂ”Q”’An(A)P(S NnTy = A) X exp (KBHMIEn’A")>
CTL,|A|:]€

k=1A
K
= exp (KﬂnMIEn’A")> 2 UI(CL).
k=1
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In the second inequality, we simply bounded Q,, 4, (A’) by K ML("’A") uniformly for A’ <
T,\Yy, with |A’| < K. Then, since 3, ~ cg(logn)/m(nhy,) ~ cg a(logn)/m(nAd,) asn —
o0, we get that K 8, M{™*") is bounded above by 2c5 4 K M{"*") /m(nA,) x log n. For any
fixed ¢ > 0, we can fix L large enough so that for large n we have ML("’A") /m(nAy) <
¢/(2Kcg 4) with probability larger than 1 — . We conclude that there exists some ¢ with
e — 0 as L. — oo such that

K K
ZUk— nELZUL.

k=1
Since h2 /n ~ logn, this proves that
n K K "
i, tog ( 3 ) = Jim lim 5 tog (3 UL). 616
Convergence of the remaining term. We finally prove that
@) (@ F(k.L)
2 " Jog ( Z Ul ) max T 6.17)

where 7~'ﬂ(ff4L) is the restriction of 723( ", to the L largest weights in [0, 1] x [—A, A], that is

N k
T(kvL) = Sup 7'['(L) S) — Ent S)— —
LA se//A,N(s)—k{ () () 25}

In analogy with Proposition 5.4, one shows that 7 T, 7?“2 as L — oo, which completes
the proof.
The proof of (6.17) comes from the rewriting

K
SuP = Y aP(S AT = A)
k=1 AcTL|AISK
A
= 2 exp <5n9n,An(A) — Ent(A) — ’2| logn + 0(K)) ,
ACTL|AI<K

where for the last inequality we used Stone local limit theorem [21] (using that any two
points in Y1 have abscissa differing by at least en with probability going to 1 as e — 0)

to get that P(S n Ty = A) = n— 3 o(l) g~ Ent(A) uniformly for A c Y.. Since there are
finitely many terms in the sum, we get that analogously to (5.14)-(5.16),
|A

Z U o(logn) » eoxn (Ac%ﬁi{\él{ {ﬁnQn,An(A) — Ent(A) — 2| log n})

At this stage we write

‘A| _ Bn hv(k L)
ACTLIAI<K {ﬁngn’A”(A) —Ent(A) - 57 IOgn} B2 T ’

NBTL ha(kvL) k }
wh T = m nn A) —Ent(A) — =1
ere T, AT {B1S0,4,(8) — Ent(8) 5 logn
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To complete the proof of (6.17) we only have to show that

K
n (L)> _ n >Bn,ny(k,L) (d) (kL)
0z log (kZlUk =o(1) + 0z  max T — max Tsa - (6.18)

In analogy with (5.17) and Proposition 5.4, we have that for any fixed k,

n NBn,hv(kvL) (d) N(kJ-‘)
F%Tn,h - ’TB,A .

As for the convergence of (3.8), since we have only a finite number of points, the proof is

a consequence of (5.1) and (5.2) of [7] and the Skorokhod representation theorem—we

use also that ;3 logn — % Since the maximum is taken over a finite number of terms, this

shows (6.18) and concludes the proof.

6.5. Regime 4: convergence of the main term. First of all, we show briefly that Wj
is well defined, before we turn to the proof of Lemma 6.3. One of the difficulties here is
that the reduction to trajectories operated in Section 6.1 (to trajectories with max;<y, |S;| <
A+/nlogn) is not adapted here, since the transversal fluctuations are of order h,, <« 4/nlogn.
Therefore, we have to further reduce the set of trajectories in Uj.

Well-posedness and properties of Wz. We prove the following proposition.
Proposition 6.4. Assume that a € (1/2,1). Then for every § > 0, W € (0, 0) almost surely.

Proof. Recalling the definition (2.13) of Wp. We fix a region D, := [1,1] x[—¢,¢], fore > 0.

