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A PROOF OF THE BUNKBED CONJECTURE FOR THE

COMPLETE GRAPH AT p = 1
2

PAUL DE BUYER

Abstract. The bunkbed of a graph G is the graph G × {0, 1}. It has been
conjectured that in the independent bond percolation model, the probability

for (u, 0) to be connected with (v, 0) is greater than the probability for (u, 0)
to be connected with (v, 1), for any vertex u, v of G. In this article, we prove
this conjecture for the complete graph in the case of the independent bond
percolation of parameter p = 1/2.

1. Introduction

Percolation theory has been widely studied over the last decades and yet, sev-
eral intuitive results are very hard to prove rigorously. This is the case of the
bunkbed conjecture formulated by Kasteleyn published as a remark in [13]) which
investigates a notion of graph distance through percolation.

A bunkbed graph of a graph G̃ =
(
Ṽ , Ẽ

)
is the graph G = (V,E) = G̃× {0, 1},

to which we have added the edges that connect the vertices (x, 0) to (x, 1) for all
vertices x ∈ V , see Figure 2.1. It is natural to distinguish vertices whether they are
on the lower level, the vertices (x, 0), or on the upper level, the vertices (x, 1).

The bunkbed conjecture (see [5] for a more general setting) suggests that two
vertices u = (x, 0) and v = (y, 0) on the lower level are closer than u and v′ =
(y, 1). Closeness of two vertices has to be understood through the probability of
the existence of an open path in the sense of percolation.

The percolation model is defined as follow. We open each edges of E indepen-
dently with probability p and close them with probability 1 − p and we write Pp

the law associated to this percolation model. We call a configuration, an element

ω = (ωe)e∈E ∈ {0, 1}E corresponding to the bond percolation model where ωe = 0
means that the edge e is closed and 1 means that the edge e is open. We call an
open path a path of open edges and for two vertices x, y ∈ V , we write x ↔ y if
there exists an open path between x and y. By convention, for any configuration,
a vertex is always connected to itself, i.e. x ↔ x. For a general introduction on
percolation, see [3].

In this article we prove the bunkbed conjecture for the complete graph when the
percolation parameter p is equal to 1/2.

Theorem 1.1. Let G be the bunkbed graph of the complete graph G̃ = Kn. For all

vertices x, y of Kn:

P 1
2
((x, 0) ↔ (y, 0)) ≥ P 1

2
((x, 0) ↔ (y, 1))
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In the previous works of S. Linusson and M. Leander, the conjecture has been
proven for the outerplanar graphs and the wheels graphs using the so-called method
of minimal counter-example, see [7, 8]. However, this method might not be suitable
for the complete graph due to the its geometric nature. We have chosen to study
the conjecture for the complete graph because we think that it should be easier to
show the following proposition than the bunkbed conjecture itself: “If the bunkbed

conjecture is verified for a graph G̃, then it is verified for the graph G̃\ {e} where

e is an edge of G̃”.
One can note that the bunkbed conjecture is true whenever p is small enough.

Indeed, in these cases, only the shortest paths can be open to connect (x, 0) with
(y, 0) or (y, 1); since the shortest path from (x, 0) to (y, 1) is longer than (x, 0) to
(y, 0), the conjecture is proven. Note d (., .) the usual graph distance, then one can
prove that for all vertices u, v and w, d (u, v) > d (u,w) ⇒ Pp (u ↔ v) > Pp (u ↔ w)
for sufficiently small p.

Finally, we underline some related works on bunkbed graphs. In the random
walk field, an analogical problem of the reaching time of a random walk has been
studied, see [1, 4, 12]. In the random directed graph field, it has been shown that
it is equivalent to study random orientation of edges on the graph and percolation
on the graph with Bernouilli paramater 1/2 (as it is in our case), see [6, 8, 10].

A first approach of the problem would be to study the ratio of the probability
of connection, see (1.1), and to study the derivative according to p, the Bernouilli
parameter associated to the probability of opening an edge. Let u = (x, 0) and
v = (y, 0) be two vertices on the lower level and define the vertex v′ as v′ = (x, 1),
the vertex above v, then the ratio of the probability of connection is written as:

(1.1)
Pp (u ↔ v′)

Pp (u ↔ v)

As a result of the previous remark whenever p tends to 0, the ratio of (1.1) tends
to 0, and clearly when p is equal to 1, this ratio is equal to 1. Because the events
{u ↔ v} and {u ↔ v′} are increasing events, the derivatives can be studied using
Russo’s formula. However, even using Russo’s formula, see [9, 11], it reveals itself
strenuous to study it. One can notice that the derivative of Pp (u ↔ v) cannot be
always greater than the derivative of Pp (u ↔ v′), since they are both equal to 0
when p = 0 and equal to 1 when p = 1. However, we conjecture here that the
derivative of the ratio is increasing, meaning that for all 0 < p < 1:

Pp [u ↔ v′] ∂pPp [u ↔ v] 6 Pp [u ↔ v] ∂pPp [u ↔ v′]

From now on, we note G = (V,E) the bunkbed graph of the complete graph
and we label the vertices of V from 1 to 2n such that V = {si, i ∈ [1; 2n] ∩ N}
and ∀i, j ∈ [1;n] ∩ N, si ∼ sj and si ∼ si+n where ∼ is the neighbour relation,
x ∼ y ⇔ {x, y} ∈ E. We can consider that the vertices labelled from 1 to n are the
vertices of the lower level (or level 1) and the vertices labelled from n+1 to 2n are the
vertices of the upper level (or level 2). In the complete graph, two vertices play the
same role. Therefore, it is enough to prove the bunkbed conjecture for two vertices,
here s1 and sn. Moreover, it is trivial to see that P (s1 ↔ s1) = 1 ≥ P (s1 ↔ sn+1).

Our approach, based on combinatorics since p = 1/2, is to decompose the graph
into different appropriate classes which solve the bunbed conjecture. We count the
number of ways to connect s1 to sn and to connect s1 and s2n. The idea of the
proof is the following. We define the main component as the connected component
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Figure 2.1. The bunkbed graph of K5 and an element of G3,4,2

that contains the vertex s1 and all the vertices that are connected to s1 by an open
path. Then, we distinguish different classes of main component depending on the
number of vertices on the lower level, on the upper level, and depending on the
number of parallel vertices, notion that will be defined later. Lemma 2.1 will give
the number of ways to connect the vertices of a main component. Lemmas 3.3
and 3.4 will give the number of configurations containing a main component with
x vertices on the lower level, y vertices on the upper level and a key argument to
properly add them together. Finally, we prove the main Theorem in section 4.

2. Covering Graphs

We recall that a covering graph of a graph G = (V,E) is a subgraph G′ = (V ′, E′)
such that G′ is connected, V ′ = V and E′ ⊆ E. From now on, G will be used to
refer to the bunkbed graph of the complete graph. We classify the subgraphs of
G according to the nomber of vertices in the upper and lower level, as well as the
number of parallel vertices. We define Gx,y,z the set of connected subgraph of G
such that ∀G′ = (V ′, E′) ∈ Gx,y,z :

(1) ∃λ1, ..., λx ∈ {1, ..., n} , ∃µ1, ..., µy ∈ {n+ 1, ..., 2n} such that ∀i ∈ [1;x]
sλi

∈ V ′ and ∀j ∈ [1; y], sµj
∈ V ′, ∪i{sλi

} ∪j {sµj
} = V and #V = x+ y

(2) ∃λ1, ..., λz ∈ {1, ..., n} such that ∀i, j 6 z, λi 6= λj and {sλi
, sλi+n} ⊂ V ′

(3) ∀x, y ∈ V ′, {x, y} ∈ E′ iff {x, y} ∈ E

Graphs of Gx,y,z can be seen as extraction of subgraph of the bunkbed graph G.
Condition 1 insures that there are exactly x vertices on the lower level and exactly
y vertices on the upper level. Condition number 2 insures that exactly z vertices
among the y vertices on the upper level are above the x vertices of the lower level.
Finally, condition 3 insures that vertices present in the extraction comes along with
the corresponding edges. We will say that a graph of Gx,y,z has x vertices of level
1 and y vertices of level 2 and z parallel vertices (e.g. figure 2.1). Moreover, one
can see that two graphs G1, G2 of Gx,y,z are isomorphs.

We define the function GC : N3 7→ N which gives the number GC (x, y, z) of
covering graphs of a graph in Gx,y,z.

Lemma 2.1. Fix x, x′, y, y′, z ∈ [0;n] ∩ N such that x + y = x′ + y′ and z 6

min (x, x′, y, y′). If |x− y| > |x′ − y′| then GC (x, y, z) > GC (x′, y′, z)
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Remark 2.2. The function GC is symmetric in its first two coordinates, meaning
that for all x, y, z, we have GC (x, y, z) = GC (y, x, z).

Proof. To prove this lemma, by iteration, it is sufficient to prove the inequality
GC (x+ 1, y, z) > GC (x, y + 1, z) for x > y > z. For this matter, we need to give
an upper bound and a lower bound of GC (x, y, z). As an upper bound we use a
trivial one: we bound the number of covering graphs by the number of possible
graph knowing that one vertical edge need to be open. Since in a complete graph
with n vertices, there are n (n− 1) /2 edges, therefore we have:

GC (x, y, z) 6 2
x(x−1)

2 (2z − 1) 2
y(y−1)

2

As a lower bound, we consider the only case where we connect by at least one
vertical edge a covering graph Kx and a covering graph of Ky:

GC (x, y, z) > GC (x, 0, 0)× (2z − 1)×GC (0, y, 0)

Therefore, one has:

GC (x+ 1, y, z)

GC (x, y + 1, z)
>

GC (x+ 1, 0, 0)× (2z − 1)×GC (0, y, 0)

2
x(x−1)

2 (2z − 1) 2
y(y+1)

2

= GC (x+ 1, 0, 0)× 2−
x(x−1)

2 ×GC (0, y, 0)× 2−
y(y−1)

2 × 2−y

By [2], the number of covering graphs or number of connected labelled graph with
n vertices is given by the following approximation:

GC (n, 0, 0) = 2
n(n−1)

2

(
1− 2n2−n + o

(
2−n

))

We slightly modify this approximation in the case n > 7:

GC (n, 0, 0) > 2
n(n−1)

2

(
1− 3n2−n

)

Then, we split the problems into different cases. First case, whenever x > 10 and
y > 7. Since x > y + 1, one has:

GC (x+ 1, y, z)

GC (x, y + 1, z)
> 2x−y

(
1− 3x2−x

) (
1− 3y2−y

)

> 2×
(
1− 3× 10× 2−10

)
×
(
1− 3× 7× 2−7

)
> 1

Second case, when x > 10 and y < 7, then x > y + 4:

GC (x+ 1, y, z)

GC (x, y + 1, z)
> 2x−y−1

(
1− 3x2−x

)

> 23 ×
(
1− 3× 10× 2−10

)
> 1

Finally, when 10 > x > y, we have computed the result by computer which ends
the proof. �

3. Result on the Size of the Classes

We define G1the set of connected subgraphs of G containing the vertices s1
and sn, and G2 the set of connected subgraphs of G containing he vertices s1
and s2n. Moreover, we define the set of graph G1

x,y,z = G1 ∩ Gx,y,z and the set

G2
x,y,z = G2 ∩ Gx,y,z. We define the functions q1 : N3 7→ N and q2 : N3 7→ N
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such that q1 (x, y, z) = #G1
x,y,z and q2 (x, y, z) = #G2

x,y,z. Finally, we define the

function q : N3 7→ N such that

(3.1) q (x, y, z) =

{
q1 (x, y, z)− q2 (x, y, z) + q1 (y, x, z)− q2 (y, x, z) if x 6= y

q1 (x, x, z)− q2 (x, x, z) if x = y

Before giving the main result on the function q, we give two preliminary results on
the exact value of the functions q1and q2.

Lemma 3.1. For all x, y > z > 1 such that x+ y − z 6 n

q1(x, y, z) =
(n− 2)!x (x− 1)

(x− z)!z! (n− x− y + z)! (y − z)!

Proof. First, if z = 0 and y > 0, then a graph cannot be connected. Moreover, s0
and sn have to be in the set of vertices of the graph of G1

x,y,z, x has to be greater

that 2 otherwise G1
x,y,z is an empty set. Then, we have to choose the x− 2 vertices

of level 1 among the the n− 2 vertices left, distribute z vertices of level 2 on top of
the x vertices previously chosen, and choose y− z vertices among the n−x vertices
left. Therefore, we can write:

q1(x, y, z) =

(
n− 2

x− 2

)
×
(
x

z

)
×
(
n− x

y − z

)
× 1x>2

Then, one can note that for all k ∈ N, the following equality holds:

(3.2)
1

(x− k)!
1x>k =

1

x!

k∏

i=0

(x− i)

So we can write:

q1(x, y, z) =
(n− 2)!

(n− x)! (x− 2)!
× x!

(x− z)!z!
× (n− x)!

(n− x− y + z)! (y − z)!
1x>2

=
(n− 2)!x (x− 1)

(x− z)!z! (n− x− y + z)! (y − z)!

�

Lemma 3.2. For all x, y > z > 1 such that x+ y − z 6 n:

q2 (x, y, z) =
(n− 2)! (xy − z)

(x− z)!z! (n− x− y + z)! (y − z)!

Proof. First, we notice that for any graph in G2
x,y,z, s0 and s2n belong to the set of

vertices. Then, to count the number of graphs G in G2
x,y,z, we distinguish 4 different

cases: either sn and sn+1 belong to G; either sn belongs to G but not sn+1; either
sn does not belong to G but sn+1 does; either sn and sn+1 don’t belong to G. We
can write:
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q2 (x, y, z) =

(
n− 2

x− 2

)
×
(
x− 2

z − 2

)
×
(
n− x

y − z

)
× 1x>2,y>2,z>2

+

(
n− 2

x− 2

)
×
(
x− 2

z − 1

)
×
(
n− x

y − z

)
× 1x>max(1,z),y<n

+

(
n− 2

x− 1

)
×
(
x− 1

z − 1

)
×
(
n− x− 1

y − z − 1

)
× 1x<n,y>max(1,z)

+

(
n− 2

x− 1

)
×
(
x− 1

z

)
×
(
n− x− 1

y − z − 1

)
× 1max(1,z)<x<n,max(1,z)<y<n

Therefore, using (3.2), we have:

q2 (x, y, z) =
(n− 2)!

(x− z)!z! (n− x− y + z)! (y − z)!
× z (z − 1)

+
(n− 2)!

(x− z)!z! (n− x− y + z)! (y − z)!
× z (x− z)

+
(n− 2)!

(x− z)!z! (n− x− y + z)! (y − z)!
× z (y − z)

+
(n− 2)!

(x− z)!z! (n− x− y + z)! (y − z)!
× (x− z) (y − z)

=
(n− 2)!

(x− z)!z! (n− x− y + z)! (y − z)!
(xy − z)

Using lemmas 3.1 and 3.2, we have that:

q1 (x, y, z)− q2 (x, y, z) =
(n− 2)!

(
x2 − x− xy + z

)

(x− z)!z! (n− x− y + z)! (y − z)!

Recall the definition of the function q in (3.1), we have for all x > z > 1:

q (x, x, z) =
(n− 2)! (z − x)

(x− z)! (x− z)!z! (n− 2x+ z)!

And for all x, y > z > 1:

(3.3) q (x, y, z) =
(n− 2)!

(
x2 − 2xy + y2 − x− y + 2z

)

(x− z)! (y − z)!z! (n− x− y + z)!

Note that:

(3.4) q (x, y, z) 6 0 ⇔ x ∈
[
y +

1−√
8y − 8z + 1

2
; y +

1 +
√
8y − 8z + 1

2

]

�

Lemma 3.3. For all k > z, the following inequality holds:

k−z∑

i=0

q (k + i, k − i, z) = 0

Proof. To prove the theorem, it is actually easier to prove that:

k−z∑

i=1

q (k + i, k − i, z) = −q (k, k, z)
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Using as arguments of q the triplet (k + i, k − i, z), some factors of (3.3) become
independent of i. Indeed, we get the following equality:

q (k + i, k − i, z) =
4i2 − 2k + 2z

(k + i− z)! (k − i− z)!
× (n− 2)!

z! (n− 2k + z)!

Therefore, proving the Lemma is equivalent to prove that:

k−z∑

i=1

4i2 − 2k + 2z

(k + i− z)! (k − i− z)!
=

k − z

(k − z)! (k − z)!

Then, it is enough to see that:

k − z

(k − z)! (k − z)!
=

4− 2k + 2z

(k + 1− z)! (k − 1− z)!

+
3 (k + 2− z)

(k + 2− z)! (k − 2− z)!
1k−z>2

and that for all k − z > i > 2:

(2i− 1) (k + i− z)

(k + i− z)! (k − i− z)!
=

4i2 − 2k + 2z

(k + i− z)! (k − i− z)!

+
(2i+ 1) (k + i + 1− z)

(k + i+ 1− z)! (k − i− 1− z)!

Whenever i = k − z, then:

(2i− 1) (k + i− z)

(k + i− z)! (k − i− z)!
=

4 (k − z)
2 − 2k + 2z

(2k − 2z)!

which ends the proof. �

Lemma 3.4. For all k > z, the following inequality holds:

k−z∑

i=0

q (k + i+ 1, k − i, z) = 0

Proof. The proof goes in the same way as lemma 3.3. Indeed, it is enough to prove
that:

k−z∑

i=1

2i2 + 2i− k + z

(k + i+ 1− z)! (k − i− z)!
=

k − z

(k + 1− z)! (k − z)!

Then, we have:

k − z

(k + 1− z)! (k − z)!
=

4− k + z

(k + 2− z)! (k − 1− z)!

+
2 (k − z + 3)

(k + 3− z)! (k − 2− z)!
1k−z>2

Then, for all k − z > i > 2, the following equality holds:

i (k + i + 1− z)

(k + i− z)! (k − i− z)!
=

2i2 + 2i− k − z

(k + i− z)! (k − i− z)!

+
(i+ 1) (k + i+ 2− z)

(k + i+ 1− z)! (k − i− 1− z)!
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U V

V ′

U V

V ′

Figure 4.1. Decomposition of a configuration

Whenever i = k − z,

i (k + i+ 1− z)

(k + i+ 1− z)! (k − i− 1− z)!
=

2 (k − z)
2
+ 2 (k − z)− k + z

(2k − 2z + 1)!

which ends the proof. �

4. Proof of the main theorem

Recall that G = (V,E) is the bunkbed graph associated with the complete
graph Kn. We recall here the idea of the proof of the main theorem. We split
the configuration depending on the number of vertices of the main component and
then split again depending on the number of vertices on the lower/upper level.
Figure 4.1 gives a decomposition of a configuration and we give some explanation
about the figure. For simplicity we have not drawn a complete graph. Then, edges
drawn in solid lines are open edges and edges drawn in dotted lines are closed edges.
Green vertices and green edges correspond to the main component. Red edges are
the adjacent edges of the main component that need to be closed, if not, the main
component would expand. Blue vertices and blue edges correspond to the “outside”
of the main component. In this sense, we define O (x, y, z) the number of “outside”
edges when the main component has x vertices in the lower level, y vertices in the
upper level and z parallel vertices. A simple computation gives that:

O (x, y, z) = n (n− x− y) +
1

2

(
x2 − x+ y2 − y

)
+ z

As well as the following relations:

O (x, y, z) = O (y, x, z)

O (x+ 1, y, z)−O (x, y + 1, z) = x− y

The second relation can be understood in the spirit of Lemma 2.1 through the
following statement: x + y = x′ + y′ and |x− y| > |x′ − y′| implies O (x, y, z) >

O (x′, y′, z). All the quantities developped before allows us to express the prob-
ability of connection between two vertices. First, note that since the Bernouilli
parameter of the percolation p is equal to 1/2, therefore every configuration has
the same probability, i.e. for any configuration ω, P1/2 (ω) = 2−#E. Moreover,



A PROOF OF THE BUNKBED CONJECTURE FOR THE COMPLETE GRAPH AT p = 1
2 9

knowing that the main component of s0, noted MC (s0), is a subgraph of a graph
in G1

x,y,z, there are GC(x, y, z) way for it to be connected, and O (x, y, z) outside
edges which won’t affect the connectivity of s0 and sn. Furthermore, there are
q1 (x, y, z) to choose the subgraph corresponding to the main component. Thus, we
have the following equalities:

P1/2 (s0 ↔ sn)

=
∑

x,y,z

∑

MC(s0) subgraph of G̃∈G1
x,y,e

2O(x,y,z)
P (ω)

= 2−#E
∑

x,y,z

2O(x,y,z)GC (x, y, z) q1 (x, y, z)

= 2−#E
∑

k>0

∑

z>0

∑

i∈Z

2O(k+i,k−i,z)GC (k + i, k − i, z) q1 (k + i, k − i, z)

+2−#E
∑

k>0

∑

z>0

∑

i∈Z

2O(k+i+1,k−i,z)GC (k + i+ 1, k − i, z) q1 (k + i+ 1, k − i, z)

The third equality is obtained by an operation of renumbering. In the same way,
we have that:

P1/2 (s0 ↔ s2n)

= 2−#E
∑

k>0

∑

z>0

∑

i∈Z

2O(k+i,k−i,z)GC (k + i, k − i, z) q2 (k + i, k − i, z)

+2−#E
∑

k>0

∑

z>0

∑

i∈Z

2O(k+i+1,k−i,z)GC (k + i+ 1, k − i, z) q2 (k + i+ 1, k − i, z)

For all k and z, because of the symmetry of the function GC and the function O,
one has:

∑

i∈Z

2O(k+i,k−i,z)GC (k + i, k − i, z) (q1 (k + i, k − i, z)− q2 (k + i, k − i, z))

=
∑

i>0

2O(k+i,k−i,z)GC (k + i, k − i, z) q (k + i, k − i, z)

Recall that q (k + i, k − i, z) might be negative, see (3.4), and because of lemma 2.1
for all k, there exists an i0 such that for all 0 6 i 6 i0:

GC (k + i, k − i, z) 6 GC (k + i0, k − i0, z)

GC (k + i+ 1, k − i, z) 6 GC (k + i0 + 1, k − i0, z)

O (k + i, k − i, z) 6 O (k + i0, k − i0, z)

q (k + i, k − i, z) 6 0

and for all i > i0:

GC (k + i, k − i, z) > GC (k + i0, k − i0, z)

GC (k + i+ 1, k − i, z) > GC (k + i0 + 1, k − i0, z)

O (k + i, k − i, z) > O (k + i0, k − i0, z)

q (k + i, k − i, z) > 0
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By lemma 3.3:
∑

i>0

2O(k+i,k−i,z)GC (k + i, k − i, z) q (k + i, k − i, z)

> 2O(k+i0,k−i0,z)GC (k + i0, k − i0, z)
k−z∑

i=z

q (k + i, k − i, z)

And by lemma 3.4:
∑

i>0

2O(k+i+1,k−i,z)GC (k + i+ 1, k − i, z) q (k + i+ 1, k − i, z)

> 2O(k+i0+1,k−i0,z)GC (k + i0 + 1, k − i0, z)

k−z∑

i=z

q (k + i+ 1, k − i, z)

This concludes the proof since:

P1/2 (s0 ↔ sn)− P1/2 (s0 ↔ s2n)

= 2−#E
∑

k>0

∑

z>0

∑

i>0

2O(k+i+,k−i,z)GC (k + i, k − i, z) q (k + i, k − i, z)

+ 2−#E
∑

k>0

∑

z>0

∑

i>0

2O(k+i+1,k−i,z)GC (k + i+ 1, k − i, z) q (k + i+ 1, k − i, z)

> 0

�

The author thanks Cyril Roberto, Julien Bureaux and Florent Barret for the
many insightful conversations about the topic as well as Joseba Dalmau and Anna
Bonnet.
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