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Anne-Laure Dalibard∗ Nader Masmoudi†

February 12, 2018

Abstract

In this paper, we prove that separation occurs for the stationary Prandtl equation, in
the case of adverse pressure gradient, for a large class of boundary data at x = 0. We
justify the Goldstein singularity: more precisely, we prove that under suitable assumptions
on the boundary data at x = 0, there exists x∗ > 0 such that ∂yuy=0(x) ∼ C

√
x∗ − x as

x → x∗ for some positive constant C, where u is the solution of the stationary Prandtl
equation in the domain {0 < x < x∗, y > 0}. Our proof relies on three main ingredients:
the computation of a “stable” approximate solution, using modulation theory arguments;
a new formulation of the Prandtl equation, for which we derive energy estimates, relying
heavily on the structure of the equation; and maximum principle techniques to handle
nonlinear terms.
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1 Introduction

One of the main open problems in the mathematical analysis of fluid flows is the understanding
of the inviscid limit in the presence of boundaries. In the case of a fixed bounded domain,
it is an open problem to know whether solutions to the Navier-Stokes system with no slip
boundary condition (zero Dirichlet boundary condition) do converge to a solution to the Euler
system when the viscosity goes to zero. The main problem here comes from the fact that we
cannot impose a no slip boundary condition for the Euler system. To recover a zero Dirichlet
condition, Prandtl proposed to introduce a boundary layer [30] in a small neighborhood of the
boundary in which viscous effects are still present. It turns out that the system that governs
the flow in this small neighborhood, namely the Prandtl system has many mathematical
difficulties. One of the outcome is that the justification of the approximation of the Navier-
Stokes system by the Euler system in the interior and the Prandtl system in a boundary
layer is still mainly open. We refer to Sammartino and Caflisch [31, 32] for this justification
in the analytic case. There is also a well known convergence criterion due to Kato [15] that
states that the convergence from Navier-Stokes to Euler holds as long as there is no viscous
dissipation in a small layer around the boundary (see also [23]).

Let us also mention that when the no slip boundary condition is replaced by a Navier
type condition or an inflow condition, the situation gets much better: Bardos [1] proved that
the convergence holds for some special type of boundary condition (vorticity equal to zero
on the boundary) which does not require the construction of any boundary layer. For Navier
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boundary conditions, a boundary layer can be constructed and controlled (see for instance
[3, 35, 16, 11, 2, 17, 25, 26]).

We are interested in the present paper in the stationary version of the Prandtl equation,
namely

uux + vuy − uyy = −dpE(x)

dx
, x > 0, y > 0,

ux + vy = 0, x > 0, y > 0,

u|x=0 = u0, u|y=0 = 0, lim
y→∞

u(x, y) = uE(x),

(1.1)

where y = 0 stands for the rigid wall, x (resp. y) is the tangential (resp. normal) variable to
the wall. The functions uE , pE are given by the outer flow: more precisely uE (resp. pE) is
the trace at the boundary of the tangential velocity (resp. of the pressure) of a flow satisfying
the Euler equations. The functions uE , pE are linked by the relation

uEu
′
E = −dpE(x)

dx
.

Existence results for (1.1) were first obtained by Oleinik (see [29, Theorem 2.1.1]). Indeed,
as long as u is positive (i.e. when there is no recirculation within the boundary layer), (1.1)
can be considered as a non-local transport-diffusion equation in which the tangential variable
x plays the role of “time”. The function u0, which is the input flow, is then considered as an
“initial data”. However, this point of view breaks down as soon as u takes negative values.
Physical experiments and numerical simulations show that such behavior may occur; in this
case, the boundary layer seems to detach itself from the boundary. This phenomenon is
therefore referred to as “boundary layer separation” (see figure 1).

The goal of this paper is to prove that separation does occur for the stationary Prandtl
model (1.1), and to give a quantitative description of the solution close to (but on the left of)
the separation point. In particular, we will justify rigorously the “Goldstein singularity” (see
[8]). Note that a shorter version of this work was published in [4].

1.1 Setting of the problem and state of the art

The first mathematical study of the stationary Prandtl equation was performed by Oleinik
(see [29]):

Proposition 1.1 (Oleinik). Let α > 0, X ∈]0,+∞]. Let u0 ∈ C2,α
b (R) such that u0(0) = 0,

u′0(0) > 0, limy→∞ u0(y) = uE(0) > 0, and such that u0(y) > 0 for y > 0. Assume that
dpE/dx ∈ C1([0, X]), and that for y � 1 the following compatibility condition is satisfied

u′′0(y)− dpE(0)

dx
= O(y2). (1.2)

Then there exists x∗ ≤ X such that equation (1.1) admits a solution u ∈ C1([0, x∗[×R+)
enjoying the following properties:

• Regularity: u is bounded and continuous in [0, x∗] × R+, ∂yu, ∂
2
yu are bounded and

continuous in [0, x∗[×R+, and ∂xu, v and ∂yv are locally bounded and continuous in
[0, x∗[×R+;

• Non-degeneracy: u(x, y) > 0 for all y > 0 x ∈ [0, x∗[, and for all x̄ < x∗ there exists
y0 > 0, m > 0 such that ∂yu(x, y) ≥ m for all (x, y) ∈ [0, x̄]× [0, y0].
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the boundary layer separates,
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Figure 1: From Stewartson [33].

• Sufficient condition for global solutions: if dpE(x)
dx ≤ 0, then the solution is global, i.e.

x∗ = X.

In this paper, we are interested in the case where the solution of (1.1) is not global: more
precisely, we consider the equation (1.1) with dpE/dx = 1, i.e.

uux + vuy − uyy = −1, x ∈ (0, x0), y > 0,

ux + vy = 0, x ∈ (0, x0), y > 0,

u|x=0 = u0, u|y=0 = 0, lim
y→∞

u(x, y) = uE(x),

(P)

with uE(x) =
√

2(x0 − x), for some x0 > 0, and u0 satisfies the assumptions of Proposition
1.1. Hence it is known that local solutions (in x) of (P) do exist. However, heuristically, it can
be expected that the negative source term will diminish the value of the tangential velocity
u, and that there might exist a point x∗ beyond which the result of Proposition 1.1 cannot be
used to extend the solution. More precisely, it can be checked easily that the compatibility
condition (1.2) is propagated by equation (P). As a consequence, we have x∗ < x0 if and only
if one of the following two conditions is satisfied:

(i) uy(x
∗, 0) = 0;

(ii) There exists y∗ > 0 such that u(x∗, y∗) = 0.

In order to simplify the mathematical analysis, we will work with solutions of (P) that are
increasing in y. This property is propagated by the equation, and ensures that situation (ii)
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above never occurs. Consequently, for solutions which are increasing in y, we have x∗ < x0 if
and only if

∂u

∂y
(x∗, 0) = 0. (1.3)

In the Physics literature (see for instance the seminal work of Goldstein [8], followed by the
one of Stewartson [33]), this condition is used as a characterization of the “separation point”.

The first computational works on this subject go back to Goldstein [8] and Landau [21,
Chapter 4, §40]. In particular, Goldstein uses an asymptotic expansion in self-similar variables
to compute the profile of the singularity close to the separation point. These computations
are later extended by Stewartson [33]. However, these calculations are formal; furthermore,
some of the coefficients of the asymptotic expansion cannot be computed by either method.
Independently, Landau proposes another characterization of the separation point, and gives
an argument suggesting that ∂yu|y=0 ∼

√
x∗ − x close to the separation point.

On the other hand, in the paper [5] Weinan E announces a result obtained in collaboration
with Luis Caffarelli. This result states, under some structural assumption on the initial data,
that the existence time x∗ of the solutions of (P) in the sense of Oleinik is finite, and that the
family uµ(x, y) := 1√

µu(µ(x∗ − x), µ1/4y) is compact in C(R2
+). Moreover, the author states

two technical Lemmas playing a key role in the proof. However, to the best of our knowledge,
the complete proof of this result was never published.

Let us also mention recent works by Guo and Nguyen [10] and by Iyer [13, 12, 14], in
which the authors justify the Prandtl expansion either over a moving plate or over a rotating
disk. Note that in these two cases, the velocity of the boundary layer on the boundary is non
zero, which somehow prevents recirculation and separation.

In the time-dependent framework, boundary layer separation has also been tackled re-
cently by Kukavica, Vicol and Wang [20], extending computations by Engquist and E [6]:
starting from an analytic initial data, for a specific Euler flow, the authors prove that some
Sobolev norm blows up in finite time. This is known as the van Dommelen and Shen sin-
gularity. Note that in this time-dependent context, separation is defined as the apparition
of a singular behaviour, which is a somewhat different notion from the one we are describ-
ing in the present paper. This is related to the bad mathematical properties of the time-
dependent Prandtl equation, which is known to be locally well-posed in analytic or Gevrey
spaces [31, 22, 19, 18, 7], but ill-posed in Sobolev spaces [9, 7].

1.2 Main result

Our main result states that for a suitable class of initial data u0, the maximal existence “time”
x∗ > 0 of the solution given by Oleinik’s Theorem is finite: in other words, setting

λ(x) := ∂yu|y=0,

there exists x∗ ∈]0,+∞[ such that limx→x∗ λ(x) = 0. Furthermore, for this class of initial
data, we are able to quantify the rate of cancellation of λ(x).

Let us now explicit our assumptions on the initial data u0:

(H1) u0 ∈ C7(R+), u0 is increasing in y and λ0 := u′0(0) > 0;
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(H2) There exists a constant C0 > 0 such that

∀y ≥ 0, −C0 inf(y2, 1) ≤ u′′0(y)− 1 ≤ 0,

C−1
0 ≤ −u(4)

0 (0) ≤ C0,

‖u0‖W 7,∞ ≤ C0.

(H3) u0 = uapp
0 + v0, where

uapp
0 = λ0y +

y2

2
+ u

(4)
0 (0)

y4

4!

−c7(u
(4)
0 (0))2 y

7

λ0
+ c10(u

(4)
0 (0))3 y

10

λ2
0

+ c11(u
(4)
0 (0))3 y

11

λ3
0

for y ≤ λ3/7
0 ,

|uapp
0 | ≤ C0 for y ≥ λ3/7

0 ,

and

|v0| ≤ C0

(
λ
− 3

2
0 (λ0y

7 + c8y
8) + λ−2

0 y10 + λ−3
0 y11

)
for y ≤ λ3/7

0 .

In the expressions above, the constants ci are universal and can be computed explicitely.

Remark 1.2. • These assumptions are actually not optimal: in fact, condition (H3)
merely ensures that some energy-like quantities are small enough. However, the actual
condition we need is complicated to state at this stage: we refer to the statement of
Theorem 3, in rescaled variables, for a less stringent condition.

• Notice that |v0| � uapp0 if λ0 � 1: the term v0 is the initial data for the corrector term
v = u− uapp. The main issue of the paper is to have a good control of v close to y = 0.

• The monotony assumption on u0 ensures that separation occurs at y = 0. The monotony
is preserved by the Prandtl equation for x > 0.

• Notice that we prescribe the Taylor expansion of u0 up to order 7. In other words, we
impose a high order compatibility condition on the initial data, because we need to derive
estimates on derivatives of u.

Theorem 1. Consider the Prandtl equation with adverse pressure gradient (P) and with an
initial data u0 ∈ C7(R+) satisfying (H1)-(H3). Then for any η > 0, C0 > 0, there exists
ε0 > 0 such that if λ0 < ε0, the “existence time” x∗ is finite, and x∗ = O(λ2

0). Furthermore,
setting λ(x) := ∂yu|y=0(x), there exists a constant C > 0, depending on u0, such that

λ(x) ∼ C
√
x∗ − x as x→ x∗.

The proof of Theorem 1 relies on several ingredients: the first step is to perform a self-
similar change of variables, using λ(x) as a scaling factor. Then the issue is to control
the variations of λ, or more precisely, of b := −2λxλ

3. The method thanks to which we
construct an approximate solution and find the ideal ODE on b is inspired from the theory of
modulation of variables, which was initiated formally by Zakharov and Shabat (see [36] and
the presentation in the book by Sulem and Sulem [34]) and rigorously applied by Merle and
Raphaël to blow-up phenomena in the nonlinear Schrödinger equation [28, 27].
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Once the approximate solution is constructed, the whole problem amounts to controlling
the remainder v. To that end, we exhibit a transport-diffusion structure of equation (P) (or
of its rescaled version, see equation (2.15)). Let us emphasize that this structure, to our
knowledge, is entirely new. We perform energy estimates that rely strongly on the structure
of the equation. In order to handle nonlinearities, we will also need to control u in L∞.
Therefore we derive pointwise estimates on u and its derivatives by constructing sub and
super-solutions and using the maximum principle.

Let us point out that in order to carry these estimates, we will use three different versions
of the equation. The first one is merely a rescaling of equation (P) (see (2.3)). It will be used
to compute explicitly the approximate solution and find the ODE on b. The second one is
a transport equation with a non local diffusion term (see (2.16)). Its purpose is to perform
energy estimates, and the major difficulty will be to find good coercivity inequalities on the
diffusion. Eventually, we will use a change of variables to transform (2.3) into a nonlinear
transport diffusion equation of porous medium type (see (2.24)). This last form was already
used by Oleinik in [29] and will be suitable for the maximum principle and will help us prove
the L∞ estimates

In the next section, we present our scheme of proof and state our main intermediate results.
The reader that is not interested in the technical details of the proof can focus on section 2,
that gives an overall idea of the main arguments involved. The third section is devoted to the
construction of sub and super solutions. In section 4, we introduce several tools that play an
important role in the energy estimates: coercivity of the diffusion term, commutator Lemma,
computation of the remainder... Eventually, we prove the energy estimates in section 5.

Remark 1.3. Our result actually gives much more information on u: in fact, we construct
an approximate solution uapp, which contains the main order terms in the Taylor expansion
of u, and we control v = u − uapp. As a corollary, we find that the sequence of functions
(uµ)µ>0 from the statement of Luis Caffarelli and Weinan E converges towards z2/2 in the
zone z ≤ µ−1/12ξ1/6, ξ . 1 (see Remark 2.17 for more details). Hence our result holds under
more stringent assumptions on the initial data, but on the other hand it gives a much more
quantitative and precise description of the asymptotic behaviour.

2 Strategy of proof

2.1 Self-similar change of variables

Let us first recall that equation (P) has a scaling invariance: indeed, if (u, v) is a solution of
(P), then for any µ > 0, the couple (uµ, vµ) defined by

uµ =
1
√
µ
u(µx, µ1/4y), vµ = µ1/4v(µx, µ1/4y),

is still a solution of (P). This scaling invariance has been used by Goldstein [8] and Stewartson
[33] to compute exact solutions of (P) close to the separation point. These special solutions
were sought as infinite series in some rescaled variables.

In the present article, the idea is to perform a change of variables which relies on this
scaling invariance and which depends on the solution itself. It incorporates information on
the “separation rate”, i.e. on the speed of cancellation of ∂yu|y=0. This type of idea was used
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by Franck Merle and Pierre Raphaël in the context of singularity analysis for the nonlinear
Schrödinger equation [28, 27]. More precisely, define

λ(x) := ∂yu|y=0 and Y =
y

λ(x)
.

We also change the tangential variable and define the variable s by

ds

dx
=

1

λ4(x)
. (2.1)

Then the new unknown function is

U(s, Y ) := λ−2(x(s))u(x(s), λ(x(s))Y ). (2.2)

It can be easily checked that U is a solution of the equation

UUs − UY
∫ Y

0
Us − bU2 +

3b

2
UY

∫ Y

0
U − UY Y = −1, (2.3)

where

b = −2λxλ
3 = −2

λs
λ
. (2.4)

The boundary conditions become

U|Y=0 = 0, lim
Y→∞

U(s, Y ) = U∞(s), (2.5)

where U∞ satisfies U∞U
′
∞ − bU2

∞ = −1. Moreover, thanks to the definition of λ, we have

∂Y U|Y=0 = 1. (2.6)

From now on, we will work with equation (2.3) only. The goal is to construct an approxi-
mate solution of (2.3), together with b(s) and λ(s), having nice stability properties as s→∞.
Note that the limit s → ∞ corresponds to the limit x → x∗ in the original variables. As we
will see in the next paragraph, the stability properties of the approximate solution are inti-
mately connected to the asymptotic law of b as s→∞. Eventually, the asymptotic behavior
of b will dictate the rate of cancellation of λ close to x = x∗. We prove that the behavior
b(s) ∼ s−1 is stable. This asymptotic law corresponds to the separation rate announced in
Theorem 1, namely λ(x) ∼ C

√
x∗ − x.

In the next paragraphs, we explain how we construct the approximate solution, and which
energy estimates are used to prove its stability. We deal with nonlinearities in the equation
by using the maximum principle, together with Sobolev embeddings. Let us recall that we
will in fact use three different forms of equation (2.3):

• Due to its polynomial form, equation (2.3) itself is very useful to construct the approx-
imate solution and find the correct asymptotic law for b;

• In order to perform energy estimates, we will transform (2.3) into a transport-diffusion
equation (with a non-local diffusion term), see (2.15) and (2.16);

• Eventually, in order to use the maximum principle, we rely on a third version of (2.3),
that uses von Mises variables. The equation then becomes a nonlinear local transport-
diffusion equation.
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2.2 Construction of an approximate solution

The heuristic idea behind the construction of stable approximate solutions is the following:
we look for an approximate solution Uapp of (2.3) with a remainder as small as possible. In
particular, the remainder for Uapp should have the lowest possible growth at infinity. This
implies that the function Uapp itself should have the lowest possible growth as Y →∞, as we
shall see in a moment. As in the work of Merle and Raphaël in the context of the nonlinear
Schrödinger equation, this low growth condition has an immediate impact on the asymptotic
behavior of the function b.

We decompose the definition of approximate solutions into three zones: the main zone
goes from 0 to sα, for some α > 0 to be defined later on. In this zone, we compute a Taylor
expansion of U(s, Y ) for Y close to zero, and we try to push the expansion as far as possible,
which amounts to the “low growth condition” explained above. In the second zone, we only
keep the largest term in the Taylor expansion, namely Y 2/2. It can be checked that Y 2/2
is a stationary solution of (2.3). This stationary solution corresponds to a solution of (P)
which is independent of x and scaling invariant, namely (x, y) 7→ y2/2. In the third zone, we
connect Y 2/2 to an asymptotic profile Uapp

∞ (s). Notice that if b(s) = s−1 +O(s−η−1) for some
η > 0, then U∞(s) = s+ 1 + o(1), and therefore we also take Uapp

∞ (s) ∼ s.
Throughout this paragraph, we will rely on the polynomial form on the rescaled Prandtl

equation, namely (2.3).

• Taylor expansion of U for Y close to zero:
Let us first recall that thanks to the change of variables (2.2), we have

U(s, 0) = 0, ∂Y U(s, 0) = 1.

It then follows from (2.3) that
∂Y Y U(s, 0) = 1.

The first terms of the Taylor expansion of U for Y close to zero are therefore Y + Y 2

2 .
The first natural idea is to define a sequence of polynomials in Y with coefficients depend-

ing on s thanks to the induction relation

U1(s, Y ) := Y +
Y 2

2
,

∂Y Y (UN+1 − UN ) := 1 + UN∂sUN − ∂Y UN
∫ Y

0
∂sUN − bU2

N +
3b

2
∂Y UN

∫ Y

0
UN − ∂Y Y UN .

(2.7)
We obtain easily that

U2(s, Y ) := Y +
Y 2

2
− a4bY

4, with a4 =
1

48
. (2.8)

Let us now compute the error terms generated by U2. We have

U2∂sU2 − ∂Y U2

∫ Y

0
∂sU2 − bU2

2 +
3b

2
∂Y U2

∫ Y

0
U2 − ∂Y Y U2 + 1

= −a4

(
4

5
bs +

13

10
b2
)
Y 5 − 3

10
a4

(
bs + b2

)
Y 6 + a2

4

b

5

(
bs + b2

)
Y 8.
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Let us recall that we expect that b(s) = O(s−1) as s → ∞. Therefore the coefficient of the
last term in the right-hand side is one order of magnitude smaller than the first two terms.
We thus focus on the comparison between the first two terms in the right-hand side. As
explained above, the goal is to choose the approximate solution with the smallest growth at
infinity. Note that the remainder term

(
bs + b2

)
Y 6 would yield in U3 a term proportional to(

bs + b2
)
Y 8, whereas the remainder term

(
4
5bs + 13

10b
2
)
Y 5 would yield a term proportional

to
(

4
5bs + 13

10b
2
)
Y 7. Consequently, we choose to “cancel out” the term

(
bs + b2

)
Y 8 in U3. In

other words, in the induction formula (2.7) defining the sequence (UN )N≥1, we replace every
occurrence of bs by −b2. The polynomial U3 is therefore defined by

U3(s, Y ) := Y +
Y 2

2
− a4bY

4 − a7b
2Y 7, with a7 =

1

84
a4.

It follows that for Y � 1,

U(s, Y ) ' U3(s, Y ) + V3(s, Y ),

where V3(s, Y ) = −a7
8

5
(bs + b2)Y 7 − a4

3

10× 7× 8

(
bs + b2

)
Y 8 +O(Y 10).

(2.9)

Remark 2.1. In the work of Merle and Raphaël, the choice of the parameters λ and b stems
from orthogonality properties of the quantity U −Uapp on some well chosen functions. In the
present case, these orthogonality properties can be seen as a cancellation at high enough order
of U − Uapp at Y = 0.

For technical reasons, it is necessary to push further the expansion of U . We thus compute
U4. We find that

U3∂sU3 − ∂Y U3

∫ Y

0
∂sU3 − bU2

3 +
3b

2
∂Y U3

∫ Y

0
U3 − ∂Y Y U3 + 1

= (bs + b2)

[
−4

5
a4Y

5 − 3

10
a4Y

6 − a4

60
bY 8 − 3

4
a7bY

9 +
3

5
a4a7b

2Y 11 +
1

4
a2

7b
3Y 14

]
−27

16
a7b

3Y 8 − 3

16
a7b

3Y 9 +
11

16
a4a7b

4Y 11 +
3

8
a2

7b
5Y 14.

It follows that

U4 = U3 − a10b
3Y 10 − a11b

3Y 11 + a13b
4Y 13 + a16b

5Y 16,

where

a10 =
27

16× 90
a7, a11 =

3

16× 110
a7, a13 =

11a4a7

13× 12× 16
, a16 =

a2
7

16× 5× 8
. (2.10)

• Definition of the approximate solution:
We now define the approximate solution Uapp in the following way: let Θ ∈ C2(R+) be

such that Θ(ξ) = ξ2

2 for ξ ≤ c0 for some c0 > 0, Θ strictly increasing, and Θ(ξ) → 1 as
ξ →∞. Let χ ∈ C∞0 (R+) be such that χ ≡ 1 in a neighbourhood of zero. We take

Uapp(s, Y ) := χ

(
Y

s2/7

)[
Y − a4bY

4 − a7b
2Y 7 − a10b

3Y 10 − a11b
3Y 11

]
+

1

b
Θ
(√

bY
)
. (2.11)
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Notice that Uapp ' U4 as long as Y . s2/7 (the highest order terms have been removed,
mainly because they do not lower the size of the remainder while making the computations
heavier), and that Uapp → 1

b as Y →∞. Therefore we do not require that Uapp−U(s, Y )→ 0
as Y →∞. But this is not an issue, since we will measure the distance between U and Uapp

in weighted Sobolev spaces, with weights decreasing polynomially (with a large power) after
sβ, for some β < 2/7.

Remark 2.2. The zone after which we cut-off the first part of the approximate solution
is irrelevant: we could have used any cut-off χ(·/sα) as long as α ∈]1/4, 1/3[. The choice
α = 2/7 simplifies some of the statements on Uapp since it ensures that Y and −a4bY

4 are
the largest terms in Y − a4bY

4 − a7b
2Y 7 − a10b

3Y 10 − a11b
3Y 11.

We also set, in the rest of the paper, V := U − Uapp. The computations above and in
particular (2.9) show that

V (s, Y ) = −a7
8

5
(bs + b2)Y 7 − a4

3

10× 7× 8

(
bs + b2

)
Y 8 +O(Y 10) for 0 < Y � 1.

In particular, let N be a (semi-)norm on functions W ∈ C8(R+) such that W = O(Y 7) for Y
close to zero. Assume that there exists a constant CN such that

N (W ) ≥ CN |∂7
YW|Y=0|.

Then N (U − Uapp) ≥ CN |bs + b2|. Therefore the goal of the paper is to use the structure of
the equation (2.3) in order to find a semi-norm N which satisfies the assumptions above, and
to prove that

N (U − Uapp) ≤ Cs−2−η,

for some positive constant η and for s sufficiently large, or alternatively, that∫ ∞
s0

s3+2ηN (U(s)− Uapp(s)) ds < +∞.

Indeed, we have the following result:

Lemma 2.3. Let s0 := b−1
0 . Assume that the variables x, s and the parameters λ, b are related

by the formulas (2.1), (2.4) with the initial conditions λ|s=s0 = λ0, b|s=s0 = b0 = s−1
0 , and

that there exists a constant c0 such that

c−1
0 ≤ b0

λ2
0

≤ c0.

Assume furthermore that there exist constants η > 0 and ε ∈ (0, 1) such that for all s ≥ s0,∫ ∞
s0

s3+2η|bs + b2|2 ds <∞,

1− ε
s
≤ b(s) ≤ 1 + ε

s
.

(2.12)

Then there exists x∗ > 0 such that λ(x) → 0 as x → x∗. Furthermore, if λ0 � 1, then
x∗ = O(λ2

0) and there exists a constant C such that

λ(x) ∼ C(x∗ − x)1/2 as x→ x∗.

