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DIRECTED POLYMERS IN HEAVY-TAIL. RANDOM ENVIRONMENT AND
ENTROPY-CONTROLLED LAST PASSAGE PERCOLATION

QUENTIN BERGER AND NICCOLO TORRI

ABSTRACT. We study the directed polymer model in dimension 1 + 1 when the environ-
ment is heavy-tailed, with a decay exponent a € (0,2). We give all possible scaling limits
of the model in the weak-coupling regime, i.e. when the inverse temperature temperature
B = P vanishes as the size of the system n goes to infinity. When « € (1/2,2), we show
that all possible transversal fluctuations /n < h, < n of the polymer can be achieved
by tuning properly 3,, allowing to interpolate between all super-diffusive scales. Moreover,
we determine the scaling limit of the model, answering a conjecture by Dey and Zygouras
[18] — we actually identify five different regimes. On the other hand, when a < 1/2, we
show that there are only two regimes: the transversal fluctuations are either 1/n or n. This
extends the results of Auffinger and Louidor [5], and Dey and Zygouras [18], which con-
sidered only the cases where h,, = n, resp. h, = 1/n. As a key ingredient, we introduce
the Entropy-controlled Last Passage Percolation (E-LPP), which is a natural generalization of
Hammersley’s Last Passage Percolation where points can be collected by paths with the con-
straint to have an entropy bounded by a fixed constant — instead of a 1-Lipschitz constraint.
We prove several estimates on the E-LPP in continuous and in discrete settings, which are of
interest on their own.

Keywords: Directed polymer, Heavy-tail distributions, Intermediate disorder, Last Passage
Percolation, Super-diffusivity.
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1. INTRODUCTION: DIRECTED POLYMERS IN RANDOM ENVIRONMENT

1.1. General setting. We consider the directed polymer model: it has been introduced
by Huse and Henley [24] as an effective model for an interface in the Ising model with
random interactions, and is now used to describe a stretched polymer interacting with
an inhomogeneous solvent. This model has gained the attention of the mathematical and
physics community over the past decades — and is still widely studied —, and we refer
to[14, 15, 17] for a general overview.

Let S be a nearest-neighbor simple symmetric random walk on Z¢, d > 1, whose law is
denoted by P, and let (w; +);ey, 4eze e a field of i.i.d. random variables — the environment
— with law P (w will denote a random variable which has the common distribution of the
wiz). The directed random walk (7, S;);cn, represents a polymer trajectory and interacts
with its environment via a coupling parameter § > 0 (the inverse temperature). The model
is defined through a Gibbs measure obtained by the following Radon-Nikodym derivative

dp«
d]?;ﬁ (s) = o eXp (ﬁ Z Wi sz> ) (1.1)

where Z¥ g s the partition function of the model.
One of the main question about this model is that of the localization and super-diffusivity
of paths trajectories drawn from the measure P} ;. The transversal exponent £ describes

the fluctuation of the end-point, that is EE;; ;S| ~ né as n — oo. Another quantity
of interest is the fluctuation exponent y, that describes the fluctuations of log Zy) 5, Le.
|log Z 5 — Elog Zi 5| ~ nX as n — o0.

This model has been widely studied in the physical and mathematical literature, in par-
ticular when w,, , have an exponential moment. In dimension d > 3 and if 5 small enough,
trajectories have been shown to be diffusive (¢ = 1/2, x = 0) with a Brownian scaling
(see [11, 16, 25]). This case is refereed to as the weak disorder regime. In dimensions
d = 1,2 for any 8 > 0 or d > 3 with 3 large enough, there is some evidence [13, 15] that
there are some favorable narrow corridors where the trajectories tend to localize, and it is
believed [20] that paths are super-difffusive (at least in small dimensions), i.e. £ > 1/2. This
is referred to as the strong disorder regime. The case of the dimension d = 1 as attracted
much attention in recent years, in particular because the model is in the KPZ universality
class (log ijh P is seen as a discretization of the Hopf-Cole solution of the KPZ equation).
It is conjectured that the transversal and fluctuation exponents are { = 2/3 and x = 1/3.
Moreover, it is expected that the point-to-point partition function, when properly centered
and renormalized, converges in distribution to the GUE distribution. Such scalings has been
proved so far only for some special models, cf. [7, 32].

A recent and fruitful approach to proving universality results for this model has been to
consider is weak-coupling limit, that is when the coupling parameter [ is near to criticality.
This means that we allow § = ﬂn to depend on n, with 8, — Oasn — oo In [1, 2]
and [12], the authors let 5, = ﬁn‘”, ~v = 1/4 for some fixed ﬁ > 0, and they prove
that the model (one may focus on its partition function Z Z,, 5) converges to a non-trivial
(i.e. disordered) continuous version of the model. This is called the intermediate disorder
regime, since it somehow interpolates between weak disorder and strong disorder behavior.
More precisely, they showed that

log Zy; 5, — nA(Bn) — )logZ\fﬁ, as n — oo,
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where \(s) := log[E[e*”]. The process B — logZ VTR the so called cross-over process,

which interpolates between a Gaussian and GUE scaling as /3 goes from 0 to oo (see [3]).
Moreover Z NeT: is related to the solution of the Stochastic Heat Equation.

These results were obtained under the assumption that the environment has exponential
moments, but the universality of the limit was conjectured to hold under the assumption of
six moments, see [2]. In [18] Dey and Zygouras proved this conjecture, and suggest that
this result is a part of a bigger picture (notice that when A(s) is not defined a different
centering constant would be necessary).

1.2. The case of a heavy-tail environment. In the rest of the paper we will focus on
the dimension d = 1 for simplicity — some comments about higher dimension are made in
Section 2.5. We consider the case where the environment distribution w is non-negative (for
simplicity, nothing deep is hidden in that assumption) and has some heavy tail distribution:
there is some o > 0 and some slowly varying function L(-) such that

P(w>=x) = L(x)z™“. (1.2)

In the case where 8 > 0 does not depend on n, the £ = 2/3, x = 1/3 picture is expected
to be modified, depending on the value of a.. According to the heuristics — and terminology
—of [10, 21], three regimes should occur, with different paths behaviors:

(a) if a > 5, there should be a collective optimization and we should have ¢ = 2/3, KPZ
universality class, as in the finite exponential moment case;

(b) if @ € (2,5), the optmization strategy should be elitist: most of the total energy
collected should be via a small fraction of the points visited by the path, and we
should have ¢ = 2L

(c) if a € (0,2), the strategy is individual: the polymer targets few exceptional points,
and we have £ = 1. This case is treated in [5, 22].

As suggested by [18], this is part of a larger picture, when the inverse temperature 3 is
allowed to depend on n. Setting 3, = vi7 for some B > 0 and some v € R then we have
three different classes of coupling. When v = 0 we recover the standard directed polymer
model, when 7 > 0 we have a weak-coupling limit, while in the case v < 0 we consider a
strong-coupling limit. Let us stress that this last case has not been studied in the literature
— for no apparent reason — and should also be of interest. In [34] and in [18], the authors
suggest that the fluctuation exponent depends on «, ~y in the following manner

2(1—) 5—2y 1 1
-] 3 fora> 720 —5<v<7y, (1.3)
Lta(l—) fora<?? 2 _ 1<~y 3 '
2a—1 = 1y« STS a2q-

The first part is derived in [34], based on Airy process considerations, and the second part
in [18] based on a Flory argument inspired by [10]. Moreover, in the two regions of the
(cr,7y) plane defined by (1.3), the KPZ scaling relation x = 2{ — 1 should hold (this has
been proved in the case v = 0, > 2 in [4]). Outside of these regions, one should have
& = 1/2 (v large) or £ = 1 (v small). This is summarized in Figure 1 below, which is the
analogous of [18, Fig. 1].

This picture is far from being settled, and so far only the border cases where ¢ = 1
or ¢ = 1/2 have been studied: Dey and Zygouras [18] proved that £ = 1/2 in the cases
a>6,y=1/4and a € (1/2,6),7 = 3/2a ; Auffinger and Louidor [5] proved that £ = 1 for
v =2—1and « € (0,2) (their result should be easily adapted to the case o € (0,4) once we
accept to have a negative ~). In both these papers, the exponent x and the scaling limits
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region A: £ =1
region B: £ =1/2
region C: £ = %

region D: ¢ = 2(1 — )

FIGURE 1. We identify four regions in the (o, ) plane. Region A with o < 2 is treated in
[5] and Region B with o > 1/2 in [18]. Regions C and D are still open, and the KPZ scaling
relation y = 2¢ — 1 should hold in these two regions. Our main result is to establish the
picture in the case « € (0, 2).

are also identified. Here, we complete the picture in the case « € (0,2), going beyond the
cases £ = 1/2 or £ = 1: we identify the correct order for the transversal fluctuations (that
interpolate between { = 1/2 and { = 1), and we prove the convergence of log Z;, ; in
all possible intermediate disorder regimes. Let us point out that for « € (1/2,2) our result
proves Conjecture 1.7 in [18].

2. MAIN RESULTS: WEAK-COUPLING LIMITS IN THE CASE « € (0, 2)

In this section we give a complete description of our results: from now on, we consider
the case of an environment w verifying (1.2) with « € (0, 2). For the inverse temperature,
we will consider arbitrary sequences (f,),>1, but a reference example is 3, = n~" for
some v € R.

For two sequences (ay)n>1, (bn)n>1, We use the notations a,, ~ by, if lim,, o a,/b, = 1,
ap < by if lim, o a,/b, = 0, and a,, = b, if 0 < liminf a,,/b,, < lim sup a,,/b,, < 0.

2.1. First definitions and heuristics. First of all, let us present a brief energy/entropy
argument to justify what the correct transversal fluctuations of the polymer should be. Let
F(z) = P(w < z) be the disorder distribution, and define the function m(z) by

m(z) = F1(1-1), so we have P(w > m(z)) = % (2.1)
Note that the second identity characterizes m(x) up to asymptotic equivalence: we have
that m(-) is a regularly varying function with exponent 1/a.

Assuming that the transversal fluctuations are of order h,, (we necessarily have y/n <
hn, < n), then the amount of weight collected by a path should be of order m(nh,) (it
should be dominated by the maximal value of w in [0,n] x [—hy, hy,]). On the other hand,
thanks to moderate deviations estimates for the simple random walk, the entropic cost of
having fluctuations of order h,, is roughly h2/n at the exponential level — at least when
h, » +/nlogn, see (2.15) below. It therefore leads us to define h,, (seen as a function of
Br) up to asymptotic equivalence by the relation

Bnm(nhy) ~ h2/n. (2.2)
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In the case 3, = n~" and « € (1/2,2) we recover (1.3), that is we get that h,, = ntto(l)

with ¢ = %, which is in (1/2,1) for v € (2 — 1,5>). When « € (0,1/2), there is
no h,, verifying (2.2) with \/n « h,, < n, leading to believe that intermediate transversal
fluctuations (i.e. £ € (1/2,1)) cannot occur. In the following, we will therefore separate the

cases a € (1/2,2) and « € (0,1/2).

2.2. A natural candidate for the scaling limit. Once we have identified in (2.2) the scale
h,, for the transversal fluctuations, we are able to rescale both path trajectories and the
field (w; ), so that we can define the rescaled “entropy” and “energy” of a path, and the
corresponding continous quantities. The rescaled paths will be in the following set

2 :={s:[0,1] > R ; s continuous and a.e. differentiable}, (2.3)

and the (continuum) entropy of a path s € 2 will derive from the rate function of the
moderate deviation of the simple random walk (see [33] or (2.15) below), i.e.

1t

Ent(s) = 2J (s'(t))th forse 9. 2.4)
0

As far as the continuum disorder field is concerned, we let P := {(w;, t;,2;): i > 1} be a

Poisson Point Process on [0, ) x [0, 1] x R of intensity u(dwdtdz) = %w*a”l{ww}dwdtdx.

For a quenched realization of P, the energy of a continuous path s € & is then defined by

w(s) =mp(s) = D>, wlitmes (2.5)
(w,t,z)eP

where the notation (¢,xz) € s means that the point (¢, ) is visited by the path s, that is
St = T.

Then, a natural guess for the continuous scaling limit of the partition function is to
consider an energy—entropy competition variational problem. For any > 0 we let

Ts = sup {Bﬁ(s) - Ent(s)}. (2.6)
s€2,Ent(s)<+00
This variational problem was originally introduced by Dey and Zygouras [18], conjecturing
that it was well defined as long as « € (1/2,2) and that it was the good candidate for the
scaling limit (see [18, Conjecture 1.7]). Our first result shows that the variational problem
(2.6) is indeed well defined when « € (1/2,2). In Theorem 2.4 below we prove the second
part of Conjecture 1.7.

Theorem 2.1. For « € (1/2,2) we have the scaling relation

20
739 g2 75, 2.7)

and T3 € (0,+0) for all B > 0 a.s. Moreover, E[(73)"]| < o for any v < a — 1/2. We also
have that a.s. the map 3 — Tz is continuous, and that the supremum in (2.6) is attained by
some unique continuous path sj with Ent(s}) < oo.

On the other hand, for o € (0,1/2] we have Tg = +o for all 3 > 0 a.s.

Let us mention here that in [5], the authors coAnsider the case of transversal ﬂuctuiltions
of order n. The natural candidate for the limit is 7, defined analogously to (2.6) by 73 = 0
for 8 =0, and for 5 > 0

~ 1A
Ts = sup {W(S) - EEnt(s)}. (2.8)

s€Lip,



DIRECTED POLYMER IN HEAVY-TAIL ENVIRONMENT AND ENTROPY-CONTROLLED LPP 6

Here the supremum is taken over the set Lip; of 1-Lipschitz functions, and the entropy
Ent(s) derives from the rate function of the large deviations for the simple random walk, i.e.

1
Ent(s) = f e(s'(t))dt withe(z) =1(1+z)log(l+ )+ 3(1 — z)log(l — z).
0
2.3. Main results I : the case a € (1/2,2). Our first result deals with the transversal
fluctuations of the polymer: we prove that h, defined in (2.2) indeed gives the correct
order for the transversal fluctuations.

Theorem 2.2. Assume that o € (1/2,2), that B,m(n?) — 0 and B,m(n*?) — +oo, and
define h,, as in (2.2): then \/n < h,, < n. Then, there are constants c, ¢y and v > 0 such that
for any sequences A,, = 1 we have for alln > 1

P ( 6, (max|[Si| > Ay hp) > neclA%hi/n> <A (2.9)

In particular, this proves that if h, defined in (2.2) is larger than a constant times
V/nlogn, then ne=c14"a/m goes to 0 as n — oo provided that A is large enough: the transver-
sal fluctuations are at most Ah,,, with high P-probability. On the other hand, if 4,, is much
smaller than +/nlogn, then this theorem does not give sharp information: we still find
that the transversal fluctuations must be smaller than A+/nlogn, with high P-probability.
Anyway, in the course of the demonstration of our results, it will be clear that the main
contribution to the partition function comes from trajectories with transversal fluctuations
of order exactly h,,.

We stress that the cases 3,m(n?) — § € (0,+w] and B,m(n%?) — B € [0,0) have
already been considered by Auffinger and Louidor [5] and Dey and Zygouras [18] respec-
tively: they find that the transversal fluctuations are of order n, resp. y/n. We state their
results below, see Theorem 2.3 and Theorem 2.8 respectively.

Our first series of results consist in identifying three new regimes for the transversal

fluctuations (v/nlogn « h, < n, h, = 1/nlogn, and \/n < h,, « y/nlogn), that interpolate
between the Auffinger Louidor regime (h,, = n) and the Dey Zygouras regime (h,, = /n).

We now describe more precisely these five different regimes.
Regime 1: transversal fluctuations of order n. Consider the case where
(R1) Bun'm(n?) — B € (0,00],

which corresponds to having transversal fluctuations of order n. In that case, Auffinger and
Louidor showed that, properly rescaled, log Z, 5, converges to 73 defined in (2.8).

Theorem 2.3 (Regime 1,[5]). Assume « € (0, 2), and consider (3,, such that (R1) holds. Then
we have the following convergence

1
Brm(n?)
where 77; is defined in (2.8). For a € [1/2,2), we have that 773 > 0a.s. forall g > 0.
Regime 2: \/nlogn « h, « n. Consider the case when
(R2) Ban"'m(n?) -0 and B,logn"'m(n*?\/logn) — ©,
which corresponds to having transversal fluctuations y/nlogn « h, « n, see (2.2). We find

that, properly rescaled, log Z;, ; converges to 71 defined in (2.6) - this proves Conjecture
1.7 in [18].

logZ%’ﬁnﬂﬁg, asn— +0.
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Theorem 2.4 (Regime 2). Assume that o € (1/2,2), and consider (3, such that (R2) holds.
Defining h,, as in (2.2), then v/nlogn « h, < n, and we have

1 d
W(loz‘% Zg 5, — n/BnE[w]l{QZS/Z}) ), T, asn — +w. (2.10)

where Ty is defined in (2.6).

We stress here that we need to recenter log Z) ; by n,E[w] only when necessary, that
is when n/m(nh,) does not go to 0: in terms of the picture described in Figure 1, this can
happen only when v > 4 — 2, and in particular when « > 3/2 (we stressed that fact in the
statement of the theorem).

Regime 3: h,, = 4/nlogn. Consider the case

(R3) Bn log n_lm(n3/2«/log n) — B € (0,00),

which from (2.2) corresponds to transversal fluctuations h,, ~ BY2/nlogn, see (2.2). We
find the correct scaling of log Z}" ; , which can be of two different natures (and go to +
or 0), see Theorems 2.5-2.6 below.

We first need to introduce a few more notations. For a quenched continuum energy field
P (as defined in Section 2.2), we define for a path s the number of weights w it collects:

N(s)i= > Lwnes - (2.11)

(w,t,x)eP

Then, we define a new energy-entropy variational problem: for a fixed realization of P,
define for any k£ > 1

~ ~ k >(=r > (k)
THE 7R py .= g 7(s) — Ent(s) — — ¢, and T = sup T, (2.12)
? 5 () sefﬁ,NE):k{ 5) =) 25} g vy

When r = 0 we denote by 7%3 the quantity 7%6(20)' In Proposition 7.6, we prove that these
quantities are well defined, and it is also noted that there exists 5. = 8.(P) € (0,00) such
that 73 € (0,0) if 3 > B, and T3 = 0if B8 < ..

Theorem 2.5 (Regime 3-a). Assume that o € (1/2,2), and consider j3,, such that (R3) holds.
Then from (2.2) we have h,, = y/nlogn, and
(d) 5

1 w
iy (108225, = noaBlellazyey ) < T5 asn— +o0. (2.13)

(Recall that B,m(nhy) ~ h2/n ~ Blogn)

If ’7~'ﬁ > 0 (8 > (.) the scaling limit is therefore well identified, and log /il (when

recentered) grows like B7~'5 log n with ﬁ7~'ﬁ > (. On the other hand, if 7~}3 = 0, then the above
theorem gives only a trivial limit. By an extended version of Skorokhod representation
theorem [27, Corollary 5.12], one can couple the discrete environment and the continuum
field P in order to obtain an almost sure convergence in Theorem 2.5 above. Hence, it
makes sense to work conditionally on 7221 < 0 (B8 < B.), even at the discrete level. Our
next theorem says that for 8 < f3., log Z,, 3, decays polynomially, with a random exponent

BT € (-1/2,0).
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Theorem 2.6 (Regime 3-b, 7~}; =0, 8 < Bc). Assume that o € (1/2,2) and that (R3) holds.
Then, conditionally on {7’6(21) <0} (ie. B < Be),
1

w (d) F(=1)
m 10g (log Zn,ﬁn — nﬂnE[WI{wsl/Bn}]l{azl}) —> 7-6 y asn — +0o0.

Recalling that 8, m(nh,) ~ h2/n ~ Blogn, we note that exp(ﬂ?'ﬁ(zl) logn) goes to 0 as
a (random) power 57%(21) of n, with Bi’ﬁ(gl) € (—1/2,0).