In such a way we have that

2

Wg > sup {w} - . (6.19)
(w,t.x)eP;(t,x)eDe B

We observe that

@ (o 1o _1/a
= (2 Exp(1 .
(w,t,z)IeI'Il;?(}i{f,a:)eDs { v } ( E) Xp( )

Therefore, since é < 2, the rh.s. of (6.19) is a.s. positive provided e is sufficiently small.
For an upper bound, we simply observe that W3 < 73 < «© a.s. O

Proof of Lemma 6.3. We denote p(i, ) := P(S; = z) for the random walk kernel. For A > 0
fixed and § > 0, we split 4/n U; into three parts:

V/nUj := Z ePria fnp(i, x) (6.20)
(’i,aj)ETg
=( Z + Z + Z )eﬁ"“i’w\/ﬁp(i,x).
(i,I)ETg (i,z‘)ETg (i,.Z’)ETg

|z|>Ahyn  i<dn,|z|<Ahn,  i26n,|z|<Ahn
The main term is the last one, and we now give three lemmas to control the three terms.

Lemma 6.5. There exist constants ¢ and v > 0 such that for all n sufficiently large, for any
A>1

P( Z i /np(i, ) > A(h%>3a) < cA7V. (6.21)

n
(3,2)eY g, |z|>Ahn
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Lemma 6.6. There exist some c,v > 0 such that, forany A > 1and 0 < § < A1, we get
that for n sufficiently large,

n . . 1
P<h2 log ( 3 i (i, x)) > (5A) 4a> < c(6A)Y2. (6.22)
n (4,2)€Y 0, i<dn,|z|<Ahn
And finally, for last term, we have the convergence.

Lemma 6.7. We have that

n w d)
Slog (Y P fup(i, @) ) < Wa (5, 4),
n (3,2)EY g, i=0n,|z|<Ahy,
with W1(0, A) := max {w— %} .

(w,t,x)eP t>6,|z|<A

Now, let us observe that taking the limit § | 0, and A 1 oo, we readily obtain that
Wi(6,A) — Wi (by monotonicity). Therefore, combining Lemmas 6.5-6.6-6.7, we con-
clude the proof of Lemma 6.3. O

Proof of Lemma 6.5. Let us consider the event

2
G(n, A) := {ﬁnwm < %for any |z| > Ah,, 1 <i < n} (6.23)

Using this event to split the probability (and Markov’s inequality), we have that, recalling
the definition (6.9) of Y

[P’( SN e (i z) > A(f:) ) (6.24)

(, r)eTl,|x|>Ahn

il ) [Z > (i) Lo | + B (G0, A)°)

i=1|z|>Ahy

Using again that P(w > 1/8,) < (h2/n)2*(nh,)~" and that p(i,z) < e *"/4 uniformly
in the range considered (provided that n is large enough), we get that the first term is

bounded by
2. _a n ) 2.\ —a

In the last inequality, we used that the sum over z is bounded by a constant independent
of 4, and also that v/n/h,, — 0. The first term in (6.24) therefore goes to 0 as n — o0, and
we are left to control P(G(n, A)¢). A union bound gives

+00 +oo 2K+ AR,

n 2
BOmA) <, 3 Pz ) sn ) X P> 2iagd)
i=1x=Ah, k=0 x=2k Ah,
< 2Anh, i 2k]P’<w > %22]“A2m(nhn)) , (6.25)

k=0

where we used the definition (2.2) of h,, for the last inequality, with n large enough. Then,
using the definition of m(nh,) and Potter’s bound, we obtain that for any n > 0 (chosen
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such that 1 — 2« + 27 < 0) there is a constant ¢ > 0 such that for n large enough
1

P(G(n, A)°) < cAnhy, Z oh(92k g2)etn_L_

- < C/Al_QOH_Zn,
k=1 Miin

where the sum over k is finite because 1 — 2a + 2 < 0. This concludes the proof of
Lemma 6.5. 0

Proof of Lemma 6.6. Decomposing over the event

M (6,4) = { Broie < L(oa)%
e B i<6nI,I|lxa\J)<(Ahn Wiz S 2 n

and using Markov’s inequality, we get that (similarly to (6.24))