11



Proof. First, setting

J :=

∫ ∞
s0

s3+2η|bs + b2|2 ds

and using Lemma B.1 in the Appendix, we know that

b(s) =
1

s
+ r(s),

where

∀s ≥ s0, |r(s)| ≤ ε1 + ε

1− ε
s0

s2
+ J1/2 1 + ε

(1− ε)2

1

s1+η
.

As a consequence, ∫ ∞
s0

|r(s)| ds ≤ ε1 + ε

1− ε
+ J1/2 1 + ε

(1− ε)2ηsη0
<∞.

From (2.1) and (2.4), it follows that

λ(s) = λ(s0) exp

(
−1

2

∫ s

s0

b(s′) ds′
)

= λ(s0)
(s0

s

)1/2
exp

(
−1

2

∫ s

s0

r(s′) ds′
)
.

We have λ(s0) = λ0 = O(s
−1/2
0 ) by assumption. Moreover, according to the estimate of r

above, the function ψ(s) := exp
(
−1

2

∫ s
s0
r(s′) ds′

)
has a finite, strictly positive limit ψ∞ as

s → ∞. As a consequence λ(s) =
(
λ0s

1/2
0

)
ψ(s)s−1/2 for all s ≥ s0. According to (2.1), we

have

x∗ :=

∫ ∞
s0

λ(s)4 ds =
(
λ0s

1/2
0

)4
∫ ∞
s0

ψ(s)4s−2 ds <∞.

Thus separation occurs at a finite x∗. Moreover,

x∗ − x(s) =
(
λ0s

1/2
0

)4
∫ ∞
s

ψ(s′)4s′−2 ds′ ∼
(
λ0s

1/2
0

)4
ψ4
∞s
−1 as s→∞.

Going back to the original variables, we deduce that

λ(x) ∼ 1(
λ0s

1/2
0

)
ψ∞

(x∗ − x)1/2 as x→ x∗.

Using the above formulas, we also infer that if s0 � 1, x∗ = O(s−1
0 ) = O(λ2

0).

Remark 2.4. Notice that the precise value of the separation point x∗ depends on the whole
function u0(y) (and not only on its derivatives at y = 0) through the function ψ(s). This
intricate dependance might explain why the coefficients in Goldstein’s expansion were unde-
termined.

Remark 2.5. Let us now give some examples of norms N such that

N (W ) ≥ CN |∂7
YW|Y=0| (2.13)

for W ∈ C8(R+) with W = O(Y 7) for Y close to zero. We can take for instance

N (W )2 :=

∫ ∞
0

(∂7
YW )2 + (∂8

YW )2,

12



or

N (W )2 :=

∫ ∞
0

(
W

Y 7

)2

+

(
∂Y

W

Y 7

)2

.

More generally, we can use any norm N such that

N (W ) &
∥∥∥Y k−7∂kYW

∥∥∥
H1(0,Y0)

,

for some fixed Y0 > 0 and for any k ∈ {0, · · · , 7}. The norm N we will use eventually will be
equivalent to a linear combination of such norms in a neighbourhood of Y = 0.

2.3 Error estimates

In this paragraph, we explain roughly how estimates on V := U − Uapp are derived. More
details will be given in sections 4 and 5. We emphasize that all energy estimates written in
this paper are new. The first step is to compute an evolution equation of transport-diffusion
type on V . To that end, let us consider equation (2.3), and set, for W1,W2 ∈ C(R+),

LW1W2 := W1W2 − ∂YW1

∫ Y

0
W2,

so that equation (2.3) can be written as

LUUs − bU2 +
3b

2
UY

∫ Y

0
U − ∂Y Y U = −1.

Notice that since U(s, Y ) > 0 for all s, Y > 0,

LUW

U2
= ∂Y

(∫ Y
0 W

U

)
.

Hence we can define the inverse of the operator LU , for functions f such that f(Y )/Y 2 is
integrable in a neighbourhood of zero: we have

L−1
U f =

(
U

∫ Y

0

f

U2

)
Y

= UY

∫ Y

0

f

U2
+
f

U
. (2.14)

As a consequence, the equation on U can be written as

∂sU + bL−1
U

(
3

2
UY

∫ Y

0
U − U2

)
− L−1

U (∂Y Y U − 1) = 0.

It follows immediately from the definition that

L−1
U (U2) = ∂Y

(
U

∫ Y

0
1

)
= (Y U)Y .

On the other hand,

L−1
U

(
UY

∫ Y

0
U

)
= L−1

U

(
UY

∫ Y

0
U − U2

)
+ (Y U)Y

= −L−1
U LUU + (Y U)Y

= −U + (Y U)Y = Y UY .
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We infer that the equation on U becomes

∂sU − bU +
b

2
Y ∂Y U − L−1

U (∂Y Y U − 1) = 0. (2.15)

The whole non-linearity of the equation is now encoded in the diffusion term L−1
U (∂Y Y U −1).

Setting LU := L−1
U ∂Y Y , the equation on V = U − Uapp becomes

∂sV − bV +
b

2
Y ∂Y V − LUV = R, (2.16)

where the remainder R is defined by

R := −
(
∂sU

app − bUapp +
b

2
Y ∂Y U

app

)
+ L−1

U (∂Y Y U
app − 1).

Equation (2.16) is the second form we will be using for the rescaled Prandtl equation. It will
be handy for the derivation of energy estimates.

We have the following result, which is proved in section 4:

Lemma 2.6. The remainder term R can be decomposed as

R =
(
bs + b2

)
χ

(
Y

s2/7

)[
a4Y

4 + 2a7bY
7 + 3a10b

2Y 10 + 3a11b
2Y 11

]
+ χ

(
Y

s2/7

)[
a10b

4Y 10 + a113b4Y 11/2
]

+
b

2
L−1
U (LV Y ) +

a7b
3

2
L−1
U

(
χ

(
Y

s2/7

)(
LV Y

7 + L−a4bY 4−a7b2Y 7+a10b3Y 10+a11b3Y 11Y 7
))

+ P1(s, Y ) + L−1
U (P2(s, Y ))

where P1, P2 ∈ C0([s0,∞), C∞(R+)) are such that Pi has at most polynomial growth in s and
Y and Pi(s, Y ) = 0 for Y ≤ cs2/7 for some c > 0.

Remark 2.7. Following the decomposition of Lemma 2.6, we write R =
∑4

i=1Ri. Each of
the remainder terms Ri will play a different role and will be treated separately. More precisely:

1. Cancellations will occur in the remainder term R1;

2. The size of the term R2 dictates the final rate of convergence of the energy. This is
where the choice of the approximate solution plays an important role;

3. The term R3 can be treated as perturbation of the zero order term bV and of the transport
term bY ∂Y V as soon as Y � 1, and as a perturbation of the diffusion LUV if Y � s1/4.
Indeed, think of L−1

U as a division by U , and of a derivation with respect to Y as a
division by Y . Then

|bL−1
U (LV Y )| . b

Y 2

U
|VY | . b

1

1 + Y
|Y ∂Y V |.

Thus if Y � 1, this term is small compared to bY ∂Y V . On the other hand, heuristically,
|LUV | & U−1|∂2

Y V | & (Y U)−1|∂Y V | (think for instance of a Hardy inequality). Thus
as long as Y 2U � b−1, i.e. Y � s1/4, the diffusion term LUV dominates bY ∂Y V , and
therefore R3.
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4. The last term R4 will not play any role in the energy estimates: indeed, we will choose
weights with a strong polynomial decay for Y ≥ sβ for some β < 2/7, so that the error
stemming from R4 can be made O(s−P ) for any P > 0 by an appropriate choice of the
weight.

The idea is now to perform weighted energy estimates on equation (2.16), with the help
of a norm N satisfying assumption (2.13). These estimates rely on the following ideas:

1. Let N be a norm satisfying (2.13), and define an energy E(s) by

E(s) = N (V (s))2.

In order to prove that bs + b2 = O(s−2−η) (or that
∫ +∞
s0

s3+2η(bs + b2)2ds < +∞) for
some η > 0, it is enough to show that

dE

ds
+
α

s
E(s) ≤ ρ(s) ∀s ≥ s0 (2.17)

with 4 + η ≤ α, and with a right-hand side ρ(s) such that
∫∞
s0
sαρ(s) ds < +∞. Indeed,

integrating (2.17) between s0 and s yields

E(s) ≤ s−α
(
E(s0)sα0 +

∫ ∞
s0

sαρ(s) ds

)
.

Assuming additionally that E(s0) ≤ C0s
−α
0 for some constant C0 independent of s0, we

are led to
cN |bs + b2|2 ≤ E(s) ≤ Cs−4−η ∀s ≥ s0,

and using Lemma 2.3, we obtain the desired result.

2. The property α > 4 in (2.17) is derived thanks to algebraic manipulations on (2.16).
Schematically, if we only keep the transport part in (2.16) and if we consider the model
equation

∂sf −
1

s
f +

1

2s
Y ∂Y f = r,

we see that the k-th derivative of f satisfies

∂s∂
k
Y f +

(
k

2
− 1

)
1

s
∂kY f +

1

2s
Y ∂k+1

Y f = ∂kY r.

Hence
d

ds
‖∂kY f‖2L2 +

(
k − 5

2

)
1

s
‖∂kY f‖2L2 =

∫
∂kY r ∂

k
Y f

Taking k = 7 and k = 8 and summing the two estimates, we obtain the desired result
with α = 9

2 and N (f) := ‖∂7
Y f‖H1 .

3. The fact that the remainder is integrable with a weight sα in (2.17) stems from our choice
of approximate solution. In particular, if we modify the algorithm of construction of
(UN )N≥1 described in the previous paragraph and replace every occurrence of bs by
−cb2 for some constant c 6= 1, the estimate is no longer true.
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Let us now explain the main steps in the derivation of estimate (2.17). The difficulties
lie in the complex structure of the diffusion operator LU , and in the estimation of some
commutator terms. The idea is to apply several times the operator LU to equation (2.16).
This requires:

1. computing the commutator of LU with ∂s + b
2Y ∂Y ;

2. understanding the action of LU on the remainder term R;

3. obtaining energy estimates on transport-diffusion equations of the type

∂sf + Cbf +
b

2
Y ∂Y f − LUf = r. (2.18)

Let us now explain how we deal with each of the points above.

2.3.1 Commutator of LU with ∂s + b
2Y ∂Y

The commutator result is stated in the following

Lemma 2.8 (Computation of the commutator). For any function W ∈W 1,1
loc ((s0,∞)× R+)

such that W = O(Y 2) for Y close to zero,[
L−1
U , ∂s +

b

2
Y ∂Y

]
W = bL−1

U W −
(
D
∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
D
)
Y

,

where D := L−1
U (∂Y Y U − 1).

In the rest of the article, we define the commutator operator

C[W ] := −
(
D
∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
D
)
Y

.

The quantity D involved in the commutator can then be written as

D = LUV + L−1
U (∂Y Y U

app − 1),

where the second term can be developed using the explicit expression Uapp. Notice the
commutator C[∂2

Y V ] contains some quadratic terms in V . In order to estimate these quadratic
terms, we will need both preliminary estimates and estimates in L∞ on the function V . The
L∞ estimates are derived in detail in section 3, and rely on a careful use of the maximum
principle.

2.3.2 Action of LU on the remainder term R

We will use the decomposition of the remainder given in Remark 2.7. The first two terms,
namely R1 and R2, are essentially polynomials. Therefore, in order to deal with them, we
will need to get explicit formulas for terms such as LU (Y 4) = 12L−1

U (Y 2), and more generally,
to understand the asymptotic behavior of L−1

U (Y k) for Y � 1 and k ≥ 2.
In order to get explicit formulas, we will use in several instances the following trick: for

k ∈ N, write
Y k = L−1

U LU (Y k) = L−1
U (LUapp(Y k) + LV Y

k).
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Now, since Uapp is a polynomial, LUapp(Y k) can be easily computed, and is also a polynomial
in Y . The term L−1

U LV (Y k) is expected to be of lower order. For instance, taking k = 1, we

observe that LUapp(Y ) = Y 2

2 +O(bY 5) for Y � s2/7. Hence we obtain a formula for L−1
U (Y 2)

(up to some remainder terms).
Concerning the asymptotic behavior of L−1

U (Y k) for Y � 1 and for k ≥ 4, notice that
the operator L−1

U acts roughly like a division by U , as can be seen from the formula (2.14).
Furthermore, the L∞ estimates (see Proposition 2.16) will ensure that there exists a constant
C such that

C−1(Y + Y 2) ≤ U(s, Y ) ≤ C(Y + Y 2) ∀Y . s2/7.

Therefore, L−1
U behaves differently for Y � 1 and for Y � 1: for Y close to zero, applying

L−1
U amounts to dividing by Y , while for Y � 1, it amounts to dividing by Y 2. We obtain

that for Y � s1/2 and k ≥ 4,

L−1
U (Y k) =

{
O(Y k−1) if Y � 1,
O(Y k−2) if Y & 1.

As explained in Remark 2.7, the term R3 is treated as a perturbation of the dissipation
coming from the transport and the diffusion term. Eventually, since R4 is supported in
Y & s2/7, while we use weights that have a strong polynomial decay for Y & sβ for some
β < 2/7, the size of R4 in our energy norms will be smaller that that of R1 +R2 +R3.

2.3.3 Energy estimates on transport-diffusion equations of the type (2.18)

The most difficult part is proving coercivity and positivity estimates for the diffusion. We will
rely on the diffusion Lemma 4.7, which makes an extensive use of weighted Hardy inequalities,
see [24]. They also rely on the fact that if U = Y + Y 2

2 + O(bY 4), then ∂Y Y L
−1
U is “almost”

a local differential operator (see the formulas in Lemma A.1 in the Appendix).
We will also often use the observation that if Y . s1/4, then the diffusion term dominates,

while for Y & s1/4, then the transport part becomes preponderant. Indeed, for k ≥ 6, if
b ∼ s−1

CbY k +
b

2
Y ∂Y Y

k ∼
(
k

2
+ C

)
1

s
Y k,

and LUY k = O(Y k−4) for Y � 1.

It is easily checked that both terms are of the same order for Y ∼ s1/4, and diffusion (resp.
transport) is dominant below (resp. above) that threshold.

We now turn towards the sequence of estimates on V . In the end, we seek to obtain
estimates on ∂Y L2

UV and ∂2
Y L2

UV . We recall that V ∼ −C(bs + b2)Y 7 for Y close to zero,
and therefore ∂Y L2

UV ∼ −C(bs + b2) for Y close to zero.
Using Lemma 2.8, we infer that LUV satisfies the following equation:

∂sLUV + bLUV +
b

2
Y ∂Y LUV − L2

UV = LUR+ C[∂Y Y V ]. (2.19)

We get the following result:

Proposition 2.9. Assume that:

17



• There exists a constant J > 0 such that∫ s1

s0

s13/4|bs + b2|2ds ≤ J ;

• 1−ε̄
s ≤ b ≤

1+ε̄
s for s ∈ [s0, s1] and for some small universal constant ε̄ (say ε̄ = 1/50);

• There exist constants M1,M2, c independent of s such that for all Y ,

−M1 ≤ UY Y ≤ 1 ∀Y ≥ 0,

1−M2bY
2 ≤ UY Y ∀Y ∈ [0, cs1/3].

Let w1 := Y −a(1 + s−β1Y )−m1 for some β1 ∈]1/4, 2/7[, m1 ∈ N.
Let

E1(s) :=

∫ ∞
0

(∂2
Y LUV )2w1,

D1(s) :=

∫ ∞
0

(∂3
Y LUV )2

U
w1 +

∫ ∞
0

(∂2
Y LUV )2

U2
w1.

Then there exist universal constants ā, c̄ > 0, such that for all a ∈]0, ā[, for all α < 6− (11−
a)β1, for m1 large enough, there exists S0, H1 > 0 depending on M1,M2, c, β1,m1, and a such
that if s0 ≥ max(S0, J

4),

E1(s) ≤ H1(1 + E1(s0)sα0 )s−α,

∫ s1

s0

sαD1(s)ds ≤ H1(1 + E1(s0)sα0 ) ∀s ∈ [s0, s1].

Remark 2.10. The weight Y −a in w1 has two different roles. On the one hand, we gain a
bit of decay in the remainder terms. On the other hand, we are able to control, through a
simple Cauchy-Schwarz inequality, quantities of the type∫ Y

0

∂2
Y LUV
U2

by the diffusion term.

Remark 2.11. Notice that if we take β1 such that

1

4
< β1 <

1

4

11

11− a
,

then we can choose α so that α > 13/4. We will make this choice in the final energy estimates,
and we will use the corresponding decay of E1 when we apply the maximum principle.

Differentiating (2.19) with respect to Y and taking the trace of the equation at Y = 0,
we obtain in particular

Lemma 2.12. For all s ≥ s0, we have

∂Y L2
UV|Y=0 = −1

2
(bs + b2).
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We then derive an equation on L2
UV . Applying once more the commutator result of

Lemma 2.8, we deduce that L2
UV satisfies the following equation:

∂sL2
UV + 3bL2

UV +
b

2
Y ∂Y L2

UV − L3
UV = L2

UR+ C[∂2
Y LUV ] + LUC[∂2

Y V ]. (2.20)

In order to have a trace estimate, and also to have nice positivity properties for the diffusion
term, we will also need to use estimates on ∂2

Y L2
UV . We therefore define the energy

E2(s) :=

∫ ∞
0

(∂2
Y L2

UV )2w2,

together with the dissipation terms

D2(s) :=

∫ ∞
0

(∂3
Y L2

UV )2

U
w2 +

∫ ∞
0

(∂2
Y L2

UV )2

U2
w2,

where the weight w2 is defined by w2 = Y −a(1+s−β2Y )−m2 for some parameters β2 ∈]1/4, β1[,
m2 � m1 sufficiently large. The parameter a is the same as the one in Proposition 2.9.

We then claim that we have the following estimate:

Proposition 2.13. Assume that the hypotheses of Proposition 2.9 are satisfied. Let C0 :=

max(E1(s0)s
13/4+η
0 , E2(s0)s5

0) for some η > 0 such that 13/4 +η < 6− (11−a)β1. Then there
exists a universal constant ā, such that for all a ∈]0, ā[, for a suitable choice of β2,m2, there
exist S0, H2 > 0 (depending on a, βi,mi,M1,M2) such that if s0 ≥ max(S0, J

4, C8
0 ) ,

E2(s) ≤ H2(1 + C0) exp(H2(1 + C0))s−5 ∀s ∈ [s0, s1]. (2.21)

Let us now go back to the definition of the semi-norm N . We need a new type of trace
estimate, taking advantage of the fact that E2 has a stronger decay than E1 (notice that the
sole decay of E1 is not sufficient to close the bootstrap argument, since E1 . s−13/4−η and
we need |bs + b2| . s−2−η/2, while 13/4 < 4).

We will use the following trace estimate, which is proved in Appendix:

Lemma 2.14. There exists a universal constant C̄, such that for all L ≥ 1, for any smooth
function f ,

|f(0)|2 ≤ C̄
(
L1+a

∫ L

0
(∂Y f)2Y −a dY +

1

L3−a

∫ L

0
|f(Y )|2(Y + Y 2)Y −a dY

)
.

In particular, taking f = ∂Y L2
UV and L = s1/4, under the assumptions of Proposition 2.13,

|bs + b2|2 ≤ C̄

(
s

1+a
4 E2 + s−

3−a
4

∫ s1/4

0
U
(
∂Y L2

UV
)2)

.

Let us now go back to the definition of the semi-norm N . According to the above Lemma,
we can take for instance

N (V ) :=

(
s

1+a
4 E2 + s−

3−a
4

∫ ∞
0

U
(
∂Y L2

UV
)2
w̃1

)1/2

,
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where w̃1 := Y −a(1 + s−β1Y )−m1−2 = w1(1 + s−β1Y )−2, so that N (V ) ≥ C̄|bs + b2| for some
universal constant C̄.

However there remains to prove that with this definition, N (V ) is sufficiently small. Ac-

cording to the above Lemma, we also need to find a bound for
∫∞

0 U
(
∂Y L2

UV
)2
w̃1. We claim

that we have the following estimate:

Lemma 2.15. Assume that the assumptions of Proposition 2.9 are satisfied. Let P > 0
be arbitrary. There exist S0, H1 > 0 depending on M1,M2, β1,m1, and a, and a function
ρ such that

∫ s1
s0
ρ(s)s−1/2ds ≤ 1, such that if m1 is large enough (depending on P ) and if

s0 ≥ max(S0, J
4),∫ ∞

0
U
(
∂Y L2

UV
)2
w̃1 ≤ H1s

(3−a)β1D1 + s−1E1 + s−Pρ(s). (2.22)

Gathering Lemmas 2.14 and 2.15 and using Proposition 2.9 and Proposition 2.13, we find
that if s0 ≥ max(S0, J

4, C8
0 ),

|bs + b2|2 ≤ H2(1 + C0) exp(H2(1 + C0))s−
19−a

4 +H1s
(3−a)(β1− 1

4
)D1 + s−Pρ(s).

Recall that
∫ s1
s0
sαD1(s) ds ≤ H1(1 + C0) for s0 ≥ max(S0, J

4) and for α = 13/4 + η <

6− (11− a)β1. A short computation1 shows that we can choose β1 and a so that

13

4
+ (3− a)

(
β1 −

1

4

)
< 6− (11− a)β1.

We obtain eventually that
|bs + b2| ≤ C̄N (V ),

and ∫ s1

s0

s13/4N (V (s))2 ds ≤ H(1 + C0) exp(H(1 + C0)),

for some constant H depending on a, βi,mi,M1,M2, provided s0 ≥ max(S0, J
4, C8

0 ). Thus b
satisfies the assumptions of Lemma B.1 with γ = 13/4 > 3.

We gather the estimates of Propositions 2.9 and 2.13 and Lemma 2.14 in the following
Theorem:

Theorem 2. Let a ∈]0, ā[, and choose the parameters β1 and β2 such that

1

4
< β2 < β1 <

1

4
inf

(
11

11− a
,

14− a
14− 2a

)
(2.23)

and m2 � m1 � 1.
Let η = η(a, β1) such that 0 < η < (3− a)(β1 − 1/4).
Assume that the following assumptions are satisfied:

1It is enough to choose

β1 <
1

4

(
1 +

a

14 − 2a

)
.
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• There exists a constant J > 0 such that∫ s1

s0

s13/4|bs + b2|2ds ≤ J ;

• (1− ε̄)/s ≤ b ≤ (1+ ε̄)/s for s ∈ [s0, s1] for some small enough constant ε̄ (say ε̄ = 1/50);

• There exist constants M1,M2, c independent of s, such that

−M1 ≤ UY Y ≤ 1 ∀Y ≥ 0,

1−M2bY
2 ≤ UY Y ∀Y ∈ [0, cs1/3].

• There exists a constant C0, independent of s0 and λ0, such that for some η > 0

E2(s0)s5
0 + E1(s0)s

η+13/4
0 ≤ C0.

Then there exists constants H,S0, depending on a,m1,m2, β1, β2,M1 and M2, such that
for all s0 ≥ max(S0, J

4, C8
0 ),∫ s1

s0

s13/4|bs + b2|2 ≤ exp(H(1 + C0)).

In particular, setting J ′ := exp(H(1 + C0)), we have

s0 ≥ max(S0, J
4, C8

0 )⇒
∫ s1

s0

s13/4|bs + b2|2 ≤ J ′,

and the constant J ′ is independent of J .

2.4 Construction of sub- and super-solutions

The other ingredient in the proof of Theorem 1 is the use of the maximum principle in order
to control the growth of U and its derivatives on the one hand, and the size of some non-
linear terms on the other hand. Indeed, the assumptions of Propositions 2.9 and 2.13 require
estimates on ∂2

Y U . These estimates are obtained by careful applications of a comparison
principle. We emphasize that this principle is not applied to equation (2.3) directly, but rather
to an equation derived from (2.3) after a non-linear change of variables. More precisely, we
use the von Mises variables

ψ :=

∫ Y

0
U, W := U2. (2.24)

The tangential variable remains s, the normal variable is now ψ (instead of Y ), and the
new unknown function is W . This change of variables transforms (2.3) into a non-linear
transport-diffusion equation which is more suited for maximum principle techniques, namely

∂sW − 2bW +
3b

2
ψ∂ψW −

√
W∂2

ψW = −2 (2.25)

Equation (2.25) is the third and last form of equation (2.3). We refer to [29] and to section 3
of the present paper for more details. Since the new equation is local and parabolic, it enjoys
maximum principle properties. Therefore we construct sub- and super-solutions for W and
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its derivatives and thereby derive estimates on W . These estimates are then translated in
terms of the former variables s, Y .

One of the key points lies in the construction of a sub-solution for W (see Lemma 3.6).
Actually, the Sobolev estimates of Proposition 2.9 provide a very good pointwise control of
U up to Y ∼ sβ1 � s1/4, but this control degenerates for Y & sβ1 . Hence it is sufficient to
construct sub-solutions for Y & s1/4, or equivalently (since ψ ∼ Y 3/6 for Y � 1) for ψ & s3/4.
On this zone, the sub-solutions will be linear combinations of powers of ψ. Furthermore, we
define a regularized modulation rate b̃, whose role is to remove some oscillations from b while
keeping the same asymptotic behavior. We take

b̃s + bb̃ = 0, b̃|s=s0 =
1

s0
.

The sub-solutions for W are defined by

W :=
(6ψ)4/3

4
−Aψ7/3b̃5/4,

where A is chosen sufficiently large. Notice that the main order term (6ψ)4/3/4 is the same
as in the original solution. It corresponds to the main order term Y 2/2 in U(s, Y ).