Regime 4: \/n « h,, < y/nlogn. Consider the case

(R4) Bom(n®?) > o and  B,logn 'm(n*?/logn) — 0;

which corresponds to having transversal fluctuations \/n « h, « y/nlogn, see (2.2). Let

us define )

~(1) 1 x
Wg = + —:= su w——, 2.19)
f 2B (w,ac,tI))EP { Qﬁt}

which is a.s. positive and finite if « € (1/2,2), see Proposition 8.4.

Theorem 2.7 (Regime 4). Assume that « € (1/2,2), and consider (3, such that (R4) holds.
Defining h,, as in (2.2), then \/n < h,, <€ y/nlogn, and we have

1 y (@)
m log <\/E<10g Zn,ﬁn — nﬂnE[W]‘{w<1/6n}]1{o¢21})> — W1 s as n — +oo.

Recalling that 3, m(nhy) ~ h2/n « logn, we note that exp (W1h2/n) goes to infinity (at
some random rate), but slower than any power of n.

Regime 5: transversal fluctuations of order y/n. Consider the case
(RS) Bam(n®?) — B e [0,00);

this corresponds to having transversal fluctuations h,, of order /n. Here, we state one of
the results obtained by Dey and Zygouras, [18, Theorem 1.4].

Theorem 2.8 (Regime 5, [18]). Assume that « € (1/2,2), and consider (3, such that (R5)
holds, that is 3, m(n*?) — S € [0,0). Then

1 ) )
Mmﬁ(bg Znn — nﬂ”E[wl{wsm(n?’“)}]la%) 9, QW[S ', asn— +w.
Here, Wéa) is some specific a-stable random variable (defined in [18, p. 4011]).

Some comments about the different regimes. The intermediate regimes 2-3-4 have different
behavior due to the different regimes for the local moderate deviation, see [33, Theorem 3].
We indeed have that for v/n < h, <« n

2

P(S, = hy) = %exp < — (1+0(1)) ;LZ) : (2.15)

so that we identify three main possibilities: if z,, « v/nlogn, then P(S, = h,) = n~1/2o();
if hy, ~ cy/nlogn then P(S, = hy) = n~ (@020 if . \/nlogn then P(S, = hy)
e~ (LHo(I)hT/n which decays faster than any power of n.

This is actually reflected in the behavior of the partition function. Let us denote Z;, ; =

-

e BnCa Z;) 5 be the renormalized (when necessary) partition function. We recall that
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C, is equal either to E[w]1{,>3/2; (Regime 2 and 3-a) or to E[wl(,<1/3,}]1a>1 (Regime 3-b
and 4). Then we have
e In regimes 1 and 2, transversal fluctuations are h,, » +/nlogn, and Zn”@»n grows
faster than any power of n: roughly, it is of order eATsm in Regime 1 (for § < 0),
and of order e7"%/" in Regime 2.

e In Regime 3, transversal fluctuations are h,, = +/nlogn, and Znﬁn goes to in-
finity polynomially in Regime 3-a, and it goes to 1 with a polynomial correction in

i ~(>1) ~
Regime 3-b. This could be summarized as Z,, g, ~ 1+n"7s 1 , with 57'5(21) > —1/2:
the transition between regime 3-a and 3-b occurs as 67'(21) changes sign, at 8 = f,
(note that BT keeps a mark of the local limit theorem, see (2.12) and (2.15)).

e In Regimes 4, Z, 3, goes to 1 with a correction of order n~/2 x eW1hi/n with

eWihn/n going to infinity slower than any power of n: this corresponds to the cost
for a trajectory to visit a single site, at which the supremum in W is attained. In
Regime 5, Z ; goes to 1 with a correction of order n=12,

2.4. Main results II : the case a € (0,1/2). In this case, since n~'m(n?)/m(n*?) — o,
there is no sequence 3, such that 8,n~'m(n?) — 0 and B, m(n*?) — +oo. First of all, we
realize that Theorem 2.3 already gives a result, but a phase transition has been identified
in [5, 35] when a € (0,1/2).

Theorem 2.9 ([5 35]) When o € (0 1/2), 7}; defined in (2.8) undergoes aphase transition:

there exists some ﬁc = ﬁc( P) with BC (0,00) P-a.s., such that Tg =0if8 < ﬁc and 723 > 0if

B> B..

The fact that 7}6 = (0 was not noted in [5, 35], but simply comes from the (left) conti-
nuity of 5 +— 7A'5 (the proof is identical to that for 3 — 73, see Section 4.4).

In view of Theorem 2.3, the scaling limit of log Z* w5, 1 identified when 7'5 > 0, and it is

trivial when 7'5 = 0. Again, by an extended version of Skorokhod representation theorem
[27, Corollary 5.12], we can obtain an almost sure convergence in Theorem 2.3 (an actual
coupling is provided in [5]). Hence, it makes sense to work conditionally on 7A“g > 0 or
773 = (, even at the discrete level. We show here that only two regimes can hold:

1) if 7’5 > 0, then fluctuations are of order n, and properly rescaled, log Z, ; con-

verges to 7'5 — this is Theorem 2.3;
(2) if 75 = 0, then fluctuations are of order \/n, and properly rescaled, log Z, ; con-

verges in distribution (conditionally on 7A'5 = 0), as shown by the following result.

Theorem 2.10. Assume a € (0,1/2), and consider 8, so that B,n~"m(n*) — f € [0, +o0).
Then, on the event {% =0} (B < 56 < ), transversal fluctuations are of order /n. More
precisely, for any ¢ > 0, there exists some cg,v > 0 such that, for any sequence C,, > 1 we
have

P(Pii,@n (max|Si| = Cuv/n) = emoCinn | 75 0) <e. (2.16)
Moreover, conditionally on {’7A'6 = 0}, we have that
VI o @ Do s oo, 2.17)

Bnm(nB/Q)
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where Wéa) = SRMRX[O 1 wp(t, z)P(dw, dx,dt) with P a realization of the Poisson Point
Process defined in Section 2.2, and p(t, z) = (2mt)~Y/2e~="/2t is the Gaussian Heat kernel.

Let us mention that Wéo‘) is well defined and that it has an a-stable distribution, with

explicit characteristic function, see Lemma 1.3 in [18]. Later on, we show that W(O‘)
finite and give some other properties, see Lemma 9.3.

We stress that Theorem 2.10 shows that when o < 1/2, a very sharp phase transition
occurs on the line 3, ~ pn/m(n?): for B < 8., transversal fluctuations are of order vn
whereas for § > 30 they are of order n.

2.5. Some comments and perspectives. We now make some comments about our re-
sults: we present some possible generalizations, and we discuss remaining open questions.

About the case « = 1/2. In the above results, we excluded the case o« = 1/2. In that case,
both n~'m(n?) and m(n3/?) are regularly varying with index 3, and there are mostly two
possibilities.

(1) If "é(/z)) — 0 (which occurs for instance if L(z) = e~(1082)" for some 0 < b < 1),
then there exist sequences (f3,),>1 such that 3,n"'m(n?) — 0 and B,m(n*?) — +oo.
Then, the situation should be similar to that of Section 2.3: there should be five regimes,
with transversal fluctuations h,, interpolating between /n and n. However, we stress that
for « = 1/2 we have 77 = +oo0 (and also Wéa) = +oo for all 8 > 0), so that we do not
have an analogue of Theorem 2.4 (or of Theorem 2.8). We suspect that the transversal
fluctuations might not be as defined in (2.2) but could be much larger, and that a larger
normalization should be needed — but this is purely conjectural.

() if %f/’;)) — ¢ € (0,0] (which occurs for instance if L(n) = (logz)® for some b),

then there is no sequence (3, )n>1 such that 3,n~'m(n?) — 0 and 8,m(n*?) — +co. Then,
the situation should be similar to that of Section 2.4: there should be only two regimes,
with transversal fluctuations either /n or n. Note that the statement of Theorem 2.3 still
holds, and we stress that for « = 1/2, 7A'5 > ( forall 8 > 0 a.s. (BC = 0), see [5, Prop. 2.5].
We therefore have that

if B.n"tm(n?) — B € (0, x], log Zy, 5 — 7A’5 >0 a.s.,

1
Bnm(n?)
that is transversal fluctuations are of order n. On the other hand, in the case where
Bantm(n?) — 0 (so that 8,m(n*?) also goes to 0), we can expect that the analogue
of Theorem 2.10 holds (corresponding to 5 < 3. = 0), that is

. -1 2 N L w — (@)
if B,n m(n ) 0, ﬁnm(ng/Q) log Zn,ﬁn o >

with transversal fluctuations are of order /n.

Toward the case o € (2,5). When « € (2,5) (more generally region C in Figure 1), one
of the main difficulty is to find the correct centering term for log Z;! ; . Another important
difficulty is that the variational problem 73 defined in (2.6) is 73 = 40 a.s., since paths
that collect many small weights bring an important contribution to 7. The main objective
is therefore to prove a result of the type: there exists a function f(-) such that, for a € (2, 6)
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and any S, in region C of Figure 1 (i.e. 5, = n~7 with v < 3/2a, v > (o — 5)/(a — 2),
v>2/a—1)

1 o
m(log Z%,ﬁn - f(ﬁn)) ﬂ Ti,

with h,, defined as in (2.2) (the transversal fluctuations should still be at scale h,,) and
where 7v'1 is somehow a “recentered” version of the variational problem (2.6) (that is in
which the contribution of the small weights has been canceled out). The difficulties are
therefore serious: one needs (i) to identify the centering term f(/3,), (ii) to make sense of
the variational problem 7v'1

Path localization. We mention that in [5], Auffinger and Louidor go beyond the conver-
gence in distribution stated in Theorem 2.3, and show some path localization. Indeed, they
prove that, under P, ; , path trajectories concentrate around the (unique) maximizer -, 5
of the discrete analogue of the variational problem (2.8), see Theorem 2.1 in [5]; more-
over this maximizer 5, converges in distribution to the (unique) maximizer ’yﬁ of the
variational problem (2.8). This could theoretically be applied in our setting, in that direc-
tion, we prove the existence and uniqueness of the maximizer of the continuous variational
problem in Theorem 2.1. However, we omit this statement here to lighten the paper: we
refer to Remark 4.5 for more details, see in particular Conjectures 4.6-4.7.

Higher dimensions, unbounded jumps and non-directed paths. Similarly to [5], our methods
should work in any dimension 1 + d (one temporal dimension, d transveral dimension).
The energy-entropy balance argument would then give that the transversal fluctuations h,,
are given by the relation 8, m(nh%) ~ h2/n in place of (2.2): for paths with transversal
scale h,,, the energy collected should be of order 3, m(nhe) while the entropy cost should
remain of order h2 /n, at the exponential level. For a € (0,1 + d), and choosing 3, = n~7,
we should therefore find that in dimension d a similar picture to Figure 1 hold:

Case a € (0,d/2) Case a € (d/2,1 + d)
7<1+d 1 ,Y>1+d 1 ’y<%—l %_1<7<2+d 72%
1
£=1 £€=1/2 =1 |e="0Tre11)|e=1/2

However, to keep things more straightforward we only work in dimension d = 1.

Additionally, we stress that the Entropy-controlled LPP can easily be generalized, as long
as a notion of entropy can be formulated: this should enable us to deal with directed paths
with unbounded jumps, or with non-directed paths. We refer here to [8], where general-
izations of LPP are introduced and investigated: this opens the way to many interesting
models, and in particular to the study of polymers with unbounded jumps, and more im-
portantly to non-directed polymers in random environment.

2.6. Organization of the rest of the paper and ideas of proof. We now present an
overview of how the rest of the paper is organized, and give some of the ideas we develop
in the paper.

Part 1: Entropy-controlled Last Passage Percolation. In a first part, we introduce and develop
a key tool for our analysis, the Entropy controlled LPP (E-LPP), and give some applications
that are used throughout the rest of the paper.

« In Section 3, we define the continuous and discrete E-LPP. For a given domain A,
(which is either a subset of R? or of Z?) with fixed length ¢ and height x, we consider m
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points chosen uniformly in the domain (here the definition depends on the discrete or con-
tinuous nature of the domain). The problem is then to estimate £,,,, the maximal number
of points that can be collected by paths with an entropy bounded by a fixed constant B. We
define the entropy of a set A in (3.1), and £,, is thus the maximal cardinality of a set A
with entropy smaller than B. We show that £,, is of order (Bt/x%)'/*\/m, and we provide
good estimates on the deviation probabilities in Theorem 3.1. The proof of the theorem, in
Section 3.3, is not difficult: it uses a standard first moment technique on one side, and a
specific strategy to collect points on the other side.

+ In Section 4, we provide applications of the continuous E-LPP: in particular we prove
Theorem 2.1. First we prove that 73 = +00 when a < 1/2. Then, we prove the scaling
relation (2.7), and finally we show the finiteness of the v-th moment (v < a — 1/2), in
Section 4.3. Rougly, the idea of the proof is to decompose the variational problem (2.6)
according to the value of the entropy:

Ts = sup {B sup m(s) — B} ) (2.18)
B=0 s€2,Ent(s)=B

Then, a simple scaling argument gives that sup.pu(s)<p 7(5) @ B SUPg:Ent(s)<1 T(S)s
and the E-LPP appears essential to show that the last supremum is finite, see in particular
Lemma 4.1. Then, at a heuristic level, we get that 73 is finite because in (2.18) B 3 « Bas
B — oo (remember that o > 1/2). We conclude Section 4 by the proof of the contuinuity
of f — 7Tz and of the existence and uniqueness of the maximizer in (2.6), relying again
heavily on the E-LPP estimates of Section 3.

* In Section 5, we use the estimates on the discrete E-LPP to control the discrete version
of the variational problem (2.6) which we define in (5.2). More precisely, the first result of
this section is Theorem 5.2 which provides estimates on the discrete variational problem,
and in particular give its correct order and control its deviation probability — one of the
key here is the uniformity of the estimate in the different parameters. The second result
of importance is Proposition 5.3, which proves the convergence of the discrete variational
problem to the continuous one. Here again, the proofs rely heavily on the estimates on the
discrete E-LPP, in particular Lemma 5.4.

Part 2: Main results on the directed polymer in heavy-tail environment. In a second part,
we turn to the study of the weak-coupling of the directed polymer, and prove the results
stated in Sections 2.3-2.4. One of the key estimate of Section 5, Theorem 5.2, requires to
work with a given height for transversal fluctuations: a recurrent idea is then to reduce to
trajectories with a fixed transversal fluctuation.

x In Section 6, we prove Theorem 2.2, identifying the correct transversal fluctuations.
In order to make our ideas appear clearer, we first treat the case when no centering
is needed (i.e. @ < 3/2) in Section 6.1. In Section 6.2 we adapt the proof to the case
where it is needed. Let us present the ideas in the first case, where we use a rough bound
Pz’ﬂn(ma){ign 1Si| = Aphy) < Zgﬂn(maxi@ |Si| = Anhy), where the second term being
the partition function restricted to path trajectories with max;<, |.S;| = Ap,h,. The key idea
is to decompose this quantity into sub-parts where trajectories are controlled, and have a
“fixed” transversal fluctuation

log, (n/hn)
Zy s, (max|Si| = Auha) = Y, Zip, (max|Si| € [2ha 2hs))
s k=logy An+1 sn
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Then, we control each term separately. Notice that forcing the random walk to reach the
scale 2"~1h,, has some entropy cost exp(—c22¥h2 /n) so we need to understand if the parti-
tion function, when restricted to paths trajectories with max;<,, |S;| < 2¥h,,, compensates
this cost (cf. (6.3)): we need to estimate the probability of having Z‘;L’ﬁ" (max;<p |Si] <

2Fh,,) = 2" hi/n_ This is the purpose of Lemma 6.1, which is the central estimate of this
section, and which tediously uses estimates of Section 5 — note that here the trajectories
have a given transversal fluctuations bounded by 2*h,,.

x In Section 7, we consider Regimes 2 and 3-a, proving Theorems 2.4-2.5. We regroup
the two proofs since they are built on the same scheme — in both cases we have that
log Z,, 3, — 0. The proof is decomposed into three steps. In the first step (Section 7.1),
we use Theorem 2.2 in order to restrict the partition function to path trajectories that have
transversal fluctuations smaller than Ah,, (for some large A fixed). Then, in a second step
(Section 7.2), we show that we can keep only the largest weights in the box of height Ah,,
(more precisely a finite number of them), the small-weights contribution being negligible.
Finally, the third step (Section 7.3) consists in proving the convergence of the large-weights
partition function, and relies on the convergence of the discrete varitational problem (5.5)
introduced in Section 5 — an adaptation in Regime 3-a is needed, and developed in Sec-
tion 7.4.

« In Section 8, we consider Regime 3-b and Regime 4, proving Theorems 2.6-2.7. Here
again, we proceed in three steps, analogous to that of Section 7. In the first step (Sec-
tion 8.1), we use again Theorem 2.2 to be able to restrict the partition function to trajec-
tories with transversal fluctuations smaller than A+/nlogn (for some large A fixed). The
second step (Section 8.2) consists in showing that one can restrict to large weights. Then,
in the third step (Section 8.3), we observe that since our result implies that log Z; 5, con-
verges to 0, it is equivalent to studying the convergence of Z ; — 1: we then reduce to
showmg the convergence of a finite number of terms of the polynomlal chaos expansion of

.8, — 1, see Lemmas 8.2-8.3. We prove this convergence in a last step: in Section 8.4, we
show the convergence in Regime 3-b (Lemma 8.2), relying once again on the convergence
of discrete variational problem proven in Section 5. In Section 8.5, we show the conver-
gence in Regime 4 (Lemma 8.3), which is slightly more technical since we first need to
reduce to trajectories with transversal fluctuations of order h,, < v/nlogn.

« In Section 9, we consider the case o € (0,1/2), and prove Theorem 2.10. First, in
Section 9.1, we prove (2.16) i.e. that there cannot be intermediate transversal fluctuations
between 4/n and n. We use mostly the same ideas as in Section 6, decomposing the con-
tribution to the partition function according to the scale of the path, and controlling the
entropic cost vs. energy reward for each term. However in this case, we cannot use the es-
timates of Section 5 since they are valid only for « € (1/2, 2). Luckily, some simplifications
occur here, since one can bound the maximal energy collected by a path at a given scale
by the sum of all weights in a box containing the path and this sum being dominated by
the maximal weight in the box (this is true for a < 1). We then turn to the convergence
of the partition function in Section 9.2. The idea is similar to that of [18, Section 5], and
consists in several steps: first we reduce the partition function to trajectories that stay at
scale y/nlogn; then we perform a polynomial chaos expansion of Z g, — 1 and show that
only the first term contributes; finally, we prove the convergence of the main term, see
Lemma 9.2, in particular showing that the main contribution comes from trajectories that
stay at scale 4/n.
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Part 1. Entropy-controlled Last Passage Percolation and first applications

In [22], in order to show that 7A‘5 in (2.8) is finite, one crucial point is to show that
restricting to the ¢ largest weights, the path can collect at most 1// of these weights. This is
due to the fact that the path being Lipschitz, it can be mapped to an up/right path, and the
problem is transformed into that of Hammersley’s Last Passage Percolation, that we recall
in Section 3.1. In our setting, since we want to treat transversal exponent strictly smaller
than 1, we loose the Lipschitz property of the rescaled paths, and we need to modify the
LPP problem: the idea to control the number of points that can be collected via paths
which have an entropy constraint, rather than a 1-Lipschitz constraint. We call this new
model Entropy-controlled Last Passage Percolation, or E-LPP.

3. ENTROPY-CONTROLLED LAST-PASSAGE PERCOLATION (CONTINUOUS AND DISCRETE)

The results we present here will be specific to the case of interest for us, but the tech-
niques are very general and require very little assumption on the definition of the entropy
of a path, as it will be developped in [8].

3.1. Reminder of Hammersley’s LPP. Let us recall the original Hammersley’s LPP prob-
lem of the maximal number of points that can be collected by up/right paths, also known
as Ulam’s problem [36] of the maximal increasing sequence.

Let m € N, and (Z;)1<i<m be m points independently drawn uniformly on the square
[0,1]%, we denote the coordinates of these points Z; := (;,y;) for 1 < i < m. A sequence
(2i,)1<e<k is said to be increasing if z;, > w;, , and vy;, > y;, , forany 1 < ¢ < k (we
set by convention ig = 0 and zp = (0,0)). Then, the question is to find the length of the
longest increasing sequence among the m points, which is equivalent to finding the length
of the longest increasing subsequence of a random (uniform) permutation of length m. We
denote:

Ly =sup{k:3(i1,... i) s.t. (Z,)1<e<k is increasing}

Using subadditive techniques (together with a Poissonization argument), Hammersley
[23] first proved that m~1/2£,, converges a.s. and in L' to some constant, that was believed
to be 2. It has then been proven that the constant was indeed 2, see [29, 37], and estimates
related to £,, were improved by a series of papers, and in particular, the fluctuations of
L,, around 2,/m have been found to be or order m!/%. More precisely Baik, Deift and
Johansson [6] showed in a seminal paper that m~/6(£,, —2,/m) converges in distribution
to the Tracy-Widom distribution. Additionally, Johansson [26] proved that the transversal
fluctuations of a path collecting the maximal number of points is of order m??3 — note
that optimal paths are not unique, and there are in fact an exponential number of them,
see [19].

3.2. Definition of the Entropy-controlled LPP. Operating a rotation by 45° clockwise,
we may map the previous problem to that of the maximal number of points that can be
collected by 1-Lipschitz paths s : [0,1] — R. We now introduce a new (natural) model
where the Lipschitz constraint is replaced by an entropy constraint.

For t > 0, and a finite set A = {(¢;,2;);1 < i < j} < [0,¢] x R with |A| = j € N and with
0 <t <ty <--- <tj <t, we can define the entropy of A as

7 -'Ez 1 2
Ent(A Z . (3.1)

2:1 Z

_
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where we used the convention that (¢, z9) = (0, 0). By convention, if there exists some 1 <
i < jsuch that¢; = t;,_; then we set Ent(A) = +c0. This corresponds to the definition (2.4)
for the linear interpolation of the points of A: to any set A we can therefore canonically
associated a (continuous) path s : [0,¢] — R with the same entropy. The set A is seen as a
set of points a (continuous or discrete) path has to go through, and if A ¢ N x Z a standard
calculation gives that P(A < S) < e ®(2) (A S means that S;, = x; for all i < |A|),
where we use that for the simple random walk P(S; = z) < e~*"/2 by a standard Chernoff
bound argument.

Then, for any fixed B > 0, we will consider the maximal number of points that can
be collected by paths with entropy smaller than B, among a random set T,,, of m points,
whose law is denoted P. We now consider two types of problems, depending on how this
set T, is constructed:

(i) continuous setting: for ¢,z > 0, we consider a domain A; , := [0,¢] x [—z,z], and
Y, = Yn(t,z) = {Y1,...,Y,} where (Y;)i1<i<m is a collection of independent r.v.
chosen uniformly in Ay ,;

(ii) discrete setting: for n, h € N, we consider a domain A, ;, := [0,n] x [—h,h], and
T = Tim(n,h) = {Y1,...,Y,,} is a set of m distinct points taken randomly in A,, 1.

We are then able to define the Entropy-controlled LPP by

L:gf)(t,x) = max |A|, Lg)(n, h) = max |A|, (3.2)
ACY p (t,x) AcCT . (n,h)
Ent(A)<B Ent(A)<B

the maximal number of points than can be included in a set A that has entropy smaller
than B. In other words, it is the maximal number of points in Y,, or T,, that can be
collected by a path of entropy smaller than B. Note that we use the different font to be
able to differentiate the setting: £, A, Y for the continuous case and L, A, Y for the discrete
one.

We show the following result.

Theorem 3.1. There are constants Cy, co, ¢, > 0 such that: for any t,x,B > 0, n,h > 1
(i) continuous setting: for allm > 1 and all k < m

N1/2, K

(LB (t,2) > ) < (CW") : (3.3)
2\1/2
P(Cﬁf)(t,x)zlo Zl—exp{—k<(BkaQ)m/\Z—cg)}. (3.4)
(ii) discrete setting: forall 1 < m < nhand allk <m

N1/2, &

P(LW) (n,h) > k) < (CO(B”Z; ) ) (3.5)
/2
(5) oo | (B me

P(Lm (n,h) = k:) >1 exp{ cok‘( 2 N Co)}' (3.6)

The proof of Theorem 3.1 is not difficult but a bit technical, and we postpone it to
Section 3.3. We included the lower bound in the statement of the theorem for the sake of
completeness (the proof is short), but it will not be of any use in the rest of the paper.

This result shows in particular that £ (¢, ) is of order ((Bt/x?)Y*\/m) A m, resp.
L) (n, h) is of order ((Bn/h*)Y4\/m) A m, as stressed by the following corollary.
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Corollary 3.2. For any b > 0, there is a constant ¢, > 0 such that, for any m > 1, and any
positive B, and any t, x, resp. n, h,

1 ( LBt z) b 1 ( L, h) >b
—<E <¢, —<E

Ch ((Bt/z)Y4/m) A m Ch ((Bn/h®)Y4/m) A m

As an additional consequence of Theorem 3.1 (see in particular (3.7)-(3.8) below), a

simple application of Borel Cantelli lemma gives, in the continuous setting, that for any
fixed B,t, x we have that P-a.s. there is some (random) m such that

A

Cp .

1 Ly (t,z)
2¢y — ((Bt/z2)V4/m) A m

We may also conjecture that, analogously to the standard LPP, Hammersley’s method (i.e.
Poissonization and sub-additivity) would give that there is a constant C such that

< (2C9)Y? for all m = my .

L L (k)

m ——— =
m—o0 (Bt/$2)1/4m
In the discrete setting, the situation is slightly more complicated since one cannot fix B, n, h

and let m go to infinity, but Theorem 3.1-(ii) gives useful uniform estimates to deal with
the case where B, n, h go to infinity.

C P—a.s.and in L'.

Proof of Corollary 3.2. We prove it in the continuous setting, the discrete one being similar.
Upper bound. From Theorem 3.1, we deduce that for any u > (eCy)"/2, we have

IP’(/J%B) (t,z) = u (Bt/x2)1/4\/ﬁ) < exp ( — u(Bt/x2)1/4\/ﬁ>. (3.7)
Applying this inequality with u = (eCp)"/2, and using also the a priori bound £ (n, h) <
m, we get that for any b > 0

ﬁ(B)(t z) b +a0 E(B)(t z)
E m ) < C b/2 + f ]P)< m ’ l/b d
{<((Bt/a:2)1/4m1/2) A m> ] (eCo) (eCo)b/2 ((Bt/x2)1/4m1/2) N > u ) u

< (eC’o)b/2 + cst.

Lower bound. An analogous reasoning holds for the lower bound, since for any 0 < u <
(2¢4)~1 A 1 we have that

p(ﬁgff) < ux ((Bt/x2)1/4m) A m) < exp ( —cu x ((Bt/x2)1/4m) A m) . (3.8

Indeed, using (3.4), if m > (Bt/z?)'/2, then the probability is
1 A/m
B 2\1/4 2\1/4
P(ﬁ&n)(t,fﬂ) < u(Bt/x ) / \/m) < exp(— COU(Bt/x ) / \/m(@ VAN W — C6>> s

with the parenthesis inside the exponential larger than 1/u — ¢, > ¢{. On the other hand,
if m < (Bt/x?)'/?, then the probability is
211/2
(B) _ Btfz)77 L
P(ﬁm (t,x)éum) <exp( coum< ool CO)),

with the parenthesis inside the exponential again larger than c|,. O
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Remark 3.3. On may view Theorem 3.1 as a generalization of [22, Proposition 3.3]. More
precisely, we recover [22, Proposition 3.3] by considering A,, ,, = [n,n]? and replacing the
entropy condition Ent(A) < B with a Lipschitz condition, that is considering only the sets
A whose points can be interpolated using a Lipschitz path. Let us denote (Lip) (n) the LPP
obtained. Now observe that if A satisfies the Lipschitz condition we have that Ent(A) < n/2

(recall the definition (3.1)): as a consequence it holds that L/ 2)(n, n) = L%Lllp)(n).

We also stress that our definition of E-LPP opens the way to many extensions: in particu-
lar as soon as one is able to properly define the entropy of a path (i.e. of a set A), one could
extend the results to the case of paths with unbounded jumps or even non-directed paths:
this is the object of [8], where a general notion of path-constrained LPP is developed and
studied.

Let us stress here that one might want to reverse the point of view, and estimate the
minimal entropy needed for a path to visit at least k points — this will be useful in Section 6.
One realizes that

inf Ent(A) < B — sup |Al=k.
AcTm, AcTy,
|Al=k Ent(A)<B

Hence, an easy consequence of Theorem 3.1 is that for any k& < n (we state it only in the
discrete setting)

(3.9

Co(Bn/h?*)/2m\*
)
It therefore says that, with high probability, a path that collects k points in T, < A,, ;, has
an entropy larger than a constant times k*/m? x h%/n.

P( inf Ent(A) < B) < (
ACT )y A=k

3.3. Proof of Theorem 3.1. We separate the upper and lower bounds, starting the proofs
in the continuous setting. The discrete setting follows the same lines.

Continuous setting: upper bound. Let us consider EIgt’B) the set of k-uples in [0,¢] x R (i.e.
up to time ¢) that have entropy smaller than B:

E,Et’B) = {((%W))KK;{ C [0, ] xR; 0 <ty <--- <ty <t; Ent((te, me)1<0ck) < B}-

Then, we can compute exactly the volume of Elgt’B).

Lemma 3.4. We have, foranyt > 0and B > 0
7 /N2
D(k/2+1)C(3k/2+1)
In particular, it gives that there exists some constant C such that
CBY243/2\ k
()
Proof. The key to the computation is the induction formula below, based on the decom-
) at position (u,y) (by symmetry we can assume

Vol (")) = Cy x B¥2635/2 with C, =

vol(£("7)) <

position over the left-most point in Slgt’B
. . . S 2
y = 0): it leaves k — 1 points with remaining time ¢ — u and entropy smaller than B — &,

t V2Bu
Vol (")) = 2 f 0 f 0 Vol (£ F7V"/29) dyd, (3.10)
u=0 Jy=
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The induction is only calculations. For & = 1 we have
t V2Bu t
Vol (7)) = QJ f dudy = 2\/QBJ w2 du, = %/531/%3/2,
u=0 Jy=0 0

so that we indeed have that C; = 7(v/2I'(3/2)T'(5/2)) "}, since I'(3/2) = @, r(5/2) = %.
For k > 2, by induction, we have

2Bu
Vol(g"")) = 2Ck_1f f (t — u)**=D2(B = £) OV gyq,
u=0

Then, by a change of variable w = y?/(2Bu), we get that

J 2hu (B _ gj)(kfl)ﬂd _ pk- 1)/2J | Bu Yoo Y2dw
y=0 “ 0 9
Bk/2 1/2 ( 1)/2+1)T'(1/2)

V2 (k:/2 +1)
Moreover, we also have
t 1
j WM2(— )32y t3(k—1)/2+1/2+1f WV2(1 — )32y

0
t3k/2F(3/2) Bk-1)/2+1)

u=0

I'(3k/2+ 1)
Hence, the constant C}, verifies
B I((k—1)/2+1) aTB(k-1)/2+1) 7 /\/2
k=20 VT 0y ¥ 2 T@R2+L) T2 rEEZET)

the last equality holding by induction, in view of the formula for Cj_;.

For the inequality in the second part of the lemma, we simply use properties of the
Gamma function, to get that there is a constant ¢ > 0 such that

T(k/2+1) > (k)" and T(3k/2+1) = (ck)*.
0

We then use Lemma 3.4 to control the probability that P (t,z) is larger than some k.
Let us denote N} the number of sets A < T,,(t,x) with |A| = k, that have entropy at
most B. We write

P(LP)(t,2) = k) = PW; = 1) < E[N].

Since all the points are exchangeable, we get

m
P = <k>P(3 0 €6k st (Zorys-- > Zoh)) € 5z§t’B)>,

where Z; = (t1,21),...,2Z, = (tx,z;) are independent uniform r.v. on the domain A, ,
(with volume 2tz). We then have that

Vol(S,gt’B))

(t,B)
]p(a 0 €6k st (Zy(1), -+ Zok)) € & ) = K (2tx)*



DIRECTED POLYMER IN HEAVY-TAIL ENVIRONMENT AND ENTROPY-CONTROLLED LPP 19

We therefore obtain, using that (') < m”/k!, together with Lemma 3.4

OBV /2 &
(B) 2 "
P(LE(2) > k) < (—5 5 ) (3.11)
This gives the upper bound of Theorem 3.1-(i). O

Discrete setting: upper bound. The proof follows the same idea as above. We give only the
main steps, and skip some details since it is very similar. Define E,i"’B)

[1,n] x Z that have entropy smaller than B:

B
B = {((t020)) g = L] X 25 0 <ty <+ <t < 5 Ent((t,we)120) < B

Then, we can estimate the volume (or cardinality) of E,i"’B)

manner as in the continuous case.

the set of k-uples in

— however not in an exact

Lemma 3.5. For any n € N it holds true that
7 /N2
L(k/2+1)C(3k/2+1)
In particular, it gives that there exists some constant C such that
(n,B) CB1/2n3/2 k
Vol(E{) < (B2

Proof. The key to the computation is the following induction formula, similar to (3.10):

Vol (EUP)) < 25 €y, x B¥2n/2, with C, =

n V2Bi
Vol(ESP)) =230 3 Vol (B P2, (3.12)
i=1 y=0
The induction is again straightforward calculations: we can use the computations made in

the continuous setting, together with the comparison between finite sums and Riemann
integrals, i.e.

N N+1
Z g(i) < j g(z)dz if g is increasing,
» 0

=0 (3.13)
N
Z g(i) < g(0) + f g(z)dz if g is decreasing .
i=0 0
Details are left to the reader. O

We use this lemma to control the probability that Lff ) (n, h) is larger than some k. Again,
we have P(L L& )(n h) = k) < E[Ny], where N, is the number of sets A < T,,, < A, , with

|A| = k, that have entropy at most B. Then,

m n n n
e (3 eoocove 5 <),

where (Z{”’h), e ,Zli”’h)) are a uniform random choice of k distinct points from A,

(which contains n(2h + 1) points) — the main difference with the continuous setting comes
from the fact that the Z;’s are not independent. We therefore have that, using Lemma 3.5,

m VOI(E]E,H’B)) mF CBY?\k
E[N’“]_</<;) AR <(2nh)k< k2 )
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We also used that (') < m*/k! and that (**}*") = (2nh + n — k)*/k! with k < n. This
concludes the proof of the upper bound in Theorem 3.1-(ii). O

Continuous setting: lower bound. For any k > 1, let us consider the following 4k sub-boxes
of Ay, for 1 <i < 4k:

(i — 1)t z't) y [_ (tB)'/? (tB)'/? . x]

B“:[ ik Ak &% 0Tk

Then, we realize that if there are at least £ boxes among the “even” boxes {B2;}1<i<2k
containing (at least) one point, then this set of k& points has an entropy which is bounded

by k x %(2“32/1# < B/2. Hence, we get that

P(LP (1) > k) = P(% Lt nBafz1) = k) = IP’(ZZk: Wt pnbni-op k). (3.14)
=1 =1

For the last probability, we use a union bound and the fact that the 1yv g, -0} are ex-
changeable, to get that

2k 2% g
1=P( Y Lyprnlop < k) < <k )P(Tm Uz -2)
i=1 i=1

t1/2Bl/2 ]_)m

16kz 8 (3.15)

< 2% (1

In the second inequality we used that Y,, is a set of m independent random variables

N . 3/2 pl/2
uniform in A, (of volume 2¢z), and that Ule B; has a volume of ¢ /sﬁ /
use that 1 — 2 < e~ * for any «z, to get that

A . Then, we

241/2
7(}375/2) / /\l)m

P(ﬁff) (t,2) < k:) < ke

<oxp{or(1 - (P05 1))

which concludes the proof of the lower bound in Theorem 3.1-(i). O

Discrete setting: lower bound. The proof is identical to the continuous setting, the only
adaptation needed being in the second inequality of (3.15). Details are left to the reader.

4. APPLICATION I: CONTINUOUS HEAVY-TAIL E-LPP, PROOF OF THEOREM 2.1

As an application of Theorem 3.1, we prove Theorem 2.1. We start by proving that
T3 = +oo for a € (0,1/2]. Then, for o > 1/2, we prove the scaling relations in Theorem 2.1,
which will be useful to show that E[(73)"] < oo. Finally, we show the continuity of 5 — 73,
and we end the section by the proof of the existence and uniqueness of the maximizer.

Let P := {(wj, t;,2;): i > 1} be a Poisson Point Process on [0, ) x [0, 1] x R of intensity
p(dwdtdr) = $w=*"11y,- gydwdtdz, as introduced in Section 2.2.
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4.1. Case a < 1/2. Let us prove here that 73 = 400 when « € (0, 1/2]. For any k in Z, we
define the event

Guim (P[54, ) 1] 27,2 4 21,

On the event Gy, we denote (wy, ti, z) a point of P such that wy, > 87122*+1 and (t,z;) €
[5.1] x [2¥71, 2] considering the path going straight to (,z)) we get that

2
Ts = Pwy, — ;Tl; > 9%k on the event Gy, .

Then, it is just a matter of estimating P(G). We stress that considering M, the maximal
weight in [4,1] x [2571, 2], we find that My is of order (2¥)/* (as a maximum of a field
of independent heavy-tail random variables, or using the scaling relations below), so that
we get that: if & < 1/2, P(G,) — 1 as k — +0; if a = 1/2, there is a constant ¢ > 0 such
that P(Gx) = cfor all k € Z; if a > 1/2, P(Gy) — 1 as k — —oo. Note that the events Gy
are independent, so an application of Borel-Cantelli lemma gives that for o < 1/2, a.s. G
occurs for infinitely many k € N: since 73 > 2% on Gy, it implies that 73 = +o0 a.s. for
a<1/2

On the other hand, it also proves that when o > 1/2, a.s. there exists some ky < —1 such
that Gy, occurs and thus T3 > 2%k > (.

4.2. Scaling relations. For any « € (0,2) and a > 0 we consider two functions ¢(w, t,z) :=
(w,t,az) and 9 (w,t,z) := (a~/*w, t, z) which scale space by a (hence the entropy by a?)
and weights by a~/* respectively. The random sets o (P) and 1 (P) are still two Poisson

Point Processes with the same law, that is ¢(P) @ 1 (P). This implies that (recall the
definition (2.5))

m(as) 9@ a'/on(s).

Therefore,

sup {Bm(s) — a®Ent(s)} @ sup {Bail/aﬂ(s) — Ent(s)}. (4.1)

s€2,Ent(s)<o0 s€2,Ent(s)<w0

Consequently, for any a € (0, 2), a27}3/a2 @ T5a-1/o- In particular, for any 8 > 0 it holds
true that for a > 1/2

Ts D gt (4.2)

4.3. Finite moments of 73. We show that for o € (1/2,2) E[(73)"] < oo for any v <
a —1/2, which readily implies that 73 < co a.s. For any interval [c,d) with 0 < ¢ < d we let

Ts([c,d)) := sup ) {Br(s) — Ent(s)}, (4.3)

s€2,Ent(s)€|c,

and we observe that 73 = T3([0,1)) v sup 73 ([2",2¥"!)). Moreover, as in (4.1) we have
k=0

Ts([2%, 254h)) il sup {2%671(3) —2"Ent(s)} < 2%5 sup  7(s) —2F. (4.4
s:Ent(s)€[1,2) s:Ent(s)<2

We show the following Lemma.
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Lemma 4.1. For any a < «, we have that there is a constant ¢, > 0 such that for any t > 1
we get

IP’( sup  w(s) > t) Cqlt™®.
s€2,Ent(s)<2

From this lemma and (4.4), we get that for any ¢ > —1 and any k large enough so that
B~1272a27% > 2, we get

]}D(%([Zk,2k+l>) ~ t) < [[D( sup 7T(s) > 5_12_%(75 + 2’9)>

s€2,Ent(s)<2
< a2 (¢ +2°) . (4.5)

Then, for any ¢ > 1 and a < «, we get by a union bound that

P(75 > t) i ( ([2F,2%1)) > t)

logy t
<d2ope Y ot g oage § gk ~2a)
k=0 k>logyt

a 1 1
< cgﬁat_at% + Cgt_a(l_Qa) < QCZBat_a(l_Qa) ,

where we used that ¢ + 2% > ¢/2 if k < logy t, and t + 2% > 2¥/2 if k > log, t. For the second
sum we also used that 1 — 5~ > 0 when « > 1/2. In particular, this shows that for any
0 > 0, there is some constant c5 g > 0 such that forany ¢ > 1

P(T5 > t) < et~ @37, (4.6)

which proves that E[(73)"] < o for any v < o« — 1/2.