2
1@( 3 Proia Jup(i, 1) = exp ((M)i f:;)) (6.26)
(

1,2)€Y g,i<dn,|z|<Ahy

on
7%(614)& %%E[ Z Z \/ﬁp(i, x)l{ﬁnwi,z>1}] + P(Mn((s’ A)C) ’

i=1 |z|<Ahn

We use again that P(w > 1/8,) < (h2/n)**(nhy,)~!, and the fact that > p(i,z) = 1 for any
i € N, to get that the first term is bounded by
e-%(amﬁ% (h%)?an\/ﬁ

—0 asn— .
n nhy,

For the remaining term, using that 3, 1h2 /n ~ hy), we have by a union bound that for
n large enough

P(M,(5, A)°) < 5Anh P<w> L (0A) T m(nhy,))
1

1\ 2«
< C(SAnhn X ((514) 4@) Thn’

where we used Potter’s bound (with (6A)ﬁ small) and the definition of m(nh,) for the
last inequality (for n large). This concludes the proof of Lemma 6.6. O

Proof of Lemma 6.7. The Stone local limit theorem [21] (see (2.14)) gives that, for fixed
A > 0,6 > 0, there exists ¢ > 0 such that uniformly for én < i < n, |z| < Ah,,

1e_gﬁg/% <Vip(i,z) < ce ¥ (6.27)
c

Since /n/i > 1 for all i < n, we get the lower bound

2 2 ePrnvie fnp(i ) 18,0, .21} = CEXD </8n n (9, A)) (6.28)

i=6n |z|<Ahp

where W,,(0, A) is a discrete analogue of Wy (4, A), that is

2

xr
WaldA)=  _ omax {M . m} . (6.29)

,ani,:z: =1
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On the other hand, we get that y/n/i < §~'/2 for i > én, so that from (6.27) we get

Z Z i p (i, ©) g, 21} < %eﬁ"W”(M Z Z Lgwiez1y - (6:30)

i=6n |z|<Ahy =1 |z|<Ahp

Now, we have that P(w > 1/3,) < (h2/n)**(nh,)~! as already noticed, so that

n 2\ 2x
E[Y 3 1{ﬂnwiyz>1}]<A<€:> . (6.31)

i=1|z|<Ahn,
Overall, combining (6.28) with (6.30)-(6.31), we get that with probability going to 1 as
n — oo,
2

h
log ( Z eﬁnwi’I\/ﬁp(i,m)) — B Wi (6, A)‘ < (2a+1)log ?" :

(4,2)eY g, i=0n,|z|<Ahn

To conclude the proof of Lemma 6.6, it therefore remains to show that

n (d)
th X /Ban((;: ) —OO) Wl((Sv A): (632)

n

where Wi (6, A) is defined in Lemma 6.6.
We fix ¢ > 0 and we consider W,, (¢, d, A) the truncated version of W, (d, A) in which we
replace the condition {S,w; , = 1} by {Shwi . > 5%}, that is

132
max {wm - —} . (6.33)
|z|<Ahn,i=dn,....,n 2081
2
ﬂnwi,z>5%

W(e, 8, A) =

In such a way, and since ¢h2 /n > 1 for large n, we have

Bn (6,6, A) < 25an(57 A) < hﬁﬂﬁn(s,@ A)+e

n

To prove (6.32) we need to show that

ﬁ X BuWa(e,6,4) —> Wie,6,4) = max {fw-21, (6.34)

(w,t,x)eP
t>6,|z|<Aw>e
and then let £ | 0 — notice that we have Wl(s, 0,A) < W1i(0,A) < Wl(s, 0, A) + € so that
Wi(e, 8, A) — Wi(8, A) as e | 0.
We observe that a.s. there are only finitely many w; , in [1,n] x [—Ahy, Ah,] that are
larger than em(nh,) ~ B8, 'ch? /n. This is a consequence of Markov’s inequality and Borel-
Cantelli Lemma. Indeed, for any K € N we have

P( ‘{(z,x) € [1,n] x [—Ahp,Ahy]: wix > Em(nhn)}‘ > 2K>
K(ZAnhn)]P’<w > 5m(nhn)) <027 K

Therefore, the convergence (6.34) is a straightforward consequence of the Skorokhod rep-
resentational theorem. O
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7. CASE a € (0,1/2)
In the first part of this section we prove (2.15). In the second part, we prove the conver-
gence (2.16).