The regularized modulation rate b̃ is also used in the construction of a sub-solution for
UY Y − 1 (see Lemma 3.7).

The final result is the following (we refer to Remark 2.11 regarding the assumption on
E1):

Proposition 2.16. Assume that there exist constants J > 0, η > 0 and ε > 0 such that for
all s ∈ [s0, s1], assumption (2.12) is satisfied. Assume furthermore that there exists a constant
M0 such that

−M0 inf(1, s−1
0 Y 2) ≤ UY Y (s0, Y )− 1 ≤ 0 ∀Y > 0,

lim
Y→∞

U(s0, Y ) ≤M0s0,

and that there exists C1 > 0 such that

E1(s) ≤ C1s
−13/4 ∀s ∈ [s0, s1].

Then there exist universal constants M̄, C̄ > 0, and S0 depending on C1, β1,m1, such that if
s0 ≥ max(S0, C̄(Jε−2)1/2η), then, setting M ′ = M̄ max(1,M0),

−M ′bY 2 ≤ UY Y (s, Y )− 1 ≤ 0 ∀s ∈ [s0, s1], ∀Y ∈ [0, s1/3],

and −M ′ ≤ UY Y (s, Y )− 1 ≤ 0 ∀s ∈ [s0, s1], ∀Y ≥ s1/3.

Notice that the above estimates are precisely the ones that are required in Proposition
2.9.

2.5 Bootstrap argument

The bootstrap argument consists in bringing together Theorem 2 on the one hand, and
Proposition 2.16 on the other. In the rest of this section, we will assume that U(s0) satisfies

E1(s0) ≤ C0s
−13/4−η/2
0 , E2(s0) ≤ C0s

−5
0 ,∣∣∣∣b(s0)− 1

s0

∣∣∣∣ ≤ ε̄

2s0
,

and −M0 inf(1, s−1
0 Y 2) ≤ UY Y (s0, Y )− 1 ≤ 0 ∀Y > 0, lim

Y→∞
U(s0, Y ) ≤M0s0.

(2.26)
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where C0,M0 are constants independent of s0, and η is such that η − 3/4 < 2 − (11 − a)β1.
Without loss of generality, we also assume thatM0 ≥ 1. Such an initial data is “well-prepared”
in the sense that it is close to the blow-up profile.

Assumption (2.26) involves three different types of estimates. In order to propagate these
estimates, we will apply three different results:

1. The energy estimates from Propositions 2.9 and 2.13, which are gathered in Theorem 2;

2. The maximum principle estimates from Proposition 2.16;

3. Lemma B.1 on the modulation rate b.

Note that the maximum principle will propagate the third estimate of (2.26) without improv-
ing it (in fact, we will change the constant M0 into M̄M0); however the energy estimates will
transform η/2 into η, and will therefore improve the estimates on E1.

The argument goes as follows: let S0, H be the constants from Theorem 2 with α =
13/4 + η and M1 = M2 = M̄M0 (recall that S0 depends in particular on β1, β2, η and a). Let
J := 2 exp(H(1 + C0)). Assume that s0 ≥ max(S0, C̄J

4, C8
0 ) for the large universal constant

C̄ from Proposition 2.16.
If the initial data satisfies (2.26), by continuity, there exists s1 > s0 such that for all

s ∈ [s0, s1],

E1(s) ≤ 2H1(1 + C0)s−13/4− η
2 ,

∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ ε̄

s
,

∫ s1

s0

|bs + b2|2s13/4 ds ≤ J. (2.27)

Then for all s ∈ [s0, s1], according to Proposition 2.16 with C1 := 2H1(1 + C0), we infer
that up to choosing a larger S0 (depending on H1 and C0),

−M̄M0 ≤ UY Y ≤ 1 ∀Y ≥ 0,

1− M̄M0bY
2 ≤ UY Y ∀Y ∈ [0, s1/3].

The assumptions of Propositions 2.9 and 2.13 are satisfied (with M1 = M2 = M̄M0), and
we infer that if s0 ≥ max(S0, C̄J

4, C8
0 ), for all s ∈ [s0, s1],

E1(s) ≤ H1(1 + C0s
η/2
0 )s−13/4−η, E2(s) ≤ H2(1 + C0) exp(H2(1 + C0))s−5.

We have in particular for all s ∈ [s0, s1]

E1(s) ≤ H1(1 + C0)s−13/4−η/2,

and using Lemmas 2.14 and 2.15,∫ s1

s0

|bs + b2|2s13/4ds ≤ exp(H(1 + C0)) =
J

2
.

Using Lemma B.1 in the Appendix, we infer that for all s ∈ [s0, s1],∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ 1 + ε̄

1− ε̄

∣∣∣∣ 1

s0
− b(s0)

∣∣∣∣ s2
0

s2
+

1 + ε̄

(1− ε̄)2
s−9/8

√
2J

7
.
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Without loss of generality, we can always assume that ε̄, η, s0 are such that

1 + ε̄

1− ε̄
≤ 5

4
,

1 + ε̄

(1− ε̄)2

√
2J

7
s
−1/8
0 ≤ ε̄

4
.

Then for all s ∈ [s0, s1], we have ∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ 7ε̄

8s
. (2.28)

Gathering (2.27) and (2.28), we infer that

s1 := inf{s ≥ s0, E1(s) = 2H1(1 + C0)s−13/4−η/2 or |b(s)− 1/s| = ε̄/s

or

∫ s

s0

τ13/4|bτ + b2|2dτ = J} = +∞.

As a consequence, we infer that for some constant J depending only on C0 and M0, if
s0 ≥ max(S0, C̄J

4, C8
0 ), ∫ ∞

s0

s13/4|bs + b2|2ds ≤ J,
∣∣∣∣b− 1

s

∣∣∣∣ ≤ ε̄

s
.

We therefore obtain the following Theorem in the rescaled variables (s, Y ):

Theorem 3. Let η be such that 0 < η < (3− a)(β1− 1/4), where β1 satisfies (2.23). Assume
that U0 satisfies the hypotheses (2.26), and consider the solution U of equation (2.3) with
U(s0, Y ) = U0. Then there exists a constant S0 > 0, depending on η, C0,M0, such that if
s0 ≥ S0, then for all s ≥ s0,∫ ∞

s0

s13/4|bs + b2|2ds < +∞,
∣∣∣∣b− 1

s

∣∣∣∣ ≤ ε̄

s
. (2.29)

Let us now go back to the original variables and prove Theorem 1. First, we set

λ0 := ∂yu0|y=0, b0 := −λ2
0∂

4
yu0|y=0, s0 := b−1

0 .

The assumption (H1) entails that

c−1
0 λ2

0 ≤ s−1
0 ≤ c0λ

2
0.

Assumption (H2) implies

−M0 inf(1, s−1
0 Y 2) ≤ UY Y (s0, Y )− 1 ≤ 0 ∀Y > 0,

U(s0, Y ) ≤M0λ
−2
0 ≤M0c0s0

for a suitable constant M0. Of course, without loss of generality, we can assume that M0 ≥
1. Furthermore, assumption (H3) becomes, in the rescaled variables and after a few easy
computations,

V (s0, Y ) = O(s
−9/4
0 )(Y 7 + c8Y

8) +O(s−3
0 (Y 10 + Y 11))

for Y ≤ s2/7
0 . Here the constant c8 is defined so that

∂Y L2
UV (s0) = O(s

−9/4
0 ) +O(s−3

0 Y 2).
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It can be easily checked that these assumptions ensure that U is a well-prepared initial data.
As a consequence, if s0 is large enough (i.e. if λ0 is small enough), (2.29) holds. Using Lemma
2.3, we infer that x∗ < +∞ and that λ(x) ∼ C

√
x∗ − x. Theorem 1 follows.

Furthermore, we deduce from the maximum principle estimates some pointwise control
on u. Indeed, we have

Y +
Y 2

2
− M2

12
bY 4 ≤ U(s, Y ) ≤ Y +

Y 2

2
for 0 ≤ Y ≤ cs1/3.

Going back to the original variables, we find that there exist constants C, c such that

λ(x)y +
y2

2
− Cy4 ≤ u(x, y) ≤ λ(x)y +

y2

2
∀y ≤ (x∗ − x)1/6.

Remark 2.17 (Comparison with the result by Caffarelli and E). Let us now plug the change
of variables in the result announced by Caffarelli and E in [5] into the asymptotic expansion
above. We recall that

uµ(ξ, z) =
1

µ1/2
u(x∗ − ξµ, µ1/4z).

It follows that in the zone z ≤ µ−1/12ξ1/6, ξ . 1,

uµ(ξ, z) = O(µ1/4
√
ξ)z +

z2

2
+O(µ1/2z4)→ z2

2
as µ→ 0.

2.6 Organization of the rest of the paper

The rest of the paper is dedicated to the proof of Theorem 3, or more specifically, to the
proofs of Proposition 2.9, Proposition 2.13 and Proposition 2.16. Since the maximum principle
estimates are easier to derive than the energy estimates, we start with the proof of Proposition
2.16 in section 3. We then lay the ground for the derivation of the energy estimates by proving
several important intermediate results in section 4. Eventually, we prove Proposition 2.9 and
Proposition 2.13 in section 5.

Let us also explain here the order in which the parameters are chosen. We first pick
a ∈ (0, ā), where ā is the universal constant in Proposition 2.9. We then choose β1 > β2

satisfying (2.23), and η > 0 such that η − 3
4 < 2 − (11 − a)β1. We then pick m1,m2 large

enough and such that m2 � m1. Eventually, we take s0 large, depending on all other
parameters.

Notation

We will use indifferently fY and ∂Y f to denote the Y derivative of an arbitrary function f .
The constants with a bar (ā, C̄, M̄ , ε̄) denote universal constants, that do not depend on any
of the parameters. All constants with a zero subscript (M0, C0, s0) refer to the initial data.
Constants involving the letter M (M0, M1, M2, M̄) are related to the maximum principle.
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3 Derivation of L∞ estimates and construction of sub and su-
per solutions

This section is devoted to the proof of Proposition 2.16, which consists in the derivation of
pointwise estimates on U,UY and UY Y , provided b satisfies the assumptions of Lemma B.1
and E1(s) = O(s−13/4). Throughout this section, we will use the von Mises formulation of
the rescaled Prandtl equation, namely (2.24)-(2.25). The idea is to use the maximum and
comparison principles for these equations (see Lemmas 2.1.3 and 2.1.4 in [29]), together with
Sobolev estimates coming from the bound on E1(s).

Let us first recall some useful formulas regarding the von Mises formulation of the equation
in the original variables and in the rescaled variables. If u is the solution of (P), we set

φ(x, y) =

∫ y

0
u, w = u2.

We recall that (P) is equivalent to the following equation, written in the variables (x, φ)

wx −
√
w∂2

φw = −2. (3.1)

Furthermore, notice that if W,ψ are defined by (2.24)

ψ(s, Y ) = λ(x(s))−3φ(x(s), λ(x(s))Y ), W (s, ψ) = λ(x(s))−4w(x(s), λ3ψ).

It follows that some qualitative properties of equation (2.25) (growth with respect to φ, local
bounds) can be inherited directly from equation (3.1). More precisely, we have the following
result:

Lemma 3.1. Let w0 ∈ C3,α(R+) such that w0(0) = 0 and w′0(0) > 0. Assume that w0 is
increasing. Then for all x ∈ [0, x∗[, w(x, φ) is increasing with respect to φ. Furthermore, for
any X ∈ [0, x∗[, there exists CX > 0 such that for all x ∈ [0, X],

|wφ(x, φ)| ≤ CX ∀φ ≥ 0,

|∂2
φw(x, φ)|, |∂3

φw(x, φ)| ≤ CX ∀φ ≥ 1.

As a consequence, W is increasing in ψ (or equivalently, U is increasing in Y ) for all
s ∈ [s0, s1], and

lim
ψ→∞

Wψ = lim
ψ→∞

Wψψ = 0 ∀s ∈ [s0, s1].

Proof. The bounds on wφ, wφφ are explicitly written in [29] (see Lemmas 2.1.9 and 2.1.11).
The bound on ∂3

φw follows from the same arguments as [29, Lemma 2.1.11], writing down the

equation on wφ. Since limφ→∞w(x, φ) = Ū(x)2, it follows that limφ→∞wφ = 0 for all x ∈
(0, x∗). Therefore we also have limφ→∞wφφ = 0. Whence limψ→∞Wψ = limψ→∞Wψψ = 0.

Furthermore, the equation satisfied by wφ is

∂xwφ −
wφ

2
√
w
∂φwφ −

√
w∂φφwφ = 0,

with boundary conditions wφ|x=0 = w′0(φ) ≥ 0, limφ→∞wφ = 0, and wφ|φ=0 = 2λ(x) > 0 for
all x ∈ (0, x∗). According to the maximum principle, we have wφ ≥ 0 in (0, x∗) × (0,∞).
Hence Wψ ≥ 0, and W is increasing in ψ.
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3.1 Uniform bounds on ∂Y YU

The first step of the proof of Proposition 2.16 is the derivation of uniform L∞ bounds on
∂Y Y U . The result we prove in this paragraph is the following

Lemma 3.2. Let U be a solution of (2.3) on (s0, s1) × (0,+∞) such that UY |Y=0 = 1 for
all s ∈ [s0, s1], and such that U is strictly increasing in Y for all s, with limY→∞ U(s, Y ) =
U∞(s) < +∞.

Assume that there exists M2 such that

−M2 ≤ ∂Y Y U(s0, Y )− 1 ≤ 0 ∀Y > 0,

and that
∂Y Y U(s0, Y ) = 1− 12a4b0Y

2 +O(Y 5) for Y � 1. (3.2)

Then
−max(M2, 1) ≤ ∂Y Y U(s, Y )− 1 ≤ 0 ∀Y > 0 ∀s ≥ s0.

Remark 3.3. Assumption (3.2) is a compatibility condition at a high order at s = s0. It is
propagated by the equation.

Proof. We rely on the equation on W in the (s, ψ) variables. We recall that ∂Y U = ∂ψW/2,
and therefore

∂Y Y U(s, Y ) =
1

2

√
W (s, ψ(s, Y ))∂ψψW (s, ψ(s, Y )) ∀s ≥ s0, ∀Y > 0.

Therefore we derive estimates on the quantity

F (s, ψ) :=
√
W∂ψψW − 2.

Notice that the assumptions on U imply that

−2M2 ≤ F (s0, ψ) ≤ 0 ∀ψ > 0.

On {Y = 0}, we have UY Y = 1, and therefore F|ψ=0 = 0. Using Lemma 3.1, we also have
limψ→∞ F (s, ψ) = −2.

Furthermore, F satisfies

∂sF =
∂sW

2
√
W
∂ψψW +

√
W∂ψψ∂sW.

Using the equation on W (2.25) and writing ∂ψψW = (F + 2)/
√
W , we infer that

∂sF =
1

2W
F (F + 2) +

1

2
√
W
∂2
ψW

(
2bW − 3b

2
ψ∂ψW

)
+
√
W

(
−b∂2

ψW −
3b

2
ψ∂3

ψW + ∂2
ψF

)
.

Gathering all the terms and using the formula

∂ψF =
1

2
√
W
∂ψW∂ψψW +

√
W∂3

ψW,
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we obtain eventually

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF = 0. (3.3)

B First step: Lower bound on F and consequences.
We start with the lower bound, which is easier. Assume that F has an interior minimum

Fmin at some point (s, ψ) for some s ∈ (s0, s1], ψ > 0. Then according to equation (3.3),
Fmin(Fmin + 2) ≤ 0, and therefore Fmin ∈ (−2, 0). Thus F (s, ψ) ≥ min(−2, inf F (s0)) ≥
min(−2,−2M2).

We infer from this lower bound on F some non-degeneracy estimates for W for ψ close to
zero. Indeed, it follows from the inequality UY Y ≥ −M ′2 with M ′2 = max(M2 − 1, 0), that

1−M ′2Y ≤ UY ∀Y > 0.

In particular, if Y ≤ Y0 := (2M ′2)−1, then UY (s, Y ) ≥ 1/2 and U(s, Y ) ≥ Y/2. As a
consequence, if ψ ≤ ψ(s, Y0), then Wψ ≥ 1. Now, the lower bound on UY Y also entails that

ψ(s, Y0) =

∫ Y0

0
U(s, Y ) dY ≥ Y 2

0

4
=

1

16M ′2
2 .

Hence in particular, for all s ≥ s0,

ψ ≤ 1

16M ′2
2 ⇒W (s, ψ) ≥ ψ and Wψ ≥ 1. (3.4)

B Second step: Upper bound on F .
The derivation of the upper-bound is a little more involved. The main difficulty comes

from the nonlinear term F (F +2)/W , which is also singular near ψ = 0. In order to deal with
it, we use a bootstrap type argument. Notice first that the preliminary bounds of Lemma
3.1 entail that W is Lipschitz continuous, uniformly in ψ and locally uniformly in s and that
∂ψψW , ∂3

ψW are bounded (locally in s, uniformly in ψ) in s ≥ s0, ψ ≥ δ, for any δ > 0.
Considering eventually equation (3.3), we deduce that ∂sF is bounded in a neighbourhood
of s = s0, uniformly in ψ for ψ ≥ δ. Furthermore, using assumption (3.2) on U(s0), both
F (s0)/W (s0) and

√
W (s0)∂ψψF (s0) are bounded in a neighbourhood of Y = 0, and therefore

∂sF|s=s0 is bounded in L∞(R+).
We now set

s′0 := inf{s ∈ [s0, s1], ∃ψ > 0, F (s, ψ) ≥ 1}.

It follows from the above arguments that s′0 > s0. On the interval [s0, s
′
0], we have F (s, ψ) ∈

[−2 max(M2, 1), 1]. As a consequence, we multiply (3.3) by F+p, where p ∈ C∞(R) is a non-
increasing weight function such that p ≡ 1 for ψ close to zero and p(ψ) = O(ψ−k) for some
k > 1 for ψ > 1, with |p′|/p ∈ L∞, p′′/p ∈ L∞. Since F+|ψ=0 = 0, we obtain, as long as
s ≤ s′0,

d

ds

∫
R+

F 2
+p+

∫
R+

√
W (∂ψF+)2p− 1

2

∫
R+

F 2
+∂

2
ψ(
√
Wp) ≤ 3

2

∫
R+

F 2
+

W
p+

3b

4

∫
R+

F 2
+p.

An easy computation gives

∂2
ψ(
√
Wp) =

F + 2

2W
p− 1

4

W 2
ψ

W 3/2
p+

Wψ√
W
p′ +
√
Wp′′.
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Using the assumptions on p, the upper-bound
√
W ≤ U∞(s) and the bound on F for s ≤ s′0,

we deduce eventually that

d

ds

∫
R+

F 2
+p+

∫
R+

√
W (∂ψF+)2p+

1

2

∫
R+

F 2
+

Wψ√
W
|p′|+ 1

8

∫
R+

F 2
+

W 2
ψ

W 3/2
p

≤ C
∫
R+

F 2
+

W
p+ C(1 + U∞(s))

∫
R+

F 2
+p.

The second term in the right-hand side will be handled thanks to a Gronwall type argument.
The singularity of the first term in the right-hand side will be absorbed in the dissipation
term. Indeed, let us first decompose the integral into two pieces depending on the value of
W . First, ∫

R+

1W≥inf(1,(5M ′2)−2)

F 2
+

W
p ≤ C

∫
R+

F 2
+p,

and as before, that part can be handled thanks to a Gronwall type argument. We thus
focus of the values of W below inf(1, (5M ′2)−2). In that case, according to (3.4), we have
ψ ≤ inf(1, (5M ′2)−2) =: ψ0 and

Wψ

W
≥Wψ ≥ 1.

Let us choose p so that p(ψ) = 1 for ψ ∈ [0, 1]. We deduce that there exists an explicit
constant C such that for all ψ ∈ (0, ψ0),

√
W (∂ψF+)2 +

1

8
F 2

+

W 2
ψ

W 3/2
≥ C

(
∂ψ

(
W 1/4F+

))2
.

Therefore, using the Hardy inequality, there exists a constant C such that

D(s) :=

∫ ψ0

0

√
W (∂ψF+)2p+

1

2

∫ ψ0

0
F 2

+

Wψ√
W
|p′|+ 1

8

∫ ψ0

0
F 2

+

W 2
ψ

W 3/2
≥ C

∫ ψ0

0

W 1/2F 2
+

ψ2
p.

Using once again the non-degeneracy of W for ψ close to zero (see (3.4)), we infer that up to
choosing a smaller ψ0, ∫

R+

1W≤inf(1,(5M ′2)−2)

F 2
+

W
p ≤ 1

2
D(s).

Eventually, we obtain

d

ds

∫
R+

F 2
+p ≤ C(1 + U∞(s))

∫
R+

F 2
+p ∀ ∈ [s0, s

′
0].

Now, since F|s=s0 ≤ 0, we have F+|s=s0 ≡ 0. The Gronwall Lemma implies that F+ ≡ 0 for
s ≤ s′0. Therefore F (s, ψ) ≤ 0 < 1 for all s ≤ s′0. It follows that s′0 = s1, and thus F (s, ψ) ≤ 0
for all s ∈ [s0, s1] and for all ψ > 0.

Under the assumptions of Lemma 3.2, we therefore have

sup

(
Y −M ′2

Y 2

2
, 0

)
≤ U(s, Y ) ≤ Y +

Y 2

2
,

sup(1−M ′2Y, 0) ≤ UY ≤ 1 + Y

∀Y > 0, ∀s ≥ s0. (3.5)

Notice that these estimates are independent of s, and that the constant M ′2 depends only on
M2.
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3.2 Construction of sub and super solutions for W

We now derive pointwise estimates on U , which will be used in the last paragraph of this
section to obtained a refined lower bound on ∂Y Y U . We distinguish between different zones:

• On the zone Y � sβ1 , where β1 > 1/4 is the parameter entering the definition of w1

(see Proposition 2.9), the energy estimate E1(s) . s−13/4 actually provides a very good
pointwise estimate of U . However, this estimate degenerates when Y & sβ1 . Let us
emphasize that we do need estimates on U,UY , UY Y on the zone Y ≥ sβ1 in order to
prove Proposition 2.9 and therefore close the bootstrap argument.

• On the zone Y ≥ Cs1/4 for some large enough constant C, which corresponds to ψ &
s3/4, we construct sub and super solutions for U (or rather, for W ) by using maximum
principle arguments. Note that this requires to have a good control of W on the lower
boundary of that zone, i.e. on the line ψ = C ′s3/4. This is achieved thanks to the
pointwise control coming from the bound on E1.

Let us start with the following Lemma:

Lemma 3.4. Assume that U satisfies the assumptions of Lemma 3.2 and that

E1(s) ≤ C1s
−13/4 ∀s ∈ [s0, s1],

where E1 is defined in Proposition 2.9.
Let c > 0 be arbitrary. Then for all Y ∈ [0, cs1/4], provided s0 is large enough (depending

on β1,m1 and c),

UY Y (s, Y ) = 1− 12a4bY
2 +O(s−13/8Y

5+a
2 (1 + Y )),

U(s, Y ) = Y +
Y 2

2
− a4bY

4 +O(s−13/8Y
9+a
2 (1 + Y )).

As a consequence, if s0 is large enough (depending on β1,m1, c and C1),

UY Y (s, Y ) ≥ 1− 1

2
bY 2 ∀Y ∈ [0, cs1/4].

Proof. We recall that

E1(s) =

∫ ∞
0

(
∂2
Y LUV

)2
w1,

with w1 = Y −a(1+s−β1Y )−m1 . Therefore, choosing s0 sufficiently large (depending on β1,m1

and c), we have, for all Y ∈ [0, cs1/4],

w1 ≥ Y −a
(

1 + cs
1
4
−β1

0

)−m1

≥ 1

2
Y −a.

Using a simple Cauchy-Schwartz inequality, it follows that

|∂Y LUV (s, Y )| =
∣∣∣∣∫ Y

0
∂2
Y LUV

∣∣∣∣ ≤ √2Y
1+a
2 E1(s)1/2 ∀s ∈ [s0, s1], ∀Y ∈ [0, cs1/4].

Integrating twice, we obtain estimates on LUV and
∫ Y

0 LUV .
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Now

∂2
Y V = LULUV = ULUV − UY

∫ Y

0
LUV.

Using (3.5), we infer that

|∂2
Y V | ≤ C̄(1 + Y )Y

5+a
2 E

1/2
1 ,

where C̄ is an explicit and computable constant. Therefore

|V | ≤ C̄C1/2
1 (1 + Y )Y

9+a
2 s−13/8 ∀Y ∈ [0, cs1/4].

Writing U = Uapp + V and recalling the definition of Uapp, we notice that Uapp = Y +
Y 2/2 − a4bY

4 + O(s−2Y 7 + s−3(Y 10 + Y 11)) for Y ≤ cs1/4, and we obtain the estimate
announced in the statement of the Lemma. Notice that the remainder terms in Uapp (namely

O(s−2Y 7 +s−3(Y 10 +Y 11))) are smaller than (1 +Y )Y
9+a
2 s−13/8 in the region Y ≤ cs1/4.

Let us now deduce from the above Lemma an asymptotic expansion of W for 1� ψ . s3/4.
Indeed, a precise pointwise estimate on W is necessary in order to build sub and super
solutions.

By definition of W and ψ, we have, in terms of Y ,

W = Y 2 + Y 3 +
Y 4

4
− a4bY

6 +O(s−1Y 5 + s−13/8Y
15+a

2 )

=
Y 4

4

(
1 + 4Y −1 + 4Y −2 − 4a4bY

2 +O(s−1Y + s−13/8Y
7+a
2 )
)

ψ =
1

6
Y 3

(
1 + 3Y −1 − 6

5
a4bY

2 +O(s−13/8Y
7+a
2 )

)
.