Proof of Lemma 4.1. Let us recall that Ent(s) < 2 implies that max |s| < 2. Therefore we
can restrict our Poisson Point Process on R} x [0,1] x [—2,2]. In this case (cf. Section 5.2
below) we rewrite a realization of the Poisson Point Process by using its ordered statistic.
We introduce (Y;);en be an i.i.d. sequence of uniform random variables on [0, 1] x [—2,2]
and (M;);ecy be a random sequence independent of (Y;);cy defined by M; = = 41/ *(& +
-+ &)Y with (&;);>1 an i.i.d. sequence of Exp(1) random variables. In such a way

9 (M, Y:)ien and () = S, Milyyiey-

The proof is then a consequence of Theorem 3.1 (with B = 1), which allows to use
the same ideas as in [22, Proposition 3.3] — we develop the argument used in [22] in a
more robust way, which makes it easier to adapt to the discrete setting. Using the notations
introduced in Section 3, for any ¢ > 0, we denote Y; = {Y7,...,Y;} (Yo = &), and let
A; = Ai(s) = s n Y; be the set of the i largest weights collected by s. The E-LPP can be

written here as Ez@) 1= MaX,.pni(s)<2 | Ai(s)| — we drop here the dependence on ¢, .
Using that M, is a non-increasing sequence, we write

P

o 29+1_1 o

7T(8) = Z Z Ml]—{Yles} 2 2J+1 . (47)

Jj=0 =27 j=0
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Then, we fix some ¢ > 0 such that 1/a —1/2 > 26, and we let C = >}7 | 27(1/2-1/a+20).
we obtain via a union bound that

IP’( sup 7(s) > t) < i P(ngﬁgf)ﬂ > le(1/2_1/a+25)>

Ent(s)§2 j=0 C
0
. t .
<P L9 > C'logt (2TH24)) L P( My, > ¢ ——(20)"Vetd) | (4.8)
5 [P(es )+ (b0 > 0" o)

Here C’ is a constant that we choose large in a moment, and C” is a constant depending
on C,C" - we also work with ¢ > 2 for simplicity.
For the first probability in the sum, we obtain from Theorem 3.1-(i) that provided

C'(logt)270 > 203/2

/ jé .
1)0 (logt)2 <t log 2 C'278
~ .

P(L5), > Cllogt (21129 < (2

27+

Hence, for ¢ sufficiently large we get that

ee}
Z ]P’(ﬁg)ﬂ > (' logt (2j+1)1/2+5)) et Clos2  pa (4.9
j=0

provided that we fixed C” large.

For the second probability in the sum, we recall that M; @ 4/ “Gamma(i)~"?, so that

for any a < o, E[(i"/*M;)?] is bounded by a constant independent of i. Therefore, Markov’s
inequality gives that

) " J\—1/a+d ap—aoj\—ad
P(MQJ > " o () )<c(1ogt) §e(29)~ad
so that
o " '
3 IP(MQJ- > " —(21)*1/‘“5) < c(logt)™°. (4.10)
o logt

Plugging (4.9) and (4.10) into (4.8), we obtain that for any ¢’ < a < « there are constants
¢ > 0 such that for any ¢t > 2

]P’( sup 7(s) > t) < 2c(logt)*t ¢ < dt™
Ent(s)<2

which concludes the proof. O

4.4. Continuity of § — 73. An obvious and crucial fact that we use along the way is that
for any realization of P, 5 — 73 is non-decreasing.

Left-continuity. Let us first show that 5 — 73 is left-continuous, since it is less technical.
Fix ¢ > 0. For any §3, there exists a path 5,(36) with w(s(ﬁe)) < oo such that 73 < Bw(s(ﬂe)) -

Ent(sg)) + . Using this path s(s), we then simply write that for any 6 > 0
T =Tg—s = (B — 5)#(82{5)) - Ent(s(g)) .

Letting 6 | 0, we get that the right hand side converges to ﬁw(s(ﬁs)) — Ent(sg)) > T — e
Since ¢ is arbitrary, one concludes that limgsyo 7g—5 = 73, that is 5 — T3 is left-continuous.
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Right-continuity. It remains to prove that a.s. § — 73 is right-continuous. We prove a
preliminary result.

Lemma 4.2. For any K > 0, P-a.s. there exists By > 0 such that forany 0 < f < K
Ts = T5(10. Bol) » (4.11)
where T3([0, Bo]) is defined in (4.3).

Proof Let us recall that 73 = 75([0,1)) v sup T3 ([2*,2"!)). Using (4.5) with ¢ = —1, for
k=0
any a < o we have that

Since % — 1 < 0, by Borel-Cantelli lemma we obtain that P-a.s. there exists ky > 0 such
that 73([2%,25+1)) < —1 for all k > ko. This concludes the proof. O

Then, since we now consider paths with entropy bounded by By, we can restrict the
Poisson Point Process P to Ry x [0, 1] x[—+/2By, v/2By]. In this case we write a realization of
the Poisson Point Process by using its ordered statistic. More precisely we introduce M, :=
(8Bo)2(&; + --- + &)™V, where (& )en is an i.i.d. sequence of exponential of mean 1
and (Y;)en is a i.i.d. sequence of uniform random variables on [0,1] x [—+/2By, v/2Bo],
. d
independent of (&;);en. Then, P @ (M;,Y;)ien and 7(s) = Zfozl Milyy,eq)-

For any / € N, we let 70 = Zle M;ly,es be the “truncated” energy of a path: we can
write for any 5 < K, and any § > O such that 8 + 6 < K

Ts+s = Ta+s([0, Bo]) < sup  {(B8+8)7(s) — Ent(s)}
s€2,Ent(s)<Bo

+ (B +9) sup m(s) — w(g)(s)| .
s€2,Ent(s)<Bo

Then, we show that

max 7w (s) — 71'(4)(3)| 225 0. (4.12)
s€2,Ent(s)<Bo £—0

Hence, for any fixed ¢, we can a.s. choose some /. such that for any § < K and any 6 > 0
with f+0 < K

Tz < Tpss < sup {(B+ §)m(s) — Ent(s)} + Ke.
s€2,Ent(s)<Bo

Then, letting 6 | 0, and since the supremum can now be reduced to a finite set (we consider
only ¢ points), we get that for any 8 < K

Ts <limTg4s < sup {Bw(z)(s) —Ent(s)} +e<Tz+e.
610 s€eZ,Ent(s)<Bg

Since ¢ is arbitrary, this shows that limso 7345 = 73 a.s., that is 3 — 7T is right-continuous.

It remains to prove (4.12). For any i € N we consider Y'; = {Y1,...,Y;} and for any given
path s we define A; = A;(s) = snY; the set of the 7 largest weights collected by s. Then, let
r(Bo) _ SUD e, |A;(s)], as introduced in (3.2). Realizing that 1;y,cq) = [Ai(s)|—[Ai-1(s)],

)
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and integrating by parts (as done in [22]), we obtain for any s € Zp,

N
m(s) = 7(s) = X Milpyiey = Jim  >7 Mi(JA] — |Aiy])
>0 i=0+1

N-1
= lim ( > |Ai‘(Mi_Mi+1)+MN’AN|_M€A€‘>
N=o Nl

06
< Y £ (M; — Miy) + limsup My £, (4.13)
i=0+1 N—a
At this stage, the law of large numbers gives that lim,, ,,, N/*My = (8By)'/?* a.s., and

Corollary 3.2 gives that limsupy_,,, N _1/2450) < +o0 as. Since a < 2, we therefore
(Bo)

conclude that limsupy _,., MyLy "' = 0 a.s.
WeletU,:= 3, EEBO) (M; — M;_1). We are going to show that there exists some ¢, such
that Zi>€0 EEB)(MZ» — M;_1) < o a.s., and thus limy_,,, Uy, = 0 a.s. We show that E[UZO] is

finite for ¢y large enough. For any ¢ > 0, by Cauchy-Schwarz inequality we have that

< (3 6 (3 o))

i>f0 i>fo
Then, we get that for ¢, large enough
E[U2] < C ) i ZE[(CP)]E[(M; — M;_1)?]
>4
< Cjp, Z P2 X i < o
i>£0
Here, we used Corollary 3.2 and a straightforward calculation that gives E[ (M; —M;_1)?] <

ci~272/® for i large enough (see for instance Equation (7.2) in [22]). Provided ¢ is small
enough so that 2 — 2/a- < —1 we obtain that E[U} ] < oo. O

4.5. Existence and uniqueness of the maximizer. As a consequence of Lemma 4.2, to
show that the supremum is attained and is unique in (2.6), it is enough to prove the
following result.

Lemma 4.3. For a.e. realization of P and for any B > (0 we have that
s5(B) = argmax { S (s) — Ent(s)}
SE@B

exists, and it is unique. Here, we defined 9 := {s € Z: Ent(s) < B}.

Proof. Our first step is to show that Zp is compact for the uniform norm | - . Let us
observe that for any s : [0, 1] — R, the condition Ent(s) < B implies that

1s(2) — s(y)] < f SOl < 2B) 2 — g2, Vaye 0,1
Y

so that s belongs to the Holder Space C''/%([0,1]). Hence, Zp is included in C'/3([0,1])
which is compact for the uniform norm | - |5, by the Ascoli-Arzela theorem. We therefore
only need to show that 5 is closed for the uniform norm || - | .

For this purpose we consider a convergent sequence s, and we denote by s its limit.
Since Ent(s,) = 3||s,|%, for all n, we have that (s],),en belongs to the (closed) ball of
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radius (2B)'/? of L?([0,1]). By Banach-Alaoglu theorem, the sequence (s/,),cy contains a
weakly convergent subsequence. This means that there exist n; and s* such that
1 1
| e@s@de > [ o5t @)dn, Ve L(0.1)

0 " k= Jo

By uniqueness of the limit (and taking ¢(x) = 10,3 (7)), this relation implies that s(y) =
¥ s*(z)dz, that is s’ = s* almost everywhere. Since the L? norm is weakly lower semi-
continuous by the Hahn-Banach theorem — that is |s*| ;2 < liminfy .. |s7,, |2 — we obtain
that s € Zp, so Zp is closed. As a by-product of this argument we also have that the

entropy function s — Ent(s) is lower semi-continuous on (Zg, | - ||»)-

Existence of the maximizer. Since Zp is compact, the existence of the maximizer comes
from the fact that the function

tg(s) := Bm(s) — Ent(s) (4.14)

is upper semi-continuous, thanks to the extreme value theorem tells. Since we have already
shown that s — Ent(s) is lower semi-continuous, we only need to prove the following.

Lemma 4.4. For a.e. realization of P and for any B > 0 the function s — 7(s) is upper
semi-continuous on (2, | - ||»)-

Proof. We recall that if s € 95 then maxc[g1)|s(t)] < v2B. Therefore, using the same
notations as above, we can write a realization of the Poisson Point Process P by using its
ordered statistic: P = (M;, Y;)ien, 7(s) = 2oy M;lyy,es), and recall that for any ¢ € N we
let 7(6) .= Zle M;1lyy,esy- Thanks to (4.12), we only need to prove that for any fixed £ € N

the function s — 7(9)(s) is upper semi-continuous: then = (s), as the uniform limit of 7(*),
is still upper semi-continuous.

For any s € p we let 15 := Y,\{s n Y,} be the set of all points of Xy, = {Y7,...,Y}} that
are not in s. Since there are finitely many points, we realize that there exists n = (s, ¢) > 0
such that dy(¢s, graph(s)) > n, with dy is the Hausdorff distance.

Given s € 9, we consider a sequence (sy,)n, s, € Zp such that lim,,_, s, — || = 0.
We observe that whenever |s,, — s|lc < 7/2, we have that dg (s, graph(s,)) > 7/2. This
means that for n large enough

{sp " X} < {sn Xy},
which implies that 7(“) (s) > limsup,,_,, 79 (s,). O

Uniquenes of the maximizer. The strategy is very similar to the one used in [5, Lemma 4.1]
or [22, Lemma 4.2]. For any s € ¥, we let I(s) := {s n Y}, where we Y, = {Y;, i € N}.

Let us assume that we have two maximizers s; # s2. Since Y, is dense in [0,1] x
[-V/2B,v/2B] we have that I(s1) # I(s3). In particular, there exists iy such that Y;, € I(s;)
and Y;, ¢ I(s2), and since s; and s, are two maximizers of (4.14) it means

max tg(s) = max {g(s).
s: Yig€l(s) B( ) s: Yig#I(s) B( )
This implies that
M, = max tg(s)— max M;ly.cy — Ent(s) . (4.15)
= 06) e {95 Wity - Bl |

Conditioning on (Y})jen and (M) jen,j-i, We have that the Lh.s. has a continuous distri-
bution — the distribution of Mi;"‘ conditional on (Y}) en and (M;)jen,j-i, iS uniform on
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the interval [M, ¢, M. <,] —, while the rh.s. is a constant — it is independent of M;,.

io—10 Mig 41
Therefore the e\?ent (4.015) has zero probability, and by sigma sub-additivity we get that
P(I(s1) # I(s2)) = 0, which contradicts the existence of two distinct maximizers. O

Remark 4.5. Let us now explain how the fact that the maximizer of 73 is unique would
help showing path concentration as in Theorem 2.1 of [5]. For any n,h € N and 8 > 0, we
consider Tf,h defined in (5.2) below, which is the discrete analogous of 73. Then, with a
similar approach as above, one should be able to show that

AP = arg max T?
n,h AcA, n,hn

is well defined. For any ¢ > 0 we let sg .» De the linear interpolation of Ai o/ (n X h). At
this stage, the path concentration would be a consequence of the following two statements.

Conjecture 4.6. Let h = h,, and 8 = 3, as in (2.2). Then,

lim lim s'B”h = s}
g—wn—o0 in

Conjecture 4.7. For any £ > 0 it holds that

lim lim P( ﬁ,ﬁn(ﬂsg"hn — S = 6) > 8) =0.

gq—00 n—00

The approach to proving Conjectures 4.6 and 4.7 should be similar to that used in [5].

5. APPLICATION II: DISCRETE HEAVY-TAIL E-LPP

5.1. Heavy-tail E-LPP and ordered statistics. Here, we give some results that will be
central in many parts of the sequel. Let us consider a box A,, ;, = [1,n] x [—h, h]. For any
set A < A, 5, we can define the (discrete) energy collected by A by

Qun(A) = D) wia, (5.1)
(i,z)eA

and we are interested in the (discrete) variational problem,

Brh ._
T . {BnnQnn(A) — Ent(A)}, (5.2)

with 3, ;, some function of n, h (soon to be specified), and Ent(A) is defined in (3.1).
We may rewrite the disorder in this region (w;s)(iz)ca,, , using the ordered statistic: we

let M™" be the r-th largest value of (Wie) (i,2)eA,, , and VARLN= A, its position. In such

a way

‘An,h‘
r=1

(Wij)(5.4yehn = (ML) Y, (1)) (5.3)

In the following we refer to (M,"") L/\:"fh‘ as the weight sequence. Note also that (}C«("’h))ﬁ”l’hl

is simply a random permutation of the points of A,, ;. Let us state right away a lemma that
will prove to be useful in the rest of the paper.

Lemma 5.1. For any n > 0, there exists a constant c such that, for any t > 1 and any £ < nh,
we have

(M > tm(t)) < ()=t
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Proof. We simply write that by a union bound
(n.1) nh nh niy )" < (T niyy)”
IF”(M,, >tm(r)) < <T>P<w1>tm(r)) < (c " P(w1>tm(r))) .

Then, since P(w; > z) is regularly varying with exponent —«, we get that there is a constant
cy such that forany ¢t > 1

h
P(w; > tm("Th)) < cnt_(l_”)a]P(wl > m(”Th)) = cnt_(l_")a nT’
where we used the definition of m(-) in the last identity. This concludes the proof. O

The ordered statistics allows us to redefine the energy collected by a set A < A,, 5, and
its contribution by the first £ weights (with 1 < ¢ < |A,,,]) by

|An h|
n 0) n,
Qp (D) 21 M1y, and Q) (A) ZM( 1oy 5D

We also set Q( )(A) = Qun(A) — fo)h(A) We then define analogues of (5.2) with a
restriction to the ¢ largest weights, or beyond the /-th weight

6n () ¢
T A = Alél/%fh {anhQ£L7)lz(A) — Ent(A)} ,

(5.5)
T = max {8,003 (A) — Ent(A)}

Acnh

In this Section, we prove the following theorem.

Theorem 5.2. The following hold true:
e For any a < a, there is a constant ¢, > 0 such that for any 1 < £ < nh, forany b > 1

By (€ 4/3( n\1/3 34
P(75" = b x (Bum(nh) " (ﬁ) ) < cab ol (5.6)
e We also have that there is a constant ¢ > 0 such that for any b > 1
PPnN\1/3
P(Tﬁ’;;h’(>@ > b x (Bugm(nh/)" 3( hf ) ) < cb Ut 4 ettt (5.7)

The proofs are inspired by the techniques of the previous section, but we need here to
keep track of the dependence on n, h — the proof is postponed to Section 5.3. To that end,
estimates obtained in Section 3 will be crucial. Note already that if ;5 3, ym(nh) — 8 €

(0,00), as n, h — oo, it gives that Tff;l’h’(f)

found thanks to Theorem 3.1).

is of order 3*h?/n (the lower bound can easily be

5.2. Continuum limit of the discrete heavy-tail E-LPP. In this section, we consider the
limit when n, h — oo.

If we rescale A, 4, by n x h, and we let (Y} y,( ))lA” | be the rescaled permutation, i.e. a

random permutation of the points of the set ([0, 1] x [—¢,q]) n (3 x Z). Then for any fixed

feN,
@ vy S vy, as n— o, (5.8)

where (Y;)en is an i.i.d. sequence of uniform random variables on [0, 1] x [—¢, q].
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To find out a continuum limit for the weight sequence, we use some basic facts of the
classical extreme value theory (see e.g., [31]), thatis for all / € N,

~ (n,h)
(M}"”“”) = %znh), i= 1,...,6) 9 (M;,i=1,...,0), (5.9)

where (M;);cn is the continuum weight sequence. The sequence (M;);>1 can be defined as
M, = 21/0‘(51 + e+ &)‘i, where (&;);en is an i.i.d. sequence of exponential random
variables of mean 1, independent of the Y;’s.

In such a way (M;, Y;)en is a realization of a Poisson Point Process on [0,0) x [0, 1] x
[—q, q] of intensity u(dw,dt,dz) = %w‘“_ll{w>0}dwdtdw. Then, we have the following
convergence in distribution for the discrete energy-entropy variational problem (5.2).

Proposition 5.3. Suppose that ;5 3, ym(nh) — v € [0,0) as n,h — oo. Then, for every
a € (1/2,2) and for any q > 0 we have the following convergence in distribution

d
% Tf”;’}t‘ @, To.q := sup {v7(s) — Ent(s)}, (5.10)
seMy

where the supremum is taken over the set ./, := {s € 9,Ent(s) < o0, max[o 1] [s(t)| < ¢}
We also have the convergence

N B (O (D) (e
o3 Tuh = T, (5.11)

with ’Efq defined in (5.13) below. Moreover,

TOZ T, and T "= T,, as. (5.12)

V?q

Proof. For any ¢ > 0, we consider the Poisson Point Process restricted to [0, 1] x [—¢, ¢], and
we label its elements according to the ordered statistic (M;, Y;);en (cf. Section 5.2). For any
A c [0,1] x [—q, q] we define 7 (A) = Zle M;liy,eny and 7GO(A) == w(A) — 7O(A).
In analogy with the discrete setting (cf. (5.5)), we define

7’(7%) = sup {V7T(>e)(8) — Ent(s)},

v,
seEMy (513)
’7;(? = sup {I/?T(g)(s) — Ent(s)}.
’ sedy

We now show the convergence (5.11) of the large-weights variational problem, before we
prove the convergence (5.10).

Tﬁn,hv(é)

(0) ;
g and 7,4 are achieved

Convergence of the large weights. Note that the maximum of

on Y, = Ty(q) and Y, = Y,(q) respectively, that is
B,k (¢ [
L = ma {8, 040,(A) ~ Ent(A)}
’ ’ (5.14)
7:,((]) = sup {1/7r( J(A) — Ent(A)},
’ AcY,
where we recall, T(q) (resp. Y,(q)) is the set of the locations of the ¢ largest weights inside
Ay, gn (resp. Ay 4). Since we have only a finite number of points, the proof is a consequence
of (5.8) and (5.9) and the Skorokhod representation theorem.
Restriction to the large weights. To show the convergence (5.10), it is therefore enough to
1

control the contribution of the large weights Let § > 0 such that _ — % > §. Using Potter’s



DIRECTED POLYMER IN HEAVY-TAIL ENVIRONMENT AND ENTROPY-CONTROLLED LPP 30

bound (cf. [9]) we have that

2\ L1
(ﬁ"’hm(nh/@)%<%>3 <c—03(Gz79),

Plugging it into (5.7) and taking b = by, := £ 05(c=3+9)

, We obtain that

_ pl/4 g
P(%szﬁ,@@ > 5) < C/bé 36/4 +e € byle =% 0, (5.15)

uniformly on n, h. Conbined with (5.11) and (5.12), this concludes the convergence (5.10).
Proof of the convergence (5.12). We show that 77,(;@ — 0 as ¢ — oo. Reasoning as in
(4.7)-(4.10) we obtain that for any ¢ < o and ¢ > 1 it holds that
]P)( sup 7T(>Z) (S) = t) < t_CQM + ct—a2€(—a/a+a6) < C/t_GQ_CaZ.
Ent(s)<2

This implies, reasoning as (4.4)—(4.6) that

[p('];(;@) > t) < C’t‘“(l_i)Q_‘%, (5.16)

which proves that E[(7;€q>é))v] 220 for any v < « — 1/2. This implies that 7L€q>£) — 0in
probability by Markov’s inequality, hence the a.s. convergence along a subsequence, which
in turns implies the a.s. convergence thanks to the monotonicity in /.

We now prove that 7, , — 7, as ¢ — co. First, notice that 7, > 7, , = T,([0, ¢?]) (recall
the definition (4.3)). Then, the conclusion follows from Lemma 4.2, which implies that
a.s. there exists ky > 0 such that for any k£ > kg it holds that 7, = 7,([0, k]). Hence, a.s.
T, = T,4 for ¢ large enough. O

(

5.3. Proof of Theorem 5.2. Let us first focus on Tf’;;h’ Z). As in (4.3) in the continuous

setting, we introduce, for any interval [c, d),

Bn,h:(e) (6)
T d)) := m 2 n Q0 (A) — Ent(A)} . 5.1
ni (e d)s= e B aS ) (A) — Ent(A)} (.17)

Then, we realize that for any d > 0

70O = 7O ([0,d)) v sup T (2814, 24a))
) ) k?l )

Using that

Tf?{h’(z) ([2571d,28d)) < Bon sup QU (A)—2¥1d, fork >1,
’ A:Ent(A)<2kd

Tf’7;{h7(€)([0’d)) < /871,’1 Sup Qfﬁ) (A)7
A:Ent(A)<d

with the choice d = b3 and 3 := (B, xm(nh))¥3(n/h?)'/3, a union bound gives that

(T = 08) < 3 P(ﬂmh sup 0 (A) > 2’”53)
’ k>0 A:Ent(A)<2kb3

<ZIP>< sup AQ%)}L(A)>2k_1bm(nh)(§n/h2)l/4>, (5.18)
k=0 A:Ent(A)<2kb3

where we use that 3 satisfies the equation 3 = 8, ,m(nh)(3n/h2)Y4.
We then need the following lemma, analogous to Lemma 4.1.
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Lemma 5.4. For any a < q, there exists a constant c such that for any B > 1, n,h > 1, and
anyt > 1

IP’( sup fo)h(A) >t x m(nh)(Bn/h?) 1/4> <ct™
A:Ent(A)<B
Applying this lemma in (5.18) (with B = 2*b3, t = 23%/4-1p3/4) we get that for any
k>0
IP’( sip () > 2k’1bm(nh)(3n/h2)1/4) < 2kp) 39/
A Ent(A)<2bj3

so that summing over k in (5.18), we get Theorem 5.2.

Proof of Lemma 5.4. We mimic here the proof of Lemma 4.1, but we need to keep the
dependence on the parameters n, h, B. For i > 0, we denote T := {Yl(”’h), e Yi("’h)} with
the Yj("’h) introduced in Section 5.1 (Yy = ¢¥), and for any A we let A; := A n Y; be the
restriction of A to the i largest weights. As in (4.7), we can write

logs ¢
! ® ~
x osup 5 (A) < ) MyiLgie, (5.19)
BRI gtk T (B) € 2y ML

where 3; = M = M™" /m(nh) and L; = L% (n,h) = L) (n, h)/(Bn/h2)V/* are
the renormalized weights and E-LPP (we drop the dependence on n, h, B for notational
convenience).

As in the proof of Lemma 4.1, we fix some § > 0 such that 1/ — 1/2 > 26, and as for

(4.8), the probability in Lemma 5.4 is bounded by

&t s j 245 ~ b oin—1/a+6
;0 [P<L2j+1 > (' logt (20+1)V/2+ ) +]P>(M2j > " o () Jact )] (5.20)

For the first probability in the sum, we obtain from Theorem 3.1-(ii) that provided that
C'(log t)29° > 20"
~ ) 1\ C'(logt)299 o
P(szﬂ > (C'logt (2J+1)1/2+5)) < <7> & < ¢~ (log2)C 20 (5.21)
2
Then, the first sum in (5.20) is bounded by ¢~* provided that C’ had been fixed large
enough.
For the second probability in (5.20), we use Lemma 5.1 above to get that for any a < «

F n t Jy—1/a+6) ~ (n,h) m b 7\6/2 —j
P(MQJ > O o () ) < P(M2j > O o (@) m(nh2 )) (5.22)
< c(logt)4t~(27)7%° (5.23)

For the first inequality, we used Potter’s bound to get that m(nh2~7) < em(nh)(27)~ 1/ +9/2,
We conclude that the second sum in (5.20) is bounded by a constant times (log ¢)*t“.

All together, and possibly decreasing the value a a (by an arbitrarily small anount), this
yields Lemma 5.4. O

6n,h7(>£)
Tn,h

Let us now turn to the case of . We first need an analogue of Lemma 5.4.
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Lemma 5.5. There exists a constant c such that forany B > 1, n,h € Nand 0 < ¢ < nh, for
anyt > 1

IP’( sup QU (A) = ¢ x m(nh/e) £ (Bn/h2)1/4) <t g ooVt
A:Ent(A)<B

Proof. Analogously to (5.19), we get that

logs (nh/€) M(n,h) L(n,h)

1 (>0) 270 2i+1¢
X sup  Q,,7(A) < ;
m(nh/€)0V2(Bn/h2)V4 " Apnay<s " (2) ;0 m(nh/0) €/2(Bn/h2)1/4

(5.24)
Then, we get similarly to (5.21)-(5.22) that for any § > 0: (a) thanks to Theorem 3.1-(ii)
we have

n,h ' Jioi
P(M(LB%Q%W > OV ) < (%)C Y g eeviny, (5.25)
(b) thanks to Lemma 5.1 we have
IP’( MQ(?/L) > C”\/i(Qj)*l/aJt’(;) < op—al/3 (o5 —adt/2
mnh D) > <ct (27) . (5.26)
Lemma 5.5 follows from a bound analogous to (5.20). O

Then, setting 3y = (Bnm(nh/0))*(*n/h?))5 so that By = B, pm(nh/0)02(Bn/h?) V4,
we obtain similarly to (5.18) that

=05 p x Bg) < Z ]P’(Bn,h sup Qi;,f)(A) > 2’“*1634)

Bn,hv
]P’(Tmh )
k=0 A :Ent(A)<2kb8,

<3p( s Al = 2 /e @he i) )
k=0 A:Ent(A)<2kb3,

< Z (0(2%)—@(/4 n e—c23k/8b3/8> < Jpat/h ot
k=0
This concludes the proof of Theorem 5.2.

Part 2. Polymers in heavy-tail random environment
In this part, we go back to the study of directed polymers in heavy tail random environ-
ment, and show our main results, with the help of the E-LPP estimates proven above.
6. TRANSVERSAL FLUCTUATIONS: PROOF OF THEOREM 2.2

In this section, we consider the case a € (1/2,2), and prove Theorem 2.2. First, we
partition the interval [ A, h,, n] into blocks

Bip = [287 0, 2%R,), K =logy Ap + 1,...,logy(n/hy) + 1. (6.1)
In such a way,
logy (n/hn)
P‘ﬁ,gn(mjx 1Si| = Anhn) = 2 Pﬁngn(mjtx |Si| € Bk,n). (6.2)

k=logy An+1
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We first deal with the case where n/m(nh,) "= 0 for the sake of clarity of the exposi-

tion: in that case, log Z% 5, does not need to be recentered. We treat the remaining case (in
particular we have o > 3/2) in a second step.

6.1. Case n/m(nh,) "= 0. We observe that the assumption w > 0 implies that the parti-
tion function Z 5, 1 larger than one. Therefore,

P75, (max|Si| € Byn) < Zj 5, (max|S;| € Bip)-
By using Cauchy-Schwarz inequality, we get that

Z;, 5, (max || e Bjn)? < P (max|[Si| > 27 hn) x Zi s, (max|Si| < 2%hn) . (6.3)

The first probability is bounded by 2P(|S,| > h,) < 4exp(—2%¢h2/2n) (by Levy’s in-
equality and a standard Chernov’s bound). We are going to show the following lemma,
which is the central estimate of the proof.

Lemma 6.1. There exist some constant qo > 0 and some v > 0, such that for all ¢ > qo we
have

2
2hy

w 1,200 v n
P<Z”,25n(rzn<af|si‘ S qhn) >eil ) <q (1 +1n W) 6.4)

Therefore, if n/m(nh,) "= 0, this lemma gives that for ¢co = 1/8 and for k large enough

(i.e. Ay, large enough), using (6.3),
w —c022kB2 /n, —y
P<Zn,ﬁn(r§?§|5@" € Byp) = de 0%/ > < (26,

Then, using that 3,1, 4, om0 hifn < =1 ALhL/n we get that by a union bound

P(Pﬁ,ﬁ(glgi( |Si| = Anhy) = e—clA%h%/n)
logy(n/hn) .
< Y B(Zis(max|Si| € Byn) > dem T )
k=logy An+1 IST
S X reedr (6.5)

k>logy An

We stress that in the case when n/m(nh,) "= 0, we do not need the additional » in front
of e~c14Mn/m in (2.9).
Proof of Lemma 6.1. For simplicity, we assume in the following that ¢h,, is an integer. We
fix § > 0 such that (1 + ¢)/a <2 and (1 —d)/a > 1/2, and let
hazz o, 212 7 \—(1-6)%2/a
T = Tn(qhyn) = g (g°h;/n) v 1 (6.6)

be a truncation level. Note that if o < (1 — §)%? then we have T = 1. We decompose the
partition function into three parts: thanks to Holder’s inequality, we can write that

w L1oezCD o Lipgam 1 <)
log men(%ag( S| < qhy) < 3 logZ, s5 + 3 logZ,, g5 + 3 logZ, %5, - (6.7)
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where the three partition functions correspond to three ranges for the weights 3,w; ,:

. n
Z%& = E| exp (2 6ﬁnwz’,5i1{5nwi,5i>n> ]-{r_nax|Si\<qhn}] (6.8)
L i—1 i<n
(1) i N
T
Zn,ﬁﬁn =E exp ( Z Gﬁnwi,si]‘{ﬁnwi,sie(l,T]}) 1{r_ﬂax \Si|<qhn}] (69)
L i=1 <n
(<1) i N
<
Z, 54, = B| exp (Z Gﬁnwi,sil{ﬁnwi,sislﬂ 1{max|si\<qhn}] ~ (6.10)
L i=1 i<n

We now show that with high probability, these three partition functions cannot be large.
Note that when T = 1, the second term is equal to 1 and we do not have to deal with it.

Term 1. For (6.8), we prove that for any v < 2« — 1, for ¢ sufficiently large, for all n

large enough we have
h2
P(log A coq2—") <q”. 6.11)
b n n
We compare this truncated partition function with the partition function where we keep

the first £ weights in the ordered statistics (Mi(nghn))lgignqhn. Define

h2
£ = Lalghn) = (®h2/n)' 0, so T = “nglla (=020 6.12)
n
and set
) ¢ (n,ghn)
Zihs, = B[ exp (Y 68.M "1 g ) |- (6.13)
i=1

Remark that, with the definition of T and thanks to the relation (2.2) verified by £, we
have that for n large enough

P(ﬁnMg(n’qhn) < T> < P(Mén’qh") > %ql/ag—(lfa)l/z/am(nhn»

Then, since we have ¢/¢ < 1 (see (6.12)), we can use Potter’s bound to get that for n
sufficiently large

m(ngha/6) < (a/0" ) “m(nhy,)
and we obtain that provided that ¢ is small enough

P(ﬁnMe(n,th) > T) < ]P)<M€(7’L7q}ln) 2 COq(SQ/aEéQ/am(nqhn/g)) < (Cqﬁ)_(SQz/Q’

where we used Lemma 5.1 for the last inequality. We therefore get that, with probability
larger than 1 — (c£)~%/? (note that £~%¢/2 < q=%/2 < ¢=* for n large enough), we have that

{(z,x) € [1,n] x [—qhn, ghn]; Bnwiz > T} c Y, = {Yl(n’qh"), .. ,Yg(n’qh”)}, (6.14)

and hence Zsﬁigi < fo)ﬁ 5,

We are therefore left to focus on the term fo)wn: recalling the definitions (5.4) and
(5.5), we get that

7

U= 3 R (s T, = )

ACT[

< Y exp (65, (8) — Ent(A)) < 2exp (1077,
ACT(

(6.15)
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where we used that P(A < S) < exp(—Ent(A)) as noted before in Section 3.2. Note that
we have ¢ < Scg®h2 /n for n large enough (and ¢ > 1), so we get that

4 h? 60n, 1 h?
(el > ') <B(r150 > L)

Then, by the definition (2.2) and thanks to Potter’s bound, for any n > 0 there exists a
constant ¢, such that for any ¢ > 1

4/3 5
(OBumnain)) ™ ris 3B
(q%h3 /n)t/? n
where we used that for any n > 0, m(ngh,) < c;q(“”)/ “m(nhy,) provided that n is large
enough (Potter’s bound). Therefore, provided that 7 is small enough so that (1 + n)/a < 2,
an application of Theorem 5.2 gives that for ¢ large enough (so that b := 52 (q¥/3)2=(+n)/a
is large),
p(T9n® 5 Lo ol _p(qoom 5y, (65um(nghn)) DY e (6.16)
( nahn 200(] ;) h ( nahn = V1% (q2h2 /n)1/3 ) s )
with v = 2a — 1 — 2n. This gives (6.11), since 7 is arbitrary.

4/3+(1 2 2h2
:Cn(q/ )( n)/a=2 q ;n’

Term 2. We now turn to (6.9) We consider only the case T > 1 (and in particular we
have a > (1 — §)%/?). We show that for any 7 > 0, there is a constant ¢, > 0 such that for ¢
large enough and n large enough,

IP’(log Z;(}G’gl) = ¢ (qZhZ/n)l_n> <exp (- cn(qzhi/n)l/?’) . (6.17)

Again, we need to decompose ZL(,E’BT}L) according to the values of the weights. We set 0 :=
(1—-90)2/a > 1, and let

0= (®h2 /)09 = (1) | with &y = £ = (¢*h2/n)'® asin (6.12)  (6.18)

2 2

10) 1= Mo gl (22 ) 00— gy 00 6.19)
n n

for j € {0,..., s} with s the first integer such that 6* > a/(1 — §)*2. We get that T(®) = T,

and T(®) < 1. Then, thanks to Holder inequality we may write

T(j) ;TU= 1)])
log Z{{g. < Zl Z\ s
ith Z((T(j),T(j*U]) — F 6 o1 N 1
wi 1,65 6n : exp Z KBnwi,s; {Bnwi,s,€(T@),1G-D]} | H{max |S;|<ghn} | -
i=1 1<n

To prove (6.17), it is therefore enough to prove that for any 1 < j < &k, since ¢; >
(a*h7;/m)' =,

P(log ZS;:;’:(FUD > 8/1(q2h2/n) 6/10) <exp(— 2h2/n)1/3) (6.20)

First of all, we notice that in view of (6.18)-(6.19), with the same computation leading to
(6.14), we have that with probability larger than 1 — (cf;) %%/

{(G,2) € [1,n] % [=hn, hall; Bawie > T € 1 i= M)y i)y 6.21)
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(1-6)2/a

On this event, and using that ¢; = (¢;_;) and

G- _ e Qg1 hy g2
n n

(if ¢ is small), we have

N 4
Z{T7 T < E[exp (GKT(]_D ! {Y_m,qhn)es})] (6.22)
i=1 "

ej 2
h3 1/apy—1/2-6/5
n 3 Moo Sty "P(Sn Ty =A)
k:quééi/2+6/10 AcTy, HANES

2
o hZ —5/10
< 6Kq T"Ej

2 £ 2
g2 2510 Y exp (61 gt 200 - )
e n + exp ( 6k— 0. k— inf Ent(A)) .
12 k P n R ACY,. |Al=k (&)
k:quagjl./2+§/10 J

Then, we may bound (Zlg) < eFlogt; ' We notice from the definition of x (and since 6 € (1,2))
that there exists some n > 0 such that ¢; < ¢,, < (¢°h2/n)?~" for any 1 < j < k: it shows in
particular that log¢; < 6352 < q2%€71/ 2-9/ 5, provided that n is sufficiently large and ¢ has
been fixed sufficiently small. We end up with the following bound
z .
Nl h2 _5/10 J h2 1
z(T0 T < BTG 4 Z exp (cqz—”fj V205 inf Ent(A)).

1,64 n o n ACTy, | Al=k
=g gl/2 400

Then, we may use (3.9) (with m = ¢;, h = ghy,) to get that, for any k£ > qz_éﬁ;/%é/w

ha 5—1/2—5/5k:> < <CO(2C£j N > k
j ~

]P’( inf Ent(A) < 2¢¢?

ATy, |Al=k n k2

< (eqz 26 < (et)) M (6.23)

. . 3 _ . .

For the last inequality, we used that ¢2a 3 < 1, since o > 1/2 and ¢ > 1. Since we have
2 — .

that qQ%"Ej V205 1, we get that there is a constant ¢’ > 0 such that

6/10
/ /

2 2
_ 2hn —1/2-6/5 _ th -
E e o Y k< e wt </

1
k>q2*a£]1./2+5/10

Using (6.23), we therefore obtain, via a union bound (also recalling (6.21)), that provided
that n is large enough

(9) T(G-1) h2 ,—5/10 _ -
P<Z£z(,T6HJﬂfJ T ) < (ely) 09 4 Z (ct)) okt

1
k=q? @ 0)/2HoN0

< (C(j) _Cég;p .

This proves (6.20) since ¢; > ¢y = (¢>h2 /n)1 0.
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Term 3. For the last part (6.10), we prove that for arbitrary n > 0,

2 0 ifo>1,
P(log Z(ilﬁ) > CUQQ—”) <cqg 2 x { M) ) (6.24)

Let us stress that in the case o < 1 we get that for n large m(nh,, )= > (nh,)'~2", there-

fore n/(nh,)="* goes to 0 provided that 7 is small enough, since we are considering the

case when h,, > y/n. Hence, we can replace the upper bound in (6.24) by 1 A (n/m(nh,)).
To prove (6.24), we use that e®*1=<1} < 1 + €6$1{x<1} for any z, and we get that

—.

~
I
—

VAP E[

n,608n (1 + 666'8nwi75i1{Bn,wi,si<1})i| ?

—

and EZ\5) <B[[](1+698E[wliuers,y]) | < exp (68 E[wlueiys,y]) - (6.25)

~
I
—_

Therefore, by Markov inequality and Jensen inequality,

<1 h2 1 n
n

<) < ¢ —Q”Zﬂ”ﬂa[ 1 ]. (626
non < OO T Elwlwsys, |- :
It remains to estimate E[wly,<1/g,}]- If & > 1 then it is bounded by E[w] < +c0: this gives
the first part of (6.24), using also (2.2). If & < 1 then for any § > 0, for n large enough we
have 3,E[wl,<1/5,}] < (=M for n large: by using (2.2) together with h2/n > 1, this
gives the second part of (6.24).

The conclusion of Lemma 6.1 follows by collecting the estimates (6.11)-(6.17)-(6.24) of
the three terms in (6.7). O

6.2. Remaining case (o > 3/2). We now consider the remaining case, i.e. when we do
not have that n/m(nh,) "=" 0. In particular, we need to have that a > 3/2, and hence
E[w] =: p < +c0. Then, we do not simply use that Z;’ ; > 1 to bound P ; (max;<n S| €
B;m), but instead we use a re-centered partition function Z‘a 5, = e_"B"“Z:i 5, SO that we
can write

1 n
Pb'riyﬁn ( I%’l<a’r§( |Sl’ € Bk7n) = Zw E[ exp ( Z /Bn(wiysi - /,L)) 1{maxi<n ‘SJEB}CW}]
h i=1

n,8n
1 _
=: Z"" Z%ﬁn(rfiaf |SZ| € Bk,n) . (627)
nnBTL =

First, we need to get a lower bound on Z , .

Lemma 6.2. For any 6 > 0, there is a constant ¢ > 0 such that for any positive sequence
£, < 1 with g, = n~Y2(h2 /n)*=3/2+9 (this goes to 0 for § small enough), and any n > 1

n2 a—1/2—5

e I (6.28)

We postpone the proof of this lemma to the end of this subsection, and we now complete
the proof of Theorem 2.2-(2.9). Lemma 6.2 gives that Z% 5, = n~! with overwhelming
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probability: using (6.2) combined with (6.27), we get, analogously to (6.5),
- —c1A2h2 /n

logy (n/hn)+1
<B@y <o)+ Y B(Zoa(max|s] e By,) > 409 (6.29)
k=logy An+1 sn

Then, we have a lemma which is the analogous of Lemma 6.1 for Z* -

Lemma 6.3. There exist some constant qy > 0 and some v > 0, such that for all ¢ > qo we

have
2h2

— 1
P(Zﬁ,wn(r&aﬁ&l < qhy) > et! 7) <q. (6.30)

Proof. The proof follows the same lines as for Lemma 6.1: (6.7) still holds, with j,w; g,
replaced by 3,,(w; s, — p) (outside of the indicator function). The bounds (6.11)-(6.17) for
terms 1 and 2 still hold, since one fall back to the same estimates by using that (w; 5, — 1) <
wj s,. It remains only to control only the third term: we prove that when 4 := E[w] < o,
then for any § > 0, provided that n is large enough,
2 2\ a—346
A 2 hy < eq—2 5 12 ha\o—2+
IP(log ann = coq . ) <cg txn ( - ) , (6.31)
where we set analogously to (6.7)
Z£f61,62n = E[exp (2 66 (wi,s; — “)1{an¢,si<1})] ) (6.32)
Then, using h2/n < n (if @ > 3/2, the upper bound in (6.31) is bounded by cqg~?n®=2+9
which is smaller than ¢~2 provided that ¢ had been fixed small enough.
To prove (6.31), we use that there is a constant ¢ such that e® < 1+ z + cx? as soon as
|z| < 6, so that we get similarly to (6.25) that

EZ{5), < (14 BuE[w = m)lweron] + BE[(@ — 1)1 uer/a])
< exp (an(l/ﬁMﬁf{) < exp <h£(hi/n)a+5> . (6.33)

For the second inequality, we used that E[(w — ,u,)l{wgl/ﬁn}] < 0 (as soon a 1/, = w),
and also that E[(w — 1)*1(,<1/8,1] < cL(1/B,)B5 2, thanks to (1.2). The last inequality
holds for any fixed ¢, provided that n is large enough, and comes from using Potter’s bound
and the relation (2.2) to get that L(1/8,)3% < ¢P(w > 1/83,) < (nhy,) " (h2/n)**°. Then,
applying Markov and Jensen inequalities as in (6.26), we get that

(<1 h2 omn hE\a+d
]P’(log ZS6B)n = coqQF) < cq ZF%(?) ,
which proves (6.31). ]
With Lemma 6.3 in hand, and using Cauchy-Schwarz inequality as in (6.3), we get that
r7 —cC k n —v
IP’(Z‘&B(I&ag(‘SA € Bk,n) > 902 hi/ ) < (2M)7v.

Plugged into (6.29), this concludes the proof of Theorem 2.2-(2.9). It therefore only re-
mains to prove Lemma 6.2.
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Proof of Lemma 6.2. We need to obtain a lower bound on Z,, 3,, so we use Cauchy-Schwarz
inequality backwards: we apply Cauchy Schwarz inequality to

ng,@g/? E[exp ( i %(Wi,si - H)l{ﬁnwi,si>1}>:|

< (Znyg,) 125 [exp (Z — B (wis; — u)l{gnwi,si>1}>]1/2 _. (Z”ﬁn)l/Q(Zf—l)gn)m,
=1

so that
2 > ()00 /245, 639
Hence, we get that
2 2
(2, <) <P (), 5 o) 1p(2D, < a2 ), (639

and we deal with both terms separately.
For the first term, we use that analogously to (6.33) we have

EZyl), < (1 ~ BaE[(w — 1) lwerypy] + BRE[(w — )21{W<1/ﬁn}]>n
< (1 +cL(1/5n)5g)" < exp( (13 )a+a/z)

Here, the difference with (6.33) is that we use for the second inequality that —E[(w -
ml<1/] = E[(w — ) lg=1/8,3] < c¢L(1/B,)B5", thanks to (1.2). Again, the second
inequality holds for any fixed ¢, provided that n is large enough. Using Markov’s inequality,
one therefore obtains that the first term in (6.35) is bounded by

(6.36)

IP’(ZS_”@,L > 65"5332) exp( ~(i/n )* e gi) < exp ( —enﬁ>, (6.37)

. . . . . R2\Y 3 +0
the second inequality holding provided that ¢, is larger than n—1/2 <7") :

As far as the second term in (6.35) is concerned, we find a lower bound on foﬁlj by
restricting to a particular set of trajectories — the idea being similar as when we proved

T3>0 in Section 4. Consider the set
Op = {(i,x) € [n/2,n] % [X/2hn, 26X 2h]: Brwie = 2902/2’} .

If the set O,, is non-empty, then pick some (ig,z) € O,, and consider trajectories which
visit this specific site: since all other weights are non-negative ((w—pu)1g,,~1; = 0 provided
< 1/B,), we get that
27(12,6}3 > ePn(Wig.zo ’“)P(Sio = xo)
c x2 c . hd

= % exp (ﬁnwiomo - 73) = %6’6" no. (6.38)
We used Stone’s local limit theorem [33] for the second inequality (valid provided that n
is large, using also that i > n/2). For the last inequality, we used the definition of O,, to
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bound the argument of the exponential by x3/iy > £,h2/n. Therefore, we get that

25%/2 hn,

P(Zfi;j < \cﬁeg”}ﬁ) <P(O H H ( P(Bnw > 2x2/z)>

i=n/2,_ 12
8717,/2nhn
< (1 —P(w > 4€nm(nhn))) .

For the second inequality we used that 22/i > ¢,,h2/n for the range considered, together
with the relation (2.2) characterizing 3,,. Then, we use the definition of m(nh,) together
with Potter’s bound to get that for any fixed § > 0, we have P(w > 4e,m(nhy)) >
ce;,®(nhy,) ™1, provided that n is large enough. Therefore, we obtain that

7 o € et _t-a+s
P(Znﬂn < \/ﬁe ) < exp( ceR > , (6.39)
which bounds the second term in (6.35). O

7. REGIME 2 AND REGIME 3-A

In this section we prove Theorem 2.4 and Theorem 2.5. We decompose the proof in three
steps, Step 1 and Step 2 being the same for both theorems. For the third step, we give the
details in regime 2, and adapt the reasoning to regime 3-a.

7.1. Step 1: Reduction of the set of trajectories. Recalling i = E[w] (which is finite for
o > 1), we define

Zy, 5, = E[eXp <25n wi,S; — /1/]-{04;3/2}))] (7.1)

We show that to prove Theorem 2.4 and Theorem 2.5 we can reduce the problem to the
random walk trajectories belonging to A,, 45, for some A > 0 (large). For any A > 0, we
define

By(A) = {(i,Si)?:l: max |S;| < Ah, } (7.2)
and we let

Zﬁ,ﬁn (Bn(A)) := E[exp ( B (wi,s; — Ml{a>3/2})> 1Bn(A)]- (7.3)

-

Relation (2.9) gives that ]P’(P;’ﬁn (Bn(A)) > ne—1Ah;, /n) < ¢ A7 uniformly on n €
N. This implies that

P(‘ log Z. 5, — log Zi 5, (Ba(A))| = ne™ 4474 /“) <A™, (7.4)

uniformly on n € N. Let us observe that in Regime 2 and regime 3-a we have that h2 /n >
cslogn, therefore ne~14hi/n goes to 0 as n gets large, provided A is sufficiently large.
In such a way relation (7.4) implies
lim h— logZy 5 = lim lim h—n log Zy 5. (Bn(A)). (7.5)

n—00 " A—00 n—000
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7.2. Step 2: Restriction to large weights. In the second step of the proof we show that
we can only consider the partition function Z*’ ( ) truncated to a finite number L of large
weights, iwthL independent of n. We need some 1ntermed1ate truncation steps.

We start by removing the small weights. Using the notations introduced in (6.8 — 6.10)
and (6.32), Holder’s inequality gives that for any n € (0, 1)

(2000 ) T (2 s )T < B B < (2 ) (E )T
n.(1-1)Bn (n=1—1)8x S Zn g, (OnlA)) S \ B (14m)8, 7u(1+n—4)6? 6)
7.
We observe that the condition 8,w > 1 implies (if u < o)

(1 =2n)Bw < (I =n)Ba(w—p) and  (1+n9)fu(w—p) < (L +n)paw,  (7.7)

provided n is large enough. In such a way, we can safely replace VA (1) B by fo(ll) )6
and Z(>(11)+17) by Z£L>(1)+n) in (7.6). The next lemma shows that the contribution given

by log ZgL pﬂ) is negligible.

Lemma 7.1. Let p € R. Then,

(<1) P
h2 1 Zm)ﬁn — 0, asn — oo. (7.8)
Proof. The case p > 0 is a consequence of the estimate in (6.25) and (6.26), while the case
p < 0 is a consequence of the estimate in (6.36) and (6.37) O

We can further reduce the partition function foylﬁ)n

(with v > 0). ,
We fix some § > 0 small, and define ¢ := (A2h2/n)' 0 and T = AY/eln~(1-0)"2/a 55 ip
(6.12): then, Holder’s inequality gives that for any » € (0, 1)

to even (intermediate) larger weights

Gn

(L))
n,(L+n)vB 1+1%Z

L+~

1
log Zq(l 1}2 < log ZSV% < 157 log Z

Then, (6.17) gives that for any fixed A > 1, and since h2/n — oo, we have that for any
p>0,

" 1o gZSpB]) — 0, asn — . (7.9)

h2
Finally we show that we can only consider a finite number of large weights. We consider
T, = {Yl("’Ah"), o Ye("’Ah")} with ¢ chosen above. Using (6.14), with probability larger

1 — (cf)~%2 (with £ — o0 as n — c0) we have that
Hr = {(z,az) € [1,n] x [—Ahy, Ahy]; Brwi e > T} c Yy

and thus Z£l>VT ) < Zg)yﬁ with high probability. We let L € N be a fixed (large) constant.

Since |=r| — o0 as n — oo in probability, we have that Y < =t so that, Zf1 1)/5 ZSVTL% for
large n, with high probability. By using Holder’s inequality we get,

n

(L) (>T) (L) 1+n (L,0) T+n
vayﬁn < vaVﬁn < <Zn,l/(1+77)ﬁn> ( n»”(1+7771)6n> ’

where

AR [exp( 2 B M Ym,qhn)es})]. (7.10)
1=L+1
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We now show that the contribution of Z( ()1 1) is negligible.
Lemma 7.2. For any € € (0,1) and for any L € N and p > 0 there exists ., such that for all n
IP(h2 logZ") > 5) <L, (7.11)

with 6 — 0as L — oo.

Proof We let p > 0. Recalling the definition (5.4), and using that P(A c §) < P"(2) we
have that

200 < % B (D) P(SnY,=A4)

,pﬂn
ACTZ
< D exp (pﬁn U a) - Ent(A)) 2 exp (Tsﬁﬁ(x)) |
ACT@
Using that ¢ = o(h?/n) and (5.15), we conclude the proof. 0

Collecting the above estimates we can conclude that

T . .o (L)
nl_)oo nz log Zy 5 (Bn(A)) = il—{% lim lim o logZ . (7.12)

LS00 n—w h2 n,vfn
n

7.3. Step 3: Regime 2. Convergence of the main term. In remain to show the conver-
gence of the partition function restricted to the large weights.

Proposition 7.3. For any v > 0, and L > 0

L) . :
n a |\ T in Regime 2,
Dlogz) , QA T (7.13)
hz e 7'571/’ A in Regime 3-a,

where 7;.0:3 is defined in (5.13) and 7?(;)714 in (7.18) below.

Remark 7. 4 One readily Veriﬁes that
* U > T (resp. v — TB A) is a continuous function;

* 7'17A — Ti,4 (resp. 7/'871714 — 7'5717A) as L — oo (see Proposition 5.3, resp. Proposi-
tion 7.5);

% T4 — T1 (resp. 7’571714 — 7~'5) as A — o (see Proposition 5.3, resp. Proposition 7.5).

Therefore, the proof of Theorem 2.4 and Theorem 2.5 is a consequence of relations
(7.5), (7.12) and (7.13).

Proof. We detail the proof for the Regime 2. The Regime 3-a follows similarly using the
results in Section 7.4 below. To keep the notation clear we let v = 1.
Lower bound. For any L € N we consider a set Ay < Yy, which achieves the maximum of

Tf ';‘g“), resp. of Tf "Ag“) defined below in (7.17) for Regime 3-a. We have

2, = exp (B an, (A) ) P(S ~ T = Av).

Since L is fixed, we realize that any pair of points (i, x), (j,y) € Yy satisfies the condition

li — j| = en and |x — y| = eh,, with probability at least 1 — ¢, with ¢ — 0 ase — 0. In

such a way, we can use the Stone local limit theorem [33] to get that P(S n Ty = AL) =
A

— 15 0(1) o ~Bnt() 1 the Regime 2, in which Ent(Ar) = h2/n » logn, this implies that

2y, = exp (1+o()TIY). (7.14)

n
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To conclude, we use Proposition 5.3-(5.11) to obtain that Tf 7,14%73 converges in distribution

to 7'1(71:4), concluding the lower bound.
In Regime 3-a, (7.14) is replaced by

A
z("), = exp ((1+ 0(1)){ B, an, (A1) — Ent(Ar) - |2L logn})., (7.15)
so that Tf’;lg;) is replaced by Tf%gﬁ defined in (7.17). Then the conclusion follows by
Proposition 7.5-(7.19) below.
Upper bound. We have

z®, = 3 MU PS5 ATy = A)
ACTL

Using the Stone local limit theorem [33] we have that P(SA Ty = A) = n— 2 +0(D~Bnt(4)
uniformly for all A < Yi. Since we have only a finite number of sets, we obtain that

Z\), <2exp ((1 + 0(1))Tff22§3), (7.16)

which concludes the proof of the upper bound, again thanks to the convergence proven in
Proposition 5.3-(5.11). In Regime 3-a, using the Stone local limit theorem, we can safely
replace Tfﬁ;"g;) by Tf"AS;) defined below in (7.17), and also conclude thanks to Proposi-

tion 7.5-(7.19). O

7.4. Step 3: Regime 3.a. Complements for the convergence of the main term. We end
here the proof of Theorem 2.5 by stating the results needed to complete Step 3 above in
the case of regime 3.a. In analogy with (5.2), and in view of the local limit theorem (2.15),
we define
fﬁ’;{h = max {Bp 0 na(A) — Ent(A) — 14l logn}
n, ’ s 2 B

Ac n,h

© Al 7:47)
FBn,hs(£) )

Tn’hh = Arél/%ih {Bn,thh(A) — Ent(A) — > logn}

In the next result we state the convergence of %Tf " and %T‘f ’;L’h’(e), analogously to Propo-
sition 5.3.

Proposition 7.5. Suppose that %3, ym(nh) — v € (0,0) as n,h — oo and h ~ 3Y/2\/logn,
with 8 > 0. Then, for every a € (1/2,2) and for any q > 0, £ € N we have the following
convergence in distribution

N @ & - N(s)
2 T = T = sup {n(s) = But(s) — 552}, (7.18)

where the supremum is taken over the set .4, := {s € Z: Ent(s) < 00, max;c[o1]]5(¢)| < ¢}
We also have the convergence

M Bn,hy(£) @) FO) YRS _ N(s)
72 T, on Ts) = sup {1/7r (s) — Ent(s) 25 } (7.19)

Moreover, we have

~ d) ~
7'6(12)’(1(—27'57,,,(1 as { — o, and  Tguq— Tpp asq— .

N2
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The proof is identical to the proof of Proposition 5.3 — using also that ;> logn — % in
regime 3 —, for this reason it is omitted.
To conclude, let us show that 72(2’”) defined in (2.12) is well defined.

~

Proposition 7.6. For any r > 0 the quantities 7§2T) are well defined and for any 3 > 0
1
28

Moreover 7-§ 0, and we have 7,—3 > 0 if and only if 7'5/ Do Finally, there is a critical
value

< T8>1) 7'5 < 0. (7.20)

= inf{B: T3 > 0} € (0, ).

Proof. Since 7%6(0) = (0, we obtain that 7~'ﬁ € [0, 00). As a by-product we also have that 7? >0
if and only if 7~r'3>1) > 0; and in that case 7~'ﬁ = 7~/'3(>1). Additionally, we have

Wi g5 <770 < To< (Ti=55) vo.

with W3 and 7; defined in (2.14) and (2.6) respectively. Proposition 8.4 and Theorem 2.1

ensure that for 3 > 0, W3 € (0, ) and 7~'1 < o0, showing(7.20).
It remains to show that 3. € (0, ), by observing that 3 — SWj and 8 +— (871 —1/2) v 0
are monotone functions which converge to 0 as g — 0. O

8. REGIME 3-B AND REGIME 4

In this section we prove Theorem 2.6 and Theorem 2.7. We decompose the proof in
three steps (analogously to what is done in Section 7), Step 1 and Step 2 being the same
for both regimes 3-b and 2. For the third step, we separate regime 3-b and regime 4, which
have different behaviors. Note that in both regimes there is a constant c¢3 > 0 such that

hn, < cy/nlogn (in regime 4, we have h,, < v/nlogn).

Let us define here, analogously to (7.1), the recntered partition function
2 5. = B[ exp (2 B (@i, — Elwlucy/p, Loz | 8.1)

Then, roughly speaking, we show that log Z ; is of order n~ 12 exp(Xh2/n), with X =
7’5(21) + % in the regime 3-b (where h2/n ~ Blogn), and with X = W in regime 4. In all
cases, we will have log Z:j’ 5, = o(1) (recall that in regime 3-b, 7~'ﬂ>1) < 0).

8.1. Step 1. Reduction of the set of trajectories. We proceed as for Step 1 in Section 7:
for any A > 0 (fixed large in a moment), we define

Ap = {(i,Si) : max |.S;| < A\/nlogn}. (8.2)

<N

Then, we let Z¥ 5, (An) be the (normalized) partition function restricted to trajectories
in A,. Relation (2.9) gives that, analogously to (7.4)

P(‘ log Zn Bn log Z%,ﬁn (-An) = —ed? 10gn> <A™ (8.3)
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Hence, we fix A large enough so that e—c0A%logn < =3 This shows that with high prob-
ability log Zy, 5 = log Zy, 5 (A,) + O(n=2). In such a way, in the following we can safely
focus only on the partition function with trajectories restricted to A,,.

8.2. Step 2. Restriction to large weights. We now fix n € (0, 1), small. The same Holder
inequalities as in (7.6) hold for Z* 5, (A,,), so that we can write, with similar notations as
in (6.8)-(6.10) (the restriction to trajectories in .4,, does not appear in the notations)

! (>1) n =(<1)
r7 g m log Zn1(1+77)6n + 1 + ,'7 ]"Og Zn7(1+77_1)/8n 9
log Z 6 (An) 8.4)
| = Llog YA — Llogz(@)
= 1 — 77 na(172n)ﬁn 1 _ T] n7_(n71_1)ﬁn .
We used also (7.7) to be able to bound below Z£L>(11)_n) g, by Z£L>(11)_217) 5, (using that B, E[wl,<1/p,1] <

1 when o > 1). Then, we need to get a more precise statement than Lemma 7.1 to deal

L1 = (<1)
with Zn,pﬁn'

Lemma 8.1. Forany pe R,
ha

—3a _
(—) \/ﬁlongfplﬁ) Lo, asmn — o.
n b n

Proof. We will simply control the first moment of Z,(fplﬁ)n —1. The idea is similar to that used

to obtain (6.24) and (6.31). We divide the proof into two cases: when « < 1 so that there
is no renormalization necessary in (8.1), and when « € [1, 2).

Let us start with the case a < 1: using that |p|5,w; s, < |p| on the event {f,w; 5, < 1},
we get that there exists a constant c, such that

n
?: Pﬂnwi, i]' nw; o. <
o2i=1 SitBnw s, <1} < H (1+ Cpﬁnwi,sil{ﬂnwi,sisl}) ) (8.5)

i=1
By independence, and since P(w > t) is regularly varying, we get that for n sufficiently
large

1/Bn
E[Buwirlis,en <] < j BP(w > t)dt < ¢ L(1/By)
0

/

' h2\20
< Plw > 1/B) < o (=) (8.6)

For the last inequality we used Potter’s bound, and the definition of 3, i.e. the fact that

Bn ~ %m(nhn). Therefore, in view of (8.5) and using that h,, > \/n, we get that for n
sufficiently large (how large depends on p)

2 2a n 2\ 2«
E[Z5) —1]< (1+ c;%) ~1< Qc;n*I/Q(%")z . 8.7)

This concludes the proof in the case a < 1 by using Markov’s inequality, since h2 /n — +o0.
In the case « € [1,2), we use the expansion e” < 1 + z + ¢,2? for all |z| < 2|p], to get
analogously to (8.5), and setting ji, := E[wl,<i1/8,}] < 1/Bn,

E|Z(5), | < (1+ pBuE[(© — ) Lwersony] + GoB2E[@ = ) 1 gucrsa)])

< exp (c nP(w > 1/Bn)> <1+cen V2 (lfl)ga7
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obtaining the same upper bound as in (8.7). To obtain the above inequality, we used that
E[(w - Mn)]-{w<1/6n}] = unlP(w > 1/B,) < IP(UJ > 1/Bn),
E[(w = ) Lwe1/8,y] < Bl Liu<yp,y] < eL(1/82)85 72,

where the last inequality follows similarly to (8.6). One concludes that (8.7) also holds
when a > 1, and the lemma follows by Markov’s inequality. O

Therefore, in view of (8.4) and Lemma 8.1, we have that for both regimes 3-b and 4

hm —log (flog Z; 5, (Ay )) = lim lim h—log (flog Zn VB) ) (8.8)

h2 v—1n—

Note that in the case of regime 3-b, h2 /n ~ Blogn, so the limit is that of

1 (>1) 1
1 log Z —
Blogn og(og ”Vﬁ>+26

For simplicity of notations, we will consider only the case v = 1 in the following.

8.3. Step 3. Reduction of the main term. In both regimes 3-b and 4, we show that

log Z( 1) ~ goes to 0, and we identify at which rate: to do so, it is equivalent to identify the

1)

rate at Wthh Zfl 5, — 1 goes to 0. The behavior for regimes 3-b and 4 are different, since

the main contribution to Zfﬁln) — 1 may come from several large weights in regime 3-b,

whereas it comes from a single large weight in regime 4, as it will be reflected in the proof.
Let us define ¢/ = /(w) the number of (i,z) € Apa, = [1,n] x [-A,, A,] (with the
notation A, = Ay/nlogn for simplicity) such that 3,w; , > 1, and let us denote

{(i, l’) € An,An; ani,x = 1} = TZ = {Y'l(n,An)’ o ’Y'E(H,An)} , (89)
with Yi(”’A”) the ordered statistic, as in Section 5. We have that
32 h2 1
Ef= Y P(Bawic > 1) <24n «/logn< n) =, (8.10)
(i,2)€An A, "

where we used that P(w > 1/3,) < (h2/n)**(nh,)~! for n large enough, thanks to (2.2)
and Potter’s bound. Since h2/n < clogn, h, » 1/, (8.10) implies that ¢ < (logn)3® with
probability going to 1 (we also used that § + 2a < 3a).

Hence, decomposing Zﬁfﬁln)

for any fixed ko > 0,

according to the number of sites in T, visited, we can write

Z U, >1) —1= Z Uy, with U, = Z eﬁ"ﬂ"’An(A)P(SﬁTe =A). (8.11)
ACT,,|Al=k

In regime 3-b, the main contribution comes from one of the U}’s for some k > 1, whereas
in regime 4 only the term U; will contribute.

Let us now show that, with high probability, we can replace the upper bound in (8.11)
by considering only a finite number of terms. For this purpose, notice that £ < (logn)3®
and min{|i — j|, (i,2) # (j,y) € ¢} = n/(logn)'®® with probability going to 1. Then, we
can use the Stone local limit theorem [33] to have that for any A < T

P(SnT,=A)< en—(3—mIA| ,~Ent(A) ’
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where 1 > 0 is independent of A and can be chosen arbitrary small (by changing the value
of the constant c).
As a consequence, using that (f;) < (¥ and ¢ < (logn)3®, we have for any 1 < k; </

L 4
U= D Pma@p(sar, =A) (8.12)
k=k1 k=ki AcY,,|A|=k

J4
B 1 B 1
< eTn,TZn E gk n—k(g—n) < CeTn,TZn n—kl(a—ﬂl)

Recalling Proposition 5.3 (and the fact that h2 /n < clogn) we have that T,ﬁ ", < Clogn
with probability going to 1 as C — oo. Therefore, we obtain that (8.12) is O(n~2) with
probability close to 1, provided that k; is sufficiently large — this will turn out to be negli-
gible, see Lemma 8.2. Hence, we have shown that with probability close to 1, we can keep
a finite number of terms in (8.11).

This can actually be improved in regime 4, where we can keep only one term: indeed,
since in that case h2/n = o(logn), we get that for any fixed v > 0, Tfj”;ln < vlogn with
probability going to one. Hence, we get that in regime 4, we can take k; = 2 in (8.12)
and obtain that 3% _, U;, = O(n~%/4) with probability close to 1, which will turn out to be
negligible, see Lemma 8.3.

It remains to show the following lemmas, proving the convergence of the main term in
regimes 3-b and 4.

Lemma 8.2. In regime 3 (R3) (recall h?/n ~ Blogn), for any K > 0 we have that

K
n (d) =~ (k)
— 1 E — 1
ha o <k_1 Uk) 1235}( %’A ’ (8.13)

where 7~/’B(]2 1= SUDge. 1, N (s)=k 17(s) — Ent(s) — %} , with .# 4 defined below (7.18).

Note that we have sup;-, 778(2 < 0 in regime 3-b: this lemma proves that Zszl Uy, goes

to 0 in probability, and hence Zfﬂl )

replace the study of log foﬂlz by that of foﬁlz — 1, and it is actually the only place where

the definition of regime 3-b is used.

— 1 also goes to 0 in probability. This is needed to

n

Lemma 8.3. In regime 4 (R4), we have that
n d
2 log (vau) L, (8.14)
with Wy defined in (2.14).

Here also, this proves that U; — 0 in probability, and hence so does foﬁlz — 1.

8.4. Regime 3-b: convergence of the main term. In this section, we prove Lemma 8.2.

Reduction to finitely many weights. First of all, we fix some L large and show that the main
contribution comes from the L largest weights. We define

U= Y A BP(S AT, = A), (8.15)
AcTL,|A|=k
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where Y1 = {YI”’A", .. 7YL”’A"} is the set of L largest weights in A,, 4, (note that Tr, < T,
for n large enough). Then we have that Uy > UECL), and

Z U, < Z Z Z eBnStn, 4y (D) +5nSn, 45, (A')P(S NYTr=AUA)

=1 ACTy,|A|=k A/CT\TL,|A/|<K

Z > P ®P(S AT = A) xexp (KB M)
ACTL,|Al=k

K
= exp <KﬁnM]En’An)) Z UI(CL)
k=1

In the second inequality, we simply bounded 2, 4, (A) by K M]E”’A”) uniformly for A’
T,\ Yy, with |A’| < K. Then, since 3, ~ cg(logn)/m(nhy,) ~ cg a(logn)/m(nA,) as n —
w0, we get that K3, M) < 205,AKMIE"’A")/m(nAn) x logn. For any fixed ¢ > 0, we
can fix L large enough so that for large n we have MIE"’A") /m(nAy,) < €/(2Kcg ) with
probability larger than 1 — . We conclude that there exists some ¢ with e1to0 as L — o
such that

K K
ZUk— nELZUL.

k=1
Since h2 /n ~ Blogn, this proves that
K
L
nlgrgc — log ( Z Uk) = I}LHoloég%o — log (;lU ) . (8.16)
Convergence of the remaining term. We finally prove that
K
n wy @
h2 log ( Z U ) 1<k<K TB’ 8.17)

n k=1
where 7~I'6,(IZL) is the restriction of ’773]“) to the L largest weights in [0, 1] x [—A, A], that is

N k
T(kvL) = sup 7 (s) — Ent(s) — —
A seMa,N(s)=k { ( ) ( ) 26 }

In analogy with Proposition 7.5, one shows that 72(7’2” — 773(12 as L — oo, which completes
the proof.
The proof of (8.17) comes from the rewriting

K

DU - T elp(saT- o)
k=1 ACTL|AI<K
A
- Y e (Ban 4. (A) — Ent(A) — |2| logn + o(K)) ,
ACTL,|A|<K

where for the last inequality we used Stone local limit theorem [33] (using that any two
points in Y} have abscissa differing by at least en with probability going to 1 as ¢ — 0)
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to get that P(S n Ty = A) = =15t o(D) o= Eni(A) uniformly for A < Y.. Since there are

finitely many terms in the sum, we get that analogously to (7.14)-(7.16),

Z l(c = e°lo8n)  oxp (ACTI?,?KKK {5nQn,An(A) — Ent(A) — ’A2|10g n})

At this stage we write

‘A| _ Bn }77(k L)
st AP0, ()~ But(A) — FHognf = max T,

Nﬁn,h’(kvr-‘) . { — 7]{ }
h T = Bnn 4, (A) — Ent(A 1
where n.h CHﬁX|:k A, (D) t(A) 5 o8mn

To complete the proof of (8.17) we only have to show that

E Bn h:(k L) &) N(k)L)
10g ( Z U ) ) + nz 1r<r}€a<>§(Tnh 1I<r}€a<xKTﬁ’A . (8.18)

In analogy with (7.17) and Proposition 7.5, we have that for any fixed k&,

50n.no(kL) (d) (kL)
h2 Tn hh 7-6,14

As for the convergence of (5.11), since we have only a finite number of points, the proof is

a consequence of (5.8) and (5.9) and the Skorokhod representation theorem — we use also

that ;5 logn — . Since the maximum is taken over a finite number of terms, this shows

(8.18) and concludes the proof.

8.5. Regime 4: convergence of the main term. First of all, we show briefly that Wj
is well defined, before we turn to the proof of Lemma 8.3. One of the difficulties here is
that the reduction to trajectories operated in Section 8.1 (to trajectories with max;<,, |S;| <
A+/nlogn) is not adapted here, since the transversal fluctuations are of order h,, « y/nlogn.
Therefore, we have to further reduce the set of trajectories in Uj.

Well-posedness and properties of W3. We prove the following proposition.
Proposition 8.4. Assume that o € (1/2,1). Then for every 5 > 0, W € (0, 00) almost surely.

Proof. Recalling the definition (2.14) of Wjs. We fix a region D, := [1,1] x [—¢,¢], for e > 0.
In such a way we have that

2
Wg > sup {w — 6— (8.19)
(w,t.2)eP;(t,x)eDe p

We observe that

2 l/aE 1/06‘
(w,t x)g;?a}i x)e€De { } 8 Xp( )

Therefore, since - < 2, the r.h.s. of (8.19) is a.s. positive provided e is sufficiently small.
For an upper bound we simply observe that W3 < 73 < oo a.s. O
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Proof of Lemma 8.3. We denote p(i, ) := P(S; = z) for the random walk kernel. For A > 0
fixed and § > 0, we split 4/n U; into three parts:

V/nUy = Z ePnvie\/np(i, x)

(ivx)ETZ
(S v X e Nl 620
(i,2)eY g, |z|>Ahn  (1,2)EYVpi<on,|z|<Ahn  (4,2)EX,i=0n,|z|<Ahy,
The main term is the last one, and we now give three lemmas to control the three terms.

Lemma 8.5. There exist constants ¢ and v > 0 such that for all n sufficiently large, for any
A>1

P( Z ePrvie\Inp(i, ) > A(hQ) ) <cAV. (8.21)

(3,2)eY g, |z|>Ahn

Lemma 8.6. There exist some c,v > 0 such that, forany A > 1and 0 < § < A™!, we get
that for n sufficiently large,

P(;Z% log ( 2 eﬁnwm\/ﬁp(i’xn > (514)42) < c(6A)Y2. (8.22)

(4,2)eY g i<on,|z|<Ahn
And finally, for last term, we have the convergence.

Lemma 8.7. We have that
log( Z P /np(i, m)) ), Wi(6,A) := max {w_ 1‘2}

. . w,t,x)eP 2t
(3,2)€Y g, i=dn,|z|<Ahnp t(>6,|z\)§A

h2

Now, let us observe that taking the limit § | 0, and A 1 oo, we readily obtain that
Wi(6,A) — W; (by monotonicity). Therefore, combining Lemmas 8.5-8.6-8.7, we con-
clude the proof of Lemma 8.3. O

Proof of Lemma 8.5. Let us consider the event

2
G(n,A) = {ﬁnwi,m < %for any x| > Ahy, 1 <i < n} (8.23)

Using this event to split the probability (and Markov’s inequality), we have that, recalling
the definition (8.9) of Y

IP’( Z B"“’”fp(z x) >A<Ii> )

(7, x)ng,|m|>Ahn
( ) [i 2 e (i, ) g, 1}] (g(n,A)C). (8.24)
i=1|z|>Ahp

Using again that P(w > 1/8,) < (h2/n)2*(nh,)~! and that p(i,z) < e /4 uniformly
in the range considered (provided that n is large enough), we get that the first term is
bounded by

LISy e ()

hn i=1 |z|>Ah,
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In the last inequality, we used that the sum over x is bounded by a constant independent
of 4, and also that v/n/h,, — 0. The first term in (8.24) therefore goes to 0 as n — o0, and
we are left to control P(G(n, A)¢). A union bound gives

n  +w +o0 28+ AR, B2
193 S P s D) e S B (s arl)
=1 o= Ahy, k=0 z=2F Ah,, 8n
0
< 2A4nh, Z 2kIF’<w > %22]“A2m(nhn)) ) (8.25)
k=0

where we used the definition (2.2) of h,, for the last inequality, with n large enough. Then,
using the definition of m(nh,) and Potter’s bound, we obtain that for any n > 0 (chosen
such that 1 — 2a + 29 < 0) there is a constant ¢ > 0 such that for n large enough

1
P(g(n,A)C) < cAnh,, Z Zk(22kA2)—a+nT < c’AI*QO‘”"?
n n
k>1

where the sum over k is finite because 1 — 2a + 2 < 0. This concludes the proof of
Lemma 8.5. U

Proof of Lemma 8.6. Decomposing over the event

1 1 h?
— e Ia 1
Mn(é, A) { i<6n1’,1|1$?)<{14hn anz,z 2 (5A) ! n } ’

and using Markov’s inequality, we get that (similarly to (8.24))

h2
IP< Z ePrvie /np(i, x) = exp (((5A)4a )) (8.26)
(

1,2)EY g,i<n,|z|<Ahy "
1 h%
< e~ 3004 ETE[Z S Vi, 2) g s 1}] + P(M (5, A)°) .
i=1 |z|<Ahy

We use again that P(w > 1/8,) < (h2/n)?**(nhy,)~!, and the fact that Y p(i,z) = 1 for any
i € N, to get that the first term is bounded by

2
- L(64)a 1 (%)2“”\/5

n nhy,

For the remaining term, using that 3, 'h2 /n ~ m(nh,,), we have by a union bound that for
n large enough

P(M, (5, A)°) < 5Anh IE”(w > (5A)% (nhn)) < 5 Anhy, x ((M)ﬁ)‘zaﬁ,
where we used Potter’s bound (with (5A)i small) and the definition of m(nh,) for the
last inequality (for n large). This concludes the proof of Lemma 8.6. O

Proof of Lemma 8.7. The Stone local limit theorem [33] (see (2.15)) gives that, for fixed
A > 0,6 > 0, there exists ¢ > 0 such that uniformly for én < i < n, |z| < Ah,,

1 ) v
- e~ T/2% \/Z’p(z’,x) <ce @/, (8.27)
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Since 4/n/i > 1 for all i < n, we get the lower bound

Z Z 5"“”\Fp (7 a:)l{gnwwgl} cexp </8n n (9, A)) (8.28)

i=6n |z|<Ahnp

where W, (0, A) is a discrete analogue of W (4, A), that is

2

T
Wh 67 A) = T T aa (- 8.2
( ) |w\<AhI2?X5n, n {w ’ 26712} (8.29)

On the other hand, we get that y/n/i < §~'/2 for i > dn, so that from (8.27) we get
Z Z /anl x\/7p Z x)l{BnLUL‘L } < i eBan(d,A) Z Z 1{,8nwi,w>1} . (8.30)
i=6n |z|<Ahp \/3 i=1|z|<Ahn
Now, we have that P(w > 1/8,) < (h2/n)*¥(nh,)~! as already noticed, so that
h2
E| Z > sy | <4 ( > . (8.31)
i=1 || <Ahy

Overall, combining (8.28) with (8.30)-(8.31), we get that with probability going to 1 as
n — oo,

log ( Z ePrvie /np(i, CL‘)) — B Wi (0, A)‘ (2ac + 1) log h—%

(2,2)€Yp,i=dn,|z|<Ahp

To conclude the proof of Lemma 8.6, it therefore remains to show that
n (d)
h—% X B Wi (6, A) — Wi(d, A), (8.32)
where Wi (6, A) is defined in Lemma 8.6.
We fix ¢ > 0 and we consider W,, (¢, d, A) the truncated version of W, (d, A) in which we
replace the condition {f,w; , = 1} by {S,w;» > 5%}, that is

2

~ T
Whi(e,d,A) = max {w- — —} . 8.33
n( ) |z|<Ahn,i=dn,....,n e 2,3nl ( )
ani,z>5%

In such a way, and since ¢h2 /n > 1 for large n, we have
hzﬁn n(e,6,A) < %ﬂan( A) < 2/871 n(e, 6, A) +

To prove (8.32) we need to show that

L X BaWale,6,4) —" Wi(e,0,4) = max {w - 7}, (8.34)

(w,t,x)eP
t>6,|z|<Aw>e
and then let & | 0 — notice that we have W, (e, 8, A) < W1(5, A) < Wi(e, 6, A) + ¢ so that
Wi(e,6,A) - Wi(6,A)ase | 0.
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We observe that a.s. there are only finitely many w; , in [1,n] x [-Ah,, Ah,] that are
larger than em(nh,) ~ (3, 'eh? /n. This is a consequence of Markov’s inequality and Borel-
Cantelli Lemma. Indeed, for any K € N we have

IP( ’{(z,x) € [1,n] x [—Ahn, Ahy]: Wiz = Em(nhn)}’ > 2K)
< 2_K(2Anhn)]}”<w > em(nhn)) <C.27 K,

Therefore, the convergence (8.34) is a straightforward consequence of the Skorokhod rep-
resentational theorem. O

9. CASE a € (0,1/2)

In the first part of this section we prove (2.16). In the second part, we prove the conver-
gence (2.17).

9.1. Transversal fluctuations: proof of (2.16).

Paths cannot be at an intermediate scale. We start by showing that there exists ¢y, c,v > 0
such that for any sequences C,, > 1 and §,, € (0, 1) (which may go to o, resp. 0, as n — o)
and forany n > 1

P( « 5, (max S| € [Coy/m, 8un)) < em 0% + e—conm) >1—cf +n Tt (9.1)
WHPn Z\TL

To prove it, we use a decomposition into blocks, as we did in Section 6. Here, we have to
partition the interval [C,,y/n, 8,n) into [Cpy/n, n**) U [n%/4,8,n) (one of these intervals
might be empty), obtaining

P35, (I&arf( |Si| € [Cnn/n, 5”))
= P“,j’ﬁn (r&agc ‘SZ‘ € [Cr/n, n3/4)> + Pﬁﬂn <r§1<arf( ‘Sz’ € (n3/4, (Lm)). (9.2)

For the first term, we partition the interval [C,,/n,n**) into smaller blocks Dy, :=
[2F/n, 2841 /n), with k = logy C,, . .., logy n'/* — 1. Let us define

n

S(n,h) = > wia (9.3)

i=1ze[—h,h]

the sum of all weights in [1,n] x [—h, h]. Then, we write similarly to (6.2) (we also use
that Z% 5, = L which is harmless here since no recentering term is needed)

log, n'/4
Py, (max|Si| e [Covmn®™) < 3 255, (max|Si] € D)
N k=log, Ch, S
logy nt/4—1
k+1
< ), PHTTVIP(max|Si| € Dy)
k=logy Cn isn

logs nt/4

< Z exp (5n2(n, ok /n) — 02%)

k=logy Crn,
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where for the last inequality we used a standard estimate for the deviation probability of
a random walk P (max;<, |S;| > 2*y/n) < e=2" see for example [28, Prop. 2.1.2-(b)].
Therefore, on the event

{Vk — log, Ch, ..., logy n'/4, B, 5(n, 2"+1y/n) < %2%} (9.4)
we have that
log, nl/4
%,B(I@X‘SJ € [Cnv/n, n3/4)> < D e < e (9.5)
s k=log, Cn

For the second term in (9.2), we partition the interval (n3/4, dpn) into blocks E,, j :=
[27F1n,27%n), k = logy(1/5,), ... ,logy n'/* — 1. Exactly as above we use the large devia-
tion estimate P (max;<, |S;| = 27%1n) < e=27" 1 (see e.g [28, Prop. 2.1.2-(b)]), and we
obtain that on the event

{Vk: = 1ogy(1/6,), ..., Jogy n'/4, Bu2(n,27F) < 52_2’%} (9.6)
we have
log, nt/4
os(max|s)e ¥ am) < Y e g e 9.7)

k=log,(1/5n)

It now only remains to show that the complementary events of (9.4) and (9.6) have
small probability. We start with (9.6). Using that 3, < 23n/m(n?) for n large, we get by a
union bound that

IP’(EIkJ > 1ogy 1/0 , BuX(n,27%n) > 52_2]%) < Z P(Z(n,2_kn) > 052_2km(n2))
k=logy 1/6n

(9.8)

Then, by Potter’s bound we have that m(27%*'n2?) < 27%m(n?) since a < 1/2 (recall
m(-) (2.1) is regularly varying with exponent 1/a). As a consequence, the last probability
in (9.8) is in the so-called one-jump large deviation domain (see [30, Thm. 1.1], we are
using a < 1 here), that is

P(E(n, 27%n) > 052_2km(n2)) ~ 2_k+1n21P’(w > 052_2km(n2)) .

Therefore, using again Potter’s bound, we get that for arbitrary 7 there is some constant c
such that

P(Z(n, 27%n) > 052*2km(n2)) < ¢(22Fyatnp =2
where we also used that P(w > m(n?)) = n~2. Therefore, taking 7 small enough so that
2a — 1 + 21 < 0, we obtain that (9.8) is bounded by a constant times
Z 2k(2a—1+217) < C(srlL—2a+2n'
k=log, 1/6r

Similarly, for (9.4), we have by a union bound that
]P’(H k € {logy Cn, . .., logy nV/4}, BS(n, 2541 y/n) > 52%)

1og2n1/4
< Z ]P’(Z(n,QkH\/ﬁ)>0522kn_1m(n2)). (9.9)
k=log, Cn
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Then again, we notice that m(2++2n%2) < 22*n~1m(n?) (using Potter’s bound, as a < 1/2).
Hence, the last probability in (9.9) is in the one-jump large deviation domain (see [30,
Thm. 1.1]), that is

P(Z(n, 2k+1\/ﬁ) > cZan_lm(nQ)) < can3/2]P’(w > 0522kn_1m(n2))
Then, we also get that for any n > 0 we have that there is a constant ¢ > 0 such that
P(w > 6/322kn_1m(n2)) < e(2%p~hymam,
so that provided that 1 — 2a — 21 > 0, (9.9) is bounded by a constant times

log, nl/4

—2a— _1 —11-92a—
Z 2k(1 2a 277)noz 5+n <cn 7(1—2a 277).

k=logy Crn,

Paths cannot be at scale n conditionnaly on 7?3 = 0. We have shown in (9.1) that paths
cannot be on an intermediate scale: it remains to prove that on the event 7} = 0, paths
cannot be at scale n. For this purpose we use [5, Theorem 2.1] and [35, Theorem 1.8],
which ensure that for any § and £ > 0 there exists v > 0 such that

IP’( ;‘1’7,3n(1111<a5<|5i| € (0n,n]) <e ™ 7?3 = O) >1-—c. (9.10)

Therefore, we get that for any ¢ > 0 and § > 0, combining (9.1) with (9.10), for any
sequence C,, > 1, provided that n is large enough we have

P(PZB (max‘SZ| = Cn\/ﬁ) > e—CoCTQL + €_Conl/Q e
sPn i<n

Ty = o) <cd’ 42, (9.11)
which concludes the proof of (2.16).

9.2. Convergence in distribution conditionally on 7A’5 = 0, proof of (2.17). In the fol-
lowing, we will consider the case where 3,n 'm(n?) — B with 3 < oo. In the case

f = 400, we would indeed have that 7A“g > (. The proof follows the same idea as that

of [18, Thm. 1.4] (and similar steps as above), but with many adaptations (and simplifica-
tions) in our case. We will also focus on the case 3 > 0, in which WZW) goes to infinity
as a regularly varying function with exponent 2 — 3 — 2 = =2 >  (If 8 = 0, it goes to
infinity faster).

Step 1. Reduction of the set of trajectories. Equation (2.16) (with C,, = A+/log n) gives that,
with [P probability larger than 1—¢ (conditionally on 7 = 0), we have P 5 (maxi<, S| <
Ay/nlogn) > 1 —e~4en provided that n is large enough. We therefore get

P(|logZ 5, — log Z 5, (An)| < 01| T5 = 0) 21—, 9.12)

where A, is defined in (8.2). Note that, provided A has been fixed large enough, we have
that %n_%/‘ — 0 as n — oo: we conclude that, for any ¢ > 0

\/ﬁ w w T
P(W‘logznﬁn _1ngn,6n(An)‘ >€‘7T8 =0 SE, (9.13)
provided that 7 is large enough. We will therefore focus on log Z% 5 (Ay).

As in Section 8, we use the notation A4,, = Ay/nlogn = C,+/n and A, 4, = [1,n] x
[—An, An]-
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Step 2. Truncation of the weights. We let k, := m(n®?logn) be a sequence of truncation
levels, and &, := wy 1y, <k, be the truncated environment. Then, we have that

N 24
w 5 _ ‘ 3/2 < n:oo
P(Znﬁn (An) #2525 (An)> P, max wia>m(nlogn) < SE "0,
(9.14)

where we used a union bound for the last inequality, together with the definition of m(-)
(2.1). Henceforth we can safely replace Z; ; (A,) with the truncated partition function

Z3 5, (An).

Step 3. Expansion of the partition function. We write again p(i,xz) = P(S; = z) for the
random walk kernel, and let \,(t) = log E[e!=]. Then, expanding

n

exp (Z (BnCUi,Si — )\n(,Bn))> = H (1 4 BnBia—An(Bn) _ 1)1{51_:1}’

i=1 (i,2)EAn A,
we obtain
ez (A =14+ > (PP 1)p(i, ) + R, (9.15)

(i1$)EAn,An

with

0 k
R, = Z Z H (eﬁnwj’zj ~An(Bn) _ 1)pn(ij —1j_1,Tj — wj_1> . (9.16)
k=2 1<ii1<--<ip<n j=1
\a:i\éAn,i:L...,k

Lemma 9.1. We have that for n large

Vn —1/4 (log n)*/®
Pl —— R, > < ————>0
(ﬁnm<n3/2> ! NG

In particular, R,, — 0 in probability.

Proof. Note that E[R,,] = 0, so it will be enough to control the second moment of R,,.
Since the &; , are independent and that E[ef#%i==A=(8n) _ 1] = 0, we have

0 k
E[R7] = )] > (A @)= (B) 1) T p iy — o1, 2y — 1)
f=2 =1

1<t <--<ip<n
‘$i|<A7ui:1 ----- k

0 n
< 3 (O - ) (Y Y e 0) 9.17)
k=2 ;
First, we have that

Z Z pli,z)* = E®2[Z 1{Sn=s;}] <cevn,
i=1z€eZ i=1
where S and S’ are two independent simple random walks. Then, since 8,0 < Bk, — 0,
we can write e?5¥ < 1 4 343,& for n large, so that
kn
M) _ 1 < 36,E[Q] = 3ﬂnJ P(w > u)du
0
cBrkn

< BnLkn)ky* < .
eBnLkn)kn n3/2logn

(9.18)
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To estimate the integral we used the tail behavior of P(w > u) (1.2) (see [9, Theorem
1.5.8]), while for the last inequality, we used that k, = m(n*?logn) and the definition
(2.1) of m(-), so that L(k,)k;* ~ n=%?(logn)~'. We therefore get that for n large enough

E[R2] < )] (”B"k">k < 2(B”k”)2.

n n
k=2

To conclude, by Potter’s bounds we get that k,, < m(n*?)(logn)? for n large, so that

4
«

2y _ (Bam(n®?)\2  (logn)
E[R?] < ( N ) x T (9.19)
and the conclusion of the lemma follows by using Markov’s inequality. O

Going back to (9.15), we get that
U;J’Bn (An) — e(n_l)kn(ﬁn) (e/\n(ﬂn) + Z (eﬁna’i,x _ eAn(ﬁn))p(l’m) + eAn(ﬁn)Rn)

(4,2)eAn, A,
= M) (14 V, + W+ R, ) (9.20)
with
V, = Z (eﬁ"&i’” — 1)p(i,x) and W, := (e’\”w") — 1)(1 — Z p(i,x)) .
(i,2)eAn, A, (1,x)eAn, Ay,

We show below that lim,,,,, W,, = 0 and that V,, converges in probability to 0, so that
using also Lemma 9.1, we get

Vi 5 _ Vi
ﬁnm(n?’/?) log Zn,,Bn (An) - ﬁnm(n?’/Q)Vn + ﬁnm(nS/Q)

(0 = D)An(Ba) + W) +0(1).

9.21)

Before we prove the convergence of the first term (see Lemma 9.2), we show that the

second term goes to 0 — note that this implies that lim,,_,,, W,, = 0 since 8,n~"2m(n%?) —
0. We write that

|(n = D)An(Ba) + Wa| < (n— 1)]er @) —1 = x,(8,)] + ‘n - ) p(i,x)’ . (9.22)
(i,$)€An’An

For the second term, using standard large deviation probabilities for the simple random
walk (e.g. [28, Prop. 2.1.2-(b)]), we get that there is a constant ¢ > 0 such that

n— Z p(i,z) = 2 P(S; > Ay/nlogn) < ne~¢A*logn (9.23)
(i,2)EMn A, i=1
For the first term, since we have \,(3,) — 0, we get that for n large enough
3/2 2
250 — 1 — Ap(Ba)] < AnlBn)? < (7/3 ”mgn ) (log n)z/a) : (9.24)
n3/?

where for the second inequality we used (9.18) (note that A, (5,) < eAn(Bn) — 1), together
with the fact that k,, < m(n*?)(logn)%*.

Hence plugging (9.23) and (9.24) into (9.22), we get that provided that A is large
enough,

N

5nm(n3/2)
ﬁnm(nB/z)

372 (logn)¥* + 0(1) >0 asn— .
n

(n—DA(Brn) + Wy| <



DIRECTED POLYMER IN HEAVY-TAIL ENVIRONMENT AND ENTROPY-CONTROLLED LPP 58

so that the second term in (9.21) goes to 0 as n — oo, proving also that W,, — 0 (recall
also 8,n~2m(n%?) — 0).

Step 4. Convergence of the main term. We conclude the proof by showing the convergence in
distribution of the first term in (9.21) — which proves also that V,, goes to 0 in probability,
since B,n~2m(n%?) — 0.

Lemma 9.2. We have the following convergence in distribution,

il V, = 7\/5 Z (eﬁnam — 1)p(i,x) —>( ) W(a)

,Bnm(n3/2) e ﬂnm(n?’/Q) n—w

with Wg' defined in Theorem 2.10.

(i>m)€A'll,An

Proof. First of all, since 3,0; » < fpnky, — 0asn — oo (and using that 0 < e — 1 — 2 < x?
for x small), we have that for n large

- ﬁn Z C’Di,xp(ia .%') < Z (ﬁna}i,x)Qp(ia .%') . (925)
(i,x)GAnyAn (i,m)EAn,An

Then, we can estimate the expectation of the upper bound, using that similarly to (9.18)
we have E[(©)?] < c¢L(kn)k2~* ~ ck2/(n*?logn). Using also that k, < m(n%?)(logn)?®
for n large, we obtain that

W{Z%E[ > (Buia)pli,e)| < e

n3/2 Bnkn nilzZ (i,2)

(i,0)ehn ( i=12€Z
2/« n—o0
< c(logn)*Bpk, — 0.

The proof of the lemma is therefore reduced to showing the convergence in distribution
of the following term

723/2 Z wza:pZ .T,'

(i,z) eAn
w'“” . S (:)i,:p .
_ Z D (0 Vp(hz)+ >, D] ( 3/2)\/ﬁp(z,x), (9.26)
i=L[o|<Kyvi =LK ndlal<d,

where we fixed some level K > 0 (we take the limit K — oo in the end).
First term in (9.26). Let us first show that the first term converges in distribution to

1 prK
W) =2 J J J wpl(t, z)P(dwdtdz), (9.27)
R, Jo J-K

where p(t,z) 1= (2mt)"1/2e*°/2t is the Gaussian kernel and P(w,t,z) a Poisson Point
Process on R, x [0,1] x R of intensity u(dwdtdz) = §w™* "1y, ydwdtdz. Let us stress
already that since Wéa) < o0 a.s. (see [18, Lemma 1.3] or Lemma 9.3), one readily gets
that Wéo}z — éa) as K — o (by monotonicity).
We observe that the random field
{(m(n**)Ywiz,n ™Y, n™Y22): i + x even, |z| < K+/n} (9.28)

converges to the restriction of P to R} x (0,1) x (—K, K). For the proof of this fact we
refer to [18] (see relation (38) and below). Then, the method is similar to [18, p. 4036]
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(we use similar notations). We let &5 be a partition R x (0,1) x R into disjoint rectangles
of size § > 0. For any w € PBs we denote by (w, x, t) its center. In such a way we have

; w;;p) Vipn(i, )

DI

wePsi=1 |x|<K\f

Z (1+05<1))ww2,0 wvxw Z Z ( Vi z )ew}

we Py i= 1‘1‘|<K\/7 m(n3/2)’"7\f

POV s )

For the last identity, we used the local limit theorem for the convergence of \/np(-) to 2p(-),
and used the notation os5(1) to denote the error which is negligible as § — 0. Moreover,
because of the convergence of the field (9.28) toward P, we have

Z Z 1{( Wi ii)gﬁ}—ﬂ’(w), as n — 0.

i—1 ‘Z‘|SK\/7; m(nd/z)vnv n
Taking the limit n — oo followed by the limit § — 0, we conclude that the first term in
(9.26) converges in distribution to W) k.

Second term in (9.26). To conclude the proof, it remains to show that the second term in
(9.26) goes to 0 in probability as K — oo, uniformly in n: for any K (large), we have for n
sufficiently large

Py ¥

i=1 K /n<|z|<An

o 3/2)fp(z ,T) = 1) < ce K, (9.29)

To prove (9.29), we decompose the sum into smaller parts with |z| € (281K \/n, 2V K \/n]
for k = 1,2.... By a union bound, we have

<Z Z n3/2 Vinp(i, ) > 1)

il fel>Kvi

k=1 Ni=l|z|=2k-1K/n

<)) P(i D wip eC'<2'“K>2m(n3/2)) (9.30)

k=1 Ni=l|g|<2hK/n

Vip(i, z) = _12_'“)

m(n3/2)

In the last inequality, we usee that there is a constant ¢ such that for any &, uniformly in
ie{l,...,n} and |z| > 2" 1K/, we have y/np(i,z) < e “2"K)* < 2=k -1 (2"K)
(since K2’“ > 1).

Now, we use that m(28F1 Kn3/2) > (28 K)~%*m(n®?) by Potter’s bound, and also that
for all k e "K)* (2k ) =2/ > ¢2"K if [ s large, to realize that the last probability in (9.30)
is in the one-jump large deviation domain (see [30, Thm. 1.1], we use here that o < 1):
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there is a constant ¢ > 0 such that forall k > 1

n
]P’( Z Z Wi g = BQka(2k+1Kn3/2)> < CQkKn3/2IP’<w > e2ka(2kKn3/2))
i=1 |z|<2F K /n

The second inequality comes from Potter’s bound, provided that 2" ¥ is large enough, and
also used the definition (2.1) of m(-). Plugged in (9.30), we get that

<Z Z w;;ﬂ Vnp(i,z) = > 0265 < ce K

i=1|z|>K+\/n k=1
which is (9.29). O

/

We conclude the section by showing that the quantities Wé?}z and WOO‘) are well defined
(you can also see [18, Lemma 1.3], here we slightly improve the result) and that the

truncated quantity Wéal)( converges to Wéa) in distribution.

Lemma 9.3. For any p € N, we have that a.s.
J wPp(t, z)P(dw,dt,dx) < oo. (9.31)
1

Jo o

Moreover, we have that W(a) @ Wé @) as K — oo, where Wéal)( is defined in (9.27).

Proof. The convergence of Wéal)( is a consequence of (9.31). To prove (9.31) we consider
Dy = {(w,t,2): |w| > 1 +932/a}, Dy = {(w,t,2): 1 <|w| <1 +x2/a},
D3 := {(w,t,x lw| < }
We have that
o
P(D1) = J W @ 11{w>0}dwdtdx = 2j
Dy R

This means that there are only a finite number of points of P in D;.
On D, we have that wPp(t, z) < 2P2%/*p(t, z), therefore

<1 + :E2/a)7adx < 0.

)

EP[ f wPp(t, )P (dw, dt, da:)] <or f J 22/ )(t, x)dtdz < 0.
D, (0,1) JR

In the same way one checks that EP[SDS wPp(z,t)P(dw,dt, dr)] < oo and this concludes
the proof. O
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