7.1. Transversal fluctuations: proof of (2.15).

Paths cannot be at an intermediate scale. We start by showing that there exists ¢y, c,v > 0
such that for any sequences C,, > 1 and §,, € (0, 1) (which may go to o, resp. 0, as n — o)
and for any n > 1

IP’( « 5, (max |S| € [Coy/m, 8un)) < e™0% + 6_00”1/2> >1—cf +n Tt (7.1)
WPn Z\’I'L

To prove it, we use a decomposition into blocks, as we did in Section 4. Here, we have to
partition the interval [C,,y/1, 8,n) into [Cpy/n, n**) U [n%4,8,n) (one of these intervals
might be empty), obtaining

6 (max|[Si| € [Cuv/n, o))
= Pusn (I?Si{ [Sif & [Cnv/n, n3/4)) +Ps, (1@1135( |Si € (n®/*, 6nn)>- (7.2)

For the first term, we partition the interval [C,,/n, n**) into smaller blocks Dy, :=
[2F/n, 2841 /n), with k = logy C,, . .., logy n'/* — 1. Let us define

n

E(na h) = Z Z Wi (7.3)

1=1 ze[—h,h]

the sum of all weights in [1,n] x [—h, h]. Then, we write similarly to (4.2) (we also use
that Z¢ 5, = 1, which is harmless here since no recentering term is needed)

log, nl/4
3/4
P(;:»Bn(r?ga?i{|sz| E[On\/ﬁvn / )) < 2 Z%7Bn(121"1<a;{|5i’ S Dk,’n)
k=log, Cn,
log, nt/4—1
k
< Z ePnE(n,2 +1\/E)P(max 15| e Dk,n)
k=logy, Cn isn
logy n1/4
< Z exp (an(n, 2k+1\/ﬁ) — 022k>
k:lOgQ Cn

where for the last inequality we used a standard estimate for the deviation probability of
a random walk P (max;<, |S;| > 2*y/n) < e=2" see for example [18, Prop. 2.1.2-(b)].
Therefore, on the event

{Vk = logy Cn, . .., logy nV/4, 8,5 (n, 26 1\/n) < %2%} (7.4)
we have that
logy n'/4
PZ,B(“LaX|Si| € [Cnv/n, n3/4)) < ) e 37" < dem50n, (7.5)
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For the second term in (7.2), we partition the interval (n3/47 dpn) into blocks E,, ) :=
[27F1n,27%n), k = logy(1/5,), ..., logy n'/* — 1. Exactly as above we use the large devia-
tion estimate P (max;<, |9;| > 27%1n) < e~ (see e.g [18, Prop. 2.1.2-(b)]), and we
obtain that on the event

{Vk =logy(1/6,), ..., logyn'*, B,5(n,27F") < 52_2’%} (7.6)

we have
log, nt/4

P%,B(I{lsaf‘si‘ c (n3/4,5nn)> < Z e 527N < Jo—n
k=logy(1/6n)
It now only remains to show that the complementary events of (7.4) and (7.6) have
small probability. We start with (7.6). Using that 3,, < 28n/m(n?) for n large, we get by a
union bound that

]P’(H k= logy 1/6, , Bn(n, 27 Fn) > 52*%71) (7.8)

1/2

(7.7)

< Z ]P’(E(n, 27Fn) > 052*2km(n2)> .
k=logy 1/0m
Then, by Potter’s bound we have that m(27%*'n2) < 27%m(n?) since o < 1/2 (recall
m(-) (2.1) is regularly varying with exponent 1/a). As a consequence, the last probability

in (7.8) is in the so-called one-jump large deviation domain (see [19, Thm. 1.1], we are
using « < 1 here), that is

]P’(Z(n, 27%n) > 052*2km(n2)) ~ 2*k+1n2[P’(w > 052*2km(n2)) .