Above, the notation A = O(B) means the following: there exists a constant C, depending only
on C1, and there exists S0 > 0 depending on c, C1,M2, β1,m1 such that for all s ≥ s0 ≥ S0,
for all Y ∈ [1, cs1/4], |A| ≤ CB.

It follows that

W (s, ψ) =
(6ψ)4/3

4

(
1 + 4Y −1 + 4Y −2 − 4a4b̃Y

2 +O(s−1Y + s−13/8Y
7+a
2 )
)

×
(

1 + 3Y −1 − 6

5
a4bY

2 +O(s−13/8Y
7+a
2 )

)−4/3

.

Performing an asymptotic expansion of the right-hand side for 1� Y . s1/4, we find that

W (s, ψ) =
(6ψ)4/3

4

(
1 + 2Y −2 − 12

5
a4bY

2 +O(s−2Y 5 + s−13/8Y
5+a
2 + Y −3)

)
.

Since Y ∼ (6ψ)1/3, we obtain eventually, for 1� ψ . s3/4,

W (s, ψ) =
(6ψ)4/3

4

(
1 + 2(6ψ)−2/3 − 12

5
a4b(6ψ)2/3 +O(s−1ψ1/3 + s−13/8ψ

7+a
6 + ψ−1)

)
.

(3.6)
We are now ready to construct a sub-solution for W beyond cs1/4, for some constant c > 0

large but fixed, that will be determined later on. To that end, we introduce a regularized
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modulation rate b̃, that has the same asymptotic behavior as b, but whose role is to remove
some time oscillations. More precisely, define b̃ by the ODE

b̃s + bb̃ = 0, b̃|s=s0 =
1

s0
. (3.7)

We then have the following result (see Appendix B for a proof):

Lemma 3.5. Assume that there exist constants J > 0, and ε > 0 such that for all s ∈ [s0, s1]
such that for all s ∈ [s0, s1] ∫ s1

s0

∣∣bs + b2
∣∣2 s13/4ds ≤ J,

1− ε
s
≤ b(s) ≤ 1 + ε

s
.

(3.8)

Then if s0 is large enough (depending on K and ε), for all s ≥ s0,

1− 2ε

s
≤ b̃(s) ≤ 1 + 2ε

s
.

We then define our subsolution and super-solutions in the following way:

Lemma 3.6. Assume that:

• There exist constants J > 0, η ∈ (0, 1) and ε > 0 such that (3.8) is satisfied;

• U satisfies the assumptions of Lemma 3.2;

• There exists a constant M0 such that

UY Y (s0)− 1 ≥ −M0s
−1
0 Y 2 ∀Y ≥ 0 (3.9)

and such that limY→∞ U(s0, Y ) ≤M0s0;

• E1(s) ≤ C1s
−13/4 for all s ∈ [s0, s1].

Then there exist a universal constant C̄ and a constant A0, depending only on M0, such
that the following properties are satisfied:
• Sub-solution: For A− > 0 define2

W (s, ψ) :=
(6ψ)4/3

4
−A−ψ7/3b̃

5
4 ∀s ∈ [s0, s1], ∀ψ ∈

[
C−b̃

−3/4, C+b̃
− 5

4

]
.

If A− ≥ A0, C− ≥ C̄ and if s0 is large enough, then

W (s, ψ) ≤W (s, ψ) ∀s ∈ [s0, s1], ψ ≥ C−b̃−3/4.

• Super-solution: For A+ > 0, define

W̄ (s, ψ) :=
(6ψ)4/3

4
+A+ψ

10/3b̃2 ∀s ∈ [s0, s1], ∀ψ ≥ C−b̃−3/4.

If A− ≥ A0, C− ≥ C̄ and if s0 is large enough, then

W (s, ψ) ≤ W̄ (s, ψ) ∀s ∈ [s0, s1], ψ ≥ C−b̃−3/4.

The proof of Lemma 3.6 is postponed to the Appendix.

2The constant C+ is such that W (s, C+b̃
− 5

4 ) = 0. It can be determined explicitely, depending on A−;
however its precise value is irrelevant.
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3.3 Refined lower bound on ∂Y YU

Lemma 3.6 allowed us to extend the lower bound on W coming from the estimation of E1

beyond ψ ' s3/4. Thanks to this extension, we now construct a sub-solution for UY Y − 1 (or
rather, for the function F introduced in Lemma 3.2). Eventually, the lower bound on UY Y −1
will yield a finer lower bound on U .

Lemma 3.7. Assume that the hypotheses of Lemma 3.6 are satisfied. Then, setting M2 :=
max(M0, M̄) for some universal constant M̄ , there exists a constant c > 0 such that

UY Y − 1 ≥ −M2bY
2 ∀Y ∈ [0, cs1/3].

The proof is postponed to the Appendix.
Putting together the results of this section, we obtain Proposition 2.16.

4 Main tools for the energy estimates

This section is devoted to the derivation of several independent intermediate results which
play an important role in the proof of energy estimates. We first prove the result on the
decomposition of the diffusion term and on the remainder term, namely Lemma 2.6. We then
turn to the commutator Lemma 2.8. We study the structure of the diffusion term (see Lemma
4.7). Eventually, we state some estimates allowing to perform a systematic treatment of some
remainder terms.

For the sake of brevity, we adopt the following notation, which we will use extensively
in the next two sections: for any α > 0, and for quantities A and B that depend on s, we
say that A = Oα(B) if there exists a constant C and a function Q = Q(s, Y ) with at most
polynomial growth in s and Y , such that

|A(s, Y )| ≤ C|B(s, Y )| for Y ≤ sα,
|A(s, Y )| ≤ Q(s, Y ) for Y ≥ sα.

(4.1)

This notation will be useful because we work with weights of the form w(s, Y ) = Y −a(1 +
s−βY )−m, where m is an arbitrarily large integer. Therefore, the contribution of any function
having at most polynomial growth in s and Y can be made as small as desired on the set
Y ≥ sα, in the following sense: if α > β, for any integers n, P ∈ N, if m is large enough
(depending on α, β, n and P ),∫ ∞

sα
(sn + Y n)w(s, Y ) dY ≤ s−P .

In other words, when we estimate functions in L2(w), their behavior for Y � sβ is unimpor-
tant, as long as these functions are polynomially bounded (with an explicit and computable
bound).

4.1 Proof of Lemma 2.6

Since Uapp is essentially a polynomial in b and Y (at least in the zone Y . s2/7), the com-
putation of the transport term ∂sU

app − bUapp + bY/2∂Y U
app is straightforward. Difficulties
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stem from L−1
U (∂Y Y U

app − 1), which is also present in the diffusion term D. Hence we start
with a decomposition of the diffusion term

D := L−1
U (∂Y Y U − 1),

which will be useful in other occurrences. Writing U = Uapp + V , we decompose D into four
parts:

• the biggest term, which we compute explicitly, and which is equal to −b/2Y . This term
comes from Uapp.

• a second order term LUV ;

• a first order term b
2L
−1
U LV Y ;

• additional error terms coming from Uapp, which we will treat as perturbations in all
occurrences.

Our precise result concerning the diffusion term is the following:

Lemma 4.1. We recall that D = L−1
U (∂Y Y U − 1). Then

D = − b
2
Y + LUV +

b

2
L−1
U LV Y

+L−1
U

(((
5

4
a7 − 90a10

)
b3Y 8 − 110a11b

3Y 9 + 2a10b
4Y 11 +

9

4
a11b

4Y 12

)
χ

(
Y

s2/7

))
+L−1

U

(
P (s, Y )(1− χ̄)

(
Y

s2/7

))
= − b

2
Y +DNL + D̃

where χ, χ̄ ∈ C∞0 (R) are cut-off functions such that χ, χ̄ ≡ 1 in a neighbourhood of zero, and
P is a function that has at most polynomial growth in s and Y .

We have set

DNL := LUV +
b

2
L−1
U LV Y,

D̃ := L−1
U

(((
5

4
a7 − 90a10

)
b3Y 8 − 110a11b

3Y 9 + 2a10b
4Y 11 +

9

4
a11b

4Y 12

)
χ

(
Y

s2/7

))
+ L−1

U

(
P (s, Y )(1− χ̄)

(
Y

s2/7

))
.

Remark 4.2. The decomposition of Lemma 4.1 will be used in two different occurrences:

• First, we will use it to decompose the total diffusion term D into a dissipation oper-
ator acting on the error term V , namely LUV , and remainder terms, namely − b

2Y ,
b
2L
−1
U (LV Y ) and D̃. As we derive an equation on V , the diffusion term LUV will be

kept in the left-hand side of the equation, while the remainder terms will be added to the
terms stemming from Uapp in the left-hand side.
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• Additionally, D will appear in the commutator of LU with ∂s + b
2Y ∂Y . We will then

isolate the term in D which bears the highest number of derivatives on V , namely LUV ,
which we will need to estimate separately in some instances.

Proof. Throughout the proof, since we are not interested in the specific definitions of the
functions P, χ, χ̄, we keep uniform notations for these three objects, even though they are
used to group together different terms.

Recalling the definition of Uapp (2.11), we have

D = L−1
U (∂Y Y U − 1) = L−1

U (∂Y Y U
app − 1) + LUV

= −L−1
U

(
(12a4bY

2 + 42a7b
2Y 5 + 90a10b

3Y 8 + 110a11b
3Y 9)χ

(
Y

s2/7

))
+ L−1

U (F ′′(
√
bY )− 1)

+ L−1
U

(
(Y − a4bY

4 − a7b
2Y 7 − a10b

3Y 10 − a11b
3Y 11)

1

s4/7
χ′′
(
Y

s2/7

))
+ 2L−1

U

(
(1− 4a4bY

3 − 7a7b
2Y 6 − 10a10b

3Y 9 − 11a11b
3Y 10)χ′

(
Y

s2/7

))
+ LUV.

We now examine each of the terms in the right-hand side separately.

• The term F ′′(
√
bY ) − 1 and all the terms involving at least one derivative of χ are

identically zero up to Y ∼ s2/7. Therefore they can all be written as P (s, Y )(1 −
χ̄)
(

Y
s2/7

)
.

• We therefore focus on

L−1
U

(
(12a4bY

2 + 42a7b
2Y 5 + 90a10b

3Y 8 + 110a11b
3Y 9)χ

(
Y

s2/7

))
,

and in particular on the value of this term on Y ≤ s2/7. Indeed, all values for Y ≥ s2/7

can be written as L−1
U (P (s, Y )(1− χ̄)

(
Y
s2/7

)
).

We recall that 12a4 = 1/4, and that 42a7 = a4/2. We compute

LU (Y ) = UY − UY
Y 2

2

= UappY − Uapp
Y

Y 2

2
+ LV Y

=

(
Y 2

2
+ a4bY

5 +
5

2
a7b

2Y 8 + 4a10b
3Y 11 +

9

2
a11b

3Y 12

)
χ

(
Y

s2/7

)
(4.2)

+ LV Y + P (s, Y )(1− χ̄)

(
Y

s2/7

)
.
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Multiplying (4.2) by b/2 and applying L−1
U , we deduce that

L−1
U

(
(12a4bY

2 + 42a7b
2Y 5 + 90a10b

3Y 8 + 110a11b
3Y 9)χ

(
Y

s2/7

))
=

b

2
Y − b

2
L−1
U LV Y

+ L−1
U

((
(90a10 −

5

4
a7)b3Y 8 + 110a11b

3Y 9 − 2a10b
4Y 11 − 9

4
a11b

4Y 12

)
χ

(
Y

s2/7

))
+ L−1

U

(
P (s, Y )(1− χ̄)

(
Y

s2/7

))
.

Gathering all the terms, we obtain the decomposition announced in the Lemma.

Corollary 4.3. Assume that there exist constants M, c such that

|∂Y Y U − 1| ≤MbY 2 ∀Y ∈ [0, cs1/3], ∀s ∈ [s0, s1],

1

2s
≤ b ≤ 2

s
,

|UY Y | ≤M ∀Y > 0, ∀s ∈ [s0, s1].

Then
D = O1/3(bY ), ∂YD = ∂Y LUV +O2/7(b).

Proof. Note first that under these assumptions,

Y +
Y 2

2
− M

12
bY 4 ≤ U(s, Y ) ≤ Y +

Y 2

2
+
M

12
bY 4,

1 + Y − M

4
bY 3 ≤ UY (s, Y ) ≤ 1 + Y +

M

4
bY 3,

∀Y ∈ [0, cs1/3].

The estimate on D follows simply from writing

D = UY

∫ Y

0

∂Y Y U − 1

U2
+
∂Y Y U − 1

U

and using the bounds on ∂Y Y U,UY and U . As for the second one, notice that

∂YD = ∂Y LUV −
b

2
+ ∂Y L

−1
U Z,

where

Z =
b

2
(Y V − Y 2

2
VY )

+

((
5

4
a7 − 90a10

)
b3Y 8 − 110a11b

3Y 9 + 2a10b
4Y 11 +

9

4
a11b

4Y 12

)
χ

(
Y

s2/7

)
+P (s, Y )(1− χ̄)

(
Y

s2/7

)
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where P has at most polynomial growth in s and Y . The estimate then follows from the
bounds

V = O2/7(bY 4), VY = O2/7(bY 3), VY Y = O2/7(bY 2)

and from the formula giving ∂Y L
−1
U in Lemma A.1.

We deduce that V is a solution of equation (2.16), i.e.

∂sV − bV +
b

2
Y ∂Y V − LUV = R,

with a remainder

R := −
(
∂sU

app − bUapp +
b

2
Y ∂Y U

app

)
− b

2
Y

+ L−1
U

(((
5

4
a7 − 90a10

)
b3Y 8 − 110a11b

3Y 9 + 2a10b
4Y 11 +

9

4
a11b

4Y 12

)
χ

(
Y

s2/7

))
+

b

2
L−1
U (LV Y )

+ L−1
U

(
P (s, Y )(1− χ̄)

(
Y

s2/7

))
,

which we now compute.

Lemma 4.4 (Computation of R). The remainder term R can be written as

R = (bs + b2)(a4Y
4 + 2a7bY

7 + 3a10b
2Y 10 + 3a11b

2Y 11)χ

(
Y

s2/7

)
+

(
a10b

4Y 10 + 3a11b
4/2Y 11

)
χ

(
Y

s2/7

)
+

b

2
L−1
U (LV Y ) +

1

2
b3a7L

−1
U

((
Y 7V − VY

Y 8

8

)
χ

(
Y

s2/7

))
+ L−1

U

[(
d11b

4Y 11 + d12b
5Y 12 + d14b

5Y 14 + d17b
6Y 17 + d18b

6Y 18
)
χ

(
Y

s2/7

)]
+ L−1

U

(
P (s, Y )(1− χ̄)

(
Y

s2/7

))
,

for some explicit constants d11, d12, d14, d17, d18 ∈ R .

Remark 4.5. Notice that this remainder term is essentially (up to a small error depending
on V )

L−1
U

(
Uapp∂sU

app − ∂Y Uapp

∫ Y

0
Uapp − 2b(Uapp)2 +

3b

2
∂Y U

app

∫ Y

0
Uapp − ∂Y Y Uapp + 1

)
,

and therefore has been computed (up to the application of the operator L−1
U ) when the approx-

imate solution Uapp was defined. However, it is actually easier to do over the computations
rather than to apply L−1

U to the remainder that has already been computed.

37



Proof. We start with

∂sU
app − bUapp +

b

2
Y ∂Y U

app +
b

2
Y

= −a4

(
bs + b2

)
Y 4χ

(
Y

s2/7

)
+ χ

(
Y

s2/7

)[
−a7b

(
2bs +

5b2

2

)
Y 7 − a10Y

10(3bsb
2 + 4b4)− a11Y

11(3bsb
2 +

9

2
b4)

]
+ χ′

(
Y

s2/7

)
Y

s2/7

(
b

2
− 2/7

s

)[
Y − a4bY

4 − a7b
2Y 7 − a10b

3Y 10 − a11b
3Y 11

]
+ b−2

(
bs + b2

)(1

2
ZΘ′(Z)−Θ(Z)

)
|Z=
√
bY

+
b

2
Y (1− χ)

(
Y

s2/7

)
.

The last three terms in the right-hand side are supported in Y ≥ c1s
2/7. They can be written

as a linear combination of terms of the type P (s, Y )(1− χ̄)
(

Y
s2/7

)
.

We thus focus on the second term, which we group with the other terms in the definition
of R. We first isolate the factor (bs + b2) in Y 7, Y 10, Y 11, which we group with the first term.
There remains to study

1

2
a7b

3Y 7χ

(
Y

s2/7

)
+ b3L−1

U

(((
5

4
a7 − 90a10

)
Y 8 − 110a11Y

9 + 2a10bY
11 +

9

4
a11bY

12

)
χ

(
Y

s2/7

))
.

We use the same trick as in Lemma 4.1 and we write

Y 7χ

(
Y

s2/7

)
= L−1

U

(
(LUapp + LV )Y 7χ

(
Y

s2/7

))
Notice that LV Y

7 = V Y 7 − VY Y
8/8. On the other hand, a lengthy but straightforward

computation yields

LUappY 7 =
7

8
Y 8 +

3

8
Y 9 − a4

2
bY 11 − a7

8
b2Y 14 +

a10

4
b3Y 17 +

3a11

8
b3Y 18.

Gathering all the terms and recalling the values of a10, a11 (2.10), we obtain the decomposition
announced in the Lemma.

4.2 Proof of the commutator result (Lemma 2.8)

We compute separately [L−1
U , ∂s] and [L−1

U , Y ∂Y ], and then check that cancellations occur
between the two commutators.
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Using the formulas in Lemma A.1 in the Appendix, we have

[L−1
U , Y ∂Y ]W =

(
U

∫ Y

0

Y ∂YW

U2

)
Y

− Y ∂Y L−1
U W

= UY

∫ Y

0

Y ∂YW

U2
+
Y ∂YW

U
− Y

(
∂2
Y U

∫ Y

0

W

U2
+
∂YW

U

)
= UY

∫ Y

0

Y ∂YW

U2
− Y ∂2

Y U

∫ Y

0

W

U2
.

We introduce the quantity
Γ := Y UY − 2U,

so that ΓY = Y ∂2
Y U − UY . Then

[L−1
U , Y ∂Y ]W = −ΓY

∫ Y

0

W

U2
+ UY

∫ Y

0

∂

∂Y

(
W

Y

)
Y 2

U2

= −ΓY

∫ Y

0

W

U2
+
Y UY
U2

W − 2UY

∫ Y

0
W
U − Y UY

U3

= 2L−1
U W − ΓY

∫ Y

0

W

U2
+

Γ

U2
W + 2UY

∫ Y

0
W

Γ

U3
. (4.3)

We now address the commutator with ∂s. To that end, we recall that U satisfies (2.15),
so that, with the previous definitions of f and D,

Us = − b
2

Γ +D. (4.4)

It follows that

[L−1
U , ∂s]W = −

(
Us

∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
Us

)
Y

=
b

2

(
Γ

∫ Y

0

W

U2

)
Y

− b
(
U

∫ Y

0

W

U3
Γ

)
Y

−
(
D
∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
D
)
Y

.

Using (4.3), we infer that[
L−1
U , ∂s +

b

2
Y ∂Y

]
W

= bL−1
U W − b

2
ΓY

∫ Y

0

W

U2
+
b

2

Γ

U2
W + bUY

∫ Y

0
W

Γ

U3

+
b

2

(
Γ

∫ Y

0

W

U2

)
Y

− b
(
U

∫ Y

0

W

U3
Γ

)
Y

−
(
D
∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
D
)
Y

= bL−1
U W −

(
D
∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
D
)
Y

.

This completes the proof of the commutator Lemma.
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4.3 Structure of the diffusion term

We will use in several instances the following weighted Hardy inequality (see [24]):

Lemma 4.6. Let p1, p2 be measurable functions such that p1, p2 > 0 almost everywhere. Let
0 < R ≤ ∞ and let

CH := 4 sup
0<r<R

(∫ R

r
p1

)(∫ r

0

1

p2

)
.

Assume that CH < +∞. Then for any function f ∈ H1
loc(R+) such that f(0) = 0, there holds∫ R

0
f2 p1 ≤ CH

∫ R

0
(∂Y f)2p2.

In this paragraph, we state and prove the coercivity inequality that will be used to control
(E1, D1) and (E2, D2), up to small remainder terms.

Lemma 4.7. Let s0 < s1, and let δ > 0 be arbitrary. Assume that U is increasing in Y for
all s ≥ s0, with U|Y=0 = 0, ∂Y U|Y=0 = 1, and that there exists constants M2, c such that

1−M2bY
2 ≤ ∂Y Y U ≤ 1 ∀Y ∈ [0, cs1/3], ∀s ∈ [s0, s1],

−M2 ≤ ∂Y Y U ≤ 1 ∀Y ≥ cs1/3 ∀s ∈ [s0, s1].
(4.5)

Assume furthermore that
1

2s
≤ b ≤ 2

s
∀s ∈ [s0, s1].

For a > 0, β ∈]1/4, 2/7[,m ∈ N, define the weight w(s, Y ) := Y −a(1 + s−βY )−m.
There exist universal constants ā, c̄ > 0, independent of δ, s, β,m, such that if s0 is large

enough (depending on δ, β, a), then for all f ∈W 1,∞(R+) such that ∂Y f = O(Y ) for Y � 1,
for all 0 < a ≤ ā, for any cut-off function χ ∈ C∞0 (R+) such that χ ≡ 1 in [0, 1],

−
∫ ∞

0

(
∂Y Y L

−1
U f

)
f w ≥ c̄

(∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

)
− δb

∫ ∞
0

f2w

−C
∫ ∞
cs1/3

U

(∫ Y

0

(
1− χ

(
Y

s1/4

))
f

U2

)2

w.

Remark 4.8. Note that the estimate we prove here is not as strong as one would like to
have. Indeed, we only control f and ∂Y f , and not L−1

U f . However, another way of writing
the inequality, setting h = L−1

U f , is

−
∫ ∞

0
∂Y Y h LUh w ≥ c̄

∫ ∞
0

(∂Y (LUh))2

U
w +

∫ ∞
0

(LUh)2

U2
w + remainder terms.

But notice that if h = UY , then LUh = 0 while h 6= 0, ∂Y h 6= 0. Hence it is hopeless to control
h and ∂Y h by the left-hand side of the above inequality without any further assumption that
would discard the case h = UY .

40



Remark 4.9. The last term in the right-hand side of the inequality, namely

C

∫ ∞
cs1/3

U

(∫ Y

0

(
1− χ

(
Y

s1/4

))
f

U2

)2

w

will be handled in Lemma 4.15. Heuristically, since it is supported in a zone where w is
strongly decaying, it can be made “as small as desired”, i.e. O(s−P ) for any P > 0, provided
m is chosen sufficiently large (depending on P and β).

Remark 4.10. Notice that under the assumptions of the Lemma, there exists a constant C
such that for 1 ≤ Y ≤ cs1/3,

C−1

Y 2
≤ 1

U
≤ C

Y 2
,

C−2

Y 4
≤ 1

U2
≤ C2

Y 4
.

Hence, for 1 ≤ Y ≤ cs1/3, the two integrals in the diffusion term∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

have the same scaling.
However, if Y ≤ 1, then

C−1

Y
≤ 1

U
≤ C

Y
,

C−2

Y 2
≤ 1

U2
≤ C2

Y 2
.

Hence for Y ≤ 1, the control given by the first integral is stronger. Indeed, the Hardy inequality
implies that ∫ 1

0

(∂Y f)2

Y 1+a
≥ C

∫ 1

0

f2

Y 3+a
.

Therefore ∫ cs1/3

0

(
(∂Y f)2

U
+
f2

U2

)
w ≥ C

(∫ cs1/3

1

f2

Y 4
w +

∫ 1

0

f2

Y 3+a

)
.

We will often use this control close to zero when we deal with some non-local terms.

Proof of Lemma 4.7. Starting with a simple integration by parts,

−
∫ ∞

0

(
∂Y Y L

−1
U f

)
f w =

∫ ∞
0

(
∂Y L

−1
U f

)
(∂Y fw + f∂Y w).

Using the formula in lemma A.1 and integrating by parts once again, we obtain

−
∫ ∞

0

(
∂Y Y L

−1
U f

)
f w =

∫ ∞
0

(∂Y f)2

U
w −

∫ ∞
0

f2

U2
w

+

∫ ∞
0

(UY Y − 1)

(∫ Y

0

f

U2

)
(f∂Y w + ∂Y fw)

+

∫ ∞
0

1

U
∂Y f f∂Y w.
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The first two terms are the main order terms. We now prove the coercivity thanks to a
weighted Hardy inequality for which we compute the constant explicitly. Using the assump-
tions on U , we have

U ≥ Y +
Y 2

2
− M2

12
bY 4 for Y ∈ [0, cs1/3].

Therefore, since U is increasing,

U(s, Y ) ≥ K2

4
s1/2 ∀Y ≥ Ks1/4

provided s0 is sufficiently large. It follows that if K is chosen large enough (depending on δ),∫ ∞
Ks1/4

f2

U2
w ≤ 16

K4
s−1

∫ ∞
Ks1/4

f2w ≤ δb
∫ ∞

0
f2w.

