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Abstract

In this paper, we prove that separation occurs for the stationary Prandtl equation, in
the case of adverse pressure gradient, for a large class of boundary data at x = 0. We
justify the Goldstein singularity: more precisely, we prove that under suitable assumptions
on the boundary data at = 0, there exists z* > 0 such that Jyu,—o(z) ~ Cy/z* —z as
x — 2 for some positive constant C, where u is the solution of the stationary Prandtl
equation in the domain {0 < z < x*, y > 0}. Our proof relies on three main ingredients:
the computation of a “stable” approximate solution, using modulation theory arguments;
a new formulation of the Prandtl equation, for which we derive energy estimates, relying
heavily on the structure of the equation; and maximum principle techniques to handle
nonlinear terms.
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1 Introduction

One of the main open problems in the mathematical analysis of fluid flows is the understanding
of the inviscid limit in the presence of boundaries. In the case of a fixed bounded domain,
it is an open problem to know whether solutions to the Navier-Stokes system with no slip
boundary condition (zero Dirichlet boundary condition) do converge to a solution to the Euler
system when the viscosity goes to zero. The main problem here comes from the fact that we
cannot impose a no slip boundary condition for the Euler system. To recover a zero Dirichlet
condition, Prandtl proposed to introduce a boundary layer [30] in a small neighborhood of the
boundary in which viscous effects are still present. It turns out that the system that governs
the flow in this small neighborhood, namely the Prandtl system has many mathematical
difficulties. One of the outcome is that the justification of the approximation of the Navier-
Stokes system by the Euler system in the interior and the Prandtl system in a boundary
layer is still mainly open. We refer to Sammartino and Caflisch [31, 32] for this justification
in the analytic case. There is also a well known convergence criterion due to Kato [15] that
states that the convergence from Navier-Stokes to Euler holds as long as there is no viscous
dissipation in a small layer around the boundary (see also [23]).

Let us also mention that when the no slip boundary condition is replaced by a Navier
type condition or an inflow condition, the situation gets much better: Bardos [1] proved that
the convergence holds for some special type of boundary condition (vorticity equal to zero
on the boundary) which does not require the construction of any boundary layer. For Navier



boundary conditions, a boundary layer can be constructed and controlled (see for instance
(3, 35, 16, 11, 2, 17, 25, 26]).

We are interested in the present paper in the stationary version of the Prandtl equation,
namely

d
uux+vuy—uyy——p§a§x), x>0, y>0,
Uy +vy =0, x>0, y>0, (1.1)

Ujp—o = U0, Uy—g = 0, ylingo u(z,y) = ug(x),

where y = 0 stands for the rigid wall, = (resp. y) is the tangential (resp. normal) variable to
the wall. The functions ug, pg are given by the outer flow: more precisely ug (resp. pg) is
the trace at the boundary of the tangential velocity (resp. of the pressure) of a flow satisfying
the Euler equations. The functions ug, pg are linked by the relation
upily = - 22D,
dx

Existence results for (1.1) were first obtained by Oleinik (see [29, Theorem 2.1.1]). Indeed,
as long as u is positive (i.e. when there is no recirculation within the boundary layer), (1.1)
can be considered as a non-local transport-diffusion equation in which the tangential variable
x plays the role of “time”. The function ug, which is the input flow, is then considered as an
“initial data”. However, this point of view breaks down as soon as u takes negative values.
Physical experiments and numerical simulations show that such behavior may occur; in this
case, the boundary layer seems to detach itself from the boundary. This phenomenon is
therefore referred to as “boundary layer separation” (see figure 1).

The goal of this paper is to prove that separation does occur for the stationary Prandtl
model (1.1), and to give a quantitative description of the solution close to (but on the left of)
the separation point. In particular, we will justify rigorously the “Goldstein singularity” (see
[8]). Note that a shorter version of this work was published in [4].

1.1 Setting of the problem and state of the art

The first mathematical study of the stationary Prandtl equation was performed by Oleinik
(see [29]):

Proposition 1.1 (Oleinik). Let o > 0, X €]0,+00]. Let ugy € Cg’a(R) such that up(0) = 0,
up(0) > 0, limy oo uo(y) = ugr(0) > 0, and such that uo(y) > 0 for y > 0. Assume that
dpg/dx € C1([0, X]), and that for y < 1 the following compatibility condition is satisfied

~ dpg(0)

uply) = = — = o). (1.2)

Then there exists * < X such that equation (1.1) admits a solution u € C*([0, z*[xRy)
enjoying the following properties:

e Regularity: w is bounded and continuous in [0,2*] x Ry, ayu,aju are bounded and

continuous in [0, z*[xRy, and Oyu, v and Oyv are locally bounded and continuous in
[Oax*[XR—l-;

e Non-degeneracy: u(z,y) > 0 for ally > 0 x € [0,2*], and for all T < x* there exists
yo > 0, m > 0 such that Oyu(x,y) > m for all (x,y) € [0,Z] x [0, yo].
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Figure 1: From Stewartson [33].

e Sufficient condition for global solutions: if dpgém) < 0, then the solution is global, i.e.

¥ =X.

In this paper, we are interested in the case where the solution of (1.1) is not global: more
precisely, we consider the equation (1.1) with dpg/dz =1, i.e.

UUm+Uuy_uyy:_1a T € (O7x0)? y>07
’LngJrUy:Oy :EG(O,.’L’()), y >0, (P)

Ujp=0 = U0, Uly=0 = 0, yli_)IIolou(w, y) = UE(‘T)7

with ug(z) = \/2(xo — z), for some xy > 0, and wug satisfies the assumptions of Proposition
1.1. Hence it is known that local solutions (in x) of (P) do exist. However, heuristically, it can
be expected that the negative source term will diminish the value of the tangential velocity
u, and that there might exist a point z* beyond which the result of Proposition 1.1 cannot be
used to extend the solution. More precisely, it can be checked easily that the compatibility
condition (1.2) is propagated by equation (P). As a consequence, we have x* < xg if and only
if one of the following two conditions is satisfied:

(ii) There exists y* > 0 such that u(z*,y*) = 0.

In order to simplify the mathematical analysis, we will work with solutions of (P) that are
increasing in y. This property is propagated by the equation, and ensures that situation (ii)



above never occurs. Consequently, for solutions which are increasing in y, we have x* < x¢ if

and only if
ou

dy
In the Physics literature (see for instance the seminal work of Goldstein [8], followed by the
one of Stewartson [33]), this condition is used as a characterization of the “separation point”.

The first computational works on this subject go back to Goldstein [8] and Landau [21,
Chapter 4, §40]. In particular, Goldstein uses an asymptotic expansion in self-similar variables
to compute the profile of the singularity close to the separation point. These computations
are later extended by Stewartson [33]. However, these calculations are formal; furthermore,
some of the coefficients of the asymptotic expansion cannot be computed by either method.
Independently, Landau proposes another characterization of the separation point, and gives
an argument suggesting that dyu,—o ~ vz* — z close to the separation point.

On the other hand, in the paper [5] Weinan E announces a result obtained in collaboration
with Luis Caffarelli. This result states, under some structural assumption on the initial data,
that the existence time z* of the solutions of (P) in the sense of Oleinik is finite, and that the
family w,(z,y) := ﬁu(u(x* — ), u*/*y) is compact in C(R2). Moreover, the author states
two technical Lemmas playing a key role in the proof. However, to the best of our knowledge,
the complete proof of this result was never published.

Let us also mention recent works by Guo and Nguyen [10] and by Iyer [13, 12, 14], in
which the authors justify the Prandtl expansion either over a moving plate or over a rotating
disk. Note that in these two cases, the velocity of the boundary layer on the boundary is non
zero, which somehow prevents recirculation and separation.

In the time-dependent framework, boundary layer separation has also been tackled re-
cently by Kukavica, Vicol and Wang [20], extending computations by Engquist and E [6]:
starting from an analytic initial data, for a specific Euler flow, the authors prove that some
Sobolev norm blows up in finite time. This is known as the van Dommelen and Shen sin-
gularity. Note that in this time-dependent context, separation is defined as the apparition
of a singular behaviour, which is a somewhat different notion from the one we are describ-
ing in the present paper. This is related to the bad mathematical properties of the time-
dependent Prandtl equation, which is known to be locally well-posed in analytic or Gevrey
spaces [31, 22, 19, 18, 7], but ill-posed in Sobolev spaces [9, 7].

(ZL‘*,O) =0. (1.3)

1.2 Main result

Our main result states that for a suitable class of initial data ug, the maximal existence “time”
x* > 0 of the solution given by Oleinik’s Theorem is finite: in other words, setting

Az) = Oyujy—o,

there exists x* €]0, +oo[ such that lim, ,,« A(z) = 0. Furthermore, for this class of initial
data, we are able to quantify the rate of cancellation of A(z).
Let us now explicit our assumptions on the initial data ug:

(H1) ug € C7(Ry), up is increasing in y and Ao := uf(0) > 0;



(H2) There exists a constant Cp > 0 such that

Vy >0, —Coinf(y* 1) <uf(y) —1<0,
o < —ui(0) < Co,

HU()||W7,oo S C().

(H3) uo = uy™ + vo, where

2 4
a Yy 4 Yy
Uopp = )\(]y + 5 + U/(() )(O)E
@ 2 Y @) 13" @ a3y 3/7
—c7(uy (0))2— + c10(uy (0))3—2 + c11(yy (0))3 5 fory <AY,
o 2 ¥

WP < Gy fory > N7,

and
_3
lvo| < Co ()\0 2 ()\gy7 + 08y8) + /\62y10 + )\63y11) for y < /\3/7.

In the expressions above, the constants ¢; are universal and can be computed explicitely.

Remark 1.2. e These assumptions are actually not optimal: in fact, condition (HS3)
merely ensures that some energy-like quantities are small enough. However, the actual
condition we need is complicated to state at this stage: we refer to the statement of
Theorem 3, in rescaled variables, for a less stringent condition.

e Notice that |vg| < ugpp if Ao < 1: the term vg is the initial data for the corrector term
v=u—uP. The main issue of the paper is to have a good control of v close to y = 0.

o The monotony assumption on ug ensures that separation occurs aty = 0. The monotony
1s preserved by the Prandtl equation for x > 0.

e Notice that we prescribe the Taylor expansion of ug up to order 7. In other words, we
impose a high order compatibility condition on the initial data, because we need to derive
estimates on derivatives of u.

Theorem 1. Consider the Prandtl equation with adverse pressure gradient (P) and with an
initial data ug € C*(Ry) satisfying (H1)-(H3). Then for any n > 0, Co > 0, there exists
€0 > 0 such that if Ao < €9, the “existence time” x* is finite, and x* = O(A\3). Furthermore,
setting \(x) := Oyujy—o(x), there exists a constant C' > 0, depending on g, such that

MNz) ~CVa* —z asz — x™.

The proof of Theorem 1 relies on several ingredients: the first step is to perform a self-
similar change of variables, using A(z) as a scaling factor. Then the issue is to control
the variations of A, or more precisely, of b := —2A,A3. The method thanks to which we
construct an approximate solution and find the ideal ODE on b is inspired from the theory of
modulation of variables, which was initiated formally by Zakharov and Shabat (see [36] and
the presentation in the book by Sulem and Sulem [34]) and rigorously applied by Merle and
Raphaél to blow-up phenomena in the nonlinear Schrodinger equation [28, 27].



Once the approximate solution is constructed, the whole problem amounts to controlling
the remainder v. To that end, we exhibit a transport-diffusion structure of equation (P) (or
of its rescaled version, see equation (2.15)). Let us emphasize that this structure, to our
knowledge, is entirely new. We perform energy estimates that rely strongly on the structure
of the equation. In order to handle nonlinearities, we will also need to control u in L.
Therefore we derive pointwise estimates on u and its derivatives by constructing sub and
super-solutions and using the maximum principle.

Let us point out that in order to carry these estimates, we will use three different versions
of the equation. The first one is merely a rescaling of equation (P) (see (2.3)). It will be used
to compute explicitly the approximate solution and find the ODE on b. The second one is
a transport equation with a non local diffusion term (see (2.16)). Its purpose is to perform
energy estimates, and the major difficulty will be to find good coercivity inequalities on the
diffusion. Eventually, we will use a change of variables to transform (2.3) into a nonlinear
transport diffusion equation of porous medium type (see (2.24)). This last form was already
used by Oleinik in [29] and will be suitable for the maximum principle and will help us prove
the L*° estimates

In the next section, we present our scheme of proof and state our main intermediate results.
The reader that is not interested in the technical details of the proof can focus on section 2,
that gives an overall idea of the main arguments involved. The third section is devoted to the
construction of sub and super solutions. In section 4, we introduce several tools that play an
important role in the energy estimates: coercivity of the diffusion term, commutator Lemma,
computation of the remainder... Eventually, we prove the energy estimates in section 5.

Remark 1.3. Our result actually gives much more information on w: in fact, we construct
an approximate solution u®?, which contains the main order terms in the Taylor expansion
of u, and we control v = u — u™P. As a corollary, we find that the sequence of functions
(u") >0 from the statement of Luis Caffarelli and Weinan E converges towards 22/2 in the
zone z < p~H12¢1/6 ¢ <1 (see Remark 2.17 for more details). Hence our result holds under
more stringent assumptions on the initial data, but on the other hand it gives a much more
quantitative and precise description of the asymptotic behaviour.

2 Strategy of proof

2.1 Self-similar change of variables

Let us first recall that equation (P) has a scaling invariance: indeed, if (u,v) is a solution of
(P), then for any p > 0, the couple (uy,v,) defined by

1 1/4 1/4 1/4
uy = —u(pw, - '%y), vy = pto(pe, e ty),
o \//j ©

is still a solution of (P). This scaling invariance has been used by Goldstein [8] and Stewartson
[33] to compute exact solutions of (P) close to the separation point. These special solutions
were sought as infinite series in some rescaled variables.

In the present article, the idea is to perform a change of variables which relies on this
scaling invariance and which depends on the solution itself. It incorporates information on
the “separation rate”, i.e. on the speed of cancellation of dyuj,—g. This type of idea was used



by Franck Merle and Pierre Raphaél in the context of singularity analysis for the nonlinear
Schrodinger equation [28, 27]. More precisely, define

Y
AMz) == 0yujy—g and Y = o)
We also change the tangential variable and define the variable s by
ds 1
— = . 2.1
der M (x) (2.1)
Then the new unknown function is
U(s,Y) = A2(a(s))u(w(s), Aa(s))Y). (2.2)
It can be easily checked that U is a solution of the equation
Y 3b Y
UUS—UY/ Us—bU2+2Uy/ U—Uyy = —1, (2.3)
0 0
where \
b= -2\, = —275. (2.4)
The boundary conditions become
Uy—o =0, lim U(s,Y) = Usx(s), (2.5)
Y—oo
where Uy, satisfies Uy, Ul — bU2, = —1. Moreover, thanks to the definition of \, we have
(9YU|Y:0 == 1 (26)

From now on, we will work with equation (2.3) only. The goal is to construct an approxi-
mate solution of (2.3), together with b(s) and A(s), having nice stability properties as s — oo.
Note that the limit s — oo corresponds to the limit x — z* in the original variables. As we
will see in the next paragraph, the stability properties of the approximate solution are inti-
mately connected to the asymptotic law of b as s — co. Eventually, the asymptotic behavior
of b will dictate the rate of cancellation of A close to x = z*. We prove that the behavior
b(s) ~ s~ ! is stable. This asymptotic law corresponds to the separation rate announced in
Theorem 1, namely A(z) ~ C'vx* — x.

In the next paragraphs, we explain how we construct the approximate solution, and which
energy estimates are used to prove its stability. We deal with nonlinearities in the equation
by using the maximum principle, together with Sobolev embeddings. Let us recall that we
will in fact use three different forms of equation (2.3):

e Due to its polynomial form, equation (2.3) itself is very useful to construct the approx-
imate solution and find the correct asymptotic law for b;

e In order to perform energy estimates, we will transform (2.3) into a transport-diffusion
equation (with a non-local diffusion term), see (2.15) and (2.16);

e Eventually, in order to use the maximum principle, we rely on a third version of (2.3),
that uses von Mises variables. The equation then becomes a nonlinear local transport-
diffusion equation.



2.2 Construction of an approximate solution

The heuristic idea behind the construction of stable approximate solutions is the following;:
we look for an approximate solution U?PP of (2.3) with a remainder as small as possible. In
particular, the remainder for U?PP should have the lowest possible growth at infinity. This
implies that the function U?PP itself should have the lowest possible growth as Y — oo, as we
shall see in a moment. As in the work of Merle and Raphaél in the context of the nonlinear
Schrédinger equation, this low growth condition has an immediate impact on the asymptotic
behavior of the function b.

We decompose the definition of approximate solutions into three zones: the main zone
goes from 0 to s%, for some o > 0 to be defined later on. In this zone, we compute a Taylor
expansion of U(s,Y) for Y close to zero, and we try to push the expansion as far as possible,
which amounts to the “low growth condition” explained above. In the second zone, we only
keep the largest term in the Taylor expansion, namely Y?2/2. It can be checked that Y?2/2
is a stationary solution of (2.3). This stationary solution corresponds to a solution of (P)
which is independent of 2 and scaling invariant, namely (z,y) — y?/2. In the third zone, we
connect Y2/2 to an asymptotic profile U® (s). Notice that if b(s) = st +O(s7771) for some
n > 0, then Ux(s) = s + 1+ o(1), and therefore we also take USSP (s) ~ s.

Throughout this paragraph, we will rely on the polynomial form on the rescaled Prandtl
equation, namely (2.3).

e Taylor expansion of U for'Y close to zero:
Let us first recall that thanks to the change of variables (2.2), we have
U(s,0) =0, 0yU(s,0)=1.
It then follows from (2.3) that
dyyU(s,0) = 1.

The first terms of the Taylor expansion of U for Y close to zero are therefore Y + Y;
The first natural idea is to define a sequence of polynomials in Y with coefficients depend-
ing on s thanks to the induction relation

Y2
Ul(S,Y) =Y + —

2 )
Y 3b Y
8yy(UN+1 — UN) =1+ UNasUN — 8yUN/ 8SUN — bUJQ\f + 26yUN/ Un — 8yyUN.
0 0
(2.7)
We obtain easily that
y? 4 . 1

Ua(s,Y) =Y + 5 = asbY”,  with ag = 5 (2.8)

Let us now compute the error terms generated by Us. We have

Y Y
b
UQ@SUQ—ayUQ/ 8SU2—bU22+328yU2/ Uy — 0yyUs +1
0 0
4 13 2 5 3 2 6 2b 2 8
= — —bs + — Y°— — s Y — (bg Y®°.
a4<5b +10b> 1o (bs +07) VP +ajg (bs +07)



Let us recall that we expect that b(s) = O(s™!) as s — oo. Therefore the coefficient of the
last term in the right-hand side is one order of magnitude smaller than the first two terms.
We thus focus on the comparison between the first two terms in the right-hand side. As
explained above, the goal is to choose the approximate solution with the smallest growth at
infinity. Note that the remainder term (bs + b2) Y% would yield in Us a term proportional to
(bS + b2) Y8, whereas the remainder term (%bs + %62) Y?® would yield a term proportional
to (%bs + %bQ) Y7. Consequently, we choose to “cancel out” the term (bS + bz) Y8 in Us. In
other words, in the induction formula (2.7) defining the sequence (Un)n>1, we replace every
occurrence of by, by —b?. The polynomial Us is therefore defined by

2

Y 1
Us(s,Y) =Y + o asdY* —azb®Y",  with a7 = 24

It follows that for Y <« 1,

U(s,Y)~Us(s,Y)+ Va(s,Y),
(2.9)

where V3(s,Y) = —a7§(bs + )Y —ay

- (bs +0*) Y3+ O(Y'10).

3
10x7x8
Remark 2.1. In the work of Merle and Raphaél, the choice of the parameters A and b stems
from orthogonality properties of the quantity U — UP on some well chosen functions. In the
present case, these orthogonality properties can be seen as a cancellation at high enough order

of U —UP qt Y = 0.

For technical reasons, it is necessary to push further the expansion of U. We thus compute
Us. We find that

Y 3b Y
UsdsUs — ayU3/ dsUs — bU3 + 2ayU?,/ Us — OyyUs + 1
0 0

4 3 a4 3 3 1
= (bs+b?) [—5a4Y5 — 1—0a4Y6 — %bYS - Za7bY9 + ga4a7b?1/11 + Za%bi”yl‘l
27 3 11 3
et b3Y8 v b3Y9 - b4Y11 e 2b5Y14.
16(17 16&7 + 16@4&7 + 8a7

It follows that
Uy =U; — a10b3Y10 — a11b3Y11 + a13b4Y13 + a16b5Y16,

where

27 3 1lagar a?

_ _ 3 __ ttwoar 9T 2.10
16 <907 M T 16 % 110" T 13 x12x16° T 16x5x 8 (2.10)

aio

e Definition of the approximate solution:

We now define the approximate solution U?PP in the following way: let © € C%(R;) be
such that ©(§) = % for £ < ¢ for some ¢y > 0, © strictly increasing, and ©(§) — 1 as
¢ — o0. Let x € C§°(R4) be such that x =1 in a neighbourhood of zero. We take

Y 1
U™P(5,Y) = (52/7> [Y = aabY* — arb?Y" — aob’y ™" — anb’y!'] + 70 (\/BY) . (2.11)

10



Notice that UP ~ Uy as long as Y < s2/7 (the highest order terms have been removed,
mainly because they do not lower the size of the remainder while making the computations
heavier), and that U*PP — 3 as Y — oo. Therefore we do not require that U*PP —U(s,Y) — 0
as Y — oo. But this is not an issue, since we will measure the distance between U and U?PP
in weighted Sobolev spaces, with weights decreasing polynomially (with a large power) after
P, for some 8 < 2/7.

Remark 2.2. The zone after which we cut-off the first part of the approximate solution
is irrelevant: we could have used any cut-off x(-/s%) as long as o €]1/4,1/3[. The choice
a = 2/7 simplifies some of the statements on U%P since it ensures that Y and —asbY* are
the largest terms in Y — asbY* — a7b?Y " — a19b?Y10 — a1 63V 1L

We also set, in the rest of the paper, V := U — U?PP. The computations above and in
particular (2.9) show that

3

8
V)= —aro(by + )Y — g
V(s Y) = —arg (b +b7) “10% 7 x 8

(bs +0*) Y3+ 0O(Y'"?) for0<Y < 1.

In particular, let V' be a (semi-)norm on functions W € C¥(R ) such that W = O(Y”) for Y’
close to zero. Assume that there exists a constant Cys such that

N(W) = Cn |0y Wiy —.