Therefore, using again Potter’s bound, we get that for arbitrary 7 there is some constant ¢
such that

P(E(n, 27%n) > 052*2km(n2)) < ¢(2%k)atnp =2
where we also used that P(w > m(n?)) = n~2. Therefore, taking n small enough so that

2a — 1 + 21 < 0, we obtain that (7.8) is bounded by a constant times

2 2k(2a—1+2n) < 65%_2()4_277.

k=logy 1/0n

Similarly, for (7.4), we have by a union bound that

IF’(EI k€ {logy Cn, ..., logon"4}, B,2(n, 28 /n) > E22]‘7)

2
logy nt/4
< Z P(E(n,?kﬂ\/ﬁ) > 0522kn_1m(n2)) . (7.9)
k=logy Cn,

Then again, we notice that m(2F+2n%?) < 22#n~1m(n?) (using Potter’s bound, as a < 1/2).
Hence, the last probability in (7.9) is in the one-jump large deviation domain (see [19,
Thm. 1.1]), that is

P(Z(n, ok+l/n) > c22kn_1m(n2)> < chn3/2P(w > 0/322kn_1m(n2))
Then, we also get that for any n > 0 we have that there is a constant ¢ > 0 such that

P(w > 0522kn_1m(n2)) < ¢(2%kp~hymam,
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so that provided that 1 — 2a — 21 > 0, (7.9) is bounded by a constant times
logy n'/4
2 2k(1—2a—2n)na—%+7] < Cn—i(l—Qa—Qn) )

k=10g2 Cn

Paths cannot be at scale n conditionnaly on 7A'g = 0. We have shown in (7.1) that paths
cannot be on an intermediate scale: it remains to prove that on the event 7A’g = 0, paths
cannot be at scale n. For this purpose we use [5, Theorem 2.1] and [23, Theorem 1.8],
which ensure that for any ¢ and £ > 0 there exists v > 0 such that

P(Pﬁ,gn(ggg [Si| € (dn,n]) <e™™ | T = 0) >1-e. (7.10)

Therefore, we get that for any ¢ > 0 and § > 0, combining (7.1) with (7.10), for any
sequence C,, > 1, provided that n is large enough we have

~

S P S
9. n l\/rl,

which concludes the proof of (2.15).

7.2. Convergence in distribution conditionally on 773 = 0, proof of (2.16). In the fol-
lowing, we consider the case where 3,n"'m(n?) — B with 8 < . In the case 8 = +o, we
would indeed have that 7?; > 0. The proof follows the same idea as that of [13, Thm. 1.4]
(and similar steps as above), but with many adaptations (and simplifications) in our case.

We focus on the case § > 0, in which % goes to infinity as a regularly varying
function with exponent 2 — 1 — 2 = 1= > ¢ (If 8 = 0, it goes to infinity faster).

Step 1. Reduction of the set of trajectories. Equation (2.15) (with C,, = Ay/logn) gives that,
with P probability larger than 1—¢ (conditionally on 73 = 0), we have P}, 5 (maxi<, S| <
Ay/nlogn) > 1 —e~41e" provided that n is large enough. We therefore get

P(|logZs 5, — log Zi 5, (An)| < 74| T3 = 0) 1 —¢, (7.11)

where A, is defined in (6.2). Note that, provided A has been fixed large enough, we have

that %n_cw‘ — 0 as n — oo: we conclude that, for any ¢ > 0

P(Vﬁ)| log Zy 5 —1og Zy 5 (An)| > ¢ ‘ Tp = 0) <e, (7.12)

Bnm(n3/2

provided that n is large enough. We will therefore focus on log Z ; (A.).
As in Section 6, we use the notation A, = Ay/nlogn = Cp/n and A, 4, = [1,n] x
[—An, Ay]-

Step 2. Truncation of the weights. We let k, := m(n®?logn) be a sequence of truncation
levels, and &, := wy 1y, <k, be the truncated environment. Then, we have that

P( o (An) # Z‘;}:,ﬂn(.An)> =P( max wj, > m(n®?log n))

(i,I)EAn’An
24 .o
< n_)OO 0 ’

7

logn
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where we used a union bound for the last inequality, together with the definition of m(-)
(2.1). Henceforth we can safely replace Z3 5, (A;,,) with the truncated partition function

Z;, 5, (An).

Step 3. Expansion of the partition function. We write again p(i,x) = P(S; = z) for the
random walk kernel, and let \,(t) = log E[¢!*=]. Then, expanding

exp (Zn: (5nw@‘,51- - An(ﬁn))) = H (1 + eﬁn&i,z—An(Bn) _ 1)1{51':1}’
1=1

(i,2)EMn A,
we obtain
e BZE () =1+ Z (ePn@ie=2n(Bn) _ 1)p(4, ) + Ry, (7.13)
(i,2)EMn. A,
with
k

0
-2 2 [T (702 1) (i =iy, 5 = ).
k=2 1<ii<--<ip<n j=1
|zi|<An,i=1,...k
Lemma 7.1. We have that for n large
4/
p( VP g o) o)™
Brm(n3/2) vn

In particular, R,, — 0 in probability.

Proof. Note that E[R,] = 0, so it will be enough to control the second moment of R,,.
Since the @; . are independent and E[efn&ie~An(Br) — 1] = 0,

0 k
E[R}] = ), > (M)A (Bn) H —ij1,35 — wj1)°

k=2 1<ii<---<ixp<n
\a:i|<An,i=1 Lk

()\n2,8n_ (Zzp )

/A
M 8

x>
Il
(V]
.
Il
—
8
m
N

First, we have that
n n
D> p(i ) = E®2[Z l{Sn=S;1}] <cevn,
i=12€Z i=1

where S and S’ are two independent simple random walks. Then, since 3,& < 8.k, — 0,
we can write 2% < 1 4 343,& for n large, so that

kn
0

< L (k)i < —COnPn_ (7.14)

n3/2logn

To estimate the integral we used the tail behavior of P(w > u) (1.2) (see [8, Theorem
1.5.8]), while for the last inequality, we used that k,, = m(n*?logn) and the definition
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(2.1) of m(-), so that L(k,)k.* ~ n=%?(logn)~'. We therefore get that for n large enough
k 2

n n
k=2

To conclude, by Potter’s bounds we get that k,, < m(n*?)(logn)%* for n large, so that

4
«

E[R?] < (5,”71(;:/2))2  tosn)e (7.15)
and the conclusion of the lemma follows by using Markov’s inequality. O
Going back to (7.13), we get that
o 6 (An)
— o(=DAn(Bn) (eAnwn) Y (P B, ) + exn(ﬁn)Rn)
(i,x)ehn A,

= (DA (Bn) (1 + VW, + e’\”(f}")Rn) ,

with
V, = Z (eﬁ"&iﬂ‘ —1)p(i,z) and W, := (eMn(Bn) 1)(1- Z p(i,z)).

(i,x)EAnyAn (i,z)EAnyAn

We show below that lim,, .., W,, = 0 and that V,, converges in probability to 0, so that
using also Lemma 7.1, we get

N
W log Z;, 5 (An) (7.16)
Vn Vn

= 7Bnm(n3/2>vn + Bnm(n?’/z)

Before we prove the convergence of the first term (see Lemma 7.2), we show that the
second term goes to 0—note that this implies that W,, — 0 since 3,n~"/?m(n%?) — 0. We
write that

((n DA (B) + Wn) +o(1).

[(n — D)An(Bn) + Wa| < (n—1)|er ) -1 — X, (8,)] (7.17)
+‘n7 Z p(i,x)‘.
(i7z)eAn,An

For the second term, using standard large deviation for the simple random walk (e.g. [18,
Prop. 2.1.2-(b)]), there is a constant ¢ > 0 such that

n— Z p(i,x) = Z P(S; > Ay/nlogn) < necA’logn (7.18)

(i,2)EAn A, i=1
For the first term, since we have A\, (3,) — 0, we get that for n large enough

3/2 2
’eAn(Bn) 1 )\n(ﬁn)| < )\n(ﬁn)Z < (%Z)(log n)?/a) 7 (7.19)
n
where for the second inequality we used (7.14) (note that \,(8,) < e (Bn) — 1), together
with the fact that k, < m(n®?)(logn)¥*.
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Hence plugging (7.18) and (7.19) into (7.17), we get that provided that A is large
enough,

ﬁnm(TLS/Q)

n a n—
Vi (n = 1) An(Bn) + Wa| < T(1ogn)4/ +o(1) 2220,

ﬂnm(ng/Q)
so that the second term in (7.16) goes to 0 as n — oo, proving also that W,, — 0 (recall
also B,n~'2m(n%?) — 0).

Step 4. Convergence of the main term. We conclude the proof by showing the convergence in
distribution of the first term in (7.16) — which proves also that V,, goes to 0 in probability,
since 3,n~/2m(n%?) — 0.

Lemma 7.2. We have the following convergence in distribution,

Vi S S (e 1)plia) s W,

— vV V=Y
/Bnm(ns/Q) Bnm(ng/Q)
with W defined in Theorem 2.10.

(1,2)€Mn, Ay,

Proof. First of all, since 8,&; » < Bnkn — 0asn — oo (and using that 0 < e — 1 — 2z < 22

for x small), we have that for n large
- Bn Z (:Di,:rp(ia .%') < Z (ﬁnaji,x)Qp(ia .%') . (720)
(i,x)GAnyAn (i,m)EAnqAn
Then, we can estimate the expectation of the upper bound, using that similarly to (7.14)
we have E[(&)?] < c¢L(kn)k2=* ~ ck2/(n*?1logn). Using also that k, < m(n%?)(logn)?®
for n large, we obtain that

M(FZ?)/Z)E[ Z (ﬁn‘bi,x)Qp(.» )]

n3/2 Brkn n_lzz 1,7)

(i,£)eAn ( i=1zeZ
< c(logn)¥Bpk, 2=%5 0.

The proof of the lemma is therefore reduced to showing the convergence in distribution
of the following term

3/2 Y, Piepli,z) (7.21)
n (3,x) EAn

L wz T (bz’,x .
i=1 |z\<Kﬁ =1 K\/n<|z|<A,

where we fixed some level K > 0 (we take the limit X — <o in the end).
First term in (7.21). First, note that the first term converges in distribution to

1 prK
W% :=2f f f wp(t, z)P(dwdtdz), (7.22)
Ry Jo J-K

)

where p(t,z) := (2mt)"Y/2e7°/2 is the Gaussian kernel and P(w, ¢, z) is a PPP on [0, 0) x
[0,1] x R of intensity u(dwdtdz) = w1y~ ¢ydwdtdz. The proof of (7.22) is identical
to that in [13, p. 4036], so we omit details.

Then, since Wéo‘) < oo a.s. (see [13, Lemma 1.3]), one readily gets that W(()O}z — éa)
as K — oo (by monotonicity). ,
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Second term in (7.21). To conclude the proof, it remains to show that the second term in
(7.21) goes to 0 in probability as K — oo, uniformly in n: for any K (large), we have for n
sufficiently large

- a)z x . — —«
P(E Z m\/ﬁp(’b,x) = K 1> < ce K . (7.23)
i=1 K\/n<|z|<An
To prove (7.23), we split the sum in parts with |z| € (281K \/n, 28K \/n] for k = 1,2.. ..
By a union bound, we have
( Zn: (Di,z
i m(n3/2)

Vnp(i, x) = K_1>

2kK\/n

o
<2

N Wi x . "
; 1iz|= kale W\/ﬁp(z,x) = K"72 )
an Z Wi g = ec/(QkKVm(nS/?)) (7.24)

k=1 i=1|z|<2*Kn
In the last inequality, we used that there is a constant ¢ such that for any &, uniformly in
i€ {l,...,n} and |z| > 2""1K.\/n, we have \/np(i,z) < e “@"K)* < 2=kl (2"K)?
(since K2F > 1).

Now, we use that m(2F+1 Kn%?) > (2FK)~%/*m(n??) by Potter’s bound, and also that
for all k, ¢ @"K)*(2kK)=2/a > ¢2"K if K is large: the last probability in (7.24) is in the
one-jump large deviation domain (see [19, Thm. 1.1], we use here that o < 1): there is a
¢ > 0 such that forall £ > 1

n
P(Y, Y wie= e Mm@ Kn?2)
i=1[a|<2¥K
< chKn3/21P’<w > erKm(QkKn3/2)> <ce 22K

The second inequality comes from Potter’s bound, provided that e2"K is large enough, and
also the definition (2.1) of m(-). Plugged in (7.24), we get

P(Z Z wTZL31"/2 np(Z l' ) 026 52 _QCK’

i=1|z|>K/n k=1

/

which is (7.23). O
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