On the set [0,Ks1/4], we use a weighted Hardy inequality (see Lemma 4.6), namely∫ Ks1/4

0

1

U2
f2w ≤ Ca

∫ Ks1/4

0

(∂Y f)2

U
w

where the constant Ca satisfies

Ca ≤ 4 sup
0<r<Ks1/4

(∫ Ks1/4

r

w

U2

)(∫ r

0

U

w

)
.

On the set [0,Ks1/4], we have

µY +
Y 2

2
≤ U ≤ Y +

Y 2

2
with µ = 1− M2

24
K3s−1/4,

and Y −a(1− δ) ≤ w ≤ Y −a

for any δ > 0 provided s0 is sufficiently large. Therefore

Ca ≤
1

1− δ
C̄a,µ,

where

C̄a,µ := 4 sup
r>0

∫ ∞
r

Y −a(
µY + Y 2

2

)2dY

(∫ r

0
Y a

(
Y +

Y 2

2

)
dY

)
.

We then have the following Lemma, which is proved in the Appendix:

Lemma 4.11. There exists universal constants ā > 0, µ0 ∈ (0, 1) such that for all a ∈ (0, ā),
for all µ ∈ (µ0, 1),

Ca,µ ≤
9

10
.

42



Therefore, for any a ∈ (0, ā), provided δ is small enough (say δ < 1/50) and s0 is sufficiently
large,

Ca ≤ 1− 1

20

and thus∫ ∞
0

(∂Y f)2

U
w −

∫ ∞
0

f2

U2
w ≥ 1

40

(∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

)
− δb

∫ ∞
0

f2w. (4.6)

There remains to estimate the two lower order terms, namely∫ ∞
0

1

U
∂Y f f∂Y w and

∫ ∞
0

(UY Y − 1)

(∫ Y

0

f

U2

)
(f∂Y w + ∂Y fw).

For the first lower order term, we distinguish once again between the zones Y ≤ Ks1/4 and
Y ≥ Ks1/4. Using the Cauchy-Schwartz inequality, we have∣∣∣∣∫ ∞

0

1

U
∂Y f f∂Y w

∣∣∣∣ ≤ (∫ ∞
0

(∂Y f)2

U
w

)1/2(∫ ∞
0

f2

U

(∂Y w)2

w

)1/2

.

For Y ≤ Ks1/4, we have, for s0 large enough (depending on a,m, β,K)

|∂Y w| ≤ 2aY −1w.

Using a Hardy inequality, we have∫ Ks1/4

0
f2 1

Y 2U
w ≤ CH

∫ Ks1/4

0

(∂Y f)2

U
w (4.7)

where the constant CH is defined by

CH = 4 sup
0<r<Ks1/4

(∫ Ks1/4

r

1

Y 2U
w

)(∫ r

0
U

1

w

)
.

As above, we have, provided s0 is sufficiently large (depending on m, β, K)

CH ≤ 16 sup
r>0

(∫ ∞
r

1

Y 2+a(Y + Y 2)
dY

)(∫ r

0
Y a(Y + Y 2)dY

)
.

Studying separately the cases r < 1 and r > 1, it can be easily proved that CH is bounded
uniformly in a and s, so that there exists a universal constant C̄ such that for s large enough∫ Ks1/4

0

f2

U

(∂Y w)2

w
≤ C̄a

∫ Ks1/4

0

(∂Y f)2

U
w.

This term is absorbed in the main order diffusion term for a small enough. Now, for Y ≥
Ks1/4, we have

|∂Y w| ≤ (a+m)Y −1w ≤ (a+m)K−1s−1/4w,

and U(s, Y ) ≥ K2

4 s
1/2. As a consequence,∫ ∞
Ks1/4

f2

U

(∂Y w)2

w
≤ 4

(a+m)2

K4
s−1

∫ ∞
0

f2w ≤ δb
∫ ∞

0
f2w
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for K large enough (depending on m, δ). We infer that∣∣∣∣∫ ∞
0

1

U
∂Y f f∂Y w

∣∣∣∣ ≤ C̄a1/2

∫ ∞
0

(∂Y f)2

U
w + δb

∫ ∞
0

f2w. (4.8)

We now address the second lower order term. We focus on the term involving ∂Y fw, since
the one with f∂Y w can be treated with similar ideas combined with the same estimates as
above. Using assumption (4.5) on ∂Y Y U , we have∣∣∣∣∣
∫ cs1/3

0
(UY Y − 1)

(∫ Y

0

f

U2

)
∂Y fw

∣∣∣∣∣
≤M2b

(∫ cs1/3

0

(∂Y f)2

U
w

)1/2(∫ cs1/3

0
Y 4

(∫ Y

0

f

U2

)2

Uw

)1/2

.

We separate the last integral in the right-hand side into three zones: Y ≤ 1, 1 ≤ Y ≤ Ks1/4

for some large constant K, and Y ≥ Ks1/4. Notice that if Y ≤ Ks1/4, then

w(s, Y ) ≥ (1 +Ks
1/4−β
0 )−mY −a ≥ 1

2
Y −a

for s0 large enough (depending on K, m and β). For Y ≤ 1, we have, using (4.7)∣∣∣∣∫ Y

0

f

U2

∣∣∣∣ ≤ (∫ Y

0

f2

Y 2+aU

)1/2(∫ Y

0

Y 2+a

U3

)
≤ C̄

a1/2

(∫ 1

0

(∂Y f)2

U
w

)1/2

.

And if 1 ≤ Y ≤ Ks1/4, using a simple Cauchy-Schwartz inequality,∫ Y

0

|f |
U2
≤ C̄

a1/2

(∫ 1

0

(∂Y f)2

U
w

)1/2

+ C̄

(∫ Y

1

f2

U2
w

)1/2

.

Therefore, we have∫ Ks1/4

0
Y 4

(∫ Y

0

f

U2

)2

Uw ≤ C̄

a

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

] ∫ Ks1/4

0
Y 4−aU

≤ C̄K7

a

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

]
s(7−a)/4.

It follows that

M2b

(∫ cs1/3

0

(∂Y f)2

U
w

)1/2(∫ Ks1/4

0
Y 4

(∫ Y

0

f

U2

)2

Uw

)1/2

≤ C̄M2
K7/2

a1/2
s−

1+a
8

(∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

)
.
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Therefore, for s0 sufficiently large (depending on K and a), this term can be absorbed in the
main order diffusion term. On the other hand, using the same estimates as above,∫ cs1/3

Ks1/4
Y 4

(∫ Y

0

f

U2

)2

Uw

≤ C

a

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

] ∫ ∞
Ks1/4

Y 4Uw +

∫ cs1/3

Ks1/4
Y 4U

(∫ Y

Ks1/4

|f |
U2

)2

w

≤ Ca,ms
(7−a)β

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

]
+ Cm,β(s)

∫ cs1/3

Ks1/4

f2

U4
w

where

Cm,β(s) = 4 sup
r∈(Ks1/4,cs1/3)

(∫ cs1/3

r
Y 4Uw

)(∫ r

Ks1/4

1

w

)

≤ 8s8β sup

r∈(Ks
1
4−β ,cs

1
3−β)

∫ cs
1
3−β

r
Z6−a(1 + Z)−m dZ

(∫ r

Ks
1
4−β

Za(1 + Z)m dZ

)
≤ Cms

8βs8( 1
3
−β) ≤ Cms8/3.

It follows that, if β < 2/7, for s0 sufficiently large,

M2b

(∫ cs1/3

0

(∂Y f)2

U
w

)1/2(∫ cs1/3

Ks1/4
Y 4

(∫ Y

0

f

U2

)2

Uw

)1/2

≤ Ca,mM2s
(7−a)β

2
−1

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

]
+δ

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

]
+Cδ,mb

2s8/3K−8s−2

∫ ∞
0

f2w

≤ δ

[∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w + b

∫ ∞
0

f2w

]
.

There remains to consider the part of the second lower order term for Y ≥ cs1/3. Using
the cut-off function χ, we have∣∣∣∣∫ ∞

cs1/3
(UY Y − 1)

(∫ Y

0

f

U2

)
∂Y fw

∣∣∣∣
≤ δ

∫ ∞
0

(∂Y f)2

U
w +

(M2 + 1)2

4δ

∫ ∞
cs1/3

U

(∫ Y

0

(
1− χ

(
Y

s1/4

)
+ χ

(
Y

s1/4

))
f

U2

)2

w

≤ δ

∫ ∞
0

(∂Y f)2

U
w +

C

δ

(∫ Ks1/4

0

|f |
U2

)2 ∫ ∞
cs1/3

Uw

+
C

δ

∫ ∞
cs1/3

U

(∫ Y

0

(
1− χ

(
Y

s1/4

))
f

U2

)2

w.
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The second term in the right-hand side is estimated as above. Notice that for any P > 0,∫ ∞
cs1/3

Uw ≤
∫ ∞
cs1/3

(
Y +

Y 2

2

)
w ≤ s−P

provided m is sufficiently large (depending on β and P ). Therefore we obtain, for any δ > 0,
provided s ≥ s0 with s0 sufficiently large,∣∣∣∣∫ ∞

0
(UY Y − 1)

(∫ Y

0

f

U2

)
(f∂Y w + ∂Y fw)

∣∣∣∣
≤ δ

(∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w + b

∫ ∞
0

f2w

)
+
C

δ

∫ ∞
cs1/3

U

(∫ Y

0

(
1− χ

(
Y

s1/4

))
f

U2

)2

w.

(4.9)

Gathering (4.6), (4.8) and (4.9), we conclude that there exists a positive universal constant
c̄ (say for instance c̄ = 1/50), and ā > 0, δ̄ > 0, such that for all 0 < a < ā and for all
β ∈ (1/4, 2/7), m ≥ 1, δ ∈ (0, δ̄), there exists s0 > 0 such that if s ≥ s0, then∫ ∞

0
(∂2
Y L
−1
U f)fw ≥ c̄

(∫ ∞
0

(∂Y f)2

U
w +

∫ ∞
0

f2

U2
w

)
− δb

∫ ∞
0

f2w

− C
∫ ∞
cs1/3

U

(∫ Y

0

(
1− χ

(
Y

s1/4

))
f

U2

)2

w. (4.10)

This completes the proof of Lemma 4.7.

4.4 Structure of the commutator

We record here some formulas and a few estimates that will be useful in the estimation of
commutator terms. We recall that D = L−1

U (∂Y Y U−1) = LUV +L−1
U (∂Y Y U

app−1), and that
a decomposition of ∂Y Y U

app − 1 is given in Lemma 4.1. We also recall that the commutator
C is defined by C = [L−1

U , ∂s + b/2Y ∂Y ]− bL−1
U , and that according to Lemma 2.8,

C[W ] = −
(
D
∫ Y

0

W

U2

)
Y

+ 2

(
U

∫ Y

0

W

U3
D
)
Y

.

Lemma 4.12. Let W ∈ C2(R+) be arbitrary and such that W = O(Y 2) for Y � 1. Then

C[W ] = 2L−1
U

(
D
U
W

)
−
(
D
U

∫ Y

0
L−1
U W

)
Y

,

∂Y Y C[W ] =
D
U
∂2
Y L
−1
U W + ∂Y

D
U

[
∂Y L

−1
U W − 2

UY
U2

W − 4UY Y

∫ Y

0

W

U2

]
+∂2

Y

D
U

[
−3L−1

U W + 2
W

U

]
− ∂3

Y

D
U

∫ Y

0
L−1
U W

+2∂3
Y U

∫ Y

0

WD
U3
− 2∂3

Y U
D
U

∫ Y

0

W

U2
.
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Remark 4.13. In the estimations of E1 and E2, we will use the form of ∂Y Y C[W ] with
W = ∂2

Y V and W = ∂2
Y LUV respectively. Notice in particular that using Corollary 4.3, for

any weight w with a strong polynomial decay for Y ≥ sβ for some β ∈ [1/4, 2/7],∣∣∣∣∫ ∞
0

D
U

(
∂2
Y L
−1
U W

) (
∂2
Y L
−1
U W

)
w

∣∣∣∣
≤ Cb

∫ ∞
0

1

1 + Y

(
∂2
Y L
−1
U W

)2
w +

∥∥∥∥DU
∥∥∥∥
L∞(Y &s1/3)

∫ ∞
cs1/3

(
∂2
Y L
−1
U W

)2
w.

In order to control the tail of the integral, we will use lower order estimates. More precisely,
we will use a control of ∂YW in L2

s,Y (with appropriate weights in s and Y ). We refer to
Lemma 4.15 for details.

Proof. The first formula follows easily by recalling the definition of L−1
U and noticing that∫ Y

0

W

U2
=

1

U

∫ Y

0
L−1
U W.

The second formula is a consequence of Lemma A.1. Notice indeed that

∂2
Y L
−1
U

(
D
U
W

)
= ∂3

Y U

∫ Y

0

DW
U3

+ ∂2
Y U
DW
U3
− UY
U2

∂Y

(
DW
U

)
+

1

U
∂2
Y

(
DW
U

)
= ∂3

Y U

∫ Y

0

DW
U3

+
D
U
∂2
YW − ∂3

Y U
D
U

∫ Y

0

W

U2

−UY
U2

∂Y

(
D
U

)
W +

2

U
∂Y

(
D
U

)
∂YW +

1

U
∂2
Y

(
D
U

)
W.

Then, writing
∂YW

U
= ∂Y L

−1
U W − UY Y

∫ Y

0

W

U2

and gathering the terms, we obtain the expression announced in Lemma 4.12

4.5 Useful inequalities

4.5.1 Evaluation of some remainder terms

In equations (2.19), (2.20), several terms behave heuristically like

b
Y

U
f,

where f = LUV in (2.19) and f = L2
UV in (2.20). This is for instance the case for the main

order commutator term in (2.19) (see Remark 4.13) or for the remainder term

b

2
LUL−1

U

(
Y V − Y 2

2
VY

)
.
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(Recall that L−1
U behaves like a division by U and ∂Y like a division by Y .) Therefore it is

useful to have a systematic way to estimate such remainder terms. To that end, let us first
recall that the L∞ estimates given by Proposition 2.16 ensure that

Y +
Y 2

2
− M2

12
bY 4 ≤ U ≤ Y +

Y 2

2
∀Y ∈ [0, cs1/3],

so that there exist constants C, c > 0 such that

Y

U
≤ C

1 + Y
∀Y ≤ cs1/3.

We then have the following result:

Lemma 4.14. Assume that
1

2s
≤ b ≤ 2

s
∀s ∈ [s0, s1].

Define the weight w(s, Y ) := Y −a(1 + s−βY )−m for some a > 0,m > 1, β > 1/4.
Let δ > 0 arbitrary. Then there exists s0 > 0, depending on δ, β,m, such that the following

properties holds: For all f ∈ L∞(R+) such that f = O(Y ) for Y � 1, for all s ≥ s0,

b

∫ ∞
0

1

1 + Y
f2w ≤ δb

∫ ∞
0

f2w + δ

∫ ∞
0

f2

U2
w.

Proof. We split the integral in two, distinguishing between Y ≤ δ−1 and Y ≥ δ−1. First, it is
clear that ∫ ∞

δ−1

1

1 + Y
f2w1 ≤ δ

∫ ∞
δ−1

f2w1.

Thus we focus on the set Y ≤ δ−1. On this set, we have

1

U2
≥ 1

Y 2
(
1 + Y

2

)2 ,
so that

s ≥ 2δ−3(1 + δ−1)⇒ b

1 + Y
≤ δ

U2
∀Y ∈ [0, δ−1].

4.5.2 Control of integral tails

Lemma 4.15. Assume that U satisfies the following assumptions:

U(s, Y ) ≤ Y +
Y 2

2
,

UY ≤ 1 + Y,

|UY Y | ≤ C.

Let p, p0 be positive weights given by

p(s, Y ) = Y −k(1 + s−βY )−m, p0(s, Y ) = Y −k0(1 + s−β0Y )−m0 ,

for some k, k0 ≥ 0, m ≥ m0, β < β0. Let α0 > β0.
Let P > 0 be arbitrary. Then there exists mP ≥ 1 (depending on α0, β, β0, k, k0) such that

if and m0,m−m0 ≥ mP , then for all δ > 0:

48



• For a > 0, for all W ∈W 3,∞ such that W = O(Y 2) for Y � 1,∫ ∞
csα0

(
∂2
Y L
−1
U W

)2
p

≤ δ
∫ ∞

0

(∂3
Y L
−1
U W )2

U
p+

s−P

δ

(∫ ∞
0

(∂YW )2

U
p0 +

∫ ∞
0

W 2p0 + Ca

∫ 1

0

W 2

Y 3+a

)
;

• Let α1 ≤ β, and let χ ∈ C∞0 (R) be a cut-off function such that χ ≡ 1 in a neighbourhood
of zero. Then

∫ ∞
csα0

U

(∫ Y

0
(1− χ)

(
Y

sα1

)
∂2
Y L
−1
U W

U2

)2

p

≤ Cs−P
(∫ ∞

0
W 2p0 +

∫ 1

0

W 2

Y 3+a
+

∫ ∞
0

(∂YW )2

U
p0

)
.

,

Remark 4.16. Notice that a similar estimate also holds for quantities such as∫ ∞
csα0

(
∂3
Y L
−1
U W

) (
∂2
Y L
−1
U W

)
p.

Indeed, the integral above can be transformed after a straightforward integration by parts into
an quantity similar to the one handled in the Lemma (provided p(csα0) = 0, which we can
always assume without loss of generality, up to the addition of a cut-off function.)

Remark 4.17. We will use these estimates in the next section and we will make the following
choices

• α0 = 1/3, α1 = 1/4;

• W = ∂2
Y V , p = w1, p0 = w0 = Y −a(1 + s−β0)−m0, (estimate on E1 from Proposition

2.9);

• W = ∂2
Y LUV , p = w2, p0 = w1 (estimate on E2 from Proposition 2.13).

Proof. Let χ ∈ C∞0 (R) be a non-negative cut-off function such that χ ≡ 1 in ⊂ [−c/2, c/2]
and Supp χ ⊂ [−c, c] . Then∫ ∞

csα0

(
∂2
Y L
−1
U W

)2
p ≤

∫ ∞
0

(1− χ)

(
Y

sα0

)(
∂2
Y L
−1
U W

)2
p

= −
∫ ∞

0
∂Y L

−1
U W ∂Y

(
∂2
Y L
−1
U W (1− χ)

(
Y

sα0

)
p

)
.

We then estimate each term in the right-hand side separately. For instance,∫ ∞
0
|∂Y L−1

U W |
∣∣∂3
Y L
−1
U W

∣∣ (1− χ)

(
Y

sα0

)
p

≤ δ
∫ ∞

0

(∂3
Y L
−1
U W )2

U
p+

1

4δ

∫ ∞
0

(∂Y L
−1
U W )2U(1− χ)

(
Y

sα0

)
p.
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Then, recalling that

|∂Y L−1
U W | ≤

∫ Y

0

|W |
U2

+
|∂YW |
U

,

we infer that∫ ∞
0

(∂Y L
−1
U W )2U(1− χ)

(
Y

sα0

)
p ≤ 2

∫ ∞
csα0

2

(∂YW )2

U
p+

∫ ∞
csα0

2

(∫ Y

0

|W |
U2

)2

Up.

If Y & sα0 , write∫ Y

0

|W |
U2
≤ Ca

(∫ 1

0

W 2

Y 3+a

)1/2

+ C

(∫ Y

0
W 2p0

)1/2(∫ Y

0
p−1

0

)1/2

.

Using the fact that ‖U(s)‖∞ = O(s) together with the assumptions on p and p0, we obtain
the desired result.

As for the other term, we have

−
∫ ∞

0
∂Y L

−1
U W ∂2

Y L
−1
U W ∂Y

(
(1− χ)

(
Y

sα0

)
p

)
=

1

2

∫ ∞
0

(∂Y L
−1
U W )2∂Y Y

(
(1− χ)

(
Y

sα0

)
p

)
≤ Cs−2/3

∫ ∞
csα0/2

(∂Y L
−1
U W )2p,

which is evaluated with the same estimate as above.
As for the second estimate, notice that thanks to the cut-off function χ, we can integrate

by parts without having to deal with boundary terms, so that∫ Y

0
(1− χ)

(
Y

sα1

)
∂2
Y L
−1
U W

U2
= −

∫ Y

0
∂Y L

−1
U W∂Y

[
(1− χ)

(
Y

sα1

)
1

U2

]
. (4.11)

Recall that

∂Y L
−1
U W =

∂YW

U
+ UY Y

∫ Y

0

W

U2
.

Then the integral in the right-hand side of (4.11) is bounded by(∫ ∞
0

W 2p0 +

∫ 1

0

W 2

Y 3+a
+

∫ ∞
0

(∂YW )2

U
p0

)1/2(∫ Y

0
Q(s, Y )p−1

0

)1/2

,

for some function Q that can be computed explicitely and that has at most polynomial growth
in s and Y . We conclude as before by choosing m sufficiently large.

4.5.3 A special case of Hardy inequalities

We will often use the weighted Hardy inequality from Lemma 4.6 in the following case:

50



Lemma 4.18. Let k ≥ 2 be arbitrary, and let w = wi for i = 1, 2. Then there exists a
constant C = C(k,mi, a), independent of s, such that the following inequalities hold: if s is
large enough, then for any f ∈ H1

loc(R+) such that f(0) = 0,∫ ∞
0

1

(1 + Y )k
f2w ≤ C

∫ ∞
0

1

(1 + Y )k−2
(∂Y f)2w,∫ ∞

0

1

Y k
f2w ≤ C

∫ ∞
0

1

Y k−2
(∂Y f)2w (provided f = O(Y k/2) for 0 < Y � 1).

Remark 4.19. Obviously the Lemma can be extended to weights of the form Y −k(1 +Y )−lw
with k + l ≥ 2.

Proof. We focus on the first inequality, since the second one goes along the same lines (and
is in fact slightly easier). Lemma 4.6 entails that∫ ∞

0

1

(1 + Y )k
f2w ≤ CH

∫ ∞
0

1

(1 + Y )k−2
(∂Y f)2w

where

CH = 4 sup
r>0

(∫ ∞
r

w

(1 + Y )k

)(∫ r

0
(1 + Y )k−2w−1

)
.

We distinguish between the cases r < 1 and r > 1. If Y ≤ r < 1, then for s large enough
w−1 ≤ 2Y a, and (∫ ∞

r

w

(1 + Y )k

)(∫ r

0
(1 + Y )k−2w−1

)
≤ Ck,a.

If r > 1, then writing
∫ r

0 =
∫ 1

0 +
∫ r

1 , we obtain(∫ ∞
r

w

(1 + Y )k

)(∫ r

0
(1 + Y )k−2w−1

)
≤ 2

(∫ ∞
1

Y −a

(1 + Y )k

)(∫ 1

0
(1 + Y )k−2Y a

)
+ 2k−2

(∫ ∞
r

w

Y k

)(∫ r

1
Y k−2w−1

)
≤ Ck,a + Ck

(∫ ∞
s−βr

Z−k−a(1 + Z)−mdZ

)(∫ s−βr

s−β
Zk+a−2(1 + Z)mdZ

)
,

so that

CH ≤ Ck,a + Ck sup
r′>0

(∫ ∞
r′

Z−k−a(1 + Z)−mdZ

)(∫ r′

0
Zk+a−2(1 + Z)mdZ

)
≤ Cm,k,a.

5 Sequence of estimates on V

The goal of this section is to prove the energy estimates of Propositions 2.9 and 2.13. To
that end, we rely on the transport/diffusion version of the rescaled Prandtl equation, namely
(2.16). We will use extensively the tools introduced in section 4. Throughout the section, we
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will assume that U satisfies the following pointwise L∞ estimates: there exists constants c, C
such that for all Y ∈ [0, cs1/3], for all s ∈ [s0, s1],

Y +
Y 2

2
− M2

12
bY 4 ≤ U(s, Y ) ≤ Y +

Y 2

2
,

1 + Y − M2

4
bY 3 ≤ UY (s, Y ) ≤ 1 + Y,

−M2bY
2 ≤ UY Y − 1 ≤ 0.

(5.1)

Furthermore, we assume that there exists a constant M1 such that

−M1 ≤ UY Y ≤ 1 ∀Y ≥ cs1/3

It follows in particular that there exists a universal constant C̄ such that for all Y ∈
[0, cs1/3],

|V | ≤ C̄(1 +M2)bY 4, |VY | ≤ C̄(1 +M2)bY 3, |VY Y | ≤ C̄(1 +M2)bY 2. (5.2)

We will also assume that
1− ε̄
s
≤ b(s) ≤ 1 + ε̄

s
, (5.3)

for some small universal ε̄ (ε̄ = 1/50 is sufficient), and that∫ s1

s0

s13/4(bs + b2)2ds ≤ J. (5.4)

The L∞ estimates (5.2) imply in particular the following estimates, which will be used
repeatedly in the sequel

|LUV | ≤ C̄(1 +M2)2bY,

∣∣∣∣∫ Y

0
LUV

∣∣∣∣ ≤ C̄(1 +M2)bY 2 ∀Y ≤ cs1/3, (5.5)

and LUV is bounded by a polynomial in Y for Y ≥ s1/3.
Let us recall the definition of the notation Oα (see (4.1)): there exists a constant C > 0

such that
|A(s, Y )| ≤ C|B(s, Y )| for Y ≤ sα,
|A(s, Y )| ≤ Q(s, Y ) for Y ≥ sα,

for some function Q that has at most polynomial growth in s and Y .

