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Kinetics pathway of precipitation in model Co-Al-W superalloy
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12 Abstract:
13
14 ,
12 The early stages of precipitation of the y phase in a model Co based superalloy (Co-9.1Al-
1
17 7W (at.%)) have been investigated at 900 °C using electron microscopy and atom probe
18
19 tomography. Nucleation, growth and coarsening stages have been studied with a focus on the
22 temporal evolution of the precipitate composition in the light of recent theoretical
ég developments on phase separation in multicomponent alloys. The experimental data have
gg been confronted to the theories of nucleation and coarsening recently developed for such
26 alloys, which are valid for non-ideal and non-dilute systems, and predict the temporal
27
28 evolution of both the matrix and precipitate compositions. The rate constant for the mean size
29 . : . .
30 evolution of the particles, as derived from experiments, has been compared to the one
g; predicted by the mentioned coarsening theory that accounts for a more accurate description of
gi the thermodynamics of the phases, as compared with more classical approaches. From this
gg comparison the y/y' interfacial energy was derived and found equal to ~48 mJ/m% the
37 exponents for the temporal evolution of average particles size, number of particles per unit
38
39 volume were found identical to those for binary alloys during the coarsening regime, as
40
41 expected, and the temporal evolutions of compositions in both y and y' phases were found to
jé evolve as predicted by theory. Indeed, the W content in the particles, measured from atom
jg' probe tomography (APT) experiments, was found to significantly decrease with time and the
jg observed evolution is remarkably well described by the theory and therefore is shown to
48 originate from the competition between diffusion and capillarity.
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I. INTRODUCTION
For more than 60 years, Ni based superalloys are key materials for high temperature
applications in aerospace, in particular for aircraft engines. These superalloys derive their
excellent mechanical properties at temperatures exceeding 800 °C from the presence of a high
volume fraction of coherent L1,- vy’ precipitates dispersed in a disordered FCC-y matrix. In
2006, Sato et al. [1] discovered the existence of a small L1, coherent y' (Coz(Al,W)) domain
in the CoAIW ternary phase diagram, with average composition of about 9.5 at%Al and 13
at%W. As a consequence, a y-y’ region exists in the ternary alloy. According to Sato, this two
phase y-y' region extends from 9.2 to 10 at.% for Al and from 5.4 to 12 at.% for W. The
existence domain of this two phase region is rather narrow in terms of Al content, whereas
there is a larger variability in W. It is therefore possible to consider this ternary system as a
pseudo-binary one, and to define low supersaturation alloys, when the W content is close to
the y limit of the domain (W < 7 at.%), and high supersaturation alloys when it is close to the
vy’ limit (W > 9 at.%). The existence of the two phase region opened the route to the
development of a new generation of cobalt based superalloys, hardened by coherent vy'
Cos(AlLW) intermetallic precipitates, dispersed in the Co-rich FCC y parent phase. From
there, this new generation of Co based superalloys, with a higher melting temperature than Ni
based superalloys, is regarded as a promising candidate for high temperature applications.
Indeed, many subsequent studies have shown that they exhibit good mechanical properties
and creep resistance at high temperature, comparable to those observed in the Ni based
superalloys [2-6]. Partitioning behavior of solute elements (W, Al...) has been studied by
several groups by using APT and transmission electron microscopy (TEM) [11-15]. W was
found to strongly partition to the y phase, whereas partitioning of Al was observed to be much
weaker in the y' phase, contrary to what is observed in Ni based superalloys in which vy’

precipitate composition is based on NizAl stoichiometry. This partitioning behavior of solute
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elements is in good agreement with the prediction of the phase diagram proposed by Sato et
al. [1] as previously discussed.

However, one of the main issues in the development of Co based superalloys is the stability of
the v’ phase, that was shown to become instable at temperatures exceeding 800°C [7-10].
Therefore, information on the temporal evolution of microstructure and on the kinetics of
precipitation of y' precipitates is of utmost importance for the optimization of heat treatments,
and alloy composition. Early stages of y-y' phase separation are also very interesting from a
fundamental point of view, as will be shown later.

Kinetics of precipitation in the ternary CoAIW system was first studied by Meher et al.[12] in
the highly supersaturated Co-10W-10Al (at.%) alloy. Precipitates were shown to form during
quenching. The presence of y' precipitates indicates that the driving force to form '
precipitates, even during the quench, is very high, making the early stages of phase separation
difficult to study. Nucleation, and early stages of growth, could not be observed, and only
coarsening during ageing was investigated. These results were confronted to the modified
form of the classical LSW model developed by Calderon et al. [17-18] for non-dilute solution.
The authors showed that the temporal evolution of average precipitate size, as measured by
their mean radius R, agrees well with the classical LSW coarsening model [17-18,20], with a
linear dependence of R® on ageing time. The composition of both phases was measured by
APT. The evolution of W and Al content in both phases was not found to change over time.
The y/y interfacial energy (o) was derived from APT data and found to be 10 mJ/m? and 19
mJ/m? at 800°C and 900°C respectively. These values of o, which are typical of coherent
interfaces, are close to those observed in model NiAICr nickel based superalloys [19-21].
Similarly, kinetics of precipitation has also been examined by Sauza et al. [22] and Vorontsov
et al. [23] in low supersaturated Co0-8.8Al-7.3W at.% and Co-7Al-7W at.% alloys

respectively, using scanning electron microscopy (SEM). The average size of y' particles (R)
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was observed again to follow the LSW coarsening law (R® ~ t). The number density of v'
precipitates was found to decrease with time according to a t™ kinetic, also in agreement with
the classical predictions [17-18,20,24]. But no chemical information regarding y and y' phase
was given in these low supersaturated alloys.

The present study is aiming at filling this gap through the APT and electron microscopies
(TEM-SEM) investigation of the precipitation kinetics in a low supersaturated alloy, with
particular interest in following the chemical evolution of both phases. In this work, and in
contrast to previous studies, a low supersaturated CoAIW alloy (Co-9.1AI-7W at.%), with
expected lower volume fraction of y' precipitates and driving force, was studied in order to
tempt to investigate the first stages of phase separation at 900 °C. These original data will be
confronted with the most recent theory of phase transformation in ternary systems.

This new model, predicts that, for short aging times, the y' phase composition may deviate
from its final equilibrium value. This non-classical behavior is a result of the competition
between capillarity effects and coupling effect in diffusion process [25]. The predictions of
this model have already been validated in NiCrAl alloy [59], and will be discussed here for

CoAIW alloys. Interfacial segregation energy will also be derived from this model.

To sum up, the main objectives of this work, are :

a- Studying the early stages of precipitation during isothermal ageing at 900°C in

terms of morphology, number density, size and volume fraction of y' precipitates

b- Following the temporal evolution of composition of y and y' phases, as derived

from APT experiments.

c- Confronting the temporal evolution of phase composition as derived from theory

to experiments.
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d- Estimating the interfacial energy from recent nucleation and coarsening theories

for multicomponent systems.

1. EXPERIMENTAL

Polycrystalline ingots of a ternary Co base alloy with a diameter of 8 mm and 60 mm in
length were prepared in a vacuum induction melting furnace at the office national d’études et
de recherches aérospatiales (ONERA), France. The target composition was Co-9.1Al-7W
(at.%) after solidification. Ingots were subjected to a homogenizing heat treatment at 1300 °C
followed by water quenching. To limit possible precipitation of y' during the quench, all heat
treatments were performed on thin samples (thickness 300 pum) under argon atmosphere.
Samples were subsequently aged at 900°C for 5 min, 15 min, 1 hr, 10 hrs, 100 hrs and 200 hrs
under argon atmosphere in a vertical furnace, and then water quenched. The grain size

measured by electron backscattered diffraction (EBSD) was around 100 pm.

The alloy microstructure was investigated by SEM (Zeiss Leo 1530 XB) and TEM (Jeol
2010) operated at 200 kV. Samples for SEM were mechanically grounded and then electro-
polished in a solution of methanol with 5 % perchloric acid, at a temperature of -40 °C and a
voltage of 18 V. For TEM analyses, discs of 3 mm in diameter were cut and mechanically
polished to a thickness less than 100 um and then thinned to electron transparency in a twin

jet polishing system (TenuPol-5) with the same solution and conditions as above.

APT was run in voltage mode, rather than in laser mode. Pulsed laser APT was developed
originally for the investigation of bad conductors such as semiconductors and oxides [26].
Although using laser pulses improves the life time of specimens during analyses, laser mode
has the disadvantage of giving rise to more complex APT mass spectra (more molecular ions)
that are trickier to interpret. Also, and independently, reliability issues may occur in

composition measurements. We compared both pulse modes, and concluded that voltage
5
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mode gives more reproducible data. As shown in Fig. 1, the mass spectra obtained using
voltage pulses are unambiguous, with a reduced number of mass peaks, easy to assign to the

main elements.

Samples for APT were prepared using focused ion beam (Zeiss Nvision 40 FIB-SEM) and lift
out method. Initial annular milling was performed with an accelerating voltage of 30 kV. The
final step was carried out with a low voltage (2 kV) to reduce damage caused by the Ga ions
[27-29]. APT experiments were carried out using a local electrode atom probe (LEAP 4000
HR®, Cameca instrument) in voltage mode, with a pulse frequency of 200 KHz, a pulse
fraction of 20 % of the standing voltage, and a detection rate of 0.2 % ion/pulse. APT data
were treated using IVAS (version 3.6.8) software. The tip was maintained at a relatively
elevated temperature (80K) in order to reduce the applied field, and avoid premature fracture

of the analyzed sample.

The influence of specimen temperature on measured alloy compositions was checked for
different temperatures, and is summarized in table 1. No significant evolution in the measured
values has been observed, showing that preferential evaporation which is known to increase
with specimen temperature [30] can be neglected at 80 K. The average overall composition of
the alloy in the as-quenched state was found to be close to Co-10.16+0.09AI-7.88+0.10W
at.%, from more than twenty analyses in the as quenched condition. The measured
composition is slightly richer in solute elements than the target composition Co-9.1AI-7W
at.%. The overall composition was also measured by energy dispersive X-ray spectroscopy
(EDS). The measured composition is close to C0-9.3+0.35Al-7.4+0.15W at.%, confirming

that the alloy is slightly richer in solute elements than expected.

1. RESULTS
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1. Quenched state

In contrast to SEM, which failed to reveal any other phase than the parent y phase, TEM
exhibited diffraction features revealing the presence of a second phase. Diffraction pattern
taken along the [100] zone axis (Fig. 2a) show superlattice spots, indicating that a L1, ordered
phase has formed during quenching. Fig. 2b is a dark field TEM micrograph taken from the
superstructure (010) spot. L1, ordered zones are observed, with a size of about 3 to 8 nm. In
order to proof that these zones are y' precipitates, with a distinct chemical composition
compared to y phase, and not equi-composition L1, ordered zones due to congruent ordering
during quench [31], APT investigations were carried out (Fig. 3). Whereas the Co map
exhibits an inhomogeneous distribution of this element, surprisingly no apparent partitioning
of W and Al is observed (Fig. 3b and 3c). Concentration profiles and atomic density profiles
were derived from 3D reconstruction by moving a small sampling box (2x2x2 nm?®)
containing 25030 atoms along the tip axis. Unlike atom maps, concentration profiles (Fig.
3d) clearly exhibit W and Al enriched zones. Obviously, W and Al enriched domains are Co
depleted, which is the signature of phase separation between y and y' phases. Although no
contrast appeared in W and Al maps, y' precipitates are therefore present. This paradox comes
from the competition between the so-called local magnification effect and the existence of W-
enriched y' zones. An atomic density profile (atoms per sampling box) is also displayed in Fig.
3d. The density profile clearly shows low atomic density zones correlated with W-enriched
regions (~ 8 nm) (Fig. 3d). Low atomic density zones are due to defocusing effects. W is
known to be a high evaporation field element [32]. Consequently, W-enriched precipitates
have a higher evaporation field compared to that of the surrounding y matrix. High-field
precipitates will develop a smaller local radius of curvature, leading to defocusing effects in
the ion trajectories originating from the high field region, explaining the lower local atomic

density regions. This is the reason why the atomic map of W (Fig. 3b and 3c) do not clearly

7
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exhibit the presence of W-enriched regions in Fig. 3c although W-enriched precipitates are
present: the higher amount of W ion impacts on the detector (due to a higher local
concentration) is counterbalanced by the lower impact density due to local magnification
effect (defocusing). This clearly confirms that bright zones observed in dark field TEM
micrographs with an average size close to 8 nm (Fig. 2b) are small W-enriched nano-
precipitates that nucleated during quenching from 1300°C. These precipitates are also

enriched in Al but in less extend, as expected.

Apparently, the W and Al content in y' regions evaluated from composition profiles (Fig 3(d)),
are close to 12.0+£3.3 at.%. Because of local magnification effects, trajectory overlaps occur
close to y/y" interfaces. Co ions coming from the surrounding matrix may therefore fall in the
y' regions on the detector, leading to an overestimation of Co in y’ regions. Although this
effect cannot be ruled out, it is marginal as the atomic fraction of Co in y' precipitates
(75.0+4.4 at.%, Fig. 3d) appears to be very close to 75 at.%, the expected stoichiometry of the
L1, Coz(Al,W) phase. Statistical fluctuations on local concentration assessment, caused by

sampling errors, are twice the standard deviation o, witho =[C,(1-C,)1-Q)/N]'* where C;i is

the concentration of species i, N the number of atoms in the sampling box (250+30) and Q is

the detection efficiency (~ 36 %)) [33].
3. Microstructural evolution at 900°C

Preliminary SEM observation failed to show any new phase at the grain boundaries (GBs) or
in the core of grains for ageing at 900 °C up to 10 hrs. After 100 hrs ageing precipitates were
visible at some grain boundaries (Fig. 4). These were identified by EDS as D0y CozW
precipitates. DO0yg is a stable phase that may form in binary Co-W alloys and is present in the
Co-Al-W phase diagram [1]. TEM images related to ageing from 5 min up to 200 hrs were

taken far from such D09 decorated GBs so that to follow y' precipitation (Fig. 5 and 6).
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Dark field TEM micrographs show the presence of numerous y' precipitates that develop
during ageing. No small secondary precipitates are observed between the primary y'. Drastic
changes in morphology and microstructure are evidenced. In the early stages of ageing (Fig.
5a), the y’ precipitates are nearly spherical. The coherency elastic strain is proportional to the
precipitate volume (proportional to R%) and anisotropies from this are thought to be negligible
in the early stages. We can also observe that there is no preferential alignment of y'
precipitates at this stage of growth. When particles grow their shape changes from spherical to
cuboidal (Fig. 5b, 5c and 5d), due to the dominant contribution of the coherency strain energy
that increases as R® compared to interface energy that increases as R?. For prolonged ageing
times, a change of the shape to rectangular-like morphologies aligned along the soft <001>
directions is evidenced in Fig. 6a and 6b [34]. In the following, when dealing with cuboidal
precipitates, the radius R of the spherical particles is replaced by the half-edge length (d/2) of
cuboids. An alignment of y’ precipitates is observed, forming elongated colonies. These
“colonies” are separated by dark y corridors. For long ageing times, coarsening is observed
but coalescence (coagulation) of neighboring particles may also occur. However, it is worth
keeping in mind that the coalescence of ordered precipitates often requires the formation of
antiphase boundaries (APB’s) that have a high energy cost in such systems. The Co3(W,Al)
L1, y phase is indeed known to have a high critical temperature (high order energy). There are
4 ordering variants of the L1, ordered y phase. As a result, the probability to get two “out of
phase particles” (OPPs) with an APB is 3/4 and is 1/4 for “in phase particles” (IPPs). Thus,
coalescence of neighboring ordered y particles is difficult and rarely observed. This so-called
discontinuous rafting microstructure has been observed in commercial Ni-based superalloys

[35-40].

4. Temporal evolution of phase composition
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As expected from the phase diagram, y' precipitates are richer in W than the y matrix with a
partitioning coefficient C,-/C, for W around 2.5 and for Al around 1.1. Fig. 7 shows 3D
reconstructions related to ageing at 900°C for various times. y' precipitates are delineated by
10 at.% W isoconcentration surfaces, a value that was chosen between the composition of the
two phases. The generated proxigrams (i.e. proximity histograms) [41-42] for different y and
y' interfaces confirm that W has a very strong tendency to partition to the y' phase, unlike Al,
in agreement with the phase diagram. The sum of Al and W contents in the y’ phase is close to
25 at. %, corresponding to the the expected stoichiometry of the y' Coz(Al,W) ordered phase.
This suggests that Al and W both occupy preferentially the corner sites of the same sub-lattice
in the ordered L1, structure. The composition of both phases was determined away from y/y'

interface, the standard deviation ¢ can be written as [43] o=[C,(1-C,)/N}'* with C; is the

average concentration of element i and N the total number of atoms in the selected y'
precipitates (or in the y phase). Fig. 8a and 8b show the temporal evolution of the W content
in the y and ' phases. As shown in Fig. 8, the W content in both phases evolves with ageing
time. The W concentration decreases with time in both phases. Atomic fractions of W
approach their equilibrium values according to Sato [1]: 5.60+0.02 at.% and 13.85+0.03 at. %
respectively in y and y' after 100 hrs. Whereas the decrease of W content in y phase (decrease
of supersaturation) is an expected behavior, that in precipitates is less common and deserves
special attention. Such a behavior will be discussed in the next section, in view of the latest
nucleation and growth-coarsening theories.

The significant decrease of the supersaturation in the parent phase observed from 5 min to 10
hrs strongly suggests that the pure growth stage continues up to ageing times close to 100 hrs,
and has started in the first minutes of annealing. Let us remind that coarsening is the final
stage of precipitation where the solute concentration in the parent phase evolve very slowly

and is very close to its equilibrium value. This scenario is confirmed by the evolution of the

10
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volume fraction of y' precipitates (Fig. 9, derived from the lever rule), which is found to
significantly increase from 5 min to 10 hrs (from ~18% to ~24%) and more slowly during the
coarsening stage. For longest ageing times (100 hrs), the W content in the y matrix tends to an
almost constant value, which is thought to be close to the solubility limit of W in the y phase
at 900°C (5.4 at.%), and the y' volume fraction reached its equilibrium value (~25%). A more
detailed interpretation of this evolution of the W content in both phases and of the overall

kinetics is discussed below.

IV. KINETICS OF PRECIPITATION: experiments versus theories
1. Nucleation and growth regimes

It is clear from the experiments (Fig. 2b) that y' precipitates nucleate during quenching.
However, the volume fraction of y' has not yet reached its equilibrium value even after 5 min
at 900°C. Due to the remaining supersaturation in the parent phase, nucleation might continue
in the early stages of ageing. We shall examine this post-quench nucleation in more details in
the following. In particular we will examine nucleation in the framework of recent theories

dealing with multicomponent systems where ternary effects are expected [44].

In the limit of low supersaturation, the knowledge of only a few thermodynamic and kinetic

parameters, specifically the Hessian of the Gibbs energy of the phases (i.e. the second

derivative of the energy with respect to compositions 6°G/0C?), the surface energy and the
solute diffusivities, makes possible the determination of the properties of the new phase such
as the size of the first nuclei and their composition [44], the driving force for nucleation and

the nucleation rate [45].

In a recent theoretical work on nucleation in multicomponent systems, properties of the

critical nucleus were derived using the capillarity theory in the framework of classical
11
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nucleation, and proposed an analytical solution for the composition of the critical nuclei. It
was found that the deviation in nucleus composition from the equilibrium tie-line is due to the
difference in the Hessian of the Gibbs energy of the phases and the magnitude of the deviation
in composition from equilibrium is in the order of the supersaturation. In that context, it was
shown than the radius of the critical nucleus can be written in a very general way as [44]:

. 20V

R=—F"— 1)
(AC) G’AC°

with R* the critical radius, o the interfacial energy and V/ the molar volume of the y’

phase. G’ is the Hessian of the Gibbs energy of the y phase evaluated at the equilibrium

composition C/. AC=C/ —C/ for i=Al,W is the equilibrium tie-line vector for the chosen
nominal composition of the alloy C?, and AC’ :C? —Cj“ for j=Al,W represents the vector

supersaturation. Note that AC’ = ®AC where ® is the molar fraction of the new phase at
equilibrium. The initial driving force for nucleation, can be shown to be written in dyadic

notation in the limit of small supersaturation as [44]

AG, =(AC) G7AC" )

and therefore Eq.1 gives the classical expression for the critical size of a nucleus.

The Hessian of the Gibbs energy of the y and y’ phases and the equilibrium composition of
both phases have been computed from a recent thermodynamic database of the Co-Al-W
system relying on the CALPHAD approach [46]. The nominal composition of the alloy as
provided by EDS (C) =9.3at.% and C, =7.4at%), being representative of the overall
composition of the material, was taken as a reference in the following computations.

Thermodynamic equilibrium (tangent plane of G(Ca;,Cw) for both y and vy’ phases) leads to

12
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C/, =9.07 at.% and C/ =5.85at.% for the y phase and CJ, =9.9 at.% and C/, =11.47 at.%

for the y’ phase. These values of the equilibrium compositions give a molar fraction @ of the
vy’ phase at equilibrium of ~ 27%, in good agreement with APT measurements. The
thermodynamic calculations predict a low partitioning of Al between the two phases at
equilibrium, this is confirmed by the experiments (Fig. 7). The molar volume of the y’ phase
is taken as 6.8x10° m®mol and the Hessians of the Gibbs energy of both phases are computed
from the thermodynamic database. From EQq.2, the initial driving force for nucleation is
calculated as ~ 264 J/mol, and this gives a critical nucleus size of ~ 2.5 nm (computed from
Eq.1 with the surface energy derived from the following analysis of the coarsening regime,
o=48 mJ/m?, see next section). The size of the precipitates after 5 min annealing is, according
to Fig. 5a, far above the critical size, this reveals that, even if nucleation is still operating,
growth largely prevails.

Determining the critical size allows for the computation of the nucleation barrier,

. 4roR™
3

AG

3)

At the beginning of the transformation, c=48 mJ/m? gives AG*~75KT (k is the Boltzmann
constant (J.K™) and T is the temperature (K)). Decreasing the interfacial energy o by 30 %
reduces the nucleation barrier by a factor 3 (and gives R*~1.7 nm). From the nucleation
barrier, the steady state nucleation rate 1, i.e. the number of new clusters that are formed per

unit volume and time, can be derived as follows [45]:

_ [IHdl :
| = 2”kTﬁRfO(R) 4)

where H, is the second derivative with respect to R of the work of formation of a cluster of

size R evaluated at R=R*, and was shown to be equal to -8z [46]. f, (R*), the distribution

13
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function of heterophase at R=R*, expressed in the {R}-space in the Fokker-Planck

framework, is related to the distribution function in the more classical {n}-space through [45],
vfy(R")=47zR*f,(n") (5)

with v the atomic volume in the y phase and n* the number of atoms in the critical cluster,
f, (n) the number of nucleation sites times the Boltzmann probability,

f,(n") = 1/ v)exp(-AG” /KT) (6)

B is the diffusivity in the {R}-space and can be written, for diffusion-controlled growth, as
[45] :

KTV,
. (7)

Pe= 1Ry

with
v =(AC)"G’D*AC 8)

where D™ is the inverse of the interdiffusion matrix, which is approximated as

a9 0 0
7 ‘(0 1/DW) ©)

as W is the slow diffuser in the alloy. D, is the interdiffusion coefficient of W in y and is
evaluated at the equilibrium composition from diffusion-couple experiments [46-48] (D,
=2x10"® m%s).D,, is found three orders of magnitude lower than D, . It should be also
noted that the dependence of SB; with R (Eq.7) differs from the more classical result for

interface-limited growth [45]. Moreover, the product G’D™ can also be written as M™, the
inverse of the mobility matrix, which is here non-diagonal even if D™ is diagonal. The

number density of precipitates formed after 5 min of ageing ( N, ) can be calculated from

14
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Eq.4, assuming that nucleation rapidly reaches a steady state, i.e. neglecting the incubation
time, 7, =—KT /H,/3,[46], that is comprised between 4 s and 10 s for o between 33 mJ/m?
and 48 mJ/m?, for example. Also assuming a constant driving force during the first 5 min (no
drastic change in supersaturation), leads to (for 6~33 mJ/m®) N ... ~2.10%* clusters/m®, in the

same order of magnitude as the experimental number density ~8.10% clusters/m® (Fig. 5a and
Fig. 10), but with a difference by a factor of 4, which suggests that most precipitates are
formed during the quench. For this value of the surface energy, the updated supersaturation at
5min (Fig. 5a) leads to a decrease of the nucleation rate by various orders of magnitude,
indicating that nucleation no more operates after 5 min. This is still true if the surface energy
is lowered down to values inferior to 30 mJ/m? The highest value of o gives, even for the
initial supersaturation, a very low nucleation rate, indicating no nucleation during the first
minutes of ageing and that only growth of the precipitates formed during the quench
dominates the phase transformation process. Indeed, the predicted nucleation rates calculated
for the highest value of the surface energy (c=48 mJ/m?) suggests that without the presence of
the precipitates formed during the quench, the phase transformation would be considerably
slower, as compared to the present study. In both cases, the theory predicts that only growth,

and then coarsening, operate after 5min.

The composition of the critical nucleus can be derived as

ACT" =C""-C" =G"7'G’AC’  (10)
assuming no difference between the molar volume of the two phases [45], leading to

ACZ,"* =0.3at% and AC\; =1.36 at%. As compared to the bulk phase, the nuclei are richer
in Al and W, but the capillary effect is quite negligible for Al (+0.3 at.% ). This higher amount

of Al and W in v' in the early stages is in good agreement with APT analyses that reveal a

decrease of the W content in y' with ageing time.
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Coarsening regime

Microstructural changes due to the reduction of the overall interfacial energy and
consequently of interphase surfaces typically occurring at the end of a first-order
transformation are known as Ostwald ripening [49,50] or coarsening [17,18]. The total
interfacial energy of the system decreases and the size scale of the coarsening phase increases.
Dissolution of small precipitates concomitantly entails growth of large ones through a
diffusive mass flow from shrinking to growing precipitates. Lifshitz and Slyozov [17] and
Wagner [18] were the first to describe the coarsening process in a dilute binary alloy. In this
case, the interfacial compositions are set by the Gibbs-Thompson equation that links these
compositions to the curvature of the precipitate. In multicomponent alloys, local equilibrium
alone is no longer sufficient to determine the compositions at the interface and mass balance
conditions must be employed to describe the growth kinetics of the precipitates. This has been
done by Kuehmann and \Voorhees [24] to describe Ostwald ripening in a ternary alloy.
Historically, extensions of coarsening theory for multicomponent systems were carried out by
several authors [51-57]. More recently, a very general coarsening theory was developed by
Philippe and Voorhees (PV) that accounts for the diffusion couplings and allows the
composition of the precipitate to depart from equilibrium [25]. The PV analysis shows that the
temporal exponents for the average particle radius, number density of particles, and both the
precipitate and matrix compositions are identical within the binary limit. However, the
amplitudes are different. Moreover, it was revealed that the vector representing the matrix
supersaturations coincides with the equilibrium tie-line, but in most alloys, this is not the case
for the second phase composition [25,45]. This is precisely what is observed in APT

experiments (Fig. 8). We shall examine this in more details hereafter.

The mean radius (R ) of the precipitates follows the classical LSW law:
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RP(t)=Kqt (1)
with Kg a rate constant [25],

y
K, = (12)
W

where w is given by equation (8). As experimentally shown, the y' precipitates are cuboidal,

the particle radius R is replaced by d/2 with d the mean edge length of the cubic precipitate.
Fig. 10b shows a plot of log(d/2) against log(t) as determined experimentally from SEM and
TEM micrographs, and a temporal exponent of approximately 1/3 is observed, indicating that

the coarsening regime dominates the phase transformation from the early stages. From this
result the surface energy can be derived using Eq.11 and Eq.12 with K. =0.67 nm%s (Fig.

10c). This leads to ¢ =48 mJ/m% which is a reasonable value for a y/y’ interface but much
larger than that deduced from a previous coarsening study performed in Co-Al-W alloys [16],
where ¢ =19 mJ/m? at 900 °C. A comparable value of the surface energy is found (c ~17
mJd/m?) if the interdiffusion coefficient of W is multiplied by a factor 2, because the procedure
is very sensitive to the kinetic coefficients (Eq.8 and Eqg.12). However the main difference
with the analysis performed by Meher et al. [16] is that the determination of the rate constant
Kr relies in their study on the LSW theory modified by Calderon et al. [20]. In our case, a
more accurate description of the thermodynamics of the phases is employed with a full

coupling to kinetics (EQ.8). Indeed, the coefficient v in Kg (Eq.8) that couples both Kkinetics
and thermodynamics is given, in the modified LSW, by w =RT (C_:y.—C_:y)Z/DC_:y (1-C))

[20], and was used in [16] for the determination of the interfacial energy. Contrary to LSW
[17], the expression derived in [20] is valid for concentrated alloys and simpler than the one

we use in the present analysis (Eq.8), which was derived in [25]. However, it is found that, in
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the present case, the expression proposed in [20] for y overestimates its actual value, as

given by Eq.8, by a factor ~1.5. Indeed, using this expression instead of Eq.8 for the
determination of the interfacial energy leads to a value of 30 mJ/m? at 900°C, which is closer
to the energies obtained in [16], 19 mJ/m? at 800 °C and 10 mJ/m? at 900 °C, but still
relatively larger than the energies derived using the modified LSW [16,20]; which therefore

might have been underestimated.

According to the PV theory [25], the number density of the precipitates evolves as:

N, = 0.21%t‘1 (13)

R

The experimental number density Ny of y' particles was estimated from TEM micrographs
(Fig. 5). Fig. 10a shows the temporal evolution of N, , which is found to decrease as %% in

good agreement with theory (Eq.13). The prefactor 0.21® /K, (Eq.11) is close to 8.10% s/m?

for a value of K, =0.67 nm?s, which is of same order of magnitude than the experimental

value (10% s/m? Fig. 10a), and thus shows a reasonable agreement, as growth and coarsening

superimpose.

During coarsening, the supersaturation slightly decreases as [25]

1
C'(t)=C"+Kt ® (14)
with,
1
2 3
K.=(30v; PAC—F—— (15
(AC) G'AC

and the W concentration in the “average precipitate” is given by [25]
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1

C’(t)=C" +Kt 3 (16)
with

2 11 ¢ie’aC

KL =(30V] )P y?y ——" 17
o] ( O m) U4 (AC)T G7AC ( )

Fig. 11a and 11b show the temporal evolution of W content in both y and y' phases, measured

by APT, that is found to linearly evolve with t**

as predicted for a pure coarsening regime.
One should also notice that the extracted composition in W at equilibrium in the y phase (5.5
at.% for t¥*~ 0) is in good agreement with the calculated equilibrium composition (5.85 at.%,
see previous section), but is far off for the y’ phase (13.8 at.% experimentally versus 11.47
at.% as given by the thermodynamic data). Nevertheless, the measured rate constants for W
are equal to 0.085 at.%/s'” for y and to 0.027 at.%/s® for y* (Fig. 11). The agreement with
experiments is good. The amount of W in v' precipitates decreases with ageing time. The rate
constants compare reasonably well with the predicted ones calculated from Eq.14-17 that are
respectively equal for W to ~0.044 at.%/s® and ~0.038 at.%/s', especially as the W content

in the matrix at early times not only reflects a pure coarsening regime but also a concomitant

growth process.

As shown in this section, atom probe tomography experiments have revealed a significant
decrease of the W content in the y’ particles during annealing. To our knowledge such clear
evidence of a compositional change in particles during phase separation has not yet been
observed in Co-Al-W alloys, and is commonly very hard to exhibit [58]. Comparing the
experimental and theoretical rate constants for the temporal evolution of the mean size of the
precipitates have allowed for the determination of the interfacial y/y’ energy o, in fully

coupling thermodynamics (from the CALPHAD method [46]) and kinetics. This full coupling
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was shown in [25] to set the particles composition during the phase transformation, as given

by Eq.14-17. Remarkably enough, the current description of both thermodynamic and kinetic

parameters that is employed here, combined with the derived value of o, allows for a good

prediction of the W content decrease in y’ (0.038 at.%/s

13) as compared with experiments

(0.027 at.%/s*?), and therefore shows that the PV theory [25] captures reasonably well the

physics of Ostwald ripening in multicomponent alloys [24,25,54-56].

V. CONCLUSION

The Kinetics of precipitation in a low supersaturated Co-9.1Al-7W model Co based superalloy

aged at 900°C was investigated. Electron microscopy was used to determine the microstructural

evolution and the average size and number density of y' precipitates. Atom probe tomography

was employed to measure the composition of both y and y' phases. Experiments were

confronted to most recent nucleation and coarsening theories for multicomponent alloys.

The following conclusions can be drawn:

Ordered v' precipitates are formed during quenching with a distinct composition
with regard to the parent phase.

After ageing, the measured composition of y' precipitates indicated a Cos(Al,W)
stoichiometry, suggesting that both Al and W occupy preferentially the corner sites
of the same sub-lattice in the ordered L1, structure, as expected.

The supersaturation in W and Al still decreases significantly after quench. This
means that nucleation and growth continue during the early stages of ageing at
900°C. Concomitantly the y' volume fraction increases up to 100 hrs where almost
pure coarsening is observed.

Temporal exponents for the average particle size, number of particles per volume

were found identical to those expected for binary alloys during the coarsening

20



©CO~NOOOTA~AWNPE

regime. By comparing experiments and a most recent theory for the temporal
evolution of the mean size of precipitates, the y/y' surface energy was found to be
equal to 48mJ/m?.

V. Composition profiles across the y/y' interfaces show a high degree of partitioning
of W unlike Al, as predicted by phase diagram.

vi. The temporal evolution of composition in both phases was found to evolve as
predicted by most recent theories, especially in y', where a significant decrease in
the W content has been clearly evidenced by atom probe tomography experiments.
As shown in this work, nucleation theory [44] predicts large deviations from
equilibrium of the W composition in the particles. Remarkably enough, the
observed decrease in W content in the particles during the phase separation is well
reproduced by the coarsening theory in multicomponent systems, and originates,
as shown in [25], from a competition between the diffusion process and capillarity.
From the present investigation, it is concluded that the recently developed theory
for coarsening [25] captures reasonably well the physics of Ostwald ripening in

multicomponent alloys [24,25,54-56].
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Figures
Fig. 1. APT mass spectrum of Co-9AI-7W in the as-quenched state.

Fig. 2. (a) Electron diffraction pattern along the [001] zone axis, (b) Dark field TEM micrograph taken from (100)
spot micrograph of Co-9.1AI-7W (at.%) alloy at quenched state.
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Fig. 3. As-quenched state. (a), (b) and (c) are cross-sections of APT 3D reconstructed volume showing the
distribution of Co, Al and W respectively. (d) Composition and apparent atomic density profiles along the tip axis,
showing the low apparent atomic density in high evaporation field W-enriched v’ regions due to defocusing effects
(local magnification effects).

Fig. 4. Backscattered SEM micrograph showing the heterogeneous precipitation of CosW at grain boundaries after
annealing at 900 °C for 100 hr (the contrast arises from local chemistry).

Fig. 5. TEM micrographs showing the temporal evolution of the y-y' microstructure in Co-9.1AI-7W at 900 °C :
(@) 5 min, (b) 15 min, (c) 1 hr and (d)10 hr. (a,b,c) are dark field TEM micrographs taken from superlattice L1,
spots (a) [110] zone axis (b) and (c) [100] (d) bright field micrograph in the [100] zone axis.

Fig. 6. Backscattered SEM micrographs showing the temporal evolution of the y-y' microstructure in Co-9.1Al-7W
at 900 °C : (a) 100 hr and (b) 200 hr.

Fig. 7. (@) APT three dimensional reconstructions related to Co-9Al-7W (at.%) alloys aged at 900 °C for different
ageing times (5 min-100 hr), showing y' precipitates delineated with a 10 at.% W isosurface and the related
proxigrams through y/y" interfaces.

Fig. 8. Temporal evolution of W content (a) in y phase, (b) in y' as measured by APT.

Fig. 9. (a) Temporal evolution of the molar fraction (~volume fraction) of y' phase as derived from the phase com-
position using the lever rule.

Fig. 10. Temporal evolution of microstructural features as derived from TEM and SEM observations. (a) The
number density of precipitates N, versus time (b) log(d/2) vs. log(t) where d is the size of precipitates. (c) (d /2)’

against time. Black dots are data derived from TEM micrographs and red dots are date derived from SEM micro-
graphs.

Fig. 11. Temporal evolution of the W content in (a) y parent phase and (b) y’ phase as derived from APT
experiments. The dashed line is an eye guide showing linearity.

Table 1. The overall composition of as-quenched CoAIW as measured by APT for different base sample
temperatures.

Tips Temperature(K)  Al( at.%) W (at.%)
1 80 10.22 7.85

2 80 10.16 7.89

3 40 10.03 7.78

4 40 10.30 8.04

5 20 10.11 7.88
Average 10.16+0.09 7.88+0.10
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