Then NV (U — U?P) > Cyr|bs + b?|. Therefore the goal of the paper is to use the structure of
the equation (2.3) in order to find a semi-norm N which satisfies the assumptions above, and
to prove that

N(U - UPP) < Cs™ 277,

for some positive constant n and for s sufficiently large, or alternatively, that

/ T SERIAL(U(5) — UPPP(s)) ds < o0,

S0

Indeed, we have the following result:

Lemma 2.3. Let sy := bal. Assume that the variables x, s and the parameters A, b are related
by the formulas (2.1), (2.4) with the initial conditions A\s—s, = Ao, bjs—sy = bo = sal, and
that there exists a constant ¢y such that

b

1 0

¢ < —= <.

0 =732 =%
Ab

Assume furthermore that there exist constantsn > 0 and € € (0, 1) such that for all s > sg,

o0
/ s3T2|bs + b2 ds < oo,

S0 ) ) (2.12)
— € < b(s) < + 6‘
S S

Then there exists x* > 0 such that A(x) — 0 as © — z*. Furthermore, if \g < 1, then
z* = O(N\}) and there exists a constant C such that

ANz) ~ Cz* —2)Y?  asz — o™

11



Proof. First, setting
o
J = / s5T20|bg + b?|% ds
50

and using Lemma B.1 in the Appendix, we know that

b(s) = % +r(s),

where
1+e€sg J1/2 1+e 1

—es? (1—¢€)2sltn’

o0 1 1
[ relds s et a gt <o
so 1—¢ (1 —€)?ns

Vs > so, |r(s)| <e

As a consequence,

From (2.1) and (2.4), it follows that

A(s) = Aso) exp (-i /0 b(s') ds> = As0) ( 80)1/2 exp <—; /8:7"(8') ds’) .

We have A\(sg) = Ao = 0(551/2) by assumption. Moreover, according to the estimate of r
above, the function ¥(s) := exp (—% fsso r(s") ds’) has a finite, strictly positive limit ¢, as

s — 00. As a consequence \(s) = (/\08(1)/2) Y(s)s~1/2 for all s > s9. According to (2.1), we

have - W oo
= / A(s)'ds = <)\Os(1)/2) / Y(s)1s™% ds < oo.
S0 S0

Thus separation occurs at a finite z*. Moreover,
* 1/2 4 1—2 12\* 4 1
" —x(s) )\gs w ds' ~ ()\030 ) (I as s — 00.

Going back to the original Variables, we deduce that

1
M)~ (2" — )2 as - 2.

(A055/2> Yoo

Using the above formulas, we also infer that if so > 1, 2% = O(s; ') = O(\3).
O

Remark 2.4. Notice that the precise value of the separation point x* depends on the whole
function ug(y) (and not only on its derivatives at y = 0) through the function 1(s). This
intricate dependance might explain why the coefficients in Goldstein’s expansion were unde-
termined.

Remark 2.5. Let us now give some examples of norms N such that
N(W) > Cn| 05 Wiy~ (2.13)

for W € C3(R,) with W = O(Y7) forY close to zero. We can take for instance
NP = [ @Gwy + (@32
0

12



or

o /1 2 W 2
W)? .= — — | .
v | () + ()
More generally, we can use any norm N such that

Nz |Tekw|
H1(0,Yp)

for some fized Yo > 0 and for any k € {0,---,7}. The norm N we will use eventually will be
equivalent to a linear combination of such norms in a neighbourhood of Y = 0.
2.3 Error estimates

In this paragraph, we explain roughly how estimates on V := U — U?PP are derived. More
details will be given in sections 4 and 5. We emphasize that all energy estimates written in
this paper are new. The first step is to compute an evolution equation of transport-diffusion
type on V. To that end, let us consider equation (2.3), and set, for Wy, Ws € C(R.),

Yy
Ly, Wy := W1 Wy — (9le/ W,
0
so that equation (2.3) can be written as
5 3b Y
LyU, — bU +?Uy U—0yyU = —1.
0

Notice that since U(s,Y) > 0 for all s,Y > 0,

vy, (B)

U? U

Hence we can define the inverse of the operator Ly, for functions f such that f(Y)/Y? is
integrable in a neighbourhood of zero: we have

Y Y
L,;lf:<U/0 UJ;)Y:Uy/O %Jr% (2.14)

As a consequence, the equation on U can be written as
3 Y
OsU + bL;! <2Uy/ U— U2) — Li' (8yyU — 1) = 0.
0
It follows immediately from the definition that
Y
LN (U?) = oy (U/O 1) = (YU)y.
On the other hand,

Lt <Uy /OY U> = L;' <Uy /OYU - U2> +(YU)y

= —L;'LyU+ (YU)y
= U+ (YU)y =YUy.

13



We infer that the equation on U becomes
b .
;U = bU + 5V oy U — Ly (0yyU —1) = 0. (2.15)
The whole non-linearity of the equation is now encoded in the diffusion term L (0yyU —1).
Setting Ly := ijlﬁyy, the equation on V = U — U?PP becomes

b
OV —bV + Y OyV — LyV =R, (2.16)

where the remainder R is defined by
R:=— <83Uapp — bUPP 4 ZY@yU"‘pp) + Lgl(é‘yyUapp -1).

Equation (2.16) is the second form we will be using for the rescaled Prandtl equation. It will
be handy for the derivation of energy estimates.
We have the following result, which is proved in section 4:

Lemma 2.6. The remainder term R can be decomposed as
Y

R = (bs+b")x <2> [asY* + 2a70Y " + 3a10b*Y " + 3a116*Y "]
s2/7

Y
+ X <82/7> [a10b4Y10 + a113b4Y11/2]

a7b3

b _ _ Y
+ §LU1(LVY) + TLUI (X (82/7> (LvY7 + L by 4 —arb2Y T ayob3Y 104ay,b3Y 11 Y7)>

+ Pi(s,Y)+ Ly (Pa(s,Y))

where Py, Py € C%([s9,0),C®(R.)) are such that P; has at most polynomial growth in s and
Y and Py(s,Y) =0 for Y < ¢s?7 for some ¢ > 0.

Remark 2.7. Following the decomposition of Lemma 2.6, we write R = 2?21 R;. Each of
the remainder terms R; will play a different role and will be treated separately. More precisely:

1. Cancellations will occur in the remainder term Rq;

2. The size of the term Ro dictates the final rate of convergence of the energy. This is
where the choice of the approzimate solution plays an important role;

3. The term Rg can be treated as perturbation of the zero order term bV and of the transport
term bY 8y'V as soon as Y > 1, and as a perturbation of the diffusion LV if Y < s¥/4.
Indeed, think of Lal as a division by U, and of a derivation with respect to Y as a
division by Y. Then

DL (LY S b V| < b— v oy v
U VLS T YL s Py R Y
Thus if Y > 1, this term is small compared to bY 0y V. On the other hand, heuristically,
LoV | 2 UYoiV| 2 (YU) Yoy V| (think for instance of a Hardy inequality). Thus
as long as Y2U < b1, i.e. Y < sY4, the diffusion term LyV dominates bY 8y'V, and
therefore Rs3.

14



4. The last term Ry will not play any role in the energy estimates: indeed, we will choose
weights with a strong polynomial decay for Y > sP for some 8 < 2/7, so that the error
stemming from R4 can be made O(s~F) for any P > 0 by an appropriate choice of the
weight.

The idea is now to perform weighted energy estimates on equation (2.16), with the help
of a norm N satisfying assumption (2.13). These estimates rely on the following ideas:

1. Let AV be a norm satisfying (2.13), and define an energy E(s) by

In order to prove that bs + b = O(s~27") (or that f;goo $32(bs + b2)%ds < +o0) for
some 7 > 0, it is enough to show that

dE
—+ %E(s) < p(s) Vs> sg (2.17)
with 44+ 7 < «, and with a right-hand side p(s) such that f:}o s%p(s) ds < +o0. Indeed,
integrating (2.17) between sy and s yields

o
E(s) <s ¢ <E(so)58‘ —I—/ s%p(s) ds> .
S0
Assuming additionally that E(sg) < Cys,® for some constant Cy independent of sg, we
are led to
enlbs + 22 < E(s) < Cs™47 Vs > s,

and using Lemma 2.3, we obtain the desired result.

2. The property a > 4 in (2.17) is derived thanks to algebraic manipulations on (2.16).
Schematically, if we only keep the transport part in (2.16) and if we consider the model
equation

1 1
Ouf = —f+ oYy f=r,
s 2s
we see that the k-th derivative of f satisfies

k 1 1
0041 + (5 - 1) 0k + gvokty o

Hence p .
oy £l + (k - 2) %1172 = / or % f

Taking k = 7 and k = 8 and summing the two estimates, we obtain the desired result
with o = § and N'(f) == |0} f| .

3. The fact that the remainder is integrable with a weight s* in (2.17) stems from our choice
of approximate solution. In particular, if we modify the algorithm of construction of
(Un)n>1 described in the previous paragraph and replace every occurrence of by by
—cb? for some constant ¢ # 1, the estimate is no longer true.
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Let us now explain the main steps in the derivation of estimate (2.17). The difficulties
lie in the complex structure of the diffusion operator L;;, and in the estimation of some
commutator terms. The idea is to apply several times the operator Ly to equation (2.16).
This requires:

1. computing the commutator of Ly with Js + %Y@y;
2. understanding the action of Ly on the remainder term R;

3. obtaining energy estimates on transport-diffusion equations of the type
b
6sf+be+§Y8yf—£Uf:1". (2.18)
Let us now explain how we deal with each of the points above.

2.3.1 Commutator of Ly with 9, + Y9y

The commutator result is stated in the following

Lemma 2.8 (Computation of the commutator). For any function W € I/Vli’cl((so, o0) X Ry)
such that W = O(Y?) for'Y close to zero,

b Y w Yo
|:LU1a 0s + 2Y3y] W = bL,'W - (D/ U2> +2 (U/ U3D> ’
0 Y 0 Y

where D := L' (OyyU — 1).

In the rest of the article, we define the commutator operator

cwie-(o ), +2(0 | o),

The quantity D involved in the commutator can then be written as
D=LyV+ Lal (OyyUP — 1),

where the second term can be developed using the explicit expression U?PP. Notice the
commutator C[0% V] contains some quadratic terms in V. In order to estimate these quadratic
terms, we will need both preliminary estimates and estimates in L* on the function V. The
L estimates are derived in detail in section 3, and rely on a careful use of the maximum
principle.

2.3.2 Action of Ly on the remainder term R

We will use the decomposition of the remainder given in Remark 2.7. The first two terms,
namely R1 and R, are essentially polynomials. Therefore, in order to deal with them, we
will need to get explicit formulas for terms such as Ly7(Y4) = 12L;;'(Y?), and more generally,
to understand the asymptotic behavior of L;;'(Y*) for Y > 1 and k > 2.
In order to get explicit formulas, we will use in several instances the following trick: for
k € N, write
VP = L Ly (YF) = Ly (Lyaee (YF) + Ly Y?).
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Now, since U?PP is a polynomial, Lgaps (Y*) can be easily computed, and is also a polynomial
in Y. The term LalLV(Yk) is expected to be of lower order. For instance, taking k = 1, we
observe that Lyaee(Y) = YTQ +O(bY®) for Y < s*7. Hence we obtain a formula for L' (Y?)
(up to some remainder terms).

Concerning the asymptotic behavior of Ll}l(Yk) for Y > 1 and for k > 4, notice that
the operator L(}l acts roughly like a division by U, as can be seen from the formula (2.14).
Furthermore, the L estimates (see Proposition 2.16) will ensure that there exists a constant
C such that

CUY +Y?) <U(s,Y)<CY +Y?) vy <7

Therefore, Lgl behaves differently for Y < 1 and for Y > 1: for Y close to zero, applying
Lﬁl amounts to dividing by Y, while for Y > 1, it amounts to dividing by Y2. We obtain
that for Y < s'/2 and k > 4,

_ oYkl ify«i
1 k\ )
Ly (V7) = { Oo(Y*=2?) ify > 1.

As explained in Remark 2.7, the term Rj3 is treated as a perturbation of the dissipation
coming from the transport and the diffusion term. Eventually, since R4 is supported in
Y > s2/7, while we use weights that have a strong polynomial decay for Y > s for some
B < 2/7, the size of R4 in our energy norms will be smaller that that of Ry + Ra + Rs.

2.3.3 Energy estimates on transport-diffusion equations of the type (2.18)

The most difficult part is proving coercivity and positivity estimates for the diffusion. We will
rely on the diffusion Lemma 4.7, which makes an extensive use of weighted Hardy inequalities,
see [24]. They also rely on the fact that if U =Y + YTZ + O(bY*), then dyy L' is “almost”
a local differential operator (see the formulas in Lemma A.1 in the Appendix).

We will also often use the observation that if Y < s/4, then the diffusion term dominates,
while for Y 2> s1/4 then the transport part becomes preponderant. Indeed, for k > 6, if

b~ st

1

Chy* + éY&ka ~ <k + C) vk,
2 2 S

and LyY* = O(Y*™) for Y > 1.

It is easily checked that both terms are of the same order for Y ~ s/4, and diffusion (resp.
transport) is dominant below (resp. above) that threshold.

We now turn towards the sequence of estimates on V. In the end, we seek to obtain
estimates on dy L%V and 903 L%V. We recall that V ~ —C(bs + b)Y for Y close to zero,
and therefore dy LEV ~ —C(bs + b?) for Y close to zero.

Using Lemma 2.8, we infer that LV satisfies the following equation:

b
0LV +bLuV + JY Oy LoV — LEV = LyR + Cloyy V). (2.19)
We get the following result:

Proposition 2.9. Assume that:
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o There exists a constant J > 0 such that

S1
/ s34 by + b%2ds < J;

S0

o =€ < b < EE for s € [sg, s1] and for some small universal constant € (say € = 1/50);
o There exist constants My, Mo, ¢ independent of s such that for all Y,

—M; <Uyy <1 VY >0,
1— MpbY? < Uyy VY €]0,es'/?).

Let wy := Y %1+ s P1Y)™™ for some By €]1/4,2/7[, m1 € N.
Let

Ei(s) = / (3 LuV) P,
0

S (GRLOV)E [ (GRLV)?
D1 (s) :== /0 — g W —I—/ gz v
Then there exist universal constants a,c > 0, such that for all a €]0,al, for all a < 6 — (11 —
a)f1, for my large enough, there exists Sy, H1 > 0 depending on My, Ms, c, 31, m1, and a such

that if s > max(Sy, J4),

s1
Ei(s) < Hi(1+ Ei(s0)sg)s™ %, / s*D1(s)ds < Hi(1+ Eq(s0)sg) Vs € [so, s1].

50
Remark 2.10. The weight Y ™% in w1 has two different roles. On the one hand, we gain a
bit of decay in the remainder terms. On the other hand, we are able to control, through a
simple Cauchy-Schwarz inequality, quantities of the type

Y oLy
o U?

by the diffusion term.

Remark 2.11. Notice that if we take 81 such that

1 11
411 —a’

1
1<51<

then we can choose a so that o« > 13/4. We will make this choice in the final energy estimates,
and we will use the corresponding decay of E1 when we apply the maximum principle.

Differentiating (2.19) with respect to Y and taking the trace of the equation at Y = 0,
we obtain in particular

Lemma 2.12. For all s > sy, we have

1
Oy LEViy—o = —5(bs + b?).
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We then derive an equation on EQUV. Applying once more the commutator result of
Lemma 2.8, we deduce that EIQJV satisfies the following equation:

Qs LIV + 3bLEV + gYﬁyﬁ%]V — L}V = LER +CI02 Ly V] + LyCloEV]. (2.20)

In order to have a trace estimate, and also to have nice positivity properties for the diffusion
term, we will also need to use estimates on 03 L% V. We therefore define the energy

o
Ba(s) = [ (GRLHV Pun
0
together with the dissipation terms

00 633 122 1% 2 00 692 l:2 1% 2
Ds(s) -:/ 7( YUU ) w2+/ 7( YUg )
0

w2,

where the weight ws is defined by wy = Y ~%(1+57%2Y) ™2 for some parameters 82 €]1/4, B1],
mg > my sufficiently large. The parameter a is the same as the one in Proposition 2.9.
We then claim that we have the following estimate:

Proposition 2.13. Assume that the hypotheses of Proposition 2.9 are satisfied. Let Cy :=

max(El(80)5(1)3/4Jm7 Es(s0)sp) for some n > 0 such that 13/4+n < 6 — (11 —a)By. Then there

exists a universal constant a, such that for all a €]0,a[, for a suitable choice of Ba, m2, there
exist So, Hy > 0 (depending on a, 3;,m;, My, Ms) such that if so > max(Sp, J*,C§) ,

Fsy(s) < Hay(1+ Cp)exp(Ha(1 + Cp))s™® Vs € [s0, 51]. (2.21)

Let us now go back to the definition of the semi-norm N. We need a new type of trace
estimate, taking advantage of the fact that Fy has a stronger decay than E; (notice that the
sole decay of Ej is not sufficient to close the bootstrap argument, since Ep < s713/4=m and

we need |bs + b%| < s7271/2 while 13/4 < 4).
We will use the following trace estimate, which is proved in Appendix:

Lemma 2.14. There exists a universal constant C, such that for all L > 1, for any smooth
function f,

2 ~ 1+4a L 2y —a 1 L 2 2 —a
fO))F<C (L Oy Y™ dY + 2 | [f)FE + Y)Y dY ).
0 0

In particular, taking f = 8y£%]V and L = s'/*, under the assumptions of Proposition 2.13,

gl/4
|bs + 52|2 <C (SITLEQ + s / U (8y£2UV)2) .
0

Let us now go back to the definition of the semi-norm N'. According to the above Lemma,
we can take for instance

lta _3-a [ 9 N2 - 1/2
NV):=|s1T Ey+s 1 U(@yLUV) w1 )
0
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where @y := Y14+ s 51Y)7™ 2 = (1 + s 71Y) 72, so that N (V) > C|bs + b?| for some
universal constant C.

However there remains to prove that with this definition, N (V) is sufficiently small. Ac-
cording to the above Lemma, we also need to find a bound for fooo U (8y£?]V)2 wi. We claim
that we have the following estimate:

Lemma 2.15. Assume that the assumptions of Proposition 2.9 are satisfied. Let P > 0
be arbitrary. There exist So, Hi > 0 depending on My, Ms, 81,m1, and a, and a function
p such that fssol p(s)s™/2ds < 1, such that if my is large enough (depending on P) and if
so > max(Sy, J4),

/ U 0y £3V) iy < His® 99Dy 4 57 By + 57 7p(s). (2.22)
0

Gathering Lemmas 2.14 and 2.15 and using Proposition 2.9 and Proposition 2.13, we find
that if sp > max(Sy, J4, CS),

|bs + b?|* < Ha(1 + Cp) exp(Hz(1 + C’o))s_w‘l;a + H sG-a@-0p, 4 s Fp(s).

Recall that fssol 5*D1(s) ds < Hy(1 + Cp) for sg > max(Sp, J*) and for a = 13/4 + 1 <
6 — (11 — a)B1. A short computation! shows that we can choose 5; and a so that

13

2 1 () <o-1-0m

We obtain eventually that B
|bs + b%| < CN(V),
and 5
/ SN (V ()2 ds < H(1+ Co) exp(H(1 + o)),
s0

for some constant H depending on a, 3;, m;, My, Ma, provided sq > max(Sp, J4, C’g). Thus b
satisfies the assumptions of Lemma B.1 with v = 13/4 > 3.

We gather the estimates of Propositions 2.9 and 2.13 and Lemma 2.14 in the following
Theorem:

Theorem 2. Let a €]0,a[, and choose the parameters 51 and (2 such that

1 1 11 14-a
- ~inf 2.23
g <Pr<hi<gin (11—a’14—2a> (2:23)

and mg > mq > 1.
Let n =n(a, B1) such that 0 < n < (3 —a)(p1 —1/4).
Assume that the following assumptions are satisfied:

Tt is enough to choose

1 a
(14—
ﬁ1<4( +14—2a)
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There exists a constant J > 0 such that

S1
/ s13/4 by + b%|2ds < J;

0

o (1—€)/s <b< (14¢€)/s fors € [so, s1] for some small enough constant € (say € =1/50);

There exist constants My, Ms, ¢ independent of s, such that

—M; <Uyy <1 VY >0,
1— MybY? < Uyy VY €]0,es'/?].

There exists a constant Cy, independent of sq and Mg, such that for some n > 0

Es(s0)s) + E1(80)$g+13/4 < Cb.

Then there exists constants H, Sy, depending on a, mi, mo, 81, B2, M1 and Ms, such that
for all sp > max(Sy, J4, C§),

/51 $13/4by + b2 < exp(H(1 + Cp)).
50
In particular, setting J' = exp(H (1 + Cy)), we have
S0 > maX(SQ,J4,Cg) = /81 513/4\193 + 62]2 <J,
50
and the constant J' is independent of J.

2.4 Construction of sub- and super-solutions

The other ingredient in the proof of Theorem 1 is the use of the maximum principle in order
to control the growth of U and its derivatives on the one hand, and the size of some non-
linear terms on the other hand. Indeed, the assumptions of Propositions 2.9 and 2.13 require
estimates on G%U . These estimates are obtained by careful applications of a comparison
principle. We emphasize that this principle is not applied to equation (2.3) directly, but rather
to an equation derived from (2.3) after a non-linear change of variables. More precisely, we
use the von Mises variables

Y
= U, Ww:=U> .24
¥ /0 , (2.24)

The tangential variable remains s, the normal variable is now 1 (instead of Y'), and the
new unknown function is W. This change of variables transforms (2.3) into a non-linear
transport-diffusion equation which is more suited for maximum principle techniques, namely

3b
OsW — 20W + -0y W — VWOLW = -2 (2.25)
Equation (2.25) is the third and last form of equation (2.3). We refer to [29] and to section 3

of the present paper for more details. Since the new equation is local and parabolic, it enjoys
maximum principle properties. Therefore we construct sub- and super-solutions for W and

21



its derivatives and thereby derive estimates on W. These estimates are then translated in
terms of the former variables s,Y.

One of the key points lies in the construction of a sub-solution for W (see Lemma 3.6).
Actually, the Sobolev estimates of Proposition 2.9 provide a very good pointwise control of
Uup toY ~ % > s1/4 but this control degenerates for Y > %1 Hence it is sufficient to
construct sub-solutions for Y > s/4, or equivalently (since ¢ ~ Y3/6 for Y > 1) for ¢ > s3/4,
On this zone, the sub-solutions will be linear combinations of powers of 1. Furthermore, we
define a regularized modulation rate b, whose role is to remove some oscillations from b while
keeping the same asymptotic behavior. We take

- - ~ 1
bs + bb - 0, b|5:50 = ;
0

The sub-solutions for W are defined by

4/3
W (61#4) / AT,

where A is chosen sufficiently large. Notice that the main order term (61)*3/4 is the same
as in the original solution. It corresponds to the main order term Y?2/2 in U(s,Y).

The regularized modulation rate b is also used in the construction of a sub-solution for
Uyy — 1 (see Lemma 3.7).

The final result is the following (we refer to Remark 2.11 regarding the assumption on

El):

Proposition 2.16. Assume that there exist constants J > 0, n > 0 and € > 0 such that for
all s € [so, s1], assumption (2.12) is satisfied. Assume furthermore that there exists a constant

My such that
—Mpinf(1,55'Y?) < Uyy(s0,Y) —1<0 VY >0,

lim Uf(sg,Y) < Myso,
Y —oo
and that there exists C; > 0 such that
Ei(s) < Cis~B/* Vs e [sg, 51].

Then there exist universal constants M,C >0, and So depending on C1, 51, m1, such that if
s0 > max(Sy, C(Je=2)Y/21), then, setting M’ = M max(1, M),

—M'bY? < Uyy(s,Y)—1<0 Vs€[so,s1], VY €[0,s7],
and —M' < Uyy(s,Y)—1<0 Vs e [so,s1], VY > s'/3.
Notice that the above estimates are precisely the ones that are required in Proposition
2.9.
2.5 Bootstrap argument

The bootstrap argument consists in bringing together Theorem 2 on the one hand, and
Proposition 2.16 on the other. In the rest of this section, we will assume that U(sg) satisfies

Ei(sp) < 0080_13/4_77/2, Es(s0) < Cosy®,
1 €
‘b(so) T s < 259" (2.26)

and — Myinf(1,s,'Y?) < Uyy(s0,Y)—1<0 VY >0, Jim U(sp,Y) < Moso.
—00
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where Cj, M are constants independent of s, and 7 is such that n — 3/4 < 2 — (11 — a)f.
Without loss of generality, we also assume that My > 1. Such an initial data is “well-prepared”
in the sense that it is close to the blow-up profile.

Assumption (2.26) involves three different types of estimates. In order to propagate these
estimates, we will apply three different results:

1. The energy estimates from Propositions 2.9 and 2.13, which are gathered in Theorem 2;
2. The maximum principle estimates from Proposition 2.16;
3. Lemma B.1 on the modulation rate b.

Note that the maximum principle will propagate the third estimate of (2.26) without improv-
ing it (in fact, we will change the constant My into M My); however the energy estimates will
transform 7/2 into 1, and will therefore improve the estimates on Fj.

The argument goes as follows: let Sp, H be the constants from Theorem 2 with a =
13/4+mn and My = My = M My (recall that Sy depends in particular on £1, 32,7 and a). Let
J :=2exp(H (1 + Cp)). Assume that so > max(Sp, CJ*, C§) for the large universal constant
C from Proposition 2.16.

If the initial data satisfies (2.26), by continuity, there exists s; > sp such that for all
s € [so0, s1],

1
Bu(s) < 2H (1 + Co)s—13/4-1, \b<s> -

S1
< -, / b + b2 ds < J. (2.27)

0

[V R

Then for all s € [sg, s1], according to Proposition 2.16 with C; := 2H;(1 + Cp), we infer
that up to choosing a larger Sy (depending on Hy and Cj),

—MDMy <Uyy <1 VY >0,
1— MMbY? < Uyy VY €]0,s3].

The assumptions of Propos_itions 2.9 and 2.13 are satisfied (with My = My = M M), and
we infer that if sg > max(Sp, CJ*, CF), for all s € [sg, s1],

Ei(s) < Hi(1+ Cos?)s™ /471 By(s) < Hy(1 + Co) exp(Ha(1 + Cp))s .
We have in particular for all s € [sg, s1]
Ei(s) < Hy(1+ Co)s™13/471/2,

and using Lemmas 2.14 and 2.15,

81
/ |bs + b%|25"3/4ds < exp(H(1 + Cp)) = g
50

Using Lemma B.1 in the Appendix, we infer that for all s € [sg, s1],

1| _14¢e|1 sp . L+é g5 [2J
_ < - _ =3 _ _.
’b(s) s| T 1—¢€|sp b(s0) s? * (1 76)28 7
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Without loss of generality, we can always assume that €, 1, sg are such that

ted e JHgmel
—e— 4 (1-e2V 7 4

Then for all s € [sg, s1], we have

—_

—_

Gathering (2.27) and (2.28), we infer that

s1 0= inf{s > so, By(s) = 2 (1 + Co)s™¥/+71/2 or [o(s) — 1/s] = ¢/

(2.28)

or / B34 b, + 02 2dr = J} = +o0.

S0

As a consequence, we infer that for some constant J depending only on Cy and Mpy, if

so > max(Sp, CJ4, C§),

/ s34 by + b2 2ds < J, 'b— E

o S

<

W | ™

We therefore obtain the following Theorem in the rescaled variables (s,Y):

Theorem 3. Let 1 be such that 0 < n < (3 —a)(B1 —1/4), where By satisfies (2.23). Assume
that Uy satisfies the hypotheses (2.26), and consider the solution U of equation (2.3) with
U(so,Y) = Uy. Then there exists a constant Sg > 0, depending on n,Coy, My, such that if

so = Sg, then for all s > sg,

<

bh— =

oo
/ s34 b, + b%|2ds < +o0,
s

S0

‘ 1

» | o

Let us now go back to the original variables and prove Theorem 1. First, we set

Ao = Oyug|y—o, bo := —)\gasuo‘yzo, 80 1= bgl.
The assumption (H1) entails that
cal)\% < sal < co)\%.
Assumption (H2) implies

— My inf(1, 55" YV?) < Uyy(s0,Y) —=1<0 VY >0,
U(So,Y) < ]\4())\62 < M()C()S()

(2.29)

for a suitable constant My. Of course, without loss of generality, we can assume that My >
1. Furthermore, assumption (H3) becomes, in the rescaled variables and after a few easy

computations,
V(s0,Y) = O(sg ") (Y7 + csV®) + O(sg3 (Y10 + Y1)

for Y < 3(2)/ " Here the constant cg is defined so that

Oy L3V (s0) = O(sy ") + O(s5°Y?).
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It can be easily checked that these assumptions ensure that U is a well-prepared initial data.
As a consequence, if s¢ is large enough (i.e. if g is small enough), (2.29) holds. Using Lemma
2.3, we infer that 2* < 400 and that A(z) ~ Cv/z* — . Theorem 1 follows.
Furthermore, we deduce from the maximum principle estimates some pointwise control
on u. Indeed, we have
YZ M y?

Yoo = W SUEY)SY 4+ o for 0<Y <es'/?,

Going back to the original variables, we find that there exist constants C, ¢ such that

2 2
M)y + % — Cy* <ulw,y) < M)y + % vy < (a* —2)'/S.
Remark 2.17 (Comparison with the result by Caffarelli and E). Let us now plug the change
of variables in the result announced by Caffarelli and E in [5] into the asymptotic expansion

above. We recall that 1
uﬂ(§7 Z) = mu(x* - 5/1'7/'61/42)'

It follows that in the zone z < p~'/12¢1/6 ¢ <1,

22

2
u'(€,2) = O(u*/€)z + % +O0(ut?24 - 5 s p 0.

2.6 Organization of the rest of the paper

The rest of the paper is dedicated to the proof of Theorem 3, or more specifically, to the
proofs of Proposition 2.9, Proposition 2.13 and Proposition 2.16. Since the maximum principle
estimates are easier to derive than the energy estimates, we start with the proof of Proposition
2.16 in section 3. We then lay the ground for the derivation of the energy estimates by proving
several important intermediate results in section 4. Eventually, we prove Proposition 2.9 and
Proposition 2.13 in section 5.

Let us also explain here the order in which the parameters are chosen. We first pick
a € (0,a), where a is the universal constant in Proposition 2.9. We then choose 51 > [
satisfying (2.23), and n > 0 such that n — % < 2 — (11 — a)p1. We then pick mq,mgy large
enough and such that ms > mj. Eventually, we take so large, depending on all other
parameters.

Notation

We will use indifferently fy and 0y f to denote the Y derivative of an arbitrary function f.
The constants with a bar (a,C, M, €) denote universal constants, that do not depend on any
of the parameters. All constants with a zero subscript (M, Cy, so) refer to the initial data.

Constants involving the letter M (My, My, Ma, M) are related to the maximum principle.
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3 Derivation of L*® estimates and construction of sub and su-
per solutions

This section is devoted to the proof of Proposition 2.16, which consists in the derivation of
pointwise estimates on U, Uy and Uyy, provided b satisfies the assumptions of Lemma B.1
and F(s) = O(s~'3/%). Throughout this section, we will use the von Mises formulation of
the rescaled Prandtl equation, namely (2.24)-(2.25). The idea is to use the maximum and
comparison principles for these equations (see Lemmas 2.1.3 and 2.1.4 in [29]), together with
Sobolev estimates coming from the bound on Ej(s).

Let us first recall some useful formulas regarding the von Mises formulation of the equation
in the original variables and in the rescaled variables. If u is the solution of (P), we set

y
o(z,y) —/ u, w=u>
0
We recall that (P) is equivalent to the following equation, written in the variables (z, ¢)
Wy — Vwijw = 2. (3.1)
Furthermore, notice that if W, are defined by (2.24)

(s, Y) = Aa(s)*b(a(s), Ma(s))Y),  W(s, %) = Aa(s) w(a(s), o).

It follows that some qualitative properties of equation (2.25) (growth with respect to ¢, local
bounds) can be inherited directly from equation (3.1). More precisely, we have the following
result:

Lemma 3.1. Let wy € C3%(Ry) such that wo(0) = 0 and wy(0) > 0. Assume that wy is
increasing. Then for all x € [0,2*[, w(x, @) is increasing with respect to ¢. Furthermore, for
any X € [0,z*[, there exists Cx > 0 such that for all z € [0, X],

lwe(z, )] < Cx Vo >0,
03w(z, ¢)|, |93w(z,¢)| < Cx Vo> 1.

As a consequence, W is increasing in 1 (or equivalently, U is increasing in Y ) for all
s € [so, s1], and
lim W¢ = lim Www =0 Vse [80,81].

Ph—00 P—00

Proof. The bounds on wg, wye are explicitly written in [29] (see Lemmas 2.1.9 and 2.1.11).

The bound on aj;w follows from the same arguments as [29, Lemma 2.1.11], writing down the

equation on wy. Since limy oo w(x, @) = U(x)?, it follows that limg oo wy = 0 for all z €

(0,2*). Therefore we also have limg_,o wgy = 0. Whence limy,_,oc Wy, = limy,_,o0 Wiy = 0.
Furthermore, the equation satisfied by wy is

8zw¢ — %ﬁ(ﬁw(ﬁ — \/E8¢¢w¢ = 0,
with boundary conditions wg|,—o = wy(¢) > 0, limg o0 wg = 0, and wgjg—g = 2A(z) > 0 for
all x € (0,2%). According to the maximum principle, we have wy > 0 in (0,2*) x (0, 00).
Hence Wy, > 0, and W is increasing in .
]
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3.1 Uniform bounds on dyyU

The first step of the proof of Proposition 2.16 is the derivation of uniform L bounds on
OyyU. The result we prove in this paragraph is the following

Lemma 3.2. Let U be a solution of (2.3) on (so,s1) x (0,+00) such that Uyjy—og = 1 for
all s € [so, s1], and such that U is strictly increasing in 'Y for all s, with limy o, U(s,Y) =
Uoo(s) < +00.

Assume that there exists Moy such that

—Ms < dyyU(so,Y)—1<0 VY >0,

and that
dyyU(s0,Y) =1 —12a4bY? + O(Y") for Y < 1. (3.2)

Then
—maX(Mg, 1) < ayyU(S,Y) —-1<0 VY >0Vs> S0-
Remark 3.3. Assumption (3.2) is a compatibility condition at a high order at s = so. It is

propagated by the equation.

Proof. We rely on the equation on W in the (s,1)) variables. We recall that Oy U = 0,W/2,
and therefore

dyyU(s,Y) \/ (5,Y))0pypW(s,9(s,Y)) Vs> sg, VY > 0.

Therefore we derive estimates on the quantity
F(s,1) := VW, W — 2.
Notice that the assumptions on U imply that
—2Ms < F(s0,) <0 Y > 0.

On {Y = 0}, we have Uyy = 1, and therefore Fj;,_, = 0. Using Lemma 3.1, we also have

limy 00 F'(s,7) = —2.
Furthermore, F' satisfies

AW
W

Using the equation on W (2.25) and writing 0y W = (F + 2)/v/W, we infer that

0 F =

1 1 3b 3b .
F = F(F+2)+——=0W (25W - 7 VIV —ba3W — D0} 2F).
OuF = S F(F + )+2\/Waww( bW 2¢a¢w>+ W( bORW — WO + 0

Gathering all the terms and using the formula

1
OpF = ——0y Wy, W + VWIS W,
W vt v M
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we obtain eventually

OsF — ﬁF(F +2) + %bzb&pF — VW, F = 0. (3.3)
> First step: Lower bound on F' and consequences.

We start with the lower bound, which is easier. Assume that F' has an interior minimum
Fyin at some point (s,v) for some s € (sg, s1], ¥» > 0. Then according to equation (3.3),
Frin(Frmin + 2) < 0, and therefore Fin € (—2,0). Thus F(s,v) > min(—2,inf F(sg)) >
min(—2, —2My).

We infer from this lower bound on F' some non-degeneracy estimates for W for 1 close to
zero. Indeed, it follows from the inequality Uyy > — M} with M} = max(M; — 1,0), that

1— MY <Uy VY >0.

In particular, if Y < Yy := (2M})™1, then Uy (s,Y) > 1/2 and U(s,Y) > Y/2. As a
consequence, if ¥ < (s, Yp), then Wy, > 1. Now, the lower bound on Uyy also entails that

Yo }/0 1
s,Yp) = U(s,Y)dY > — = —.
w70 = [T UG ar 2 T =
Hence in particular, for all s > s,
1
< = W(s,v) > and W, > 1. 3.4
P < 16Még ( 7/)) P P ( )

> Second step: Upper bound on F.

The derivation of the upper-bound is a little more involved. The main difficulty comes
from the nonlinear term F'(F'+2)/W, which is also singular near ¢» = 0. In order to deal with
it, we use a bootstrap type argument. Notice first that the preliminary bounds of Lemma
3.1 entail that W is Lipschitz continuous, uniformly in ¢ and locally uniformly in s and that
Oy W, ijjW are bounded (locally in s, uniformly in %) in s > sg, ¢ > ¢, for any § > 0.
Considering eventually equation (3.3), we deduce that 0sF is bounded in a neighbourhood
of s = sg, uniformly in ¢ for ¢» > 4. Furthermore, using assumption (3.2) on U(sg), both
F(s0)/W (s0) and /W (s0)0yyF (s0) are bounded in a neighbourhood of Y = 0, and therefore
0sFls—s, is bounded in L>=(Ry).

We now set

s = inf{s € [sq, 1], I >0, F(s,¢) > 1}.

It follows from the above arguments that s; > so. On the interval [so, s{], we have F(s,v) €
[—2max (M2, 1),1]. As a consequence, we multiply (3.3) by Fp, where p € C*(R) is a non-
increasing weight function such that p = 1 for 9 close to zero and p(¢)) = O(v~*) for some
k> 1 for o > 1, with [p'|/p € L*, p"/p € L*. Since Fy4—o = 0, we obtain, as long as
s < sp,

d 1 3 F? 3
— | Fip+ | VW(9F 2p—/ FLo5(VWp g/ +p+/ Fip.

An easy computation gives

F+2 1 W] W,
2 _ . Yo 7
Oy (VWp) = —r7p WP T + V"
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Using the assumptions on p, the upper-bound vW < Uy (s) and the bound on F for s < sj,
we deduce eventually that

d 1 W, w2
F2 F 2 P / 2_Y
ds/IR+ +p+/ VW (O Fe)*p + 5 / \ﬁ! P+ 2wt

F2
<C +p+C’(1+Uoo(s))/ F2p.
r, W R,

The second term in the right-hand side will be handled thanks to a Gronwall type argument.
The singularity of the first term in the right-hand side will be absorbed in the dissipation
term. Indeed, let us first decompose the integral into two pieces depending on the value of
W. First,
/ Ly /-2 LN c| F%
- W >inf(1,(5M%)~ )Wp > k. +P;
and as before, that part can be handled thanks to a Gronwall type argument. We thus
focus of the values of W below inf(1, (5M3)~2). In that case, according to (3.4), we have
Y < inf(1, (5M5)~2) =: g and
% > Wy > 1.

Let us choose p so that p(¢)) = 1 for ¢ € [0,1]. We deduce that there exists an explicit
constant C' such that for all ¢ € (0,y),

VIV(0,Fy ) + 1Fi mv/‘;/z >C (0, <W1/4F+>>2

Therefore, using the Hardy inequality, there exists a constant C' such that
2

wo 1 W, 1 Wy Yo /22
= \/WaF2+/ P22 +/F2 >C/ —5—p.
J R R A ) R

Using once again the non-degeneracy of W for 1 close to zero (see (3.4)), we infer that up to
choosing a smaller 1),

\V)

/ 1 F2 < 1D()
- W <inf(1,(5M%) 2 )Wp S).

Eventually, we obtain

d
/ FEpﬁC(l—&—Um(s))/ Ffrp V € [so0, 5]
ds Ry Ry

Now, since Fl,—s, < 0, we have Fl,_s; = 0. The Gronwall Lemma implies that F, = 0 for
s < sp. Therefore F(s,1) <0 < 1 for all s < sj,. It follows that s, = s1, and thus F(s, ) <0
for all s € [sp,s1] and for all ¢ > 0.

O

Under the assumptions of Lemma 3.2, we therefore have

Y2 Y?
sup [V = ML——0) <U(s,Y)<Y + —,
up< 27 > (5,¥) 27 WY >0, Vs> s (3.5)

sup(l — MY, 0) < Uy <1+Y
Notice that these estimates are independent of s, and that the constant M} depends only on

M.
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3.2 Construction of sub and super solutions for W

We now derive pointwise estimates on U, which will be used in the last paragraph of this
section to obtained a refined lower bound on dyyU. We distinguish between different zones:

e On the zone Y < s, where ; > 1/4 is the parameter entering the definition of w;
(see Proposition 2.9), the energy estimate F(s) < s~ 3/ actually provides a very good
pointwise estimate of U. However, this estimate degenerates when Y > 5. Let us
emphasize that we do need estimates on U, Uy, Uyy on the zone ¥ > sP1 in order to
prove Proposition 2.9 and therefore close the bootstrap argument.

e On the zone Y > Cs'/* for some large enough constant C, which corresponds to ¢ >
$3/% we construct sub and super solutions for U (or rather, for W) by using maximum
principle arguments. Note that this requires to have a good control of W on the lower
boundary of that zone, i.e. on the line ¢p = C’s3/%. This is achieved thanks to the
pointwise control coming from the bound on Ej.

Let us start with the following Lemma:

Lemma 3.4. Assume that U satisfies the assumptions of Lemma 3.2 and that
Ei(s) < Cis™B% Vs e [sg,51],

where F1 is defined in Proposition 2.9.
Let ¢ > 0 be arbitrary. Then for all' Y € [0, 031/4}, provided sq is large enough (depending
on B1,m1 and c),

Uyy(s,Y) =1 — 12abY% + O(s~3/8Y 2" (1 + Y)),
Y2
U(s.Y)=Y + 5 - ashY* + O(s B3y

9+a

2 (14Y)).

As a consequence, if sg is large enough (depending on B1,mi,c and C1),
1
Uyy(s,Y)>1— ibY2 VY € [0, es'/4).

Proof. We recall that
o 2
El(s):/ (0% LyV) wi,
0

with w; = Y ~%(14+s~%1Y)~™1. Therefore, choosing sq sufficiently large (depending on 81, m;
and ¢), we have, for all Y € [0, ¢s'/4],

1_p —m 1
wy >Y ™ ¢ <1 +csg 1> > §Y_“.
Using a simple Cauchy-Schwartz inequality, it follows that

Y
Oy Ly V (s,Y)| = / 8%£UV’ <V2Y 2 Ey(s)Y2 Vs € [so,51], VY € [0, cs'/4).
0

Integrating twice, we obtain estimates on LV and fOY LyV.
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Now v
0LV = LyLyV =ULyV — Uy/ LyV.
0

Using (3.5), we infer that
02V < C1+ Y)Y 2 B/

where C is an explicit and computable constant. Therefore
V< COYP1+ Y)Y 2 s 3/8 vy €0, cs'/4.

Writing U = U?P + V and recalling the definition of U?PP we notice that U?PP = Y +
Y2/2 — asbY* 4+ O(s72Y7 4+ s73(Y0 + Y1) for Y < ¢s'/%, and we obtain the estimate
announced in the statement of the Lemma. Notice that the remainder terms in U?PP (namely
O(s72Y 7+ s73(Y19 + Y'1))) are smaller than (1 +Y)Y9+Tas_13/8 in the region Y < ¢s'/4. [

Let us now deduce from the above Lemma an asymptotic expansion of W for 1 < ) < s3/4,
Indeed, a precise pointwise estimate on W is necessary in order to build sub and super
solutions.

By definition of W and v, we have, in terms of Y,

4
W = Y?4Y34 YZ — agbYS + O(s7LYD 4 5138y 5

Y4 o
- (1 FAY L4 AV 2 dagbY? 4 O(s7lY 4+ s B8Y S ))
1 6 o
Y = EY?’ (1 +3y~1 — 5a4bY2 + 0(513/81/73)) .

Above, the notation A = O(B) means the following: there exists a constant C', depending only
on C'1, and there exists Sy > 0 depending on ¢, C1, Ma, 51, m1 such that for all s > sq > Sp,
for all Y € [1,¢cs'/4], |A| < CB.

It follows that

4/3 i a
W(s,¢) = (Gﬁ) (1 FAY 44V 2 — dagbY? 4+ O(sTY + s B8y S ))

—4/3
X <1 +3y 71— ga4bY2 + 0(3—13/83/73)) .

Performing an asymptotic expansion of the right-hand side for 1 < Y < s'/4, we find that

(6)%/3

W(Sﬂ/f) = 4

12 o
<1 +2Y 72— €a4bY2 +O(s72YP 4 5188y 3 4 Y3)> .

Since Y ~ (6¢)'/3, we obtain eventually, for 1 < ) < s3/4,
(67/’)4/3 —oy3 12 2/3 -1,,1/3 —13/8,) Tta -1
W(s,0) = 00— (142(60) 2% = Zaub(60)% + O(s 141/ 4571305975 4y

(3.6)
We are now ready to construct a sub-solution for W beyond cs*/*, for some constant ¢ > 0
large but fixed, that will be determined later on. To that end, we introduce a regularized

1/4
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modulation rate I;, that has the same asymptotic behavior as b, but whose role is to remove
some time oscillations. More precisely, define b by the ODE
1

bs +bb =0, b_g =—

. (3.7)
50

We then have the following result (see Appendix B for a proof):

Lemma 3.5. Assume that there exist constants J > 0, and € > 0 such that for all s € [sg, 1]
such that for all s € [so, s1]

S1
/ by + 02| "%/ 4ds < J,

“ 1+ (3:8)
C<p(s) < 5
S S

Then if so is large enough (depending on K and €), for all s > sg,

1_26§5(8)§ 1+26.
s s

We then define our subsolution and super-solutions in the following way:
Lemma 3.6. Assume that:
e There exist constants J >0, n € (0,1) and € > 0 such that (3.8) is satisfied;
o U satisfies the assumptions of Lemma 3.2;
o There exists a constant My such that
Uyy(s0) — 1> —Mysy'Y? VY >0 (3.9)
and such that limy o, U(s0,Y) < Myso;
o Ei(s) < C1s~ /4 for all s € [sg, 51].

Then there exist a universal constant C' and a constant Ay, depending only on My, such

that the following properties are satisfied:
e Sub-solution: For A_ > 0 define?

4/3 § 5 5
W(s,¢) := (6@ — A_TBbE Vs € [so,81], Vb € |C_b3/4 0L b

IfA_ > Ay, C_ > C and if sy is large enough, then
K(sﬂp) < W(S,w) Vs € [30731]7 '¢ > 0—5_3/4-
e Super-solution: For Ay > 0, define

= (69)*/* 10/372 7-3/4
W (s, ) = 1 + ALp0b" Vs € [so, s1], Yo > C_b ",

If A_ > Ay, C_ > C and if so is large enough, then
W (s, ) < W(s,1) Vs € [so,s1], > C_b%/".

The proof of Lemma 3.6 is postponed to the Appendix.

2The constant C. is such that E(S7C+l~f%) = 0. It can be determined explicitely, depending on A_;
however its precise value is irrelevant.
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3.3 Refined lower bound on 0yvU

Lemma 3.6 allowed us to extend the lower bound on W coming from the estimation of Fj
beyond 1) ~ s3/4. Thanks to this extension, we now construct a sub-solution for Uyy — 1 (or
rather, for the function F' introduced in Lemma 3.2). Eventually, the lower bound on Uyy —1
will yield a finer lower bound on U.

Lemma 3.7. Assume that the hypotheses of Lemma 3.6 are satisfied. Then, setting Mo =
max (Mo, M) for some universal constant M, there exists a constant ¢ > 0 such that

Uyy — 1> —MbY? WY €0,cs"/?].

The proof is postponed to the Appendix.
Putting together the results of this section, we obtain Proposition 2.16.

4 Main tools for the energy estimates

This section is devoted to the derivation of several independent intermediate results which
play an important role in the proof of energy estimates. We first prove the result on the
decomposition of the diffusion term and on the remainder term, namely Lemma 2.6. We then
turn to the commutator Lemma 2.8. We study the structure of the diffusion term (see Lemma
4.7). Eventually, we state some estimates allowing to perform a systematic treatment of some
remainder terms.

For the sake of brevity, we adopt the following notation, which we will use extensively
in the next two sections: for any a > 0, and for quantities A and B that depend on s, we
say that A = O4(B) if there exists a constant C' and a function @ = Q(s,Y) with at most
polynomial growth in s and Y, such that

|A(s,Y)| < C|B(s,Y)| forY < s, (4.1)

|A(s,Y)| < Q(s,Y) forY > s '
This notation will be useful because we work with weights of the form w(s,Y) = Y7%(1 +
s7Y)™™, where m is an arbitrarily large integer. Therefore, the contribution of any function
having at most polynomial growth in s and Y can be made as small as desired on the set
Y > s%, in the following sense: if a > [, for any integers n, P € N, if m is large enough
(depending on «, #,n and P),

/ (s" + Y w(s,Y)dY < s 7.

[e3

In other words, when we estimate functions in L?(w), their behavior for Y > s is unimpor-
tant, as long as these functions are polynomially bounded (with an explicit and computable
bound).

4.1 Proof of Lemma 2.6

Since U?PP is essentially a polynomial in b and Y (at least in the zone Y < s%/7), the com-
putation of the transport term 9;U?PP — bU?PP 4 bY /20y UPP is straightforward. Difficulties
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stem from L,;l(ayyUapp — 1), which is also present in the diffusion term D. Hence we start
with a decomposition of the diffusion term

D= L' (OyyU — 1),

which will be useful in other occurrences. Writing U = U?PP + V| we decompose D into four

parts:

e the biggest term, which we compute explicitly, and which is equal to —b/2Y". This term

comes from U?PP,

e a second order term LyV;

e a first order term gLalLvY;

e additional error terms coming from U?PP, which we will treat as perturbations in all

occurrences.

Our precise result concerning the diffusion term is the following:

Lemma 4.1. We recall that D = L;;*(OyyU — 1). Then

D =

b b
—SY +LyV + 5LglLVY

2
1 5 3v8 31,9 411, 9 4 Y
+LU 4&7 90aqg | b°Y 110a116°Y” + 2a10b”Y "~ + 4a11b Y X 37
S
_ _ Y
+15 (P -0 (57 )
b ~
—§Y+DNL+D

where x, X € Ci°(R) are cut-off functions such that x,x = 1 in a neighbourhood of zero, and
P is a function that has at most polynomial growth in s and Y .
We have set

Dnr

D

b
= LyV + §L,;lLVY,

5 9 Y
= Ll;l (((4@7 - 90&10) py® — 110&11b3Y9 + 2alob4YH + 4&11b4Y12) X < >>

$2/7

+ Ly (P(S,Y)(l %) (57)) .

Remark 4.2. The decomposition of Lemma 4.1 will be used in two different occurrences:

o First, we will use it to decompose the total diffusion term D into a dissipation oper-

ator acting on the error term V, namely LyV, and remainder terms, namely f%Y,
%Lljl(LvY) and D. As we derive an equation on V, the diffusion term LyV will be
kept in the left-hand side of the equation, while the remainder terms will be added to the
terms stemming from UP in the left-hand side.
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o Additionally, D will appear in the commutator of Ly with Os + %Y@y. We will then
isolate the term in D which bears the highest number of derivatives on V', namely LV,
which we will need to estimate separately in some instances.

Proof. Throughout the proof, since we are not interested in the specific definitions of the
functions P, y, X, we keep uniform notations for these three objects, even though they are
used to group together different terms.

Recalling the definition of U?PP (2.11), we have

D

LEl(ayyU — 1) = Lﬁl(ayyUapp — 1) + LyV

Ly (F"(VbY) - 1)

1 Y
L' ((Y — agbY? — arb?Y " — ayob®Y0 — a3V ) —— (

Y
ot <(12a4bY2 +42a7b*Y " + 90a10b*Y® + 110a1:6°Y ) x (g))
s4/7 >>

S
Y
2L;" <(1 — 4aybY? — Ta7b?Y% — 10a10bY? — 1141103V 10)y/ <>)
LyV.

We now examine each of the terms in the right-hand side separately.

e The term F”(v/bY) — 1 and all the terms involving at least one derivative of x are
identically zero up to Y ~ s2/7. Therefore they can all be written as P(s,Y)(1 —

0 (

e We therefore focus on

and in particular on the value of this term on Y < s?/7. Indeed, all values for Y > s

y
L ((12a4bY2 +42a7b%Y® + 90a10b°Y S + 110a115°Y?)x (2‘/7>> ’
S

2/7

can be written as L;,"(P(s,Y)(1 - x) (SQ%))
We recall that 12a4 = 1/4, and that 42a7; = a4/2. We compute

Y2

Ly(Y) = UY Uy

_ yewwy _pae Y’
= U™PY —UPP—+ LvY
Y2 5 9 . Y
— ( + agbY?® + §a7b2Y8 + 4apb®Y ! + 2a11b3Y12) X ( ) (4.2)

2 $2/7

+ LyY +P(s,Y)(1—-x) <szf/7> .
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Multiplying (4.2) by b/2 and applying LEI, we deduce that

Y
Lt ((12a4bY2 + 42a76*Y® + 90a10b°Y® 4 11041163V %) ¢ <2/7>>
S
b b,

5 9
+ L&l <<(906L10 — Za7)b3Y8 + 110&11b3Y9 — 2a10b4Y11 — 4a11b4Y12) X <

+ Ly (P(S,Y)(l —X) (.93/7» .

Gathering all the terms, we obtain the decomposition announced in the Lemma.

Y
2

Corollary 4.3. Assume that there exist constants M, c such that

|ByyU — 1) < MbY? VY €[0,es'3], Vs € [so, 51,

1<
2s © T s
|Uyy| <M VY >0, Vs € [so, s1].

)

Then
D = 0y3(bY), 9yD =0yLyV + Oy7(b).

Proof. Note first that under these assumptions,
Y? Y2 M

M
Y+ — - —bY'<U(,Y)<Y + — 4+ —bY!,
2 12 2 12 WY € [0, cs'/3).

M M
1+Y—ZbY3§Uy(5,Y) §1+Y+ZbY3,

The estimate on D follows simply from writing

Y
oyyU — 1 U—1
D_Uy/ s 1 O
0

U

and using the bounds on dyy U, Uy and U. As for the second one, notice that

OyD =0y LyV — g + 0y L' Z,

where
b Y2
Z = 2(yv-__
V=5 W)
o 318 319 4y-11 9 4y-12 Y
+ Za7—90a10 b’Y® — 110a116°Y" + 2a100™Y —1—1(1116}’ X 277
S

26,110 (57 )
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where P has at most polynomial growth in s and Y. The estimate then follows from the

bounds
V = Oqg7(bY*), Vy = O9)7(bY?), Viry = Og7(bY?)

and from the formula giving 6;/1'1(_]1 in Lemma A.1.

O
We deduce that V' is a solution of equation (2.16), i.e.
b
sV — bV + §Y6yV —LyV =R,
with a remainder
b b
R = —[(0;U*P —pUPP 4 §Y8yUapp — §Y
+ Lt §a7 —90a19 ) bY® — 110a116°Y? + 2a100 Y + 2anb41/12 X X
v 4 4 s2/7

b
+ 5LUl(LVY)

£ 1 (Pern-0(57)).

which we now compute.

Lemma 4.4 (Computation of R). The remainder term R can be written as

Y
R = (bs+ b*)(asY* + 2a7bY 7 + 3a10b*Y 0 + 3a,6°Y )y <32/7>

Y
+ (alob4Y10 + 3&11b4/2Y11) X <82/7>

b, 1, . % Y
=+ §LU (LVY) + §b a7LU <<Y V — VY§ X w
Y
+ L[;l |:(dllb4Y11 + d12b5yl2 + d14b5Y14 + d17b6Y17 + d18b6Y18) X < >:|

T
+ 1t (Pena -0 (57)).

for some explicit constants dy1,d12,d14,d17,d1g € R .

Remark 4.5. Notice that this remainder term is essentially (up to a small error depending
onV)

Y Y
L' <U“pp85U“pp — Oy U P / UwP — 2b(UP)? + %bayU“PP / U™P — dyyUPP + 1) :
0 0

and therefore has been computed (up to the application of the operator Ll}l) when the approx-
imate solution U PP was defined. However, it is actually easier to do over the computations
rather than to apply L(_]1 to the remainder that has already been computed.
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Proof. We start with
b b
OsU?PP — pU?PP §Y8yUapp + 5Y
Y
_ 2\ v 4
- YN b (2 5b” YT agoY 0(3bsb? + 4b%) — a1y Y1 (3bah2 + b
X\ 277 arb | 2bs + apY 7 (3bsb” + 4b7) — an1Y T (3bsb7 + Sb7)

Y\ Y (b 2/7
/ 4 2y 7 3v-10 3yv11
+ ¥ <82/7> =T <2—3 ) [V — abY* — a7b’Y " — agob’Y " — a116°Y']

+ b2 (bs + %) <;Z@’(Z) - @(Z)>

boova-y) (.;/7) .

The last three terms in the right-hand side are supported in Y > ¢; s2/7. They can be written

|Z=VbY

as a linear combination of terms of the type P(s,Y)(1 — X) (SQ%)

We thus focus on the second term, which we group with the other terms in the definition
of R. We first isolate the factor (bs + %) in Y7, Y19 Y which we group with the first term.
There remains to study

5(17[7 Y X (52/7>
+ bgL_l §61,7 — 90@10 Y8 — 110a11Y9 + 2a10bY11 + ganbym X L
v 4 4 21 ) )

We use the same trick as in Lemma 4.1 and we write

v - Y
Y7X <52/7> = LUl <(LUapp + LV)Y7X <32/7>>

Notice that Ly Y” = VY7 — V4 Y8/8. On the other hand, a lengthy but straightforward
computation yields

7 3 ay ar a1 3a11
Lira Y7 — 7y8 7}/9 o 7byl1 o 7b2yl4 7()3}/17 71)3}/18.
ueee g T3 2 8 T T3

Gathering all the terms and recalling the values of a1, a11 (2.10), we obtain the decomposition
announced in the Lemma.

O]

4.2 Proof of the commutator result (Lemma 2.8)

We compute separately [L(;l,as] and [L[}I,Yay], and then check that cancellations occur
between the two commutators.
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Using the formulas in Lemma A.1 in the Appendix, we have

_ YYoyw _
(L' YoyIW = (U U2> —YoyL;'w
0 Y
YayW Y&yW ayW
. _Y(ayU/ )
YYoyw o (YW

We introduce the quantity
:=YUy —2U,

so that I'y = Y@%U — Uy . Then

Yw Y9 (W) Y2
Lty = -T
Ly YoyIw Y/O U2+UY/O 6Y< >U2

W YUy U-YUy
- Iy U2—|—U2W—2Uy/ WT

YW r
[ERE

= 2L,'W -Ty —W +2Uy / W (4.3)
0

We now address the commutator with J;. To that end, we recall that U satisfies (2.15),
so that, with the previous definitions of f and D,

Us= 5T +D. (4.4)

It follows that
Y
W
(L0 W = —(Us ) 2<U U>
v 0 0 Us
b Yw W Yw
= _(r| = 2(U | —=D) .
(0 ), oo f ), - (o ), w2 (0 [ 50),
Using (4.3), we infer that

[L,;l, ds + ZY@Y] w

b YW b T
—1
= bLUW—§rY T + 502

b Y w Yw YW Y w
~(r| =) —» -1 - (p| = 2 D
* 2</0 U2>y (U/o GE )y ( /0 U2>y+ (U/o 03 >y

Y w Y w
= bL1W—<D/ ) +2<U/ D)
v o U%)y o U3 )y

This completes the proof of the commutator Lemma.

W+bUy/ W
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4.3 Structure of the diffusion term

We will use in several instances the following weighted Hardy inequality (see [24]):

Lemma 4.6. Let p1, py be measurable functions such that p1,ps > 0 almost everywhere. Let

0< R< o0 and let
R |
Cy =4 sup </ p1></ )
0<r<R r 0o P2

Assume that Cy < +00. Then for any function f € H} (Ry) such that f(0) = 0, there holds

R R
/ Ao < CH/ (Oy f)*p2.
0 0

In this paragraph, we state and prove the coercivity inequality that will be used to control
(E1, D1) and (E2, Ds), up to small remainder terms.

Lemma 4.7. Let so < s1, and let § > 0 be arbitrary. Assume that U is increasing in Y for
all s > sg, with Ujyy—g = 0,0y Ujy—g = 1, and that there exists constants Ma,c such that

1— MobY? < 0yyU <1 VY €0,es'%], Vs € [s0,51],

(4.5)
—My < OyyU<1 VY >cs'/3 Vs e [s0, 51].

Assume furthermore that
1 2
—<ph< 2
2s 7 T s
Fora > 0,8 €]1/4,2/7[,m € N, define the weight w(s,Y) := Y1 + s~ PY)™™.
There exist universal constants a, ¢ > 0, independent of 9, s, 8, m, such that if so is large
enough (depending on 8, 3,a), then for all f € WY (Ry) such that Oy f = O(Y) for Y < 1,
for all 0 < a < a, for any cut-off function x € C°(Ry) such that x =1 in [0, 1],

o] B ~ o] ay 2 oo £2 [ee)
—/0 (OyyLg'f) fw > C</O (Uf)w+/0 [J;Qw>—5b ; frw
[e%S) Y Y f 2
- csl/3 v </0 (1 X <51/4>) U2> v

Remark 4.8. Note that the estimate we prove here is not as strong as one would like to
have. Indeed, we only control f and Oy f, and not L&lf. However, another way of writing
the inequality, setting h = L(}lf, 18

o) o0 Lith 2 (T, h 2
—/ Oyyh Lyh w > E/ @Y(U{]))w —i—/ ( 52) w~+ remainder terms.
0 0 0

Vs € [so, s1].

But notice that if h = Uy, then Lyh = 0 while h # 0, Oy h # 0. Hence it is hopeless to control
h and Oy h by the left-hand side of the above inequality without any further assumption that
would discard the case h = Uy .
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Remark 4.9. The last term in the right-hand side of the inequality, namely

) Y Y f 2
¢ 031/3U(/0 <1_X<81/4>> W) Y

will be handled in Lemma 4.15. Heuristically, since it is supported in a zone where w is
strongly decaying, it can be made “as small as desired”, i.e. O(s~F) for any P > 0, provided
m is chosen sufficiently large (depending on P and [3).

Remark 4.10. Notice that under the assumptions of the Lemma, there exists a constant C
such that for 1 <Y < 031/3,

C—1<1<C C—2< 1 <02
Y2 U Y2 Y4 DU YH

Hence, for 1 <Y < ¢s'/3, the two integrals in the diffusion term

/°° (Ov f)? > f?
0

Uw+0U2

have the same scaling.
However, if Y <1, then

C- 1 Cc—2 1 C?
— < - 7<7
Y Y2 — U2

C
—< =,
—~UTY

~<

Hence for'Y <1, the control given by the first integral is stronger. Indeed, the Hardy inequality

implies that
(By f)?
/0 yl+a C/ y3+a’

1/3
cs (8yf) f2 f2 1 f2
[ (O f)wze ([T oo [ ),

We will often use this control close to zero when we deal with some non-local terms.

Therefore

Proof of Lemma 4.7. Starting with a simple integration by parts,

- /0 T vy Lghf) fw— /O T (OyLglf) Oy fw+ foyuw).

Using the formula in lemma A.1 and integrating by parts once again, we obtain

00 3 ooay 2 oo 2
_/0 (3nyU1f)fw = /0 <Uf)w— ; %w

+/OOO(Uyy—1) (/OYU];> (fOyw + Oy fw)

<1
+/0 ﬁﬁyf foyw.
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The first two terms are the main order terms. We now prove the coercivity thanks to a
weighted Hardy inequality for which we compute the constant explicitly. Using the assump-

tions on U, we have
Y2 M
U2Y+ 45— T221)1/4 for Y € [0, cs'/3).

Therefore, since U is increasing,

K2
U(s,Y) > 751/2 VY > Ks'/*

provided sq is sufficiently large. It follows that if K is chosen large enough (depending on 9),

e’} f2 16 1 o'¢) 9 [e%¢) 9
w < —s~ < 6b .
/Ksl/4 U2w - K4S /[v(s1/4f = A f v

On the set [0, Ks'/4], we use a weighted Hardy inequality (see Lemma 4.6), namely
Kst/4 Ksl/4 2
L o (Oy f)
il <C YJ)
[ omresa ) S

where the constant C, satisfies

Kst/4 r
Cy <4 sup / % (/ U) .
O<r<Ksl/4 r U 0o w

On the set [0, Ks'/4], we have

Y2 Y2 M
pY + - SUSY + o with p = 1—272[(33—1/4,

and Y %(1-9) <w<Y™“

for any § > 0 provided sg is sufficiently large. Therefore

1 _
Ca < +—Ca
where
B [e%¢) Y@ r Y2
s [T ) ([ e (v ) )
r>0 \ Jr (NY+Y72> 0

We then have the following Lemma, which is proved in the Appendix:

Lemma 4.11. There exists universal constants a > 0, ug € (0,1) such that for all a € (0,a),
for all p € (po, 1),
9
Cop < 10"
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Therefore, for any a € (0,a), provided 0 is small enough (say § < 1/50) and s is sufficiently
large,

1
<1-——
Ca < 20

and thus

> (0vf)° * L ([ (0y])> ~ f? >
[ [z ([ [ ) [ e

There remains to estimate the two lower order terms, namely

[e's) [e's) Y
; %8}/]0 f@yw and /0 (Uyy — 1) </0 Uf2> (f@yw + 8yfw).

1/4

For the first lower order term, we distinguish once again between the zones Y < Ks'/* and

Y > Ks'/*. Using the Cauchy-Schwartz inequality, we have

1 @D N (L @)\
[ ol = (755 ([ 5)

For Y < Ks'/4, we have, for sy large enough (depending on a,m, 3, K)

|oyw| < 2aY " w.

Using a Hardy inequality, we have

Ksl/4 Kst/4 2
1
/ fQYTUw < CH/ O I, (4.7)
0 0

U
where the constant Cp; is defined by

Ksl/4 1 r 1
Cyg=4 — U—|.
. 0<rs<ufgsl/4 (/T Y2Uw> <A w)

As above, we have, provided sg is sufficiently large (depending on m, 3, K)

o 1 T 9
< ST ¢ :
C’H_16§1ilg </r Y2+a(Y+Y2)dY> </0 YY(Y+Y )dY>

Studying separately the cases 7 < 1 and r > 1, it can be easily proved that C is bounded
uniformly in a and s, so that there exists a universal constant C' such that for s large enough

Ksl/4 p2 2 Kst/4 2
2 (yw)? (Ovf)
A Uu;ﬁcﬂé U v

This term is absorbed in the main order diffusion term for a small enough. Now, for ¥ >
Ks'/% we have
|yw| < (a+m)Y 'w < (a+m)K s,

and U(s,Y) > KTQSUQ. As a consequence,

[e%S) f2 (ayw)Q (a+m)2 3 oo [e's)
/ — <4 7l 51/0 f2w§56/0 fPw

Ksl/4 U w
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for K large enough (depending on m,d). We infer that

[e%e] e’} 2 0
A U&jﬁ»ﬂgcfﬂé @g7w+%A fPw. (4.8)

We now address the second lower order term. We focus on the term involving 0y fw, since
the one with fOyw can be treated with similar ideas combined with the same estimates as
above. Using assumption (4.5) on dyyU, we have

1/3

cs Y f
/0 (UYY—1)</O U2> Oy fw
1/3 1/2 1/3 2 1/2
cs (ayf)2 cs 4 Y f

We separate the last integral in the right-hand side into three zones: ¥ <1, 1 <Y < K sl/4
for some large constant K, and Y > K s'/4. Notice that if Y < Ksl/4, then

_ 1
w(s,Y) > (1+ Ksp/*P)y-my—o > Y

for sy large enough (depending on K, m and ). For Y < 1, we have, using (4.7)

Y f Y f2 1/2 Yy2+a C_v 1(8Yf)2 1/2
[ o= vem) ()5 ) sam= ([ )

Andif 1 <Y < Kst/4, using a simple Cauchy-Schwartz inequality,

Y ~ 1 2 1/2 Y 2 1/2
| f] ¢ (9y f) ~ f
/0 2 < 212 </0 w> +C (/1 Qw) )

Therefore, we have

[ () o ST ] [ v

CKT" oo (ayf)z 0 f2 (T—a)/4
. [/0 U w+/0 UQw]s .

IN

It follows that

1/3 1/2 1/4 2
cs (ayf)2 Ks Y f
([P ([ ([ ) o)

N K7/2 1ta () (8yf)2 00 f2
<CMy——s 5 “w).
= O e 8<A U w+A Ww>

1/2
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Therefore, for s sufficiently large (depending on K and a), this term can be absorbed in the
main order diffusion term. On the other hand, using the same estimates as above,

1/3

cs 2
Lo )
Kst/4 0 U2

/3 Y 2
C ) (8Yf)2 /oo f2 /oo . /cs1 . / ‘f|
< = I Y Vi
T oa |:/0 U W 0 UQw Ks1/4Y Uw+ Ksl/4 v Ksl/4 U? v
_ 0 8 f)2 oo f£2 csl/3 f2
- (7-a)3 / Oy f)” / I/ / £~
< Cums [ ; oWt ; ik + Crp(s) _ v

where

051/3 s 1
Cmp(s) = 4 sup / YiUw </ )
re(Ksl/4,cs1/3) r Ksl/4 W
3-8
cs3 T
< 8s% sup (/ AR A dZ) </ L Z'(1+2)m dZ)
r Ksi~Fh

TE(KS%_ﬁ,CS%_B)
< Cmssﬁss(%_ﬁ) < Cm88/3.
It follows that, if 8 < 2/7, for sy sufficiently large,

1/3 1/2

cst/3 (8Yf)2 1/2 cs Y f 2
4
([ O ) ([ ([ ) o)

o] 2 oo 2
< (T—a)B-1 / Oy f) / f
> Ca,mM25 |: A U w + ; U2w

> (dy f)? > f?
+6 [/ w —|—/ —w
0 U o U?
+C’5,mb238/3K_83_2/ fPw
0

Oo(ayf)2 00f2 e’} )

There remains to consider the part of the second lower order term for Y > ¢s!/3

the cut-off function x, we have

00 Y f

Lo =0 ([ ) ovre

@Ay f)? L (My+1)? [ v Y Y\ £

5/0 O G /csugU(/o (“X(w)”(w))w) v
<@y f)? Cf 5\ e

‘5/0 U “’+5</0 U2 /CSI/SU“)

C [ Y Y f 2

5 CSI/BU(/O (1><(51/4)>U2) "
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The second term in the right-hand side is estimated as above. Notice that for any P > 0,

o] o) YQ
/ Uwg/ (Y+>w§sp
csl/3 csl/3 2

provided m is sufficiently large (depending on  and P). Therefore we obtain, for any 6 > 0,
provided s > sg with sg sufficiently large,

[wm ([ L) ovwrorsm)

oo(ayf)Q 00f2 [ee] 9 C o] Y Y f 2

(4.9)

Gathering (4.6), (4.8) and (4.9), we conclude that there exists a positive universal constant
¢ (say for instance ¢ = 1/50), and @ > 0, § > 0, such that for all 0 < a < @ and for all
ge(1/4,2/7), m > 1,5 € (0,0), there exists sgp > 0 such that if s > sg, then

o 2 r—1 w C oo(an)zw Ooﬁ >_ o 2
/O(ayLUf)f > (/O i +/0 W b/0 2w

0 Y Y f 2
L[ (G ) v

This completes the proof of Lemma 4.7.

O]

4.4 Structure of the commutator

We record here some formulas and a few estimates that will be useful in the estimation of
commutator terms. We recall that D = L, (yyU —1) = LyV + L (9yyU?P — 1), and that
a decomposition of dyyU?PP — 1 is given in Lemma 4.1. We also recall that the commutator
C is defined by C = [L;;*, 95 + b/2Y dy] — bLy;', and that according to Lemma 2.8,

owi-—(off ), (o[ o),

Lemma 4.12. Let W € C?(Ry) be arbitrary and such that W = O(Y?) for Y < 1. Then

oy~ (B) - (2 [ 1),

Dy 1 D . Uy Y'w
yyCW] = ZOVLy'W + 0y [3yLU W—2U2W—4Uyy/0 7
D W D (Y
+62 — [—3L1W+2} -0 — | L;'w
YU v vl vy Y
Y Y
WD D (YW
203U | —= 208U~ | —.
Al S TE Rl Tl A2
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Remark 4.13. In the estimations of E1 and Ea2, we will use the form of dyyC[W]| with
W = 832/1/ and W = B%EUV respectively. Notice in particular that using Corollary 4.3, for
any weight w with a strong polynomial decay for Y > s° for some 8 € [1/4,2/7],

o0 D . B
/0 o (03 Ly W) (05 Ly W) w’

S|
<Ob O L' W) =
= /0 vy & w+H

(9) 9
/ (Q%Lgl W) w
Lo Y>51/3) 651/3

In order to control the tail of the integral, we will use lower order estimates. More precisely,
we will use a control of Oy W in Lgy (with appropriate weights in s and Y ). We refer to
Lemma 4.15 for details.

Proof. The first formula follows easily by recalling the definition of L&l and noticing that

Y Y
w1
2:/ L'w.
o U2 U J

The second formula is a consequence of Lemma A.1. Notice indeed that

0% Lyt (DW> = KU i i ayUm—@ <DW> lay <DW>

U Ul U3 U? U U U
DW D D YW
== 8yU/ ayW ayUU 0 U2

D D 1 D
— W+ =0 W+ =02 (= | W

Uz%) + 5o (7)o + 5 (5)

Then, writing
W Y w

=0y L;'W — U —
i Oy Ly; v e

and gathering the terms, we obtain the expression announced in Lemma 4.12

4.5 Useful inequalities
4.5.1 Evaluation of some remainder terms
In equations (2.19), (2.20), several terms behave heuristically like

Y

b—
=1,

where f = Ly V in (2.19) and f = £V in (2.20). This is for instance the case for the main
order commutator term in (2.19) (see Remark 4.13) or for the remainder term

b y?2
Lyl YV — — .
2£UU<V 2vy)
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(Recall that Lal behaves like a division by U and dy like a division by Y.) Therefore it is
useful to have a systematic way to estimate such remainder terms. To that end, let us first
recall that the L estimates given by Proposition 2.16 ensure that
Y2 M, Yy?
Y4+ — - 20 <U<Y + —
+ 2 12 sYsTt 2
so that there exist constants C, ¢ > 0 such that

Y C 1
N < /3'
<17 VY <e¢s

VY €[0,es'?),

We then have the following result:

Lemma 4.14. Assume that
<)

IN
[V )

Vs € [so, s1]-

&)=

Define the weight w(s,Y) :=Y %1+ s78Y)™™ for some a > 0,m > 1,3 > 1/4.
Let 6 > 0 arbitrary. Then there exists sg > 0, depending on 6, 3, m, such that the following
properties holds: For all f € L*°(Ry) such that f = O(Y) forY < 1, for all s > s,

[e¢) 1 9 0 5 00f2
b/o 1+wa_(5b/0 fw+50 2W

Proof. We split the integral in two, distinguishing between Y < 6! and Y > 6!, First, it is

clear that
s—1 1 +Yf wr= 5—1 Wi
Thus we focus on the set Y < §~1. On this set, we have
1 S 1
772 = v\2’
US Ty (14 )
so that . 5
>2073(14+671) = < — YYel[o,6']
52207 (14+07) = 975 < 0,67

4.5.2 Control of integral tails

Lemma 4.15. Assume that U satisfies the following assumptions:

Y2
U(87 Y) < Y + 77

Uy <1+Y,
|Uyy| < C.

Let p,po be positive weights given by
p(s,Y) =Y *14+sPY)™, po(s,Y) =Y Fo(1 4 s Poy)mo,

for some k, ko >0, m > mg, 8 < Bo. Let ag > Bo.
Let P > 0 be arbitrary. Then there exists mp > 1 (depending on o, B, Po, k, ko) such that
if and mg, m —mg > mp, then for all § > 0:
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e Fora >0, for all W € W3 such that W = O(Y?) for Y < 1,

| @rwys

S0
00 (8%L(—jlw)2 S_P /oo (aYW)Z /OO ) /1 W2
<4 —_— a aa |
< /0 U P+ 5 ; U po + A W<po + C. | Y3ta

o Let oy < B, and let x € C3°(R) be a cut-off function such that x = 1 in a neighbourhood
of zero. Then

2
% Y Y\ 02L,;'W
L%U(l“‘”<wﬁzﬂ ’

00 1 W2 oo(aYW)Z
<os P ([ w / / O W) .
= </0 ot 0 yare 0 T

Remark 4.16. Notice that a similar estimate also holds for quantities such as

7

| @rg'w) @15 w)

S0

Indeed, the integral above can be transformed after a straightforward integration by parts into
an quantity similar to the one handled in the Lemma (provided p(cs*) = 0, which we can
always assume without loss of generality, up to the addition of a cut-off function.)

Remark 4.17. We will use these estimates in the next section and we will make the following
choices

o ag=1/3,a1 = 1/4;

o W =02V, p=wy, po=wy =Y %1+ s=hoY=mo - (estimate on Ey from Proposition
2.9);

o W = 812,£UV, p = wa, pp = wy (estimate on Eo from Proposition 2.13).

Proof. Let x € C§°(R) be a non-negative cut-off function such that x =1 in C [—¢/2,¢/2]
and Supp x C [—c¢,c] . Then

a2 1y 2 > Y 2 7 —1117)2
/ (OvLy W) 'p < / (1-x) <ao> Oy Ly W) p
cs¢0 0 S

> 1 2 71 Y
0

We then estimate each term in the right-hand side separately. For instance,

> -1 371 Y
[T ovzgtw gt wl -0 (5 )

©ORLGW) e v
< A ol VA w — —\p
<o [ O [T oW - ()
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Then, recalling that
YW oy w

L7'w| <
Oy Ly ’—/0 Uz u ’

we infer that

o) o] 2 o0 Y 2
/ (OyLy'W)U(1 = x) <Z>p§2/a (O W) p+/a </ WJ) Up.
0 §%0 20 U e \ Jo U

2

IfY 2 s, write

Y |W| 1 W2 1/2 Y 1/2 Y 1/2
<« 2 -1 )
foowsen () ve () ()
Using the fact that ||U(s)|cc = O(s) together with the assumptions on p and pg, we obtain

the desired result.
As for the other term, we have

- /OOO Oy L;'W 93 L;*W Oy ((1 —X) (;;) P>
_ ;/Ooo(ayLUlvv)?ayy ((1 —X) (;:0) p)

< s [ LW
cs%0 /2

which is evaluated with the same estimate as above.
As for the second estimate, notice that thanks to the cut-off function x, we can integrate
by parts without having to deal with boundary terms, so that

Y 2 7 —1 Y
Y\ 0L, W Y 1
1-— — ) 22U — Lt 1-— — ) =]. 4.11
[a-o (o) 2 - [Covzgwor [0-0 (%) ] (4.11)
Recall that v
_ oyW / w
LW =" 4+ U —.
Y U U + YY 0 U2
Then the integral in the right-hand side of (4.11) is bounded by
1/2

([ wome [ e 75 m) (] eterm)

for some function @ that can be computed explicitely and that has at most polynomial growth
in s and Y. We conclude as before by choosing m sufficiently large.

O]

4.5.3 A special case of Hardy inequalities

We will often use the weighted Hardy inequality from Lemma 4.6 in the following case:
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Lemma 4.18. Let k > 2 be arbitrary, and let w = w; for i = 1,2. Then there exists a
constant C' = C(k,m;,a), independent of s, such that the following inequalities hold: if s is
large enough, then for any f € H} (R.) such that f(0) =0,

° 1 &0 1
/0 szwﬁc/o W(an)Qwa

<1 * 1
/ Wwi < C/ W(@yf)Qw (provided f = O(Y*?) for0 <Y <« 1)
0 0

Remark 4.19. Obviously the Lemma can be extended to weights of the form Y ~F(1+Y ) lw
with k41> 2.

Proof. We focus on the first inequality, since the second one goes along the same lines (and
is in fact slightly easier). Lemma 4.6 entails that

o 1 & 1

cn = ([* i) ([ @),

We distinguish between the cases r < 1 and r > 1. If Y <r < 1, then for s large enough

w™l <2Y? and N )
([ ) ([+74) sn
If 7 > 1, then writing [ = [ + [/, we obtain
() ([ o)
(i) ([ ([ 5) ([ ren)

B

Cra+ Cr ( / Z7he(1 + Z)de> ( / ZFra=2(1 4 Z)de> :
s—Br s—h

where

IA

IN

so that

>0 ! 0

Oy < Cgq + Cisup ( / Z ka1 4 Z)—mdz> < / zkta=2(1 4 Z)de> < Crnka

5 Sequence of estimates on V

The goal of this section is to prove the energy estimates of Propositions 2.9 and 2.13. To
that end, we rely on the transport/diffusion version of the rescaled Prandtl equation, namely
(2.16). We will use extensively the tools introduced in section 4. Throughout the section, we
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will assume that U satisfies the following pointwise L™ estimates: there exists constants ¢, C
such that for all Y € [0, cs/?], for all s € [so, s1],

Y + 5 12bY U(s,Y)<Y + 5

M-
T4y = 2200 S Uy (5,Y) £ 1+, (5-1)

—MbY? < Uyy — 1 <0.
Furthermore, we assume that there exists a constant M; such that
—M1 S Uyy S 1 VY Z 081/3

It follows in particular that there exists a universal constant C' such that for all Y €
[0, es1/3],

V| < C(1+ Mo)bY™*) |[Vy| < C(1 + Mo)bY3, |Vyy| < C(1 + My)bY™. (5.2)
We will also assume that _ Ltz
— <b(s) < ——, (5.3)

for some small universal € (¢ = 1/50 is sufficient), and that
51
/ S13/4(b, 4 b2)2ds < J. (5.4)
50

The L*° estimates (5.2) imply in particular the following estimates, which will be used
repeatedly in the sequel

Y
LV | < C(1 + My)?bY, / EUV' < C(1+ My)bY? VY < ¢s'/3, (5.5)
0

and LV is bounded by a polynomial in Y for Y > s/3.
Let us recall the definition of the notation O, (see (4.1)): there exists a constant C' > 0
such that
|A(s,Y)| < C|B(s,Y)| forY < s,
[A(s,Y)| < Q(s,Y) for Y > 5%,

for some function ) that has at most polynomial growth in s and Y.

Remark 5.1. This section contains rather heavy calculations: in particular, terms such as
Oy LE(LG (LyY)) can be expressed as a linear combination of derivatives of V' from order zero
up to order 6, with coefficients that are rational expressions involving U and its derivatives.
However, most of the terms in this expression will often have the same scaling, in the sense
that they can all be bounded in L? by the leading order term, i.e. the one that has the largest
number of derivatives. To obtain such estimates, we use the weighted Hardy inequalities from
the previous section (see Lemma 4.18) together with the pointwise bounds on U (5.1). For
instance, if w = wj, j = 1,2, then for any P > 0, provided m; is large enough,

Uy
—LgV

1
<
CHHY‘CUV

+Cs P < Cloy LoV || 120 + Cs™7

L2 (w) L2 (w)
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and
Uy

Y
LUV—U/O EUV

a

—P
U < CHEUVHL?(w) + Cs™.

L2 (w)

L2(w) a ‘

As a consequence, we adopt the following convention: we will write
f=g+lot. in L*w)

if f =g+ h and there exists a constant C' such that ||h|| 2,y < Cllgllp2qw) + Cs™ for any
M > 0 provided my, mo are chosen large enough.

Eventually, let us recall the definition of the different weights that will be used in the
sequel. We will use parameters
2
Pa<Pr<fo<r
and integers mg > my > mg. For i € {0,1,2}, we set w; := Y~%1 + s75%Y)™™. The

parameter a > 0 is a fixed number such that a € (0,a), where a is the universal constant in
Lemma 4.7. The need for the weight wyg is explained in the following remark:

Remark 5.2 (Role of the different estimates). In this section, we derive estimates on Ey,
FEq, Es, where, fori=0,1,2,
0 .
B()i= [ @hLpvis)iu
0

oo (93 i $))2 oo (92 i 5))2
Di(s) :_/0 @YELfUV())w“L/O @yﬁuU‘Q/())

w;.

o The estimate on Dy allows us to have an L* control on 8§,V, which is useful to bound
the integral tails stemming from the estimates of Fy, Dy (see Lemma 4.15). Note that
the integral tails in the estimate of (Eo, Do) are merely handled thanks to the pointwise
L*> estimates (5.1).

o The estimate on Ey will be used in the mazimum principle argument (see Proposition
2.16).

e The estimate on Dy will be used (in a quantitative fashion) when we bound the remainder
terms on (Eg, D3).

e Eventually, Es, E1 and Dy will control bs + b% thanks to Lemmas 2.1/ and 2.15.

Since the equations on 852/£’L“,V for £k = 0,1, 2 have the same structure, the estimates on
Ey, B, Es go along the same lines. The differences between the three estimates come from
the right-hand side of the equation:

e Commutator terms may or may not be present;
e The estimates on the remainder terms are different for each energy estimate.

The reader who merely wishes to understand the energetic structure of the equation may go
through paragraph 5.1 only.
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Notation

Throughout this section, we will denote by H; a constant depending only on a, mq, 81, M1, Mo,
and by Hs a constant depending on the same parameters and also on ms, Bs.

5.1 Preliminary step: estimates on (FEy, D)

Let us recall that the purpose of this paragraph is to have an L? control of 8{’,‘/ through Dy.
First, notice that 832/1/ is a solution of

D02V + gyay(a?VV) — Oy L 03V = 0F R.

Consider the weight wp := Y ~%(1 + s~%Y)™™0_ for some a €]0,a], where a is defined in
Lemma 4.7, By €]1/4,2/7], and mo > 1. The diffusion term

— / (0% L' 03 V) 03 Vwg
0
is handled by Lemma 4.7, up to a remainder term which we estimate now: we have, for any
P >0,
> Y Y\ 92V’
1— -
Jont U 00 () ) o

_ o] Y2 Y2
C(1+ M1)2/ <Y + ) —5wo
csl/3 2 /) s

< C(+M)3s7F

IN

provided my is sufficiently large.
Hence, according to Lemma 4.7, setting

Ey(s) = /000(812/‘/)2100,

=@V, | [ @y
DO(S) ::/0 Uw0+/0 U2 wo

we have, for any § > 0, provided sg is large enough,
o0
—/ (832/11(}1812/‘/) 03 Vwy > éDy(s) — 8bEy(s) — C(1 4 Mp)%s~F
0

Concerning the transport term, we have

1d

/ (0.02V)82Vwy = 24 / (02V)2wp — + / (02V 20,0
0 2d8 0 2 0

and - | oo
/ YRV 03 Vwy = 2/ (OEV)2(Ywo)y-
0 0

o4



Combining the two identities and using the expression of wg, we infer that

/ <85812/V+bY8y(812/V)> 0EVwy = 1d/ (02 V) 2wy — b/ (02 V)2 wy
0 2 2d5 0 0

+m (2 25) /O (8YV) 71 T S*BOYwO'
Using assumption (5.3) with € < 1/7 and £y < 2/7, we infer that the last term is non-negative.
It follows that for all § > 0, if sq is large enough,
dEy 1—a—9

T~ 5 bFo(s) +2eDo(s) < 2/ (3R) 03 Vwg + C(1 + My)*s™F.
0

l1—a

We now evaluate 2 R. Using Lemma 4.4 together with assumption (5.3), we have

Y2 Y
KRR = (bs+1b%) <4 + agbYd + 270a10b%Y® + 330&11b2Y9> X <2/7>
S

0070 (Y2 +Y?) + 07 Lyt (Oopr(BY)V + O 7 (Y *)Vyr + Oz (0*Y 1))

where the O(-) in the last term of the right-hand side must be understood® in W?2>°. Recalling
the expression of 92 L' (see Lemma A.1) together with the L> estimates (5.2), we obtain,
for Y < es?/7,

293 Y 2v5
OZR = O((bs + )Y+ O (Y3 +Y)) + 0 (ngYV> + 6’3°’VU/ O(Zf)-
0

All constants appearing in the O(-) depend on My, M,. Notice that for Y < cs?/7

Y 12v5 2
By by
oYY <«
/0 U2 OV <7

and 03U = 93.U*PP + 93V = 93V + O(bY'). Hence the last term is smaller than the first two
onY < cs?/7.
Now, for all § > 0, for s > ss large enough and for mg > 6 — a,

o H
/ |bs —|—b2\Y2|832/V|w0 < 6bFy + Tl(bs +b2)281+(5—a)50’
0

2/7

CS H
/ VY202V | wo < SbEy + 71[)38(57@50’
0

cs2/7 ’83 V‘ 1 cs?/7 Y4
/ bY? Y |0RV | wo < 6Dg + — b —— |02V |*wo < 6Dy + 5bEp.
0 U 43 J, U
We now focus on the set Y > s2/7. Recalling that Sy < 2/7, for any function ¢ = ¢(s,Y)
such that

o(s,Y)<CY"s? VY >0, s> s,

for some explicit 71, v2 > 0, we have, for any P > 0,

[e.e]

(b(sa Y)wO < Sip
cs2/7

3We say that “f = Oq(g) in W7 if 8 f = 04 (0. g) for 0 < j < k.
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provided mg is large enough (depending on Sy, 71, 72 and P). We use a simple Cauchy-
Schwartz inequality and control the terms involving 8§,V by the dissipation term Dy. Since
we have L estimates on V, 0y V, 8)2,V, it follows that for all § > 0

o0 H
/ 02R| |02V | wo < 6Dg + 51 sP.

82
Eventually, choosing ¢ small enough (depending on a), we obtain
T . 27E0 + CD[) < Hls—3+(5—a),80 + Hl(bs + b2)251+(5_a)ﬂ0.
s
Thus there exists Sy, depending on M7, Ms, a, By, such that if s > S,

+(5 a)Bo

Eo(s)s™4/? +/ +712Dg(t) dt < Eo(so)sg /> + Hy + HyJs, * (5.6)
S0

We will use this inequality in the sequel in order to have a control of 8%,V, which is not given
by the L°° estimates. This will allow us in particular to control the tail of some commutators
in the estimate of Proposition 2.9.

Remark 5.3. Notice that the assumption |02V (so)| < 1+ My implies that
Boso) < (1+ M1)sg % < 5

is so is sufficiently large (depending on My and By). Therefore there is no need to include
any additional assumption on Ey(sg) in the bootstrap argument.

5.2 Estimate on 07 LyV: proof of Proposition 2.9

We now turn towards the estimate on Ly V. Notice that the main order term in the right-
hand side of (2.19) is now (bs + b%)Y. The lack of decay of this remainder prompts us to
differentiate twice (2.19), in order to cancel the linear term. We therefore perform estimates
on g := 0% LyV. Using Lemma 2.8, we have

Dsg + 2bg + gY@Yg —dyyLy'g =03 LuR + 03C[O3 V). (5.7)

We multiply (5.7) by gwi, where w; = Y ~%(1 + s~ %Y)™™ for some B €]1/4, By, a > 0,
and mj > mg > 1. Using the same computations as in the previous paragraph, we have

oo b 1d 7+a
/ (859 + 2bg + 2Y8yg> gwy > 5d—E1( s)+ bE:(s),
0

where ~
Eq(s) := / g*w. (5.8)
0

Using Lemma 4.7 and Lemma 4.15, we also have, for any P > 0, provided a < a, so large
enough (depending on a and (1) and m; large enough,

o 1
—/0 (OyyLy'g) gwi > eDi(s) — ébEl(s) — s PDy(s),

[e¢) 2 oo 2
Di(s) ;:/O @YUg)ler/O %wl. (5.9)

We now treat independently the other terms, namely

where
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e The commutator term 9%C[02V];

e The remainder term 832,£U7?,.

The commutator term

The goal of this paragraph is to prove that for all §, P > 0, there exists sg > 0 such that is
5> S0,

< 8 (bEy(s) 4+ Di(s)) + s ¥Dy(s) + s F.

/ P2CIORV] 02Ly Vi
0

We use the formula in Lemma 4.12. We recall that D = L;;* (OyyU®P — 1) + LV, so
that D “contains” two derivatives of V' through the term Ly V. Hence each term in

/ 03C102 V] 0% Ly Vun
0
is a product of three derivatives of V.

As a consequence, we arrange the terms in 93C[0% V] in the following way:

e The terms with the highest number of derivatives of V' are estimated by F; or Dy;

e The terms with a number of derivatives lower than or equal to 2 are estimated in L
thanks to (5.2).

This strategy will work as long as we do not end up with a product of three terms of the type
MV a2V oV,

with k1, ko, k3 > 3. Such terms will need to be re-arranged thanks to an integration by parts.
However, a quick look at the formula in Lemma 4.12 shows that this situation occurs only
for the second term in the right-hand side of the formula giving 02C[6% V], namely

*_ . D
/0 O3 O LuV O3 LyVw. (5.10)
But as we will see, it is easy to overcome the difficulty raised by this term.
We now examine the terms in 93C[0% V] one by one.

e Using the L* estimates (5.2) together with Corollary 4.3, it can be easily checked that
D 1
—=0 b——|.
U s < 1+ Y>

1/3
1

D CS
U' (832/51]‘/)21111 S Hle m(&%ﬁUV)2w1,

It follows that

Csl/B
/O

which is estimated thanks to Lemma 4.14. The part of the integral for Y > cst/3 is
estimated thanks to Lemma 4.15, with p = Y*w; for some integer k, py = wg with
m1 > mg. It follows from Lemma 4.14 that for all 6 > 0, P > 1, provided sq is large
enough and m; is large enough,

<D
/ ‘U‘ (03 Ly V) 2wy < 0bEy + 6Dy + s PDo(s) + s F. (5.11)
0
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e We then address the problematic term (5.10). We integrate by parts and obtain
<D > D
Il = —/ —(6,2/£UV)2w1 — / —8Y,CUV 8§/£UVw1
o U o U
- anﬁUvayﬁUV&/wl.
0

The first term in the right-hand side is the same as in (5.11). In the third term, we
use the fact that |9y w;| < ComY 1w together with a weighted Hardy inequality from
Lemma 4.18, so that

D
/ ﬁachvaffﬁUvaywl
0

0o (92 2 1/2 00 2 1/2
Hib (/ W(J‘/)m) (/ (By Ly V) w1> + s PDyts P
0 0

IN

1+Y Y2(1+Y)
> (07 LuV)? P P
< Hib = D :
< 1 /0 G w; + s o+ s

We eventually evaluate the last term in I;. We have, for all § > 0

D 3 1 o] D2 9
— V V <dD — — V .
/(; UayﬁU 8yﬁU wy| < 0D + 45/0 U (ayﬁU ) w1

Using Corollary 4.3, we have

D2 b2y b
7~ Ous <1 +Y) = O <Y2(1 +Y)) :

Using a Hardy inequality from Lemma 4.18 together with Lemma 4.14, we deduce that
the part of the integral bearing on Y < s'/3 is lower than 6D; + 6bE; for s > sg
large enough. The part of the integral bearing on Y 2> s*/3 is handled thanks to
Lemma 4.15, recalling the form of GyLﬁl (see Lemma A.1). It is therefore smaller than
D1+ s PDy+ s P, for any 6, P > 0, provided s is large enough.

e We then treat simultaneously the next three terms, namely

/0 ayﬁ (—2(]28YV — 4Uyy/(; U2 8yﬁUV’LU1,

2 00 Y
83(/]‘/] 832/[,UVZU1 and / 8%% </ ,CUV> G%LUle.
0 0

(5.12)
The overall idea is to decompose 8{‘3(2)/ U) for k = 1,2,3 into a part that is controlled
in L and a part that involves derivatives of V' of order 3 or higher (or equivalently,
derivatives of LV of order one or higher). Concerning the part of 6{“,7)/ U that is
controlled in L™, we use weighted Hardy inequalities to upper-bound 852/1/, LyV, ete.
by 62 LyV in L2. As for the part of 9% (D/U) that is not controlled in L>, we observe
that in the three terms in (5.12), 812/‘/, Ly V and fOY LV are controlled in L*°, and we
use this L control to conclude.

© D
/ 0% — [—3EUV +2
0 U
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Let us now be more specific: it can be easily checked that for k = 1,2, 3,

D 1 1
ki: I —— k

Since we also have L estimates on 8)2,V, Uy,Uyy and U~!, using Lemma 4.15, we
infer that the part of the integrals in (5.12) bearing on Y > s'/3 is bounded by s~ +
s P Dq(s) + Dy for some P > 0 arbitrary provided m is large enough.

We now address the part of the integral bearing on Y < s¥/3. and we start with the

part of 9% (D/U) that is bounded in L>°. We focus on the first integral in (5.12), since
the other two are treated in a similar fashion. We recall that

ZV 1 Y
== [ rcuv.
U/Q uv,

= 013(Y )LV + 1ot

Y Y
2V =ULyV — Uy/ LyV, /
0 0
and therefore
Uy 62 %4
6 V —4U —

Using several weighted Hardy inequalities (see Lemma 4.18), it follows that

/CS 10 bé Wy gy /82 02 LV
1/3 <1+Y) U2 Y YY 0 U2 Yy ~U w1

1/3

< Hib 2
< 1/0 1+Y|8YLUV’ wy.

We then focus on the part of dy (D/U) that is not controlled in L>°, and that involves
Oy LyV. For that part, we use the L estimates on V', which entail

82

U
‘—2[]};832/‘/ — 4Uyy/ < H{b VY <es 1/3,
0

It follows that

1/3
s 1 UY 2 8Y
/0 01/3 (M) aY;CUV <—2U28YV — 4UYY/0 U 8}/LUVU}1

1/3

cs 1
< H —_ 2 .
S 1b/0 Y(l +Y)’8Y£UV‘ ]8Y[,UV\w1

We conclude once again using a weighted Hardy inequality.

We then treat the other two integrals in (5.12) using similar arguments. We conclude
that for any 6, P > 0, provided m; > mg and sg is large enough, the three integrals in
(5.12) are bounded by
H, * 1
6D+ — (b AR LyV|? *D
1+5(/0 1—|—Y‘YU |w1—|—s + s 0),

where the term D; stems from the bound of the third integral in (5.12), which involves
O3 LyV.
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o Eventually, we address

o Yo2vD D (Y oiV
2/0 af;U(/o - 52>a§£UVw1. (5.13)

Now, D is controlled in L. As in the previous step, we decompose 8§,U into a part
that is controlled in L™ and a part over which we have no L* control. More precisely,

KU =UdyLyV + Oy 3(b(Y +Y?)).

Let us start with the contribution of Oy /3(b(Y + Y2)). For that part, we use the control

of V and D in L™ to prove that the integral tails for Y > ¢s'/3 are O(s~F), and Hardy
inequalities on the set Y < es'/3. We infer that the contribution of this part of the
integral to (5.13) is bounded by

HbE? OOL(E)?L V2w 4+s77).
1 0 1+Y Y &~U 1

We now address the part of (5.13) where 3§/U is replaced by Udy Ly V. For that part,
we use the L™ control of 92V, D and U in L™, together with Lemma 4.15 and the
control of Dy to estimate the tails. We infer that this part of (5.13) is bounded by

2/7

/ VY2|0y Ly V| |02 Ly V| wi + s TDo 4577
0

Now, for Y < Cs%7, we have b*Y? < CbY (1 + Y)~'/2, so that the integral above is

bounded by
1/2 © o1 2 2 12
H{bE — .

Gathering the estimates above and using Lemma 4.14, we conclude that for any P,§ > 0,
if my, sp are large enough, the total commutator term satisfies

< 6bE1(s) + 0D (s) + s F + 57 Dy(s). (5.14)

/ D2CIO2V] 02 LoV
0

The remainder term
We now evaluate

/ (3 LuR) (03 Ly V) wy.
0

We claim that for all § > 0, for all P > 0, provided m is large enough and s is large enough,

/ (2LuR) (92LyV) wi
0

< 5(Dy +bEy) + % <8—PD0 4B b2)2s—3+<11—a>51) :

We follow the decomposition of Lemma 2.6 and write R = Z?Zl Ri, as suggested in
remark 2.7.
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e Recalling that aq = 1/48, a7 = a4/84, and a9, a11 are defined by (2.10), we have
1 81 9 Y
2 2 2 5 21,8 21,9
- Sy Y 4 Zanb?YS 4 by L
0y R (bs + %) <4 + as by + 16(175 + 10a7b ) X <32/7>
- Y
+P1(57Y)(1 - Xl) (82/7> ’

for some function P; that has at most polynomial growth in s and Y, and some cut-off
functions x, x1 € C5°(R4) such that x,x1 = 1 in a neighbourhood of zero. Using the
identity (4.2), we have, up to terms supported in ¥ > s2/7,

LuRq
— ey ot | (M, 4 2y Y
= 5( s +0°)Y + Ly, (*( s + b%) )X 2

_ 9 Y
— (bs+ )Ly ((1 c a7b*Y® — 1Oa7b2Y9 + 2a10b3Y 10 + 4a4b3Y12> X (82/7»

1 _ |~ Y
_ 5(bS + bz)LUlLvY — LUl [Pl(s,Y)(l - X1) <32/7>} ,

and therefore

8%£UR1 (bs + bZ)fl

61 9 9 Y
— 2L [ Ey5 — Zab?YS 4+ Zarb?Y? — 2a10b°Y 10 — Za bty 12 =
o K 2 A T o 1 2
1 . %
— 5a%VL,;lLVY — Oy Ly [Pl(s,Y)(l - x1) <2>} . (5.15)
S7

Recalling the expression of 82 L_1 from Lemma A.1, we infer that for k > 5,

Y3 ity « 1,
8Y 1Yk ayV/ ‘l‘ 01/3 ({ Yk._4 H1<Y >

In a similar way, we have

LyY Y2
LGN LyY) = U / ;2 — 5oLV (5.16)
0
Y2Uy — 2YU 2U — Y3Uyy UyvY — Uy
1% 1%
Y o YT e + U2

Y2U
Yy / LyV.

We write 95U = 95.UPP + 8)3/V and replace 95V by the formula (A.2) in Appendix A.
Using the L™ estimate on 9%V, we obtain

Y
832/L51(LVY) = 02/7(Y2)8Y£UV + 02/7(Y)£UV + 02/7(1) / LyV + lo.t.
0

Gathering all the terms, we get, for Y > 1,

8Y£UR1 (bs + b2 ) <02/7 (bY) —}—202/7 ay/ ,CUV—{—IOt)
=0
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Then, noticing that for Y < %7 we have bY? < Y~1(1 + Y)~'/2 and using Hardy
inequalities from Lemma 4.18, we infer that for any P > 0, provided m; and Sy are
large enough,

/ 852/£UR1 832//:UV’LU1
0

Hl‘bs + 62’E11/2 (bs(3*a)51/2 + bQS(llfa),B1/2>

IN

2/7 1/2
s 1
+Hys|bg + b2 |EV? / (W LyV)wi+s P +sPD
15] |E; ; Y2(1—|—Y)( v Ly V) wy + s s 0

(5bE1 + %(bs + b2)2s—3+(11—a),31

H * 1
+71$3|b3 + b2|2/ 7Y(8§Q/EUV)2U)1 + S_PDO.
0

IN

1+

e We use the same type of estimates for the term R, and we find

/ 812/,CU'R2 812/£va1
0

HB B2 s1-981/2 4 5hp,

IA

N

SbE; + %5*7“11*@)51 +sPDy.

e We then address the term R3. We recall that using (5.16) and (A.1), for Y < ¢s'/3, for
ke {2,3,4}

Ly (LyY) = Oy30Y?), Ly (LyY) = 0y,3(bY?),

k Y
- Z i i 1
8{;LU1(LVY) = 01/3(Y k+2)8y /0 LyV + 01/3 <Yk_1(1—}-}/)> v 4 l.o.t.
=0

Notice also that B3Y7 < bY for Y < cs1/3, so that we can treat b3Ly Y7 as a perturbation
of bLyY. In a similar way, for k € {0, --- 3},

% (—adV* — azb?Y" 4+ a10b®Y'0 + a 0PY) = O(bY*F) for v < 577,
so that
V0% L Ly —ant?y T+ a1003v 101ay by 1Y | = Ogr(b*Y7T) 4 Og7 (b*Y*) 04V

It follows that
OYLuRs = Y Og7(0Y""4)04 / LyV
i=0 0
Y
0y (Y +Y2) 0y LoV +0uelt?) [ L0V
0
b 4,3

+02/7 <W) VY + IOt + 02/7(b Y )
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Using Hardy inequalities together with Lemma 4.15, it is easily proved that for 0 <1 < 4,
for any P > 0, provided m; is large enough,

0o Y
‘/ 02/7(()Yi_4)8§// LyV 8§£UVw1 < 6(bE1 + D) + S_PD()(S) + S_P,
0 0

’ / Oqy7 ((Y +Y?)) 0y LyV 05 LuVwi| < 6bEy + s~ P Do(s) + s 7,
0

o) Y
‘ / Oq/7(0%) / LyV 03 LyVw:| < bEy + s TDy(s) + s,
0 0

and

o) b )
‘/0 02/7 <Y4(1 T Y)2> VY ayﬁUVUH

> 1 2 2 Y2 > 1 2 P 2
H b L _
1b (/0 1—|—Y(6Y£UV) wl) (/(; Y8(1+Y)3vyw1 + s )

< 1
< Hlb/ 7(832/£UV)2”LU1 + s~ P,
0

IN

14+Y

Using Lemma 4.14, we end up with

<4 (Dl + bEl) + (S_PD() + S_P) .

/ 832//:,(]7?,3 (952/[:(]‘/ w1
0

e The term R4 is easily treated thanks to Lemma 4.15. More precisely, using Appendix
A, it can be proved that

Y
O LuRi = (Fi(s,Y) + Pals V)0 LoV + s YIOFLoV) (1= 37 )
where Py, P, P3 are functions that have at most polynomial growth in s and Y, and
X € Ci° is identically equal to 1 in a neighbourhood of zero. We infer that for any
P > 0, provided m; and sg are large enough,

/ (832/[,UR4)832/EUVU)1 < cs P + SiPD().
0

We now gather all the terms. Notice that since f; > 1/4, 54+ (3 —a)B1 < =7+ (11 — a)p.
We end up with the following estimate: for all §, P > 0, if m; is large enough, there exists a
constant Hyp, depending on My, Ms,a, 31 and my and a constant Sy, depending on the same
parameters and also on d, such that if s > Sy, then

/ (% LuR) 03 LuV wy
0

H,y

55(D1+bE1)+ 5

(b, + 522570 4 (b, 4 422, + 5700 | 4 =Py,
(5.17)
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Conclusion

Gathering the estimates (5.14) and (5.17), we infer that for a > 0 sufficiently small, for any
P >0, for 1/4 < 1 < 2/7 and for m; sufficiently large, so < Sp, we have, for s € [sg, 1],
d

Bt (;b — Hys3(bs + b2)2> Ei1+eDy < Hy(bg+b?)2s™3+W=a)bi g = T+(11=a)bi =P iy

Since 51 > 1/4, we have
7
6 (11— a)f < 3,

and therefore the rate of convergence is limited by the size of the right-hand side. Let ¢1(s) :=
Hy [? 73(b; + b%)2d7. The assumptions of the Lemma entail that 0 < ¢(s) < H; Jsal/4 for

S

80
all s€ [sg,s1]. As a consequence, if sp > J*, we have 0 < ¢1(s) < H; for all s € [sq, s1].
Using a Gronwall type argument and using the preliminary estimate on D, we obtain, for

all < 6 — (11 — a)f1,

Br(5)5™ exp(—g(5)) + @ / "% exp(—g1 (7)) Dy (7)dr

50

H, Sa—6+(11—a,81)

a —1/4
< Bi(so)sh + HiJsy /' + — (1 —a)fi—a'

Hence, for so > max(Sp, J*) we obtain (up to a new definition of the constant Hj)
S
Eq(s)s® +/ Dy(r)m% T < Hy (1 + E1(s0)s§) -
50
This completes the proof of the Proposition. O

We also have the following

Corollary 5.4. Under the assumptions of Proposition 2.9, we get the following refined L>°
estimates on V: for all a € (0,a), for all By such that

1 11
411 —a’

1
- <
1< B1 <
there holds
|0y LoV | = Og, <5_13/8Y1+Ta) ,

1Ly V| = O, (5—13/81/33“) , /Y LV = 0, (3—13/81/5*7") ,
0

3V] = O, (013*13/81/“7"(1 + Y)) .
Note that the constants in the Og, depend on My, My, m1,a,B1 and J.

As a consequence, setting Cy = E1(so)s§, where a is such that 13/4 < a < 6 — (11 —a)p1,
we infer that there exists a universal constant H and an constant Cy,, depending only on mq
such that if sg > max(Sp, J*, C§),

13U < HbY VY € [0, Cpn, s™1].
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Furthermore, there exists a constant Cg ., depending only on a and mq, such that

Y 92
8 £ V 44+a+m
| o ‘SCa,mlDi”(Hs—ﬂlY)*? ' = 05D,

|02L0V| < Comy DY (14 57P1Y) 5 (14 V) 2Y@H0/2 — 0 (D}/ 1+ Y)1/2Y<2+a>/2) .
(5.18)

In particular,

Oy LHV = X2

Proof. As mentioned in Remark 2.11 we can pick a > 0, 51 € (1/4,2/7) (81 depends on a) so
that 13 11
With this choice of a and 51, we have

Eqi(s) < Hy(1+ Co)s™ ¥/,

A simple Cauchy-Schwartz inequality entails

Y s Yo q 1/2
/ 8§£UV‘ < gy (/ ) . (5.19)
0 0o W

Now, setting C,, := 21/m1 _ 1 <1, it is easily checked that for ¥ < Cyn, 871, we have

Oy Ly V| =

* <2vy“.

wy
The estimates follow, using the formula in equation (A.2) for the one of 85V. Note in
particular that for Y < Cp,, %1,

Y2 Y
03U < |05UPP| + <Y+2> \aycyv+/ Ly V|
0
< i (bY F Y+ YY ST HR( 4+ 00)1/23*13/8)
<

HbY (1 +H?(1+ 00)1/25(?51‘3) .

Now, for 31 < 2/7 and a sufficiently small, 1 < 1/(3 + a), so that, if so > max(C§, HY),
93U| < Hby (1 +H2(1 00)1/2551/8> < AvY.

S;nce 8§/V has polynomial growth in s and Y according to (5.19), we obtain the estimate on

oy U.

The two estimates from (5.18) follow from the Cauchy-Schwartz inequality (see also Re-
mark 4.10 ): observe that for Y <1,

Y 812/£UV 1 (8}2/[,UV)2 1/2 Y Y3+a 1/2 1/2
U2 < Y3+a U4 < CaDl :
0 0 0
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The same type of estimate holds when Y > 1. As for the estimate on 9% LV, we have
Y Y 1/2
U
2 LyV| = ‘/ a%z,Uv‘ < D;” </ ) ,
0 0 W1

which leads to the result.
O

We end this paragraph with a short proof for Lemma 2.12: differentiating once equation
(2.19), we have

3b b
00y LyV + anﬁUV + iYa%ﬁUV — 8}/£2UV =0y LyR + 8}/6[852/‘/]

We now take the trace of the above equality at Y = 0. Since V = O(Y") for Y < 1 by
definition of the approximate solution U?PP, we have

Oy LuVy—o = 05 LuVy—o =0,
as well as @C[@%V]‘yzo = 0. Hence there remains only

4

8Y,C%]V|y:0 =— Z Oy LuRijy=o-
=1

Once again, it can be easily checked that 0y LyR;y—o = 0 for i = 2,3,4, and that
Oy LuRijy=o = aa(bs +b*)dy LuY |y —o.
Now, using (4.2), we have
Oy LYt =120y L;'YV? = 240yY + O(bY?) for Y < 1.
We obtain eventually that
Oy LEViy—o = —%(bs +b?).

Remark 5.5. It also follows from equation (5.7) and from the computation of 6)2/7?, that for
Y <« 1,
Oy LTV = O((blbs + b%| 4 05(bs + b*))Y?).

In particular, L"?JV s well-defined.

5.3 Estimate on 02 L%V: proof of Proposition 2.13

We now tackle the estimates on ('3y£2UV. The general scheme of proof is the same as the one
of Proposition 2.9. There are however a few differences:

e There are now two commutator terms, namely dy LyC[02 V] and 9y C[02 Ly V];

e The estimate of the remainder term 8%/3,2]72 is more technical since the explicit expres-
sion of 8}2,6%] has much more terms than the one of 812/£U.
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We set h = 652/5%,V in the rest of the paper, and we have
b
Osh +4bh + Y Oy h — KLy 'h =0y (LZR + ClOF Ly V] + LuC[oFV]) . (5.20)

In order to derive estimate (2.21), we multiply (5.20) by hws, with we = Y %1 +
s‘ﬁQY)_mQ. We recall that we choose mgy > mq1 > 1 and B2 < (.
Using the same computations as in the previous paragraphs and recalling the definitions
of Ey, Dy, we have
1dEy 15

N )
2d$+462+62

oo
< / % (LER +C1O3 LuV] + LuCloFV]) hws + Cs™F + s~V Dy.
0

We now state the main intermediate results allowing us to prove the statement, namely
a commutator estimate and a remainder estimate. We then prove each of the statements
separately.

Concerning the commutators, we have the same type of estimates as in the proof of
Proposition 2.9, which leads to

Lemma 5.6. Assume that the assumptions of Proposition 2.13 are satisfied. There exist
constants Ha, Sy, depending on a,m;, Bi, My, Ma (i = 1,2), such that if so > max(Sp, C5, J),
for all § >0,

/ / (8-C1OF Ly V] + 05 LyC[0FV]) hws
0 0

H H
<6 (bBy+ D2) + 20 (bs + %) + =2 (s(”a)'BlDlEg + 53(by + 02)2 By + s’2D1) .

We now turn towards the remainder term. We have the following estimate:

Lemma 5.7. Assume that the assumptions of Proposition 2.13 are satisfied. There exist
constants Ha, So, depending on a,m;, B;, M1, My (i = 1,2), such that if sp > max(So, C§, J*),
for all § >0,

%0 H. H. H.
/ RLIR 02 LV ws < 8(bEy + Dy) + 72192(1)3 +b2)? + 725—21)1 + 723—7“3—@)52.
0

Gathering Lemmas 5.6 and 5.7 and choosing § = min(1/2,¢/2), we obtain

dFE5 c
—= +7bE -D
s + 2+ 52

< Hy <b2(bs +02)2 + T D By + $3(bs + b2)2Ey + 572Dy + s_7+(3_“)52) .

We now multiply the above equation by s® and infer

di‘i(Eg(s)s5) — Hy (TR Dy 4 (b, + 1)) (Ea(s)s?) (5.21)
< Hy (s3(by + 622 4 5°Dy + 52O ) (5.22)
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Define s
Pa(s) == Hg/ T(7+a)ﬁlD1(7') + T3(b7— + bz)QdT.

80
According to Proposition 2.9, since 1 < 2/7 < 1/3, we have (7+a)8; < 6 — (11 —a)p; and
781 < 13/4, and therefore, if so > max(Sp, J4),

0 < ¢o(s) < HiHo <1 + E1(50)5(1)3/4> .

Hence, multiplying (5.21) by exp(—¢2(s)) and integrating over [sg, |, we obtain

Ey(s)s” exp(—¢a(s))
< By(so)sh + Ha / (P(br +82)2 + 7Dy + 77202 exp( (7)) .

S0

Now, using assumption (5.4) together with Proposition 2.9 with a = 3, we have, for sy >
max (S, J4),

/ (b + b?)2dr < Jsal/4 <1,

50

s
/ T3D1 < H1(1 + Co),

S0

s 1 _ _
_2+(3—a),82d < 14+(3—a)B2 <1
T T — S8 .
/50 T 1-(3-a)p " B

We infer eventually

E2(8)85 < eXp(HQ(l + Co)) [EQ(S[))SS + H2H1(1 + C())] < eXp(HQ(l + C()))Hg(l + C())

We now turn towards the proofs of the Lemmas.

The commutator terms: proof of Lemma 5.6

We start with the computation of the commutator terms. Looking at equation (5.20), the
commutator integrals in the differential inequality for Fy are

/ (03C103 Ly V] + 03 LyClOFV]) OF LTV wo. (5.23)
0
We recall that the heuristics is that up to some corrector terms,
* 1
5.23)| < Hob | ——(02LV)?
6:23)] < 1 | @R P

and the right-hand side of the above inequality is then handled by Lemma 4.14. However,
there are a few complications, coming from the fact that the trace 8y£2UV|y:0 is not zero.
In the sequel, we will therefore focus on the difficulties and differences with respect to the
treatment of the commutators in Proposition 2.9.

e We first consider the first term in the integral of (5.23). This term has the same type
of structure as the term

/ P2CIEVIE LUV wi,
0
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which we treated in the previous section. However, there exists one substantial difference, due
to the fact that 8)/[,%]‘/ does not vanish at Y = 0, so that we cannot write Hardy inequalities
for Oy L% V. To overcome this difficulty, we recall that 0y£2UV|y:0 = —%(bs + b%), so that
RLyV ~ —3(bs +b*)LyY ~ —1(bs +b*)Y? for Y < 1, and we write

1 1
0L LYV = <a§£UV +5(bs + b2)LUY> =5 (s + v¥)LyY. (5.24)
Now, we have angl (8}2,£UV + %(bS + bz)LUY)D,:0

apply Hardy inequalities to the first term. For instance

o 1
/ vz (GyL[}l <8§/£UV +5(bs + bz)LUY>>
0

Using the additional bound on 8§,U from Corollary 5.4, the computations are almost identical
to the ones on page 57 . The only difference lies in the treatment of one non-linear term,
for which we do not apply exactly the same strategy (i.e. evaluate the term with the least
number of derivatives in L>, and the others in L?) and for which we use the extra information
coming from the bound on Fy and D;. More precisely, the only term for which we do not use
the same type of estimates as the ones on page 57 is

00 Y
/ a%g / (£2UV+1(bS+b2)Y) 0L LIV wy.
0 U \Jo 2

= 0 by construction, so that we can

2 %s)
w9 S HQ/ (6}2/52[]‘/)2’11)2
0

For this term, the problem comes from the part of 8;0’,% for which we do not have L bounds,
namely 01/3(U_1)8§,£UV + 01/3(Y_1U_1)8}2,£UV. We first integrate by parts once; the
most problematic term is then

=R LyV (¥ 1
— /0 T ( /0 (L%]V+2(bs+b2)Y)> Oy LGV ws.

Here, although the middle integral term has less derivatives than 852/£UV, we choose to
evaluate it in L? thanks to a Hardy inequality because cancellations occur between E%]V and
%(bS + b)Y More precisely, the above integral is bounded by

r

Ul/2 veo= /0 9% U1/2 Y

02 LyV

I 1 |03 L3V |
3 2 2 Y~U
71/2 Y /0 ([,UV + *2(b5+b )Y)’ 12 wy.

y3

Now,

Y 1/2
HyDy? ( / <Y4+Y6>w;1) = 03, (s %2y %),
0

IN

The part of the integral bearing on Y > s%1 can be bounded by noticing that we have pointwise
Y 52 .
bounds on [, L{V since

Y 2

Y a2 %
/ oy LuyV < 2U/ |0y Ly V Uy . Oy Ly V|
. 02 ) i U
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For the term involving (bs + b?) on the set Y > s%1, we merely control 03 LyV by Ej.
Using Hardy inequalities and recalling that 8y < (1, ma > m;, we infer that the prob-
lematic integral is bounded by

Hys™/2DY2ES2DY? 4 5Dy + 5P Dy + |bs + 0225~ P By

H
< 26Dy + Tzs(pra)ﬁlDlEQ + 57Dy + |bs + V)25 P B

We will then choose (1 so that 781 < 6 — (11 — a)f1, which is possible since f; < 1/3. We
conclude that for all § > 0, for sop > max(Sy, J4, C§,7P) for some p > 0,

o 1
/O oC [a%.ch +5(bs + bQ)LUY] O LEV wo

H.
< §(bEs + Do) + +72s<7+a>51D1E2 + 5Dy + |bs + V225V E + 57 F.

The next term coming from (5.24) is
& 1
/0 oiC [z(bs + b2)LUY] 0L LIV ws.

It turns out that the main order term in §2C[LyY] vanishes. More precisely, following
the decomposition from Lemma 4.1, we write D = —bY/2 + D+ Dnp =: Dy + D + Dy,
and we decompose the operator C into Co + C + Cnr, accordingly. Concerning Co, an explicit
computation in Appendix A shows that 93Co[LyY] = Op, (b*Y), so that, for s > sq sufficiently
large,

° 1
/0 d%Co [Q(bs - b2)LUY} 0% L3V ws

< Hyb?|bs + 02| s~ 9R2 B2 < 5bEy + b2 (b, + b2)2.

Concerning the terms involving the operator C, we use the fact that 0{325 = 051(b3Y7_k +
b4 Y10=F) for Y > 1 and for k = 0, 1,2. Therefore

, DY?

RCILyY] = O, (1¥Y*) — Yy

Hence, integrating by parts the term involving 8)3/15 and choosing sy large enough,

© 51
‘ /0 93C [Q(bs +bz)LUY} 0% L%V wy

IN

Blou+ ] [ 0 (YO} LEVIwa+ 87, + 87| [ 03 (V9)O} LEV s
0 0

IN

H
dbEs + 6 Do + 72(65 + b2)2 (5702 4 g6+1302)

N

6bE + 0Dg + b*(bs + b?)2.
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There remains to address the terms involving Dyr. Notice that Dy, 0y Dy are bounded
in L>® (see Corollary 5.4). As above, we integrate by parts the term involving 95Dy,
Eventually, we obtain, using Corollary 5.4

o0 1
/O 03Cnr, [Q(bs + b2)LUY} O3 L3V wy

H
< 6bEy+ 6Dy + %bﬂbs + 022+ 5Dy
Gathering all the estimates, we obtain, if so > max(Sp, J4, C§),

H H
< 5 (bBy + Do) + 7252(193 + %) + 7237&1)1)52 + 5 PDy.

/ OLCIO2 Ly V)02 L3V wy
0

We then address the second term in (5.23), for which we use the same type of decompo-
sition as above, writing

1 ~ 1
0LV = (a%v + @(bs + bQ)LUY“) (bs + b*)LyY* = 03V — 4—8(1)5 + b)) LyY*

1

48
Using the formula for L;;' (Y'2) (4.2) together with the bounds on V' stemming from Ej, notice
that

- 1 _
Oy LEViy—o = Oy Lt Viy—o + 1 (8YLU1Y2)|y:o =0,
and that

~ 1
OLLEV = 0LV + 705 + V)05 L' Y? = 03 LTV + Op, ((bs + b%)bY).

Concerning the term
/ 02 Lo ClOR TR L2V ws, (5.25)
0

the computations are very similar to the ones above, using the formula for 8%,0[-] from Lemma
4.12 on the one hand, and the formula for 8}2/L(_]1 from Lemma A.1 on the other hand. We
leave the details of the estimates to the reader since they do not raise any additional difficulty.
We end up with

H
(5:25) < 8 (D +bEy) + b2(by +b)? + = (3—3D1 4 sTHB D By 4 53(by + 02)2Es + s—P> .
We then consider ) -

5t b?) /0 0L LyCLyY*o: L2V ws. (5.26)

A straightforward computation leads to

4 Y
b E i— %
=0

o0 b(bs + %)\ 5 o
'/0 051((1”)[]) OvLoVws
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Expressing 8y£2UV and EQUV in terms of LV and using the expressions of E1, Dy, it can
be easily proved that the terms of the form Og, ((1 +Y)"1)d fOY L%V give rise to integrals
that can be bounded by

6bEy + 0Dg + H28_2D1 + s P

Gathering all the terms, we obtain the estimate announced in Lemma 5.6.

The remainder terms: proof of Lemma 5.7

We now consider the remainder terms occurring in the right-hand side of the differential
inequality for Fy, namely

/ O2L2V O2LER w.
0

Following the decomposition of R from Remark 2.7, we will write R as Z?Zl R;, and study
the contribution of each R; separately. We emphasize that the most important terms are R
and Ro: indeed, they dictate the final convergence rate, whereas the terms involving R3 and
R4 are small perturbations of the main dissipation terms Do + bFs.

¢ Remainder stemming from Rq:

Using the decomposition (5.15) of the previous paragraph and using the fact that for & > 8
and Y > 1,

2L 0L L, [Y’“X <3§/7>} = 05, (Y3 + 05, (YF"H02 LV + Op,(YE )0y L1V,
we find that
Oy L (R1)
= (b + bP)bOEL; 0L KC‘;W - fliflscwaS) X <Szf/7>} (5.27)

+ 0p,(0") + 05, (V) + O, ('Y +0°Y )R LUV + Op, (57Y° + Y )0y LV
1 _ _ _ ~ Y
= s+ b))y Ly 0% L LvY + 0§ L <P1(s, Y)(1—x) <82/7)> .
Define v
ols,Y) = 00 Ly 0y Ly [YSX (/7)] |
Then
Y71 Y U Y
3 2 r—1 5 YY 02 -1 5

Uy o3 11 [y5 Y Logr—1|ys Y

Since we focus on the value of the above quantities for Y < s%1, we can replace x(Y/s*7)
by 1; following by now usual arguments, the part of the integral bearing on Y > s51 will
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be smaller than s~ for P > 0 arbitrarily large, provided mso > my is chosen large enough.
Using Lemma A.1, we have, for Y < s% and for s > s large enough,

Y Yys
2 7—1 5 _ 3
s ()] = wo [
Y5 —5(1+ Y)Y +20Y3(Y + 22) + 0(bY7)
_|._
U2
6Y° +15Y4 + O(bY") _ 5Y5 4+ 14Y4
U2 =T

>0 (5.28)

while

Y Yys oBU  UyU
& Lyt [YE’X <52/7>} = oiu i U2+2< 52 - YU3YY>Y5

U2 Uy Y2

1074 =X — 40732 +120—

+ U3 ozt U
2Y4(9Y2 4 29Y + 45)

= i +O(bY?) 4+ O(Y2U)d: Ly V. (5.29)

A similar formula holds for 95-L;;'[Y4]. It follows that
©(s,Y) = Op, (1 + Y)_3) + Op, (Y)alzf’CUV + Op, (YQ)agg/ﬁUV + Op, (bY)
and

03 LERA| = |bs + 0°[blep(s, Y )| + Op, (" + 6°Y?)
+05, (0*YC +0°Y 0 + (bs + b*)Y?)Oy LEV + Lot

As a consequence, since 8 < S,

/0 h [(bs + 0*)be(s,Y)] [05LEV] wo

1/2 U2 12 1/2 o 1/2
< Hsblbs + b*|D — Hyb?|bs + b?|E / y?
< Hablbs + 07| D, (/0 (1—|-Y)6w2> + Hob®|bs + b*|E, ( ; wo

+HbJbs + 02 By (827D 4 57F)

For any § > 0, if s > sg large enough (depending on ¢), the right-hand side is bounded by

H. H.
5 (bEy + Dy) + %bﬂbs + ) + %b|bs + VP22 Dy 4+ 577
H
< 5 (bEy + Dy) + 7262\193 + 22+ 52D; +5F,

Gathering all the terms, it follows that

o H
/ (03 LER1) (5 LE V)Y “wa < 6 (bE2 + Do) + %b%s + 0?24+ 572Dy(s)+ s T
0
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¢ Remainder stemming from Rs: As announced in Remark 2.7, the second remainder
Ro will partly dictate the total size of the remainder. More precisely, we have, for Y > 1,

LER2 = 05, (b'Y?),
Iy LI Ry = 0p,(b1Y?) + 0, 'Y LEV,
OLER2 = 05, (VYY) + Op, WY )0y LTV + Op, ('Y LE V.

We infer that for all 6 > 0 and for s > s¢ large enough (depending on 9),

< 6bE, + %S—H@—a)m N % <UD,

/ O2L2Ry 02L2 Vs
0

¢ Remainder stemming from Rj:
An easy computation leads to

Y O2LyL; (LyY)

LH(LG'LyY) = Og, (1) Oy LEV + Lo.t. + Uy/

U2 ’
0
1
Oy LY (Ly " LyY) = O, (1) 03 LEV + O, <1+Y> Oy LEV +lo.t.
Y 92 —1
2Ly Ly (LyY)
+ UYY/O e )

In order to estimate 62 L, (LEILVY), we use the same trick as in the commutator estimate
and we replace V' by its asymptotic expansion close to Y = 0. More precisely, we write

1 1 1
V= (V +5(bs + bQ)L’EQY) — 50+ VLY = Vo — 5 (s + v?) LY,

with the convention 8;1 = fOY. Now, by definition 5’y£(2]V0|y:0 =0and 852/£(2]V0 = 352/£2UV.
Moreover, it can be easily checked that

Y2
0% L3 L <Y£52Y - 2aY£52Y>
= Og b + 01 3(Y2)2LEV + O13(YHoy LEV + Lot
1 Y(l + Y)Q / Y~U / U )

while

3
OVLELG (LyY) = 0p, > O13(Y)04 LEV + Lot
=1
It follows that

/ b0 L3 (L Ly Y) 0% L3V ws
0

C.o v 2 2 17\2 1 2 2 17\2
< PR B
0Dy + 6b /0 UOg, <U2> 0y LG V) w2+H2b/0 1 Y(8YEUV) w2

o0 1
Hoblbs + b2 O | ———— ) 023V
+ 2‘ + ’/0 51 (Y(l—FY)Q)‘ Y~U ‘wQ

3 oo . .
+H2b|bs+b2]Z/0 O13(Y*) |05 LGV | |05 LEV | w.
=1
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Using the estimate on dy £,V from Corollary 5.4, we infer that the right-hand side is bounded
by

H
(D3 + bEy) + 7262(1)5 +%)2 + Hys73Dy.

The same method and estimates apply to bSL[}l(LV}ﬂ). At last, we consider

B Ly’ <X <Szf/7> L—a4bY4—a7b2Y7+a10b3Y10+a11b3Y11Y7> = Ly (¢(s, )
Note that ((s,-) € C*°(Y) and that
o ((s,Y) =0y k) vk < 11.
It follows that

LELG'C = OM*YInY) + Oy p3(s7 Y + s71Y*)0y LTV + Lot
Oy LHLG'C = OM*InY)+ 0y 3(s Y + Y83 L3V
—|—Ol/3(s_10/3Y3 +s7Y oy L2V + Lot

b4
HvLply'¢ = 0 (1 ¥ Y> +O0y3(s1PY? + 5O LYV
+01/3(8_10/3Y3 + 57Ny L2V + Lot

We obtain, since 82 < 81 < 1/3,

/0 (LELG'C L3V Oyywa + Oy LELG ¢ Oy LTV w))
H H
< 0bEs + 728727/4 (Ins)® + ?2577+(16+“)52E2
and, writing Oy LEV = (Oy LEV + (bs + %)) — 5(bs + b?),

i H
< 6bBy + 6Dy + 725—7 + 725—”“3—@)52 (bs + %)% + s ™MDy

o0
/ LY LA 0LV wy
0

¢ Remainder stemming from R4:
We recall that

Y _ Y
R4 = Pl(S,Y)(l — Xl) <52/7> + LUl (PQ(S,Y)(l — XQ) (52/7>> s
and that for any P > 0, k > 0, i = 1,2, choosing 1 < 2/7,
O (PiL— ) (372)) = O3, (57)
v L3 Xi 82/7 = Up, (8 .
Using the same type of computations as above, it follows that for any M > 0,

LHERY = 0p, (s77) + 0, (s ")y LTV + Lo.t. in L*(dyyws),
O LEL ) = 0p,(s7F) + 05, (s D)OFLEV + Op, (s )0y LEV + Lo.t. in L? (ws)
Oy LELG Y = 0p,(s7F) + Op, (s )03 LTV + Op, (s~ )0y LEV + Lo.t. in L (w2).
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Thus, choosing mo and me large enough,

<O6bEy+s P4+ s PEy+s Dy,

/ (LERALEV dyywa + Oy LER4Oy LTV wa)
0

< 6bEy + 6Dy + s + s PDy.

/ OLLERY 0% LEV ws
0

Gathering all the terms, we obtain the estimates announced in Lemma 5.7.
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A  Useful formulas

e We will often need to transform derivatives of V into quantities involving LV, L%V and
their derivatives. In order to do so, we start from the following observation

Y
0LV = LyLyV =ULyV — Uy/ LyV, (A1)
0
from which it follows, applying the same idea to 832,£UV,

y
KV =UdyLyV — UYY/ LyV,
0

Y Y
oy V =ULEV — UUy / LEV + Uydy LyV — Uyy LyV — (O3UPP 4+ 93V) / LyV.
0

" (a2
Notice that for derivatives of U of higher greater than or equal to two, we decompose 8{‘}U
into 8{3U app 4 83’“/1/. This is related to the fact that we have pointwise estimates on 62U,
but not on higher derivatives. Now, in the formula giving 8{‘;‘/, we can write ag”,v in terms
of LyV. Obviously, we can iterate this procedure. As a consequence, for any k > 2, we can
express OFV in terms of LLV for [ < k/2.
e We will also need the explicit expression of 85’“/L_1, which is given in the following
Lemma, whose proof is straightforward and left to the reader.

Lemma A.1. For any function W which vanishes at a sufficiently high order near Y = 0,
we have

YW oW
-1 Y
OyLy W = UYY/ m—i— 7
_ W OEW
RLW = 8YU/ — +RU —ayU 7t YU
Yo 1%
— U + U +ayaY7

o U?
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and

Y Ud3U — Uyy U
LW = a%VU/ 2 < Y Yyey
0

3
73 )W ayW 2 Yoy W + AW

U
e Eventually, setting Dy := —bY/2 and

Co[W] := 2L (DJ?}) dy <1;]°/ Ulw),
0

we need to compute 9%Co[LyY]. By definition, LyY = YU — UyY?/2, so that

oo~ () - ()}

Now, integrating by parts,

Y3U Y y3y Y3 3
o () oo ] o i) o

Therefore

b
Co[LyY] = —ZLUl(YQ).

Using the formula above for 8}2/[/51, we obtain

b Y'v2  Y2Uyy — 2Y Uy + 2U2
a%co[LUY]=—4{a§U T Yy = Y }

B Estimate on the modulation rate

Lemma B.1. Let v € (0,5), and let ¢ : [so, s1] = R4 be such that

51
/ sTo(s) ds < 4o0.

S0

Assume that there exists a constant € > 0 such that for all s € [so, $1]

|bs + 07| < /o,
1_6§b(5)< 1—|—e.

S - s

Then for all s € [sg, s1],

L b(s0)

S0

1+e€
bis) — | <
(5) s| — 1—c¢€

1 sg 1+ (/ >1/2
5t T — T p(t)dt .
| T\, e

o If p(s) = Js~*7", the inequality becomes, with v =3 +n/2,

In particular:

L bs0)

50

st JY? 14e —1-1

2T

b(s) — + <1+6

1
s| — 1—¢€
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e More generally, if v > 3, then there exists a constant n > 0 (n = (v — 3)/2) such that
for all s € [so, s1],

L h(so)

S0

sj+ (14 ¢€)JV/? .

< I+e
2 (1—e€)2y/2—2n

b(s)_i —1—c¢

S

where J = fssol tYp(t)dt.

Proof. The assumption on b entails

bs d 1 NG 1 9
=2 (s—2 )< ¥ < :
= ’ ds(s b>'_ p S et VP
Integrating the above inequality between sg and s and using a Cauchy-Schwarz inequality
yields
1 1 1 51 1/2 s 1/2
— < lso— + tp(t dt) ( / 4= dt)
e Il o) R ceer S AU ;
1 1 51 12 25
— o (t)dt _—.
] RCsE (/ - ) 5=

Now, multiplying the above inequality by b/s < (1 + €)s~2, we obtain

1 so |1 1 1+e¢ 51 12
b(s) — -] < (1 — = -+ — tp(t)dt .
=5 < g |5 —vieo] 2+ =g ([ o) S
Since so/b(s0) < (1 —€)~1s3, we obtain the inequality announced in the Lemma. O

Lemma B.1 has in particular the following consequence:

Corollary B.2. Assume that b satisfies the assumptions of Lemma B.1 for some vy €]3,4].
For s > sg, define b by

~ ~ ~ 1
b5+bb:O, b‘S:SO - ;
0

Then there exists a universal constant C' such that if so > C(Je=2)V/=3) for all s > s,

1_2€§5(8)§ 1—|—2€'
s s

Proof. Since b satisfies a linear ODE, we have simply

b(s) = sloexp <— / 0 b(s’)ds’) |

According to Lemma B.1, for all s > s,

s 8 s
In — — Ce 50 < / b(s')ds' <In— + Cey,50
S0 50 S0
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where

377—}/
1+e 1+e 1722847
Coas = J12(5 - 1225
750 (1—6)QEJr (1—¢€)2 (5=7) v -3
Therefore s c
(& 7580 S B(S) < e 75750
s s

Now, if sg > C(Je 2)1/(7=3) we have
eYerso <1426, e Gomm0 > 1 — 2,

which completes the proof.

C Proof of Lemma 3.6

As much as possible, we treat sub-solutions and super-solutions simultaneously.

Ay >0, k+ > 2, we consider the function

4/3 - 3ky—2
W) = OO 1 g™

We will choose k_ = 7/3 for sub-solutions and k4 = 10/3 for super solutions.
We claim that W4 satisfy the following properties:

e Choosing k_ = 7/3, there exists C such that if C_ > C, then for all A_ > 0,
3b
OsW_ —20W_ + E@D@ww_ — VW_0pyW_+2<0

on the domain {¢) > C_b=3/4} N {W_ > 0}.

For any

(C.1)

Similarly, choosing k, = 10/3, there exists C' > 0 such that if C_ > C, for all Ay >0

0sW. — 260 + %btf)@wm VW0 Wy +2>0 W > b4,

(C.2)

e There exists a constants A such that if AL > A and if s is large enough (depending on

Ay, Cy,a and C_),

W_(s,C_b3/") < W (s, C_b3/*) < W, (s,C_b%/%).
e There exists a constant Ag , depending on My such that if AL > A,

W_(s0,%) < W(s0, %) < Wiy(s0,0) Vap>C_sy.
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Proof of inequalities (C.1) and (C.2)

We first compute the transport term. We have

b hy —2) ki
B W — Wy + %wawwi _ o, Sk —2) ot

Y20
provided ki > 2. We now address the computation of the diffusion term, which we treat a
bit differently for the sub- and for the supersolution. The heuristic is that if ¢ > C's3/4 for
some C' large enough (i.e. Y > C’ s¥/4 for some large C” ), transport dominates the diffusion
term. We prove this fact by distinguishing between two different zones:
_3ky—2 ~_ 33kt =2
e When ¢4/3 > kb7 ie ) < b *¥=—1 we can perform asymptotic expansions of
VW4 and 0y W+. We have

8 3k —2

2A Ski —2
—VWipypWy +2 = ?647/:; (9K3 — 9k + 2) pF= 17 Lo (kai ) _

e (61)%/3 24,

64/31/1_2/3 . 9A kg (ks — 1)1/}1&74/353
9 64/3

81/;1)[} Wj: -

so that

Therefore, if

3(ki—2) 4 2 —4/3 7—4/3
. b>64/3(9ki—9ki+2)w /3 p > C_b=43,

then
3b
O Wy — 206W4 + ?¢8¢Wi — 4/ Wi8¢¢Wi +220.

Hence we define

16(9k2 — 9k +2)\*/*
Cr, =2 VR )
3 x 64/3(ky — 2)
~ .3 3ky —2
and recalling Lemma 3.5, we obtain inequality (C.1) on Cp b~%/* < ¢ < b *%+—
provided e is sufficiently small.

e We now consider larger values of ¥. This is where we treat separately the sub- and the
supersolution. Concerning the subsolution, we can use the weaker estimate

F<

2/3

(C.5)

which leads to, taking k_ = 7/3,

OW_ — 20W_ + %bwawwf — /WOy W_ +2

5 2/3 3
< —A,%bb5/4¢7/3 + GTA,%%MP/“ + 2.
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The right-hand side above is negative if € is small enough and

16 ~
7/3 —9/4
P >A b .

~ 3k_+2 ._33k_—2

Noticing that 27/28 < 5/4, we infer that if sq is large enough, b~ 1~ < b T3
and thus (C.1) is proved on the set [C_b~3/4 00) N {W_ > 0} if s¢ is sufficiently large.

We now consider the supersolution, choosing k4 := 10/3. We replace estimate (C.5) by

/ N
\/ﬁ < ((61/,2)2 3 N \/st)/:ﬂb) :

so that
3b
OsWy — 20W, + ?¢awW+ — VWi 0pyp Wy + 2
> A+b1321/)10/3 _C (1 + Ai/2¢353) ’

for some universal (and computable) constant C. It is easily checked that the right-

. . —2
hand side is positive as soon as ¥ > $9/10, Furthermore, since ki =10/3, %gii_ 1=1
33k, —2

and therefore s9/10 <« b 43+=1_ Thus inequality (C.2) is proved for ¢ > 010/35_3/4
provided sg is sufficiently large.

)

Proof of inequality (C.3)

Inequality (C.3) is an immediate consequence of the asymptotic expansion (3.6). Indeed, we
need to choose A4 such that

. . 2/3 . .
—A_CTRp2 < p12 ((60;) - §a4g(60_)2> +O(s) < A, CM3p12,

It is clear that once C_ is fixed, we can pick Ay sufficiently large (depending only on k4
and C_) so that the above inequality is satisfied provided € is small (e.g. € < 1/2, recalling
Lemma 3.5) and s is sufficiently large, so that the O(SGTH) term can be neglected.

Proof of inequality (C.4)
Since — My inf(sy Y2, 1) < Uyy(s9) — 1 < 0, we infer that

Y2 M, v?
Y+7—1—20351Y4§U(30,Y) <Y+ WY >0

Then for 1 € ¢ < sg/ 2, performing the same computations as the ones leading to (3.6),

4/3
Wiso, ) =

(1 +2(69) 7% + O(sg ' + ¢‘1))
and therefore there exists a constant M, depending only on M, such that

4/3 2/3 4/3 2/3
(6w4) + (671)2) —M861¢2 —M?Z)l/g < W(SO,T!}) < (67;&4) + (6¢2) +M5611/J2+M'¢1/3-
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The estimate follows on the set C_sg/ 4 <YK sg/ 2, provided A_, A, are large enough

3 3k—2 3 3k—2

(depending on Mj). Furthermore, recall that W_(sg, C'sg *~*) = 0 and sj ** < 53/2 since
k > 2 (if so is large). Thus the inequality W_(sp, ) < W (s, ) is valid on the domain of

definition of . On the other hand, for ¢ > 053/5, Wi (so,¥) > A%cm/?’s%. Therefore, since
W (s0,%) < limy 00 U(0,Y)? < 83, we infer that W (s, ) < W4 (s, ) for ¢ > csg/5. Since
33/5 < 83/2, we infer that W (sp, 1) < Wi (so,%) on the domain of definition of W.

Conclusion

Putting together inequalities (C.1), (C.2), (C.3) and (2.22) and applying the maximum prin-
ciple on the domain {s € [sq,s1],% > C_b3/4}, we deduce that W_(s,) < W(s,1) <
W, (s,1) within this parabolic domain.

D Proof of Lemma 3.7

As in paragraph 3.2, the real issue is to control Uyy — 1 in the zone Y > s/4 (or equivalently,
v 2 s3/ 4). To that end, we rely on the equation in von Mises variables, and we use the
computations in the proof of Lemma 3.2. We set

F(S,w) = \/Wa¢¢W -2

and we recall that F satisfies (3.3). We now construct a function F such that |—MbY (s,1)? <
F(s,1) < 0 for some constant My and for ) = O(s), and such that

1 3b ~
O F — WF(F +2) + S VOuF — VW8 F < 0in s > sg,1 > Ch~3/4,
F(s,9) < F(s0,%) on {so} x (Csy/*,00) U{yy = Cb3/4, s> 5o} U{p =00, 5> so}.
Let us postpone for a moment the construction of F and explain why the estimate of the
Lemma follows. First, notice that (£ — F') satisfies

1 3b -
8S(E—F)—ﬁ(E—F)(E+F+2)+5@Z)8¢(E—F)—\/W@W(E—F) <0in s> sg, ¢ > Ch3/4

and (F — F); = 0 on the parabolic boundary of the domain {s > so,¢» > Cb~3/4}. We
then multiply the above inequality by (F — F),, integrate in ¥ over [Cb~3/4, 4+00) and use
the same argument as in Lemma 3.2. It follows that (F' — F)y = 0, and thus F' > F for all
s> 80,0 > Cb=3/4. In particular, for Y < csi/3,

M-
Uyy(s,Y) =12 —=bY?,

and the estimate announced in the statement of the Lemma follows.
We now turn towards the construction of F'. According to Lemma 3.6, there exists A_ >0
and C_ > 0 such that if ¢» > C_b=3/%,

W(s, ) > (6@4/3 — Ay
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Let us construct F by treating separately the intervals (0_5*3/ 4 chd/ 4) and (cb=/*, 4+00),
for some small constant ¢ > 0 to be determined.
e For 1) € (C_b3/*,cb5/%) we take F(s, 1)) = (wz/zz, ¢1/3), for some large constant
—_——

=:g(%)
o to be determined. Then

aF—;LmF+m+§%%E—¢W%¢z

oW
- e ¢1/3 L g2 v [ 3/2+g"]

2W—

Let us evaluate the term in brackets in the right-hand side. On the set (C_b=3/4 cb=>/1), we
have

1 (6v)"/3 7/375/4 R 554 2.-5/2
<< = AT ) :%2< 61/3% +O(¥%s ))

w3/2 —
Therefore
g
T tq"
2 2 2
< 2 +5/4 2.-5/2 2/3 13y 2 a3, 2 53
< o (1 et OS2 ) (0208 = 1) - 2y 4 By
< 9%1;1;3¢—1/355/4+O<¢2/355/2+¢—2/355/4).

Using Lemma 3.6, we see that W = O(¢4/3) for 1) < cb~!. Therefore, for any a > 0, provided
c is small enough and sg is large enough, we have

’ba\ﬁ [

& 1/3
)

W3/2 ,}

whence

1 b - -
OsF — o F(F +2) + %wawg — VWA FE <0 on s € (so,51), ¥ € (C_b~3* cb™1).

We also need to check that F < F on {s = 50,9 € (C,ng 058/4)} Uiy = 075—3/4}_
According to Lemma 3.4, we have, for ¢y = C_b—3/4,

62/3 2/3 a—6
F(s,9) = —=-by B10(s"s).
Therefore it is sufficient to take o > 6%/3 and s large enough. On the other hand, on the set

{s =50,9 € (C_s 3/4 cso ")}, since we know that

y? y+4 Yy?
Y+7—Mgs—1ﬁ SU(s0,Y) <Y+ VY 20,

we have Y = (6¢)'/3 + O(1), and therefore assumption (3.9) implies

F(s0,%) > —2Mo6>/3s512/3.
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Therefore, choosing o = max(6%/3,12Mp), we have F < F on {s = s9,1 € (C_sg/4, 038/4)} U
{¢p = C_b=3/4}. Note that since Y ~ (61)1/3 for 1 < 1 < s'/3, this choice of o amounts to
taking My = M max(1, My).

e We now define F for ¢ > ¢b~?/4. On that interval, we choose F = —f(s,@Z)BE’/‘L), for
some function f to be determined. Since F,dy F should be continuous at ¢ = ch=5/4
require that

, we

f(s,0) = o [0 — 32| = g,(s),
Ocf(s,c) = % [2071/351/6 — 072/357/12] =: ga(s).

As a consequence, we choose

f(5,¢) == (g1(5) + g2(s)(¢ — ¢)) x(¢) + H(C),

where H € C2 N W2 (R) is strictly increasing on [c, +oo[ and such that H(c) = H'(c) = 0,
and x € Ci°(R) is a cut-off function. We make the following additional assumptions: there
exists ¢’ > ¢ > ¢such that x =1 on [¢, ], x = 0on [¢,+00[, and H"({) < —1for ¢ € [, ],
H"(¢) <0and 2 < H(¢) < 4 for ¢ > ¢. With this choice, and recalling that W > C'¢*/3p=5/3
for 1) > ¢b~%/* for some universal constant C', we have

OF — o F(E +9) + 5 Y0, F VWP

IN

~[si9) + soric - 0+ Jocato)| )
FCEI (g1(5) + 02()(C — ) X(Q) + H(O)
—ibCH’(C) + VW20 H

F@(6) + 020516 = ) (= 00X Q)+ VITFI(0)) + 2 WVITH Y (0).

We now prove that the right-hand side of the above inequality is non-positive by looking
separately at the zones (¢, +00), [/, "] and [c,]:

e For ¢ > ¢”, we have x({) = 0, and therefore

OF — o F(F +2) + D pduF —Woy,F

1 1 / 7 "
= Gy H(Q@ = H(Q) = JbCH'(¢) + VW2 H".

The assumptions H'(¢) > 0, H"(¢) < 0, H(¢) > 2 on (¢, 4+00) ensure that the right-
hand side is non-positive on this interval.

e For ¢ € [d,c"], we have H"(¢) < —1, and without loss of generality, we also assume
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that H'(¢) > 1 on this interval. It follows that
1 3b
OsF — WE(E +2) + ?Tﬁ&pﬁ = VWOyy F

< C <a651/6c_1/36' + c~4/3p5/3 sup H)

[C,7CN}
—lc’b _ O23pp/3
4
Ll a5 3 max(cl, 1).
It is clear that the term —1/4¢'b dominates all others for sy sufficiently large.

e For ( € [c,], the computation is slightly more complicated because we expect that
H"(¢) > 0 in a vicinity of ¢ = ¢, and H'(¢) = 0, so we cannot use the good sign of H’
in a vicinity of ( = ¢. However, using the formulas for g1, go, we have

61(5) + gh(5)(C — ) + ;0Cga(s)

= % 51/6671/3(C —c)+ p7/12072/3 (2¢+T7c)| > 0.

Noticing that b%/3 < bb7/12 and vVWb/2 = O(b%/3) on the interval ¢ € [c, ¢/], we infer
that all terms are easily dominated by the above quantity, so that

1 b
OuF = 5z F(F +2) + %wawg ~ VWO F <0
in this region as well.

The assumptions on the initial data also ensure that F(sg,v) < F(so,v) for ¢ > 058/4.
The result follows.

E Proof of Lemma 4.11

Recall that

Ca,,u = 4sup 30(7"7 a, ,U)a
r>0

00 y—@a r Y2
o(rya, p) == / ——dY (/ ye (Y + 2) dY> :
r <:LLY+ YTQ> 0

For all p € (0,1), foralla >0, r >0

olra,p) < /004611/ / Y1+a+@ dy
» - , Yi+ta 0 2

< 2 4 1
S By’ BroCta) 7

where

22
-9 3r
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Let K > 1 such that

8,8 _9
9 3K — 10°

Then 4 sup, j ¢(r, a, 1) < 9/10, so that for all € (0, 1), for all a > 0,

=~ 9
Ca,u < max (74 Sup (P(Ta a, M)) :
10 0<r<K

Now, for all r € [0, K], for a,u > 0,

Oup(rya,p) = — /Toolny<ya>2dy (/OTY‘1<Y+);2>dY)

Y2
/LY+7

00 —a r 2
+ / R A </ lnYY“<Y+1;>dY).
2
T </‘LY+YT> 0

There exists a constant C'x such that for all @ € (0,1/2), for all u € (1/2,1),

[ee) y—a K Y2
/ (1+lnY)—ay, / (1+ |lnY|)ye (Y 4 2) &y < C.
2
K (MY+ YT) 0

It follows that for all r € [0, K], for all a € (0,1/2), for all p € (1/2,1),

Ky r
|0ap(r,a, )] < Ck +Ck sup (/ Vora dy) </ Y1+ady>
r 0

0<r<K

K r
1
+Ck su / dY) ( / InY Y1+“dY>.
Kog?f{( r o Y2ta 0 Y]

Notice that if Y € [0, K], then |InY| < In(2K) —InY. Then, performing explicit integrations
by part in the integrals, we observe that there exists a constant C'x such that

sup sup  sup |Og(r,a, )| < Ck.
a€l0,1/2] pe(1/2,1] ref0,K]

We infer that for all r € [0, K], for all a € [0,1/2], for all p € [1/2,1],
(r,a,p) < o(r,0,p) + Cka.

Let us now compute explicitely o(r,0, 1). We have

1 1 1 1 N 1 N 1
<MY+Y—2>2 S ou\2u+Y Y Y2 (2u+Y)%
2

so that




The function (r, i) — (7,0, ) is WH> in [0, K] x [%, 1], and therefore |o(r, 0, u) —@(r,0,1)| <
Cklp—1.
A careful study of the function

T 1 1 r2 3
— 1 = —_ _ N J—
e 0,1) <ln(2+r>+r+2+r>(2+6>

shows that it is increasing and converges towards 2/9 as r — oo. Eventually, we obtain

C(ZHLL

IN

9
max | —,4 sup ¢(r,0,1) + Cxa+ Cx|p — 1]
10" o<r<k

IN

9 8
max <10,9 + Cra+ Cglp — 1‘) .

Therefore, choosing a sufficiently small and p sufficiently close to 1, we obtain

9
Can < 15-

F Proofs of Lemmas 2.14 and 2.15

Proof of the trace result (Lemma 2.14)
For any Y € [0, L], write

1/2

]_ L 14+a
< o 2y—ady> Y2 .

5() - 9000 = | | " ovg

It follows that .
9O < 200 +2 ([ @vary-eay ) v
0

Mutliply the above equation by (Y + Y?2)Y~® and integrate over [0, L]. We obtain

L L
L g0 < C (/ g(Y)P(Y +Y?)Y " dY + L* (/ (8yg)2Y_“dY>> :
0 0
which leads to the desired inequality. O

Proof of the coercivity result (Lemma 2.15)

Let us consider the quantity
o0
/ U0y LEV) 10y, (F.1)
0

where 1 = Y ™%(14+sP1Y)™™~2 = 41 (145 %1Y)72. In order to prove the coercivity result,
we go back to the diffusion term that is bounded from below by D; (plus some lower order
terms), namely

- / L2V LV wi,
0
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or rather, to the same integral where w; is replaced by w;. We set

~ ® (02 LyV)? ® (3 LV )
Dl(s) ;:/0 (ng)wl_{_/o (YUvU)wl'

Note that we obviously have bl < D;.
We recall (see the proof of Lemma 4.7 with f = 832,£UV) that for any § > 0,P > 0,
provided m; and sg are sufficiently large,

EDl — 5bE1 —s P Spro < —/ 8}2/£2UV 6%£UV wy < 571[71 + bEl +s P+ SiPDo.
0

On the other hand, set h := £2UV. Then 812/£UV = Lyh, so that, using the identity
Oy Ly =Udy — Uyy fOY and performing several integrations by parts,

— | ORLEV OELyV 4y :/ dyh (Oy Lyh) w1+/ Ay h Ly hdy iy
0 0 0

_ /0 U(ﬁyh)zﬁ)l—/oooayh(/Oyh>wl—i—/ooo(l—Uyy)@yh(/oyh)wl
—;/Ooohz(Uayﬁ)l)Y—/Oooayh </0Yh> Uy Oy

- /0 @y Ry + 12
+/Ooo(1UyY)8yh</0yh>w1;/ooo (/Oyh)zaywﬁl

+/0°° B2Uy Oy iy +/0°°h (/OY h> (Uyy — 1)y

2

o s 1Y
_;/0 (/0 h> (1 + Uyy)dyyiin + Uy 0yain) .

The first term in the right-hand side is precisely (F.1). The two terms with (Uyy — 1) in the
integrand can be bounded in the same fashion as the analogous remainder terms in Lemma
4.7, and therefore satisfy, for any 6, P > 0,

/000(1 — Uyy)oyh (/OY h> i /Ooo h </OY h) (Uyy — 1)dyin

<$ [Dl + bE, +/ [U(dyh)* + h?] wl] +s P +s57D,.
0

+

Using the bound |Uyy| < Mj and noticing that 8{’,@?}1 < 0, there remains to upper-bound

2

00 o) Y
/ h2Uy|ayﬂ}1| —i—/ </ h) Oyy .
0 0 0

Notice that |0y w;| < thay—lwl, and Oyyw; < le’aY_Qle. Hence, using a Hardy in-
equality together with the bounds on Uy, it is sufficient to upper-bound

/ (1+ Y1) WPy
0
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Let us first consider the integral between 0 and 1. By a Hardy inequality, we have

1 1 dY 1
/ (1+Y ") r*a, < 4/ W e < ca/ Y%y h)?dy.
0 0 0
Since v .
RLyV K LyV
h=U r r
Oy YY/O 2t o

we have, for Y € (0,1),
- (B LyV)?
Oy h|* < CaDyY® + 205,
and therefore )
/ (1+Y 1) hiy < CoDs.
0

There remains to control the integral for Y > 1. To that end, we write

YOy LyV | R LuV
h:Lgl(a%EUV):Uy/ e
0

Once again, a simple Cauchy-Schwartz inequality yields

Y 32£ Vv 2 o (a2£ V)2 Y Y2 i
YU < \Gy LUV )™ - .
</0 U2 > = (/0 VU w1> </0 U3w1) < CrmyaD1(1+Y 2wy ).

It follows that
[o@)
/ h2a,
1

Eventually, we infer that for any P > 0, provided m; and sy are large enough, for any s > s,

IN

U2
< 2[)1 + le,as(gfa)ﬁlDl < le’as(?)ia)’ngl.

00 (92 2 &
2/ O LUV) i 4 oy ay / (L+Y w1 +Y)
1 1

/ [U@y LuV)? + (LyV)?] 1 < Cpy 08V Dy + 0By +57F + 577Dy, (F.2)
0
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