Remark 5.1. This section contains rather heavy calculations: in particular, terms such as
∂Y L2

U (L−1
U (LV Y )) can be expressed as a linear combination of derivatives of V from order zero

up to order 6, with coefficients that are rational expressions involving U and its derivatives.
However, most of the terms in this expression will often have the same scaling, in the sense
that they can all be bounded in L2 by the leading order term, i.e. the one that has the largest
number of derivatives. To obtain such estimates, we use the weighted Hardy inequalities from
the previous section (see Lemma 4.18) together with the pointwise bounds on U (5.1). For
instance, if w = wj, j = 1, 2, then for any P > 0, provided mj is large enough,∥∥∥∥UYU LUV

∥∥∥∥
L2(w)

≤ C
∥∥∥∥ 1

1 + Y
LUV

∥∥∥∥
L2(w)

+ Cs−P ≤ C‖∂Y LUV ‖L2(w) + Cs−P
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and ∥∥∥∥∂Y Y VU
∥∥∥∥
L2(w)

=

∥∥∥∥LUV − UY
U

∫ Y

0
LUV

∥∥∥∥
L2(w)

≤ C‖LUV ‖L2(w) + Cs−P .

As a consequence, we adopt the following convention: we will write

f = g + l.o.t. in L2(w)

if f = g + h and there exists a constant C such that ‖h‖L2(w) ≤ C‖g‖L2(w) + Cs−P for any
M > 0 provided m1,m2 are chosen large enough.

Eventually, let us recall the definition of the different weights that will be used in the
sequel. We will use parameters

β2 < β1 < β0 <
2

7

and integers m2 � m1 � m0. For i ∈ {0, 1, 2}, we set wi := Y −a(1 + s−βiY )−mi . The
parameter a > 0 is a fixed number such that a ∈ (0, ā), where ā is the universal constant in
Lemma 4.7. The need for the weight w0 is explained in the following remark:

Remark 5.2 (Role of the different estimates). In this section, we derive estimates on E0,
E1, E2, where, for i = 0, 1, 2,

Ei(s) :=

∫ ∞
0

(∂2
Y LiUV (s))2wi,

Di(s) :=

∫ ∞
0

(∂3
Y LiUV (s))2

U
wi +

∫ ∞
0

(∂2
Y LiUV (s))2

U2
wi.

• The estimate on D0 allows us to have an L2 control on ∂3
Y V , which is useful to bound

the integral tails stemming from the estimates of E1, D1 (see Lemma 4.15). Note that
the integral tails in the estimate of (E0, D0) are merely handled thanks to the pointwise
L∞ estimates (5.1).

• The estimate on E1 will be used in the maximum principle argument (see Proposition
2.16).

• The estimate on D1 will be used (in a quantitative fashion) when we bound the remainder
terms on (E2, D2).

• Eventually, E2, E1 and D1 will control bs + b2 thanks to Lemmas 2.14 and 2.15.

Since the equations on ∂2
Y LkUV for k = 0, 1, 2 have the same structure, the estimates on

E0, E1, E2 go along the same lines. The differences between the three estimates come from
the right-hand side of the equation:

• Commutator terms may or may not be present;

• The estimates on the remainder terms are different for each energy estimate.

The reader who merely wishes to understand the energetic structure of the equation may go
through paragraph 5.1 only.
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Notation

Throughout this section, we will denote by H1 a constant depending only on a,m1, β1,M1,M2,
and by H2 a constant depending on the same parameters and also on m2, β2.

5.1 Preliminary step: estimates on (E0, D0)

Let us recall that the purpose of this paragraph is to have an L2 control of ∂3
Y V through D0.

First, notice that ∂2
Y V is a solution of

∂s∂
2
Y V +

b

2
Y ∂Y (∂2

Y V )− ∂2
Y L
−1
U ∂2

Y V = ∂2
YR.

Consider the weight w0 := Y −a(1 + s−β0Y )−m0 , for some a ∈]0, ā], where ā is defined in
Lemma 4.7, β0 ∈]1/4, 2/7[, and m0 ≥ 1. The diffusion term

−
∫ ∞

0

(
∂2
Y L
−1
U ∂2

Y V
)
∂2
Y V w0

is handled by Lemma 4.7, up to a remainder term which we estimate now: we have, for any
P > 0, ∫ ∞

cs1/3
U

(∫ Y

0
(1− χ)

(
Y

s1/4

)
∂2
Y V

U2

)2

w0

≤ C̄(1 +M1)2

∫ ∞
cs1/3

(
Y +

Y 2

2

)
Y 2

s2
w0

≤ C̄(1 +M1)2s−P

provided m0 is sufficiently large.
Hence, according to Lemma 4.7, setting

E0(s) :=

∫ ∞
0

(∂2
Y V )2w0,

D0(s) :=

∫ ∞
0

(∂3
Y V )2

U
w0 +

∫ ∞
0

(∂2
Y V )2

U2
w0

we have, for any δ > 0, provided s0 is large enough,

−
∫ ∞

0

(
∂2
Y L
−1
U ∂2

Y V
)
∂2
Y V w0 ≥ c̄D0(s)− δbE0(s)− C̄(1 +M1)2s−P

Concerning the transport term, we have∫ ∞
0

(∂s∂
2
Y V )∂2

Y V w0 =
1

2

d

ds

∫ ∞
0

(∂2
Y V )2w0 −

1

2

∫ ∞
0

(∂2
Y V )2∂sw0

and ∫ ∞
0

Y ∂3
Y V ∂2

Y V w0 = −1

2

∫ ∞
0

(∂2
Y V )2(Y w0)Y .
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Combining the two identities and using the expression of w0, we infer that∫ ∞
0

(
∂s∂

2
Y V +

b

2
Y ∂Y (∂2

Y V )

)
∂2
Y V w0 =

1

2

d

ds

∫ ∞
0

(∂2
Y V )2w0 −

1− a
4

b

∫ ∞
0

(∂2
Y V )2w0

+m

(
b

2
− β0

2s

)∫ ∞
0

(∂2
Y V )2 s−β0Y

1 + s−β0Y
w0.

Using assumption (5.3) with ε̄ < 1/7 and β0 < 2/7, we infer that the last term is non-negative.
It follows that for all δ > 0, if s0 is large enough,

dE0

ds
− 1− a− δ

2
bE0(s) + 2c̄D0(s) ≤ 2

∫ ∞
0

(
∂2
YR
)
∂2
Y V w0 + C̄(1 +M1)2s−P .

We now evaluate ∂2
YR. Using Lemma 4.4 together with assumption (5.3), we have

∂2
YR = (bs + b2)

(
Y 2

4
+ a4bY

5 + 270a10b
2Y 8 + 330a11b

2Y 9

)
χ

(
Y

s2/7

)
+O2/7(b4(Y 8 + Y 9)) + ∂2

Y L
−1
U

(
O2/7(bY )V +O2/7(bY 2)VY +O2/7(b4Y 11)

)
,

where the O(·) in the last term of the right-hand side must be understood3 in W 2,∞. Recalling
the expression of ∂2

Y L
−1
U (see Lemma A.1) together with the L∞ estimates (5.2), we obtain,

for Y ≤ cs2/7,

∂2
YR = O((bs + b2)Y 2) +O(b4(Y 8 + Y 9)) +O

(
bY 2∂3

Y V

U

)
+ ∂3

Y U

∫ Y

0

O(b2Y 5)

U2
.

All constants appearing in the O(·) depend on M1,M2. Notice that for Y ≤ cs2/7∫ Y

0

b2Y 5

U2
= O(b2Y 2)� bY 2

U
,

and ∂3
Y U = ∂3

Y U
app + ∂3

Y V = ∂3
Y V +O(bY ). Hence the last term is smaller than the first two

on Y ≤ cs2/7.
Now, for all δ > 0, for s ≥ sδ large enough and for m0 ≥ 6− a,∫ ∞

0
|bs + b2|Y 2|∂2

Y V |w0 ≤ δbE0 +
H1

δ
(bs + b2)2s1+(5−a)β0 ,∫ cs2/7

0
b2Y 2|∂2

Y V | w0 ≤ δbE0 +
H1

δ
b3s(5−a)β0 ,∫ cs2/7

0
bY 2 |∂3

Y V |
U
|∂2
Y V | w0 ≤ δD0 +

1

4δ

∫ cs2/7

0
b2
Y 4

U
|∂2
Y V |2w0 ≤ δD0 + δbE0.

We now focus on the set Y ≥ s2/7. Recalling that β0 < 2/7, for any function φ = φ(s, Y )
such that

φ(s, Y ) ≤ CY γ1sγ2 ∀Y ≥ 0, s ≥ s0,

for some explicit γ1, γ2 ≥ 0, we have, for any P > 0,∫ ∞
cs2/7

φ(s, Y )w0 ≤ s−P

3We say that “f = Oα(g) in W k,∞” if ∂jY f = Oα(∂jY g) for 0 ≤ j ≤ k.
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provided m0 is large enough (depending on β0, γ1, γ2 and P ). We use a simple Cauchy-
Schwartz inequality and control the terms involving ∂3

Y V by the dissipation term D0. Since
we have L∞ estimates on V, ∂Y V, ∂

2
Y V , it follows that for all δ > 0∫ ∞

cs2/7
|∂2
YR| |∂2

Y V | w0 ≤ δD0 +
H1

δ
s−P .

Eventually, choosing δ small enough (depending on a), we obtain

dE0

ds
− 1

2s
E0 + c̄D0 ≤ H1s

−3+(5−a)β0 +H1(bs + b2)2s1+(5−a)β0 .

Thus there exists S0, depending on M1,M2, a, β0, such that if s ≥ S0,

E0(s)s−1/2 +

∫ s

s0

t−1/2D0(t) dt ≤ E0(s0)s
−1/2
0 +H1 +H1Js

− 11
4

+(5−a)β0
0 . (5.6)

We will use this inequality in the sequel in order to have a control of ∂3
Y V , which is not given

by the L∞ estimates. This will allow us in particular to control the tail of some commutators
in the estimate of Proposition 2.9.

Remark 5.3. Notice that the assumption |∂2
Y V (s0)| ≤ 1 +M1 implies that

E0(s0) ≤ (1 +M1)2s
(1−a)β0
0 ≤ s1/2

0

is s0 is sufficiently large (depending on M1 and β0). Therefore there is no need to include
any additional assumption on E0(s0) in the bootstrap argument.

5.2 Estimate on ∂2
YLUV : proof of Proposition 2.9

We now turn towards the estimate on LUV . Notice that the main order term in the right-
hand side of (2.19) is now (bs + b2)Y . The lack of decay of this remainder prompts us to
differentiate twice (2.19), in order to cancel the linear term. We therefore perform estimates
on g := ∂2

Y LUV . Using Lemma 2.8, we have

∂sg + 2bg +
b

2
Y ∂Y g − ∂Y Y L−1

U g = ∂2
Y LUR+ ∂2

Y C[∂2
Y V ]. (5.7)

We multiply (5.7) by gw1, where w1 = Y −a(1 + s−β1Y )−m1 for some β1 ∈]1/4, β0[, a > 0,
and m1 � m0 � 1. Using the same computations as in the previous paragraph, we have∫ ∞

0

(
∂sg + 2bg +

b

2
Y ∂Y g

)
gw1 ≥

1

2

d

ds
E1(s) +

7 + a

4
bE1(s),

where

E1(s) :=

∫ ∞
0

g2w1. (5.8)

Using Lemma 4.7 and Lemma 4.15, we also have, for any P > 0, provided a ≤ ā, s0 large
enough (depending on a and β1) and m1 large enough,

−
∫ ∞

0

(
∂Y Y L

−1
U g
)
gw1 ≥ c̄D1(s)− 1

8
bE1(s)− s−PD0(s),

where

D1(s) :=

∫ ∞
0

(∂Y g)2

U
w1 +

∫ ∞
0

g2

U2
w1. (5.9)

We now treat independently the other terms, namely
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• The commutator term ∂2
Y C[∂2

Y V ];

• The remainder term ∂2
Y LUR.

The commutator term

The goal of this paragraph is to prove that for all δ, P > 0, there exists s0 > 0 such that is
s ≥ s0, ∣∣∣∣∫ ∞

0
∂2
Y C[∂2

Y V ] ∂2
Y LUV w1

∣∣∣∣ ≤ δ (bE1(s) +D1(s)) + s−PD0(s) + s−P .

We use the formula in Lemma 4.12. We recall that D = L−1
U (∂Y Y U

app − 1) + LUV , so
that D “contains” two derivatives of V through the term LUV . Hence each term in∫ ∞

0
∂2
Y C[∂2

Y V ] ∂2
Y LUV w1

is a product of three derivatives of V .
As a consequence, we arrange the terms in ∂2

Y C[∂2
Y V ] in the following way:

• The terms with the highest number of derivatives of V are estimated by E1 or D1;

• The terms with a number of derivatives lower than or equal to 2 are estimated in L∞

thanks to (5.2).

This strategy will work as long as we do not end up with a product of three terms of the type

∂k1Y V ∂k2Y V ∂k3Y V,

with k1, k2, k3 ≥ 3. Such terms will need to be re-arranged thanks to an integration by parts.
However, a quick look at the formula in Lemma 4.12 shows that this situation occurs only
for the second term in the right-hand side of the formula giving ∂2

Y C[∂2
Y V ], namely∫ ∞

0
∂Y
D
U
∂Y LUV ∂2

Y LUV w1. (5.10)

But as we will see, it is easy to overcome the difficulty raised by this term.
We now examine the terms in ∂2

Y C[∂2
Y V ] one by one.

• Using the L∞ estimates (5.2) together with Corollary 4.3, it can be easily checked that

D
U

= O1/3

(
b

1

1 + Y

)
.

It follows that∫ cs1/3

0

∣∣∣∣DU
∣∣∣∣ (∂2

Y LUV )2w1 ≤ H1b

∫ cs1/3

0

1

1 + Y
(∂2
Y LUV )2w1,

which is estimated thanks to Lemma 4.14. The part of the integral for Y ≥ cs1/3 is
estimated thanks to Lemma 4.15, with p = Y kw1 for some integer k, p0 = w0 with
m1 � m0. It follows from Lemma 4.14 that for all δ > 0, P ≥ 1, provided s0 is large
enough and m1 is large enough,∫ ∞

0

∣∣∣∣DU
∣∣∣∣ (∂2

Y LUV )2w1 ≤ δbE1 + δD1 + s−PD0(s) + s−P . (5.11)
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• We then address the problematic term (5.10). We integrate by parts and obtain

I1 = −
∫ ∞

0

D
U

(∂2
Y LUV )2w1 −

∫ ∞
0

D
U
∂Y LUV ∂3

Y LUV w1

−
∫ ∞

0

D
U
∂Y LUV ∂2

Y LUV ∂Y w1.

The first term in the right-hand side is the same as in (5.11). In the third term, we
use the fact that |∂Y w1| ≤ Ca,mY −1w1 together with a weighted Hardy inequality from
Lemma 4.18, so that∣∣∣∣∫ ∞

0

D
U
∂Y LUV ∂2

Y LUV ∂Y w1

∣∣∣∣
≤ H1b

(∫ ∞
0

(∂2
Y LUV )2

1 + Y
w1

)1/2(∫ ∞
0

(∂Y LUV )2

Y 2(1 + Y )
w1

)1/2

+ s−PD0 + s−P

≤ H1b

∫ ∞
0

(∂2
Y LUV )2

1 + Y
w1 + s−PD0 + s−P .

We eventually evaluate the last term in I1. We have, for all δ > 0∣∣∣∣∫ ∞
0

D
U
∂Y LUV ∂3

Y LUV w1

∣∣∣∣ ≤ δD1 +
1

4δ

∫ ∞
0

D2

U
(∂Y LUV )2w1.

Using Corollary 4.3, we have

D2

U
= O1/3

(
b2Y

1 + Y

)
= O1/3

(
b

Y 2(1 + Y )

)
.

Using a Hardy inequality from Lemma 4.18 together with Lemma 4.14, we deduce that
the part of the integral bearing on Y . s1/3 is lower than δD1 + δbE1 for s ≥ s0

large enough. The part of the integral bearing on Y & s1/3 is handled thanks to
Lemma 4.15, recalling the form of ∂Y L

−1
U (see Lemma A.1). It is therefore smaller than

δD1 + s−PD0 + s−P , for any δ, P > 0, provided s0 is large enough.

• We then treat simultaneously the next three terms, namely∫ ∞
0

∂Y
D
U

(
−2

UY
U2

∂2
Y V − 4UY Y

∫ Y

0

∂2
Y V

U2

)
∂2
Y LUV w1,∫ ∞

0
∂2
Y

D
U

[
−3LUV + 2

∂2
Y V

U

]
∂2
Y LUV w1 and

∫ ∞
0

∂3
Y

D
U

(∫ Y

0
LUV

)
∂2
Y LUV w1.

(5.12)
The overall idea is to decompose ∂kY (D/U) for k = 1, 2, 3 into a part that is controlled
in L∞ and a part that involves derivatives of V of order 3 or higher (or equivalently,
derivatives of LUV of order one or higher). Concerning the part of ∂kYD/U that is
controlled in L∞, we use weighted Hardy inequalities to upper-bound ∂2

Y V,LUV , etc.
by ∂2

Y LUV in L2. As for the part of ∂kY (D/U) that is not controlled in L∞, we observe

that in the three terms in (5.12), ∂2
Y V,LUV and

∫ Y
0 LUV are controlled in L∞, and we

use this L∞ control to conclude.
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Let us now be more specific: it can be easily checked that for k = 1, 2, 3,

∂kY
D
U

= O1/3

(
b

1

Y k(1 + Y )

)
+O1/3

(
1

Y (1 + Y )

)
∂kY LUV + l.o.t.

Since we also have L∞ estimates on ∂2
Y V , UY , UY Y and U−1, using Lemma 4.15, we

infer that the part of the integrals in (5.12) bearing on Y & s1/3 is bounded by s−P +
s−PD0(s) + δD1 for some P > 0 arbitrary provided m1 is large enough.

We now address the part of the integral bearing on Y . s1/3, and we start with the
part of ∂kY (D/U) that is bounded in L∞. We focus on the first integral in (5.12), since
the other two are treated in a similar fashion. We recall that

∂2
Y V = ULUV − UY

∫ Y

0
LUV,

∫ Y

0

∂2
Y V

U2
=

1

U

∫ Y

0
LUV,

and therefore

−2
UY
U2

∂2
Y V − 4UY Y

∫ Y

0

∂2
Y V

U2
= O1/3(Y −1)LUV + l.o.t.

Using several weighted Hardy inequalities (see Lemma 4.18), it follows that∣∣∣∣∣
∫ cs1/3

0
O1/3

(
b

1

Y (1 + Y )

)(
−2

UY
U2

∂2
Y V − 4UY Y

∫ Y

0

∂2
Y V

U2

)
∂2
Y LUV w1

∣∣∣∣∣
≤ H1b

∫ cs1/3

0

1

1 + Y
|∂2
Y LUV |2w1.

We then focus on the part of ∂Y (D/U) that is not controlled in L∞, and that involves
∂Y LUV . For that part, we use the L∞ estimates on V , which entail∣∣∣∣−2

UY
U2

∂2
Y V − 4UY Y

∫ Y

0

∂2
Y V

U2

∣∣∣∣ ≤ H1b ∀Y ≤ cs1/3.

It follows that∣∣∣∣∣
∫ cs1/3

0
O1/3

(
1

Y (1 + Y )

)
∂Y LUV

(
−2

UY
U2

∂2
Y V − 4UY Y

∫ Y

0

∂2
Y V

U2

)
∂2
Y LUV w1

∣∣∣∣∣
≤ H1b

∫ cs1/3

0

1

Y (1 + Y )
|∂Y LUV | |∂2

Y LUV |w1.

We conclude once again using a weighted Hardy inequality.

We then treat the other two integrals in (5.12) using similar arguments. We conclude
that for any δ, P > 0, provided m1 � m0 and s0 is large enough, the three integrals in
(5.12) are bounded by

δD1 +
H1

δ

(
b

∫ ∞
0

1

1 + Y
|∂2
Y LUV |2w1 + s−P + s−PD0

)
,

where the term D1 stems from the bound of the third integral in (5.12), which involves
∂3
Y LUV .

59



• Eventually, we address

2

∫ ∞
0

∂3
Y U

(∫ Y

0

∂2
Y VD
U3

− D
U

∫ Y

0

∂2
Y V

U2

)
∂2
Y LUV w1. (5.13)

Now, D is controlled in L∞. As in the previous step, we decompose ∂3
Y U into a part

that is controlled in L∞ and a part over which we have no L∞ control. More precisely,

∂3
Y U = U∂Y LUV +O1/3(b(Y + Y 2)).

Let us start with the contribution of O1/3(b(Y +Y 2)). For that part, we use the control

of V and D in L∞ to prove that the integral tails for Y ≥ cs1/3 are O(s−P ), and Hardy
inequalities on the set Y ≤ cs1/3. We infer that the contribution of this part of the
integral to (5.13) is bounded by

H1bE
1/2
1

(∫ ∞
0

1

1 + Y
(∂2
Y LUV )2w1 + s−P

)
.

We now address the part of (5.13) where ∂3
Y U is replaced by U∂Y LUV . For that part,

we use the L∞ control of ∂2
Y V , D and U in L∞, together with Lemma 4.15 and the

control of D0 to estimate the tails. We infer that this part of (5.13) is bounded by∫ s2/7

0
b2Y 2|∂Y LUV | |∂2

Y LUV | w1 + s−PD0 + s−P .

Now, for Y ≤ Cs2/7, we have b2Y 2 ≤ CbY −1(1 + Y )−1/2, so that the integral above is
bounded by

H1bE
1/2
1

(∫ ∞
0

1

1 + Y
(∂2
Y LUV )2w1

)1/2

.

Gathering the estimates above and using Lemma 4.14, we conclude that for any P, δ > 0,
if m1, s0 are large enough, the total commutator term satisfies∣∣∣∣∫ ∞

0
∂2
Y C[∂2

Y V ] ∂2
Y LUV w1

∣∣∣∣ ≤ δbE1(s) + δD1(s) + s−P + s−PD0(s). (5.14)

The remainder term

We now evaluate ∫ ∞
0

(
∂2
Y LUR

) (
∂2
Y LUV

)
w1.

We claim that for all δ > 0, for all P > 0, provided m1 is large enough and s0 is large enough,∣∣∣∣∫ ∞
0

(
∂2
Y LUR

) (
∂2
Y LUV

)
w1

∣∣∣∣
≤ δ (D1 + bE1) +

H1

δ

(
s−PD0 + s−7+(11−a)β1 + (bs + b2)2s−3+(11−a)β1

)
.

We follow the decomposition of Lemma 2.6 and write R =
∑4

i=1Ri, as suggested in
remark 2.7.
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• Recalling that a4 = 1/48, a7 = a4/84, and a10, a11 are defined by (2.10), we have

∂2
YR1 = (bs + b2)

(
1

4
Y 2 + a4bY

5 +
81

16
a7b

2Y 8 +
9

10
a7b

2Y 9

)
χ

(
Y

s2/7

)
+P̃1(s, Y )(1− χ1)

(
Y

s2/7

)
,

for some function P̃1 that has at most polynomial growth in s and Y , and some cut-off
functions χ, χ1 ∈ C∞0 (R+) such that χ, χ1 ≡ 1 in a neighbourhood of zero. Using the
identity (4.2), we have, up to terms supported in Y & s2/7,

LUR1

=
1

2
(bs + b2)Y + L−1

U

[(a4

2
(bs + b2)bY 5

)
χ

(
Y

s2/7

)]
− (bs + b2)L−1

U

((
61

16
a7b

2Y 8 − 9

10
a7b

2Y 9 + 2a10b
3Y 10 +

9

4
a4b

3Y 12

)
χ

(
Y

s2/7

))
− 1

2
(bs + b2)L−1

U LV Y − L−1
U

[
P̃1(s, Y )(1− χ1)

(
Y

s2/7

)]
,

and therefore

∂2
Y LUR1(bs + b2)−1

= ∂2
Y L
−1
U

[(
a4

2
bY 5 − 61

16
a7b

2Y 8 +
9

10
a7b

2Y 9 − 2a10b
3Y 10 − 9

4
a4b

3Y 12

)
χ

(
Y

s
2
7

)]
− 1

2
∂2
Y L
−1
U LV Y − ∂2

Y L
−1
U

[
P̃1(s, Y )(1− χ1)

(
Y

s
2
7

)]
. (5.15)

Recalling the expression of ∂2
Y L
−1
U from Lemma A.1, we infer that for k ≥ 5,

∂2
Y L
−1
U Y k = ∂3

Y V

∫ Y

0

Y k

U2
+O1/3

({
Y k−3 if Y � 1,
Y k−4 if 1 . Y.

)
In a similar way, we have

∂2
Y L
−1
U (LV Y ) = ∂3

Y U

∫ Y

0

LV Y

U2
− Y 2

2
∂Y LUV (5.16)

+VY Y
Y 2UY − 2Y U

2U2
+ VY

2U − Y 2UY Y
2U2

+ V
UY Y Y − UY

U2

+
Y 2UY Y

2U

∫ Y

0
LUV.

We write ∂3
Y U = ∂3

Y U
app + ∂3

Y V and replace ∂3
Y V by the formula (A.2) in Appendix A.

Using the L∞ estimate on ∂2
Y V , we obtain

∂2
Y L
−1
U (LV Y ) = O2/7(Y 2)∂Y LUV +O2/7(Y )LUV +O2/7(1)

∫ Y

0
LUV + l.o.t.

Gathering all the terms, we get, for Y � 1,

∂2
Y LUR1 = (bs + b2)

(
O2/7(bY ) +

2∑
i=0

O2/7(Y i)∂iY

∫ Y

0
LUV + l.o.t.

)
.
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Then, noticing that for Y ≤ s2/7 we have bY 2 ≤ Y −1(1 + Y )−1/2 and using Hardy
inequalities from Lemma 4.18, we infer that for any P > 0, provided m1 and S0 are
large enough,∣∣∣∣∫ ∞

0
∂2
Y LUR1 ∂

2
Y LUV w1

∣∣∣∣
≤ H1|bs + b2|E1/2

1

(
bs(3−a)β1/2 + b2s(11−a)β1/2

)
+H1s|bs + b2|E1/2

1

(∫ s2/7

0

1

Y 2(1 + Y )
(∂Y LUV )2w1 + s−P + s−PD0

)1/2

≤ δbE1 +
H1

δ
(bs + b2)2s−3+(11−a)β1

+
H1

δ
s3|bs + b2|2

∫ ∞
0

1

1 + Y
(∂2
Y LUV )2w1 + s−PD0.

• We use the same type of estimates for the term R2, and we find∣∣∣∣∫ ∞
0

∂2
Y LUR2 ∂

2
Y LUV w1

∣∣∣∣
≤ H1b

4E
1/2
1 s(11−a)β1/2 + δbE1

≤ δbE1 +
H1

δ
s−7+(11−a)β1 + s−PD0.

• We then address the term R3. We recall that using (5.16) and (A.1), for Y ≤ cs1/3, for
k ∈ {2, 3, 4}

∂Y L
−1
U (LV Y ) = O1/3(bY 2), L−1

U (LV Y ) = O1/3(bY 3),

∂kY L
−1
U (LV Y ) =

k∑
i=0

O1/3(Y i−k+2)∂iY

∫ Y

0
LUV +O1/3

(
1

Y k−1(1 + Y )

)
VY + l.o.t.

Notice also that b3Y 7 . bY for Y ≤ cs1/3, so that we can treat b3LV Y
7 as a perturbation

of bLV Y . In a similar way, for k ∈ {0, · · · 3},

∂kY
(
−a4bY

4 − a7b
2Y 7 + a10b

3Y 10 + a11b
3Y 11

)
= O(bY 4−k) for Y . s2/7,

so that

b3∂2
Y L
−1
U L−a4bY 4−a7b2Y 7+a10b3Y 10+a11b3Y 11Y 7 = O2/7(b4Y 7) +O2/7(b4Y 8)∂3

Y V.

It follows that

∂2
Y LUR3 =

4∑
i=0

O2/7(bY i−4)∂iY

∫ Y

0
LUV

+O2/7

(
b2(Y + Y 2)

)
∂Y LUV +O2/7(b2)

∫ Y

0
LUV

+O2/7

(
b

Y 4(1 + Y )2

)
VY + l.o.t.+O2/7(b4Y 3).
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Using Hardy inequalities together with Lemma 4.15, it is easily proved that for 0 ≤ i ≤ 4,
for any P > 0, provided m1 is large enough,∣∣∣∣∫ ∞

0
O2/7(bY i−4)∂iY

∫ Y

0
LUV ∂2

Y LUV w1

∣∣∣∣ ≤ δ(bE1 +D1) + s−PD0(s) + s−P ,∣∣∣∣∫ ∞
0

O2/7

(
b2(Y + Y 2)

)
∂Y LUV ∂2

Y LUV w1

∣∣∣∣ ≤ δbE1 + s−PD0(s) + s−P ,∣∣∣∣∫ ∞
0

O2/7(b2)

∫ Y

0
LUV ∂2

Y LUV w1

∣∣∣∣ ≤ δbE1 + s−PD0(s) + s−P ,

and ∣∣∣∣∫ ∞
0

O2/7

(
b

Y 4(1 + Y )2

)
VY ∂2

Y LUV w1

∣∣∣∣
≤ H1b

(∫ ∞
0

1

1 + Y
(∂2
Y LUV )2w1

)1/2(∫ ∞
0

1

Y 8(1 + Y )3
V 2
Y w1 + s−P

)1/2

≤ H1b

∫ ∞
0

1

1 + Y
(∂2
Y LUV )2w1 + s−P .

Using Lemma 4.14, we end up with∣∣∣∣∫ ∞
0

∂2
Y LUR3 ∂

2
Y LUV w1

∣∣∣∣ ≤ δ (D1 + bE1) +
(
s−PD0 + s−P

)
.

• The term R4 is easily treated thanks to Lemma 4.15. More precisely, using Appendix
A, it can be proved that

∂2
Y LUR4 =

(
P1(s, Y ) + P2(s, Y )∂Y LUV + P3(s, Y )∂2

Y LUV
)

(1− χ̄)

(
Y

s2/7

)
,

where P1, P2, P3 are functions that have at most polynomial growth in s and Y , and
χ̄ ∈ C∞1 is identically equal to 1 in a neighbourhood of zero. We infer that for any
P > 0, provided m1 and s0 are large enough,∣∣∣∣∫ ∞

0
(∂2
Y LUR4)∂2

Y LUV w1

∣∣∣∣ ≤ Cs−P + s−PD0.

We now gather all the terms. Notice that since β1 > 1/4, 5 + (3 − a)β1 < −7 + (11 − a)β1.
We end up with the following estimate: for all δ, P > 0, if m1 is large enough, there exists a
constant H1, depending on M1,M2, a, β1 and m1 and a constant S0, depending on the same
parameters and also on δ, such that if s ≥ S0, then∣∣∣∣∫ ∞

0

(
∂2
Y LUR

)
∂2
Y LUV w1

∣∣∣∣
≤ δ (D1 + bE1) +

H1

δ

[
(bs + b2)2s−3+(11−a)β1 + s3(bs + b2)2E1 + s−7+(11−a)β1

]
+ s−PD0.

(5.17)
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Conclusion

Gathering the estimates (5.14) and (5.17), we infer that for a > 0 sufficiently small, for any
P > 0, for 1/4 < β1 < 2/7 and for m1 sufficiently large, s0 ≤ S0, we have, for s ∈ [s0, s1],

d

ds
E1+

(
7

2
b−H1s

3(bs + b2)2

)
E1+c̄D1 ≤ H1(bs+b

2)2s−3+(11−a)β1+H1s
−7+(11−a)β1+s−PD0.

Since β1 > 1/4, we have

6− (11− a)β1 <
7

2
,

and therefore the rate of convergence is limited by the size of the right-hand side. Let φ1(s) :=

H1

∫ s
s0
τ3(bτ + b2)2dτ . The assumptions of the Lemma entail that 0 ≤ φ1(s) ≤ H1Js

−1/4
0 for

all s∈ [s0, s1]. As a consequence, if s0 ≥ J4, we have 0 ≤ φ1(s) ≤ H1 for all s ∈ [s0, s1].
Using a Gronwall type argument and using the preliminary estimate on D0, we obtain, for
all α < 6− (11− a)β1,

E1(s)sα exp(−φ1(s)) + c̄

∫ s

s0

τα exp(−φ1(τ))D1(τ)dτ

≤ E1(s0)sα0 +H1Js
−1/4
0 +

H1

6− (11− a)β1 − α
s
α−6+(11−aβ1)
0 .

Hence, for s0 ≥ max(S0, J
4) we obtain (up to a new definition of the constant H1)

E1(s)sα +

∫ s

s0

D1(τ)ταdτ ≤ H1 (1 + E1(s0)sα0 ) .

This completes the proof of the Proposition.
We also have the following

Corollary 5.4. Under the assumptions of Proposition 2.9, we get the following refined L∞

estimates on V : for all a ∈ (0, ā), for all β1 such that

1

4
< β1 ≤

1

4

11

11− a
,

there holds

|∂Y LUV | = Oβ1

(
s−13/8Y

1+a
2

)
,

|LUV | = Oβ1

(
s−13/8Y

3+a
2

)
,

∫ Y

0
LUV = Oβ1

(
s−13/8Y

5+a
2

)
,

|∂3
Y V | = Oβ1

(
C1s

−13/8Y
3+a
2 (1 + Y )

)
.

Note that the constants in the Oβ1 depend on M1,M2,m1, a, β1 and J .
As a consequence, setting C0 = E1(s0)sα0 , where α is such that 13/4 < α < 6− (11−a)β1,

we infer that there exists a universal constant H̄ and an constant Cm1 depending only on m1

such that if s0 ≥ max(S0, J
4, C8

0 ),

|∂3
Y U | ≤ H̄bY ∀Y ∈ [0, Cm1s

β1 ].
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Furthermore, there exists a constant Ca,m1 depending only on a and m1, such that∣∣∣∣∫ Y

0

∂2
Y LUV
U2

∣∣∣∣ ≤ Ca,m1D
1/2
1 (1 + s−β1Y )

4+a+m1
2 = Oβ1(D

1/2
1 ),∣∣∂2

Y LUV
∣∣ ≤ Ca,m1D

1/2
1 (1 + s−β1Y )

m1
2 (1 + Y )1/2Y (2+a)/2 = Oβ1

(
D

1/2
1 (1 + Y )1/2Y (2+a)/2

)
.

(5.18)
In particular,

∂Y L2
UV =

∂3
Y LUV
U

+Oβ1(D
1/2
1 )

Proof. As mentioned in Remark 2.11 we can pick a > 0, β1 ∈ (1/4, 2/7) (β1 depends on a) so
that

13

4
= 6− 11

4
< 6− (11− a)β1.

With this choice of a and β1, we have

E1(s) ≤ H1(1 + C0)s−13/4.

A simple Cauchy-Schwartz inequality entails

|∂Y LUV | =
∣∣∣∣∫ Y

0
∂2
Y LUV

∣∣∣∣ ≤ E1/2
1

(∫ Y

0

1

w1

)1/2

. (5.19)

Now, setting Cm1 := 21/m1 − 1 ≤ 1, it is easily checked that for Y ≤ Cm1s
β1 , we have

1

w1
≤ 2Y a.

The estimates follow, using the formula in equation (A.2) for the one of ∂3
Y V . Note in

particular that for Y ≤ Cm1s
β1 ,

|∂3
Y U | ≤ |∂3

Y U
app|+

(
Y +

Y 2

2

)
|∂Y LUV +

∫ Y

0
|LUV |

≤ H̄
(
bY + (Y + Y 2)Y

a+1
2 H

1/2
1 (1 + C0)1/2s−13/8

)
≤ H̄bY

(
1 +H

1/2
1 (1 + C0)1/2s

a+3
2
β1− 5

8
0

)
.

Now, for β1 < 2/7 and a sufficiently small, β1 < 1/(3 + a), so that, if s0 ≥ max(C8
0 , H

8
1 ),

|∂3
Y U | ≤ H̄bY

(
1 +H

1/2
1 (1 + C0)1/2s

−1/8
0

)
≤ H̄bY.

Since ∂3
Y V has polynomial growth in s and Y according to (5.19), we obtain the estimate on

∂3
Y U .

The two estimates from (5.18) follow from the Cauchy-Schwartz inequality (see also Re-
mark 4.10 ): observe that for Y ≤ 1,∣∣∣∣∫ Y

0

∂2
Y LUV
U2

∣∣∣∣ ≤ (∫ 1

0

(∂2
Y LUV )2

Y 3+a

)1/2(∫ Y

0

Y 3+a

U4

)1/2

≤ CaD1/2
1 .
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The same type of estimate holds when Y ≥ 1. As for the estimate on ∂2
Y LUV , we have

∣∣∂2
Y LUV

∣∣ =

∣∣∣∣∫ Y

0
∂3
Y LUV

∣∣∣∣ ≤ D1/2
1

(∫ Y

0

U

w1

)1/2

,

which leads to the result.

We end this paragraph with a short proof for Lemma 2.12: differentiating once equation
(2.19), we have

∂s∂Y LUV +
3b

2
∂Y LUV +

b

2
Y ∂2

Y LUV − ∂Y L2
UV = ∂Y LUR+ ∂Y C[∂2

Y V ].

We now take the trace of the above equality at Y = 0. Since V = O(Y 7) for Y � 1 by
definition of the approximate solution Uapp, we have

∂Y LUV|Y=0 = ∂2
Y LUV|Y=0 = 0,

as well as ∂Y C[∂2
Y V ]|Y=0 = 0. Hence there remains only

∂Y L2
UV|Y=0 = −

4∑
i=1

∂Y LURi|Y=0.

Once again, it can be easily checked that ∂Y LURi|Y=0 = 0 for i = 2, 3, 4, and that

∂Y LUR1|Y=0 = a4(bs + b2)∂Y LUY 4|Y=0.

Now, using (4.2), we have

∂Y LUY 4 = 12∂Y L
−1
U Y 2 = 24∂Y Y +O(bY 3) for Y � 1.

We obtain eventually that

∂Y L2
UV|Y=0 = −1

2
(bs + b2).

Remark 5.5. It also follows from equation (5.7) and from the computation of ∂2
YR that for

Y � 1,
∂2
Y L2

UV = O((b|bs + b2|+ |∂s(bs + b2)|)Y 2).

In particular, L3
UV is well-defined.

5.3 Estimate on ∂2
YL2

UV : proof of Proposition 2.13

We now tackle the estimates on ∂Y L2
UV . The general scheme of proof is the same as the one

of Proposition 2.9. There are however a few differences:

• There are now two commutator terms, namely ∂Y LUC[∂2
Y V ] and ∂Y C[∂2

Y LUV ];

• The estimate of the remainder term ∂2
Y L2

UR is more technical since the explicit expres-
sion of ∂2

Y L2
U has much more terms than the one of ∂2

Y LU .
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We set h = ∂2
Y L2

UV in the rest of the paper, and we have

∂sh+ 4bh+
b

2
Y ∂Y h− ∂2

Y L
−1
U h = ∂2

Y

(
L2
UR+ C[∂2

Y LUV ] + LUC[∂2
Y V ]

)
. (5.20)

In order to derive estimate (2.21), we multiply (5.20) by hw2, with w2 := Y −a(1 +
s−β2Y )−m2 . We recall that we choose m2 � m1 � 1 and β2 < β1.

Using the same computations as in the previous paragraphs and recalling the definitions
of E2, D2, we have

1

2

dE2

ds
+

15

4
bE2 + c̄D2

≤
∫ ∞

0
∂2
Y

(
L2
UR+ C[∂2

Y LUV ] + LUC[∂2
Y V ]

)
hw2 + C̄s−P + s−PD1.

We now state the main intermediate results allowing us to prove the statement, namely
a commutator estimate and a remainder estimate. We then prove each of the statements
separately.

Concerning the commutators, we have the same type of estimates as in the proof of
Proposition 2.9, which leads to

Lemma 5.6. Assume that the assumptions of Proposition 2.13 are satisfied. There exist
constants H2, S0, depending on a,mi, βi,M1,M2 (i = 1, 2), such that if s0 ≥ max(S0, C

8
0 , J

4),
for all δ > 0,∣∣∣∣∫ ∞

0

∫ ∞
0

(
∂2
Y C[∂2

Y LUV ] + ∂2
Y LUC[∂2

Y V ]
)
hw2

∣∣∣∣
≤ δ (bE2 +D2) +

H2

δ
b2(bs + b2)2 +

H2

δ

(
s(7+a)β1D1E2 + s3(bs + b2)2E2 + s−2D1

)
.

We now turn towards the remainder term. We have the following estimate:

Lemma 5.7. Assume that the assumptions of Proposition 2.13 are satisfied. There exist
constants H2, S0, depending on a,mi, βi,M1,M2 (i = 1, 2), such that if s0 ≥ max(S0, C

8
0 , J

4),
for all δ > 0,∫ ∞

0
∂2
Y L2

UR ∂2
Y L2

UV w2 ≤ δ(bE2 +D2) +
H2

δ
b2(bs + b2)2 +

H2

δ
s−2D1 +

H2

δ
s−7+(3−a)β2 .

Gathering Lemmas 5.6 and 5.7 and choosing δ = min(1/2, c̄/2), we obtain

dE2

ds
+ 7bE2 +

c̄

2
D2

≤ H2

(
b2(bs + b2)2 + s(7+a)β1D1E2 + s3(bs + b2)2E2 + s−2D1 + s−7+(3−a)β2

)
.

We now multiply the above equation by s5 and infer

d

ds
(E2(s)s5)−H2

(
s(7+a)β1D1 + s3(bs + b2)2

)
(E2(s)s5) (5.21)

≤ H2

(
s3(bs + b2)2 + s3D1 + s−2+(3−a)β2

)
. (5.22)
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Define

φ2(s) := H2

∫ s

s0

τ (7+a)β1D1(τ) + τ3(bτ + b2)2dτ.

According to Proposition 2.9, since β1 < 2/7 < 1/3, we have (7 + a)β1 < 6− (11− a)β1 and
7β1 < 13/4, and therefore, if s0 ≥ max(S0, J

4),

0 ≤ φ2(s) ≤ H1H2

(
1 + E1(s0)s

13/4
0

)
.

Hence, multiplying (5.21) by exp(−φ2(s)) and integrating over [s0, s], we obtain

E2(s)s5 exp(−φ2(s))

≤ E2(s0)s5
0 +H2

∫ s

s0

(
τ3(bτ + b2)2 + τ3D1 + τ−2+(3−a)β2

)
exp(−φ2(τ))dτ.

Now, using assumption (5.4) together with Proposition 2.9 with α = 3, we have, for s0 ≥
max(S0, J

4), ∫ s

s0

τ3(bτ + b2)2dτ ≤ Js−1/4
0 ≤ 1,∫ s

s0

τ3D1 ≤ H1(1 + C0),∫ s

s0

τ−2+(3−a)β2dτ ≤ 1

1− (3− a)β2
s
−1+(3−a)β2
0 ≤ 1.

We infer eventually

E2(s)s5 ≤ exp(H2(1 + C0))
[
E2(s0)s5

0 +H2H1(1 + C0)
]
≤ exp(H2(1 + C0))H2(1 + C0).

We now turn towards the proofs of the Lemmas.

The commutator terms: proof of Lemma 5.6

We start with the computation of the commutator terms. Looking at equation (5.20), the
commutator integrals in the differential inequality for E2 are∫ ∞

0

(
∂2
Y C[∂2

Y LUV ] + ∂2
Y LUC[∂2

Y V ]
)
∂2
Y L2

UV w2. (5.23)

We recall that the heuristics is that up to some corrector terms,

|(5.23)| ≤ H2b

∫ ∞
0

1

1 + Y
(∂2
Y L2

UV )2w2,

and the right-hand side of the above inequality is then handled by Lemma 4.14. However,
there are a few complications, coming from the fact that the trace ∂Y L2

UV|Y=0 is not zero.
In the sequel, we will therefore focus on the difficulties and differences with respect to the
treatment of the commutators in Proposition 2.9.
• We first consider the first term in the integral of (5.23). This term has the same type

of structure as the term ∫ ∞
0

∂2
Y C[∂2

Y V ]∂2
Y LUV w1,

68



which we treated in the previous section. However, there exists one substantial difference, due
to the fact that ∂Y L2

UV does not vanish at Y = 0, so that we cannot write Hardy inequalities
for ∂Y L2

UV . To overcome this difficulty, we recall that ∂Y L2
UV|Y=0 = −1

2(bs + b2), so that

∂2
Y LUV ∼ −

1
2(bs + b2)LUY ∼ −1

4(bs + b2)Y 2 for Y � 1, and we write

∂2
Y LUV =

(
∂2
Y LUV +

1

2
(bs + b2)LUY

)
− 1

2
(bs + b2)LUY. (5.24)

Now, we have ∂Y L
−1
U

(
∂2
Y LUV + 1

2(bs + b2)LUY
)
|Y=0

= 0 by construction, so that we can

apply Hardy inequalities to the first term. For instance∫ ∞
0

1

Y 2

(
∂Y L

−1
U

(
∂2
Y LUV +

1

2
(bs + b2)LUY

))2

w2 ≤ H2

∫ ∞
0

(∂2
Y L2

UV )2w2.

Using the additional bound on ∂3
Y U from Corollary 5.4, the computations are almost identical

to the ones on page 57 . The only difference lies in the treatment of one non-linear term,
for which we do not apply exactly the same strategy (i.e. evaluate the term with the least
number of derivatives in L∞, and the others in L2) and for which we use the extra information
coming from the bound on E1 and D1. More precisely, the only term for which we do not use
the same type of estimates as the ones on page 57 is∫ ∞

0
∂3
Y

D
U

(∫ Y

0
(L2

UV +
1

2
(bs + b2)Y )

)
∂2
Y L2

UV w2.

For this term, the problem comes from the part of ∂3
Y
D
U for which we do not have L∞ bounds,

namely O1/3(U−1)∂3
Y LUV + O1/3(Y −1U−1)∂2

Y LUV . We first integrate by parts once; the
most problematic term is then

−
∫ ∞

0

∂2
Y LUV
U

(∫ Y

0
(L2

UV +
1

2
(bs + b2)Y )

)
∂3
Y L2

UV w2.

Here, although the middle integral term has less derivatives than ∂2
Y LUV , we choose to

evaluate it in L2 thanks to a Hardy inequality because cancellations occur between L2
UV and

1
2(bs + b2)Y . More precisely, the above integral is bounded by∫ ∞

0

∣∣∣∣∂2
Y LUV
U1/2

Y 3

∣∣∣∣ ∣∣∣∣ 1

Y 3

∫ Y

0
(L2

UV +
1

2
(bs + b2)Y )

∣∣∣∣ |∂3
Y L2

UV |
U1/2

w2.

Now,

∂2
Y LUV
U1/2

Y 3 =

∫ Y

0
∂Y

(
∂2
Y LUV
U1/2

Y 3

)
≤ H2D

1/2
1

(∫ Y

0
(Y 4 + Y 6)w−1

1

)1/2

= Oβ1(s(7+a)β1/2D
1/2
1 ).

The part of the integral bearing on Y & sβ1 can be bounded by noticing that we have pointwise

bounds on
∫ Y

0 L
2
UV since∣∣∣∣∫ Y

0
L2
UV

∣∣∣∣ = U

∣∣∣∣∫ Y

0

∂2
Y LUV
U2

∣∣∣∣ ≤ 2U

∫ Y

1

|∂Y LUV |UY
U3

+
|∂Y LUV |

U
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For the term involving (bs + b2) on the set Y & sβ1 , we merely control ∂2
Y LUV by E1.

Using Hardy inequalities and recalling that β2 < β1, m2 � m1, we infer that the prob-
lematic integral is bounded by

H2s
7β1/2D

1/2
1 E

1/2
2 D

1/2
2 + δD2 + s−PD1 + |bs + b2|2s−PE1

≤ 2δD2 +
H2

δ
s(7+a)β1D1E2 + s−PD1 + |bs + b2|2s−PE1.

We will then choose β1 so that 7β1 < 6 − (11 − a)β1, which is possible since β1 < 1/3. We
conclude that for all δ > 0, for s0 ≥ max(S0, J

4, C8
0 , δ
−p) for some p > 0,∣∣∣∣∫ ∞

0
∂2
Y C
[
∂2
Y LUV +

1

2
(bs + b2)LUY

]
∂2
Y L2

UV w2

∣∣∣∣
≤ δ(bE2 +D2) + +

H2

δ
s(7+a)β1D1E2 + s−PD1 + |bs + b2|2s−PE1 + s−P .

The next term coming from (5.24) is∫ ∞
0

∂2
Y C
[

1

2
(bs + b2)LUY

]
∂2
Y L2

UV w2.

It turns out that the main order term in ∂2
Y C[LUY ] vanishes. More precisely, following

the decomposition from Lemma 4.1, we write D = −bY/2 + D̃ + DNL =: D0 + D̃ + DNL,
and we decompose the operator C into C0 + C̃ + CNL accordingly. Concerning C0, an explicit
computation in Appendix A shows that ∂2

Y C0[LUY ] = Oβ1(b2Y ), so that, for s ≥ s0 sufficiently
large,∣∣∣∣∫ ∞

0
∂2
Y C0

[
1

2
(bs + b2)LUY

]
∂2
Y L2

UV w2

∣∣∣∣
≤ H2b

2|bs + b2|s(3−a)β2/2E
1/2
2 ≤ δbE2 + b2(bs + b2)2.

Concerning the terms involving the operator C̃, we use the fact that ∂kY D̃ = Oβ1(b3Y 7−k +
b4Y 10−k) for Y � 1 and for k = 0, 1, 2. Therefore

∂2
Y C̃[LUY ] = Oβ1(b3Y 4)− ∂3

Y

D̃
U

Y 2

2
.

Hence, integrating by parts the term involving ∂3
Y D̃ and choosing s0 large enough,∣∣∣∣∫ ∞

0
∂2
Y C̃
[

1

2
(bs + b2)LUY

]
∂2
Y L2

UV w2

∣∣∣∣
≤ b3|bs + b2|

∫ ∞
0

Oβ1(Y 4)|∂2
Y L2

UV |w2 + b3|bs + b2|
∫ ∞

0
Oβ1(Y 5)|∂3

Y L2
UV |w2

≤ δbE2 + δD2 +
H2

δ
(bs + b2)2(s−5+9β2 + s−6+13β2)

≤ δbE2 + δD2 + b2(bs + b2)2.
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There remains to address the terms involving DNL. Notice that DNL, ∂YDNL are bounded
in L∞ (see Corollary 5.4). As above, we integrate by parts the term involving ∂3

YDNL.
Eventually, we obtain, using Corollary 5.4∣∣∣∣∫ ∞

0
∂2
Y CNL

[
1

2
(bs + b2)LUY

]
∂2
Y L2

UV w2

∣∣∣∣
≤ δbE2 + δD2 +

H2

δ
b2|bs + b2|2 + s−PD1.

Gathering all the estimates, we obtain, if s0 ≥ max(S0, J
4, C8

0 ),∣∣∣∣∫ ∞
0

∂2
Y C[∂2

Y LUV ]∂2
Y L2

UV w2

∣∣∣∣ ≤ δ (bE2 +D2) +
H2

δ
b2(bs + b2)2 +

H2

δ
s7β1D1E2 + s−PD1.

We then address the second term in (5.23), for which we use the same type of decompo-
sition as above, writing

∂2
Y V =

(
∂2
Y V +

1

48
(bs + b2)LUY

4

)
− 1

48
(bs + b2)LUY

4 =: ∂2
Y Ṽ −

1

48
(bs + b2)LUY

4.

Using the formula for L−1
U (Y 2) (4.2) together with the bounds on V stemming from E1, notice

that

∂Y L2
U Ṽ|Y=0 = ∂Y L2

UV|Y=0 +
1

4

(
∂Y L

−1
U Y 2

)
|Y=0

= 0,

and that

∂2
Y L2

U Ṽ = ∂2
Y L2

UV +
1

4
(bs + b2)∂2

Y L
−1
U Y 2 = ∂2

Y L2
UV +Oβ1((bs + b2)bY ).

Concerning the term ∫ ∞
0

∂2
Y LUC[∂2

Y Ṽ ]∂2
Y L2

UV w2, (5.25)

the computations are very similar to the ones above, using the formula for ∂2
Y C[·] from Lemma

4.12 on the one hand, and the formula for ∂2
Y L
−1
U from Lemma A.1 on the other hand. We

leave the details of the estimates to the reader since they do not raise any additional difficulty.
We end up with

(5.25) ≤ δ (D2 + bE2) + b2(bs + b2)2 +
H2

δ

(
s−3D1 + s(7+a)β1D1E2 + s3(bs + b2)2E2 + s−P

)
.

We then consider
1

48
(bs + b2)

∫ ∞
0

∂2
Y LUC[LUY 4]∂2

Y L2
UV w2. (5.26)

A straightforward computation leads to

∂2
Y LUC[LUY 4] = Oβ1

(
b

(1 + Y )U

)
+

4∑
i=0

Oβ1((1 + Y )i−1)∂iY

∫ Y

0
L2
UV.

We have ∣∣∣∣∫ ∞
0

Oβ1

(
b(bs + b2)

(1 + Y )U

)
∂2
Y L2

UV w2

∣∣∣∣ ≤ δD2 +
H2

δ
b2(bs + b2)2.
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Expressing ∂Y L2
UV and L2

UV in terms of LUV and using the expressions of E1, D1, it can

be easily proved that the terms of the form Oβ1((1 + Y )i−1)∂iY
∫ Y

0 L
2
UV give rise to integrals

that can be bounded by
δbE2 + δD2 +H2s

−2D1 + s−P .

Gathering all the terms, we obtain the estimate announced in Lemma 5.6.

The remainder terms: proof of Lemma 5.7

We now consider the remainder terms occurring in the right-hand side of the differential
inequality for E2, namely ∫ ∞

0
∂2
Y L2

UV ∂2
Y L2

UR w2.

Following the decomposition of R from Remark 2.7, we will write R as
∑4

i=1Ri, and study
the contribution of each Ri separately. We emphasize that the most important terms are R1

and R2: indeed, they dictate the final convergence rate, whereas the terms involving R3 and
R4 are small perturbations of the main dissipation terms D2 + bE2.
• Remainder stemming from R1:
Using the decomposition (5.15) of the previous paragraph and using the fact that for k ≥ 8

and Y � 1,

∂2
Y L
−1
U ∂2

Y L
−1
U

[
Y kχ

(
Y

s2/7

)]
= Oβ1(Y k−8) +Oβ1(Y k−4)∂2

Y LUV +Oβ1(Y k−3)∂Y LUV,

we find that

∂Y L2
U (R1)

= (bs + b2)b∂2
Y L
−1
U ∂2

Y L
−1
U

[(
a4

2
Y 5 − 61

16
a7bY

8

)
χ

(
Y

s2/7

)]
(5.27)

+ Oβ1(b4) +Oβ1(b5Y 4) +Oβ1(b4Y 5 + b5Y 9)∂2
Y LUV +Oβ1(b4Y 6 + b5Y 10)∂Y LUV

− 1

2
(bs + b2)∂Y L

−1
U ∂2

Y L
−1
U LV Y + ∂2

Y L
−1
U

(
P̃1(s, Y )(1− χ)

(
Y

s2/7

))
.

Define

ϕ(s, Y ) := ∂2
Y L
−1
U ∂2

Y L
−1
U

[
Y 5χ

(
Y

s2/7

)]
.

Then

ϕ(s, Y ) = ∂3
Y U

∫ Y

0

(
1

U2
∂2
Y L
−1
U

[
Y 5χ

(
Y

s2/7

)])
+
UY Y
U2

∂2
Y L
−1
U

[
Y 5χ

(
Y

s2/7

)]
−UY
U2

∂3
Y L
−1
U

[
Y 5χ

(
Y

s2/7

)]
+

1

U
∂4
Y L
−1
U

[
Y 5χ

(
Y

s2/7

)]
.

Since we focus on the value of the above quantities for Y ≤ sβ1 , we can replace χ(Y/s2/7)
by 1; following by now usual arguments, the part of the integral bearing on Y ≥ sβ1 will
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be smaller than s−P for P > 0 arbitrarily large, provided m2 � m1 is chosen large enough.
Using Lemma A.1, we have, for Y ≤ sβ1 and for s ≥ s0 large enough,

∂2
Y L
−1
U

[
Y 5χ

(
Y

s2/7

)]
= ∂3

Y U

∫ Y

0

Y 5

U2

+
Y 5 − 5(1 + Y )Y 4 + 20Y 3(Y + Y 2

2 ) +O(bY 7)

U2

=
6Y 5 + 15Y 4 +O(bY 7)

U2
≥ 5Y 5 + 14Y 4

U2
> 0 (5.28)

while

∂3
Y L
−1
U

[
Y 5χ

(
Y

s2/7

)]
= ∂4

Y U

∫ Y

0

Y 5

U2
+ 2

(
∂3
Y U

U2
− UY UY Y

U3

)
Y 5

+10Y 4U
2
Y

U3
− 40Y 3UY

U2
+ 120

Y 2

U

=
2Y 4(9Y 2 + 29Y + 45)

U3
+O(bY 2) +O(Y 2U)∂2

Y LUV. (5.29)

A similar formula holds for ∂4
Y L
−1
U [Y 4]. It follows that

ϕ(s, Y ) = Oβ1((1 + Y )−3) +Oβ1(Y )∂2
Y LUV +Oβ1(Y 2)∂3

Y LUV +Oβ1(bY )

and

|∂2
Y L2

UR1| = |bs + b2|b|ϕ(s, Y )|+Oβ1(b4 + b5Y 4)

+Oβ1(b4Y 6 + b5Y 10 + (bs + b2)Y 2)∂Y L2
UV + l.o.t.

As a consequence, since β2 < β1,∣∣∣∣∫ ∞
0

[
(bs + b2)bϕ(s, Y )

] [
∂2
Y L2

UV
]
w2

∣∣∣∣
≤ H2b|bs + b2|D1/2

2

(∫ ∞
0

U2

(1 + Y )6
w2

)1/2

+H2b
2|bs + b2|E1/2

2

(∫ ∞
0

Y 2w2

)1/2

+H2b|bs + b2|E1/2
2

(
s6/7D

1/2
1 + s−P

)
.

For any δ > 0, if s ≥ s0 large enough (depending on δ), the right-hand side is bounded by

δ (bE2 +D2) +
H2

δ
b2|bs + b2|2 +

H2

δ
b|bs + b2|2s12/7D1 + s−P

≤ δ (bE2 +D2) +
H2

δ
b2|bs + b2|2 + s−2D1 + s−P .

Gathering all the terms, it follows that∫ ∞
0

(
∂2
Y L2

UR1

) (
∂2
Y L2

UV
)
Y −aw2 ≤ δ (bE2 +D2) +

H2

δ
b2|bs + b2|2 + s−2D1(s) + s−P
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• Remainder stemming from R2: As announced in Remark 2.7, the second remainder
R2 will partly dictate the total size of the remainder. More precisely, we have, for Y � 1,

L2
UR2 = Oβ1(b4Y 3),

∂Y L2
UR2 = Oβ1(b4Y 2) +Oβ1(b4Y 5)L2

UV,

∂2
Y L2

UR2 = Oβ1(b4Y ) +Oβ1(b4Y 5)∂Y L2
UV +Oβ1(b4Y 4)L2

UV.

We infer that for all δ > 0 and for s ≥ s0 large enough (depending on δ),∣∣∣∣∫ ∞
0

∂2
Y L2

UR2 ∂
2
Y L2

UV w2

∣∣∣∣ ≤ δbE2 +
H2

δ
s−7+(3−a)β2 +

H2

δ
s−17/4D1.

• Remainder stemming from R3:
An easy computation leads to

L2
U (L−1

U LV Y ) = Oβ1 (1) ∂Y L2
UV + l.o.t.+ UY

∫ Y

0

∂2
Y LUL

−1
U (LV Y )

U2
,

∂Y L2
U (L−1

U LV Y ) = Oβ1 (1) ∂2
Y L2

UV +Oβ1

(
1

1 + Y

)
∂Y L2

UV + l.o.t.

+ UY Y

∫ Y

0

∂2
Y LUL

−1
U (LV Y )

U2
.

In order to estimate ∂2
Y L2

U (L−1
U LV Y ), we use the same trick as in the commutator estimate

and we replace V by its asymptotic expansion close to Y = 0. More precisely, we write

V =

(
V +

1

2
(bs + b2)L−2

U Y

)
− 1

2
(bs + b2)L−2

U Y =: V0 −
1

2
(bs + b2)L−2

U Y,

with the convention ∂−1
Y =

∫ Y
0 . Now, by definition ∂Y L2

UV0|Y=0 = 0 and ∂2
Y L2

UV0 = ∂2
Y L2

UV .
Moreover, it can be easily checked that

∂2
Y L2

UL
−1
U

(
Y L−2

U Y − Y 2

2
∂Y L−2

U Y

)
= Oβ1

(
1

Y (1 + Y )2

)
+O1/3(Y 5)∂2

Y L2
UV +O1/3(Y 4)∂Y L2

UV + l.o.t.,

while

∂2
Y L2

UL
−1
U (LV0Y ) = Oβ1

3∑
i=1

O1/3(Y 3+i)∂iY L2
UV + l.o.t.

It follows that∣∣∣∣∫ ∞
0

b∂2
Y L2

U (L−1
U LV Y )∂2

Y L2
UV w2

∣∣∣∣
≤ δD2 +

C

δ
b2
∫ ∞

0
UOβ1

(
Y 4

U2

)
(∂2
Y L2

UV )2w2 +H2b

∫ ∞
0

1

1 + Y
(∂2
Y L2

UV )2w2

+H2b|bs + b2|
∫ ∞

0
Oβ1

(
1

Y (1 + Y )2

) ∣∣∂2
Y L2

UV
∣∣w2

+H2b|bs + b2|
3∑
i=1

∫ ∞
0

O1/3(Y 3+i)|∂iY L2
UV |

∣∣∂2
Y L2

UV
∣∣w2.
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Using the estimate on ∂Y L2
UV from Corollary 5.4, we infer that the right-hand side is bounded

by

δ(D2 + bE2) +
H2

δ
b2(bs + b2)2 +H2s

−3D1.

The same method and estimates apply to b3L−1
U (LV Y

7). At last, we consider

b3L−1
U

(
χ

(
Y

s2/7

)
L−a4bY 4−a7b2Y 7+a10b3Y 10+a11b3Y 11Y 7

)
=: L−1

U (ζ(s, Y )).

Note that ζ(s, ·) ∈ C∞(Y ) and that

∂kY ζ(s, Y ) = O(b4Y 11−k) ∀k ≤ 11.

It follows that

L2
UL
−1
U ζ = O(b4Y lnY ) +O1/3(s−10/3Y 4 + s−4Y 8)∂Y L2

UV + l.o.t.

∂Y L2
UL
−1
U ζ = O(b4 lnY ) +O1/3(s−10/3Y 4 + s−4Y 8)∂2

Y L2
UV

+O1/3(s−10/3Y 3 + s−4Y 7)∂Y L2
UV + l.o.t.

∂Y Y L2
UL
−1
U ζ = O

(
b4

1 + Y

)
+O1/3(s−10/3Y 2 + s−4Y 6)∂3

Y L2
UV

+O1/3(s−10/3Y 3 + s−4Y 7)∂Y L2
UV + l.o.t.

We obtain, since β2 < β1 < 1/3,∣∣∣∣∫ ∞
0

(
L2
UL
−1
U ζ L2

UV ∂Y Y w2 + ∂Y L2
UL
−1
U ζ ∂Y L2

UV w2

)∣∣∣∣
≤ δbE2 +

H2

δ
s−27/4 (ln s)2 +

H2

δ
s−7+(16+a)β2E2

and, writing ∂Y L2
UV =

(
∂Y L2

UV + 1
2(bs + b2)

)
− 1

2(bs + b2),∣∣∣∣∫ ∞
0

∂2
Y L2

UL
−1
U ζ ∂2

Y L2
UV w2

∣∣∣∣ ≤ δbE2 + δD2 +
H2

δ
s−7 +

H2

δ
s−7+(13−a)β2(bs + b2)2 + s−MD1.

• Remainder stemming from R4:
We recall that

R4 = P1(s, Y )(1− χ1)

(
Y

s2/7

)
+ L−1

U

(
P2(s, Y )(1− χ2)

(
Y

s2/7

))
,

and that for any P > 0, k ≥ 0, i = 1, 2, choosing β1 < 2/7,

∂kY (Pi(1− χi)(
Y

s2/7
)) = Oβ1(s−P ).

Using the same type of computations as above, it follows that for any M > 0,

L2
UR4 = Oβ1(s−P ) +Oβ1(s−P )∂Y L2

UV + l.o.t. in L2(∂Y Y w2),

∂Y L2
UL
−1
U ψ = Oβ1(s−P ) +Oβ1(s−P )∂2

Y L2
UV +Oβ1(s−P )∂Y L2

UV + l.o.t. in L2(w2)

∂Y Y L2
UL
−1
U ψ = Oβ1(s−P ) +Oβ1(s−P )∂3

Y L2
UV +Oβ1(s−P )∂Y L2

UV + l.o.t. in L2(w2).
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Thus, choosing m2 and m2 large enough,∣∣∣∣∫ ∞
0

(L2
UR4L2

UV ∂Y Y w2 + ∂Y L2
UR4∂Y L2

UV w2)

∣∣∣∣ ≤ δbE2 + s−P + s−PE2 + s−PD1,∣∣∣∣∫ ∞
0

∂2
Y L2

UR4 ∂
2
Y L2

UV w2

∣∣∣∣ ≤ δbE2 + δD2 + s−P + s−PD1.

Gathering all the terms, we obtain the estimates announced in Lemma 5.7.
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A Useful formulas

• We will often need to transform derivatives of V into quantities involving LUV,L2
UV and

their derivatives. In order to do so, we start from the following observation

∂2
Y V = LULUV = ULUV − UY

∫ Y

0
LUV, (A.1)

from which it follows, applying the same idea to ∂2
Y LUV ,

∂3
Y V = U∂Y LUV − UY Y

∫ Y

0
LUV,

∂4
Y V = U2L2

UV − UUY
∫ Y

0
L2
UV + UY ∂Y LUV − UY Y LUV − (∂3

Y U
app + ∂3

Y V )

∫ Y

0
LUV.

(A.2)
Notice that for derivatives of U of higher greater than or equal to two, we decompose ∂kY U
into ∂kY U

app + ∂kY V . This is related to the fact that we have pointwise estimates on ∂2
Y U ,

but not on higher derivatives. Now, in the formula giving ∂4
Y V , we can write ∂3

Y V in terms
of LUV . Obviously, we can iterate this procedure. As a consequence, for any k ≥ 2, we can
express ∂kY V in terms of LlUV for l ≤ k/2.
• We will also need the explicit expression of ∂kY L

−1
U , which is given in the following

Lemma, whose proof is straightforward and left to the reader.

Lemma A.1. For any function W which vanishes at a sufficiently high order near Y = 0,
we have

∂Y L
−1
U W = UY Y

∫ Y

0

W

U2
+
∂YW

U
,

∂2
Y L
−1
U W = ∂3

Y U

∫ Y

0

W

U2
+ ∂2

Y U
W

U2
− ∂Y U

∂YW

U2
+
∂2
YW

U

= ∂3
Y U

∫ Y

0

W

U2
+ ∂2

Y U
W

U2
+ ∂Y

∂YW

U
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and

∂3
Y L
−1
U W = ∂4

Y U

∫ Y

0

W

U2
+ 2

(
U∂3

Y U − UY Y UY
U3

)
W + 2

U2
Y

U3
∂YW − 2

UY
U2

∂Y YW +
∂3
YW

U
.

• Eventually, setting D0 := −bY/2 and

C0[W ] := 2L−1
U

(
D0

W

U

)
− ∂Y

(
D0

U

∫ Y

0
L−1
U W

)
,

we need to compute ∂2
Y C0[LUY ]. By definition, LUY = Y U − UY Y 2/2, so that

C0[LUY ] = − b
2

{
2L−1

U (Y 2)− L−1
U

(
Y 3UY
U

)
− ∂Y

(
Y 3

2U

)}
.

Now, integrating by parts,

L−1
U

(
Y 3UY
U

)
= ∂Y

[
U

∫ Y

0

Y 3UY
U2

]
= −∂Y

(
Y 3

2U

)
+

3

2
L−1
U (Y 2).

Therefore

C0[LUY ] = − b
4
L−1
U (Y 2).

Using the formula above for ∂2
Y L
−1
U , we obtain

∂2
Y C0[LUY ] = − b

4

{
∂3
Y U

∫ Y

0

Y 2

U2
+
Y 2UY Y − 2Y UY + 2U2

U2

}
.

B Estimate on the modulation rate

Lemma B.1. Let γ ∈ (0, 5), and let ϕ : [s0, s1]→ R+ be such that∫ s1

s0

sγϕ(s) ds < +∞.

Assume that there exists a constant ε > 0 such that for all s ∈ [s0, s1]∣∣bs + b2
∣∣ ≤ √ϕ,

1− ε
s
≤ b(s) ≤ 1 + ε

s
.

Then for all s ∈ [s0, s1],∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ 1 + ε

1− ε

∣∣∣∣ 1

s0
− b(s0)

∣∣∣∣ s2
0

s2
+

1 + ε

(1− ε)2
√

5− γ
s

1−γ
2

(∫ s1

s0

tγϕ(t)dt

)1/2

.

In particular:

• If ϕ(s) = Js−4−η, the inequality becomes, with γ = 3 + η/2,∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ 1 + ε

1− ε

∣∣∣∣ 1

s0
− b(s0)

∣∣∣∣ s2
0

s2
+
J1/2

√
η

1 + ε

(1− ε)2
s−1− η

4 .
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• More generally, if γ > 3, then there exists a constant η > 0 (η = (γ − 3)/2) such that
for all s ∈ [s0, s1],∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ 1 + ε

1− ε

∣∣∣∣ 1

s0
− b(s0)

∣∣∣∣ s2
0

s2
+

(1 + ε)J1/2

(1− ε)2
√

2− 2η
s−1−η,

where J =
∫ s1
s0
tγϕ(t)dt.

Proof. The assumption on b entails∣∣∣∣bsb2 + 1

∣∣∣∣ =

∣∣∣∣ dds
(
s− 1

b

)∣∣∣∣ ≤ √ϕb2 ≤ 1

(1− ε)2
s2√ϕ.

Integrating the above inequality between s0 and s and using a Cauchy-Schwarz inequality
yields ∣∣∣∣s− 1

b(s)

∣∣∣∣ ≤ ∣∣∣∣s0 −
1

b(s0)

∣∣∣∣+
1

(1− ε)2

(∫ s1

s0

tγϕ(t)dt

)1/2(∫ s

s0

t4−γ dt

)1/2

≤
∣∣∣∣s0 −

1

b(s0)

∣∣∣∣+
1

(1− ε)2

(∫ s1

s0

tγϕ(t)dt

)1/2 s
5−γ
2

√
5− γ

.

Now, multiplying the above inequality by b/s ≤ (1 + ε)s−2, we obtain∣∣∣∣b(s)− 1

s

∣∣∣∣ ≤ (1 + ε)
s0

b(s0)

∣∣∣∣ 1

s0
− b(s0)

∣∣∣∣ 1

s2
+

1 + ε

(1− ε)2

(∫ s1

s0

tγϕ(t)dt

)1/2 s
1−γ
2

√
5− γ

.

Since s0/b(s0) ≤ (1− ε)−1s2
0, we obtain the inequality announced in the Lemma.

Lemma B.1 has in particular the following consequence:

Corollary B.2. Assume that b satisfies the assumptions of Lemma B.1 for some γ ∈]3, 4[.
For s ≥ s0, define b̃ by

b̃s + bb̃ = 0, b̃|s=s0 =
1

s0
.

Then there exists a universal constant C̄ such that if s0 ≥ C̄(Jε−2)1/(γ−3), for all s ≥ s0,

1− 2ε

s
≤ b̃(s) ≤ 1 + 2ε

s
.

Proof. Since b̃ satisfies a linear ODE, we have simply

b̃(s) =
1

s0
exp

(
−
∫ s

s0

b(s′)ds′
)
.

According to Lemma B.1, for all s ≥ s0,

ln
s

s0
− Cε,γ,s0 ≤

∫ s

s0

b(s′)ds′ ≤ ln
s

s0
+ Cε,γ,s0 ,
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where

Cε,γ,s0 =
1 + ε

(1− ε)2
ε+

1 + ε

(1− ε)2
J1/2(5− γ)−1/2 2s

3−γ
2

0

γ − 3
.

Therefore
e−Cε,γ,s0

s
≤ b̃(s) ≤ eCε,γ,s0

s
.

Now, if s0 ≥ C̄(Jε−2)1/(γ−3), we have

eCε,γ,s0 ≤ 1 + 2ε, e−Cε,γ,s0 ≥ 1− 2ε,

which completes the proof.

C Proof of Lemma 3.6

As much as possible, we treat sub-solutions and super-solutions simultaneously. For any
A± > 0, k± > 2, we consider the function

W±(s, ψ) :=
(6ψ)4/3

4
±A±ψk± b̃

3k±−2

4 .

We will choose k− = 7/3 for sub-solutions and k+ = 10/3 for super solutions.
We claim that W± satisfy the following properties:

• Choosing k− = 7/3, there exists C̄ such that if C− ≥ C̄, then for all A− > 0,

∂sW− − 2bW− +
3b

2
ψ∂ψW− −

√
W−∂ψψW− + 2 ≤ 0 (C.1)

on the domain {ψ ≥ C−b̃−3/4} ∩ {W− > 0}.
Similarly, choosing k+ = 10/3, there exists C̄ > 0 such that if C− ≥ C̄, for all A+ > 0

∂sW+ − 2bW +
3b

2
ψ∂ψW+ −

√
W+∂ψψW+ + 2 ≥ 0 ∀ψ ≥ C−b̃−3/4. (C.2)

• There exists a constants Ā such that if A± ≥ Ā and if s0 is large enough (depending on
A±, C1, a and C−),

W−(s, C−b̃
−3/4) ≤W (s, C−b̃

−3/4) ≤W+(s, C−b̃
−3/4). (C.3)

• There exists a constant A0 , depending on M0 such that if A± ≥ A0,

W−(s0, ψ) ≤W (s0, ψ) ≤W+(s0, ψ) ∀ψ ≥ C−s3/4
0 . (C.4)
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Proof of inequalities (C.1) and (C.2)

We first compute the transport term. We have

∂sW± − 2bW± +
3b

2
ψ∂ψW± = ±A±

3(k± − 2)

4
bb̃

3k±−2

4 ψk± ≷ 0

provided k± > 2. We now address the computation of the diffusion term, which we treat a
bit differently for the sub- and for the supersolution. The heuristic is that if ψ ≥ Cs3/4 for
some C large enough (i.e. Y > C ′s1/4 for some large C ′), transport dominates the diffusion
term. We prove this fact by distinguishing between two different zones:

• When ψ4/3 � ψk± b̃
3k±−2

4 , i.e. ψ � b̃
− 3

4

3k±−2

3k±−4 , we can perform asymptotic expansions of√
W± and ∂ψψW±. We have

√
W± =

(6ψ)2/3

2

(
1± 2A±

64/3
ψk±−

4
3 b̃

3k±−2

4 +O(ψ2k±− 8
3 b̃

3k±−2

2 )

)
,

∂ψψW± =
64/3ψ−2/3

9

(
1± 9A±k±(k± − 1)

64/3
ψk±−4/3b̃

3k±−2

4

)
,

so that

−
√
W±∂ψψW± + 2 = ∓2A±

64/3

(
9k2
± − 9k± + 2

)
ψk±−

4
3 b̃

3k±−2

4 +O

(
ψ2k±− 8

3 b̃
3k±−2

2

)
.

Therefore, if

3(k± − 2)

4
b >

4

64/3

(
9k2
± − 9k± + 2

)
ψ−4/3 ∀ψ ≥ C−b̃−4/3,

then

∂sW± − 2bW± +
3b

2
ψ∂ψW± −

√
W±∂ψψW± + 2 ≷ 0.

Hence we define

Ck± := 2

(
16(9k2

± − 9k± + 2)

3× 64/3(k± − 2)

)3/4

,

and recalling Lemma 3.5, we obtain inequality (C.1) on Ck± b̃
−3/4 ≤ ψ � b̃

− 3
4

3k±−2

3k±−4

provided ε is sufficiently small.

• We now consider larger values of ψ. This is where we treat separately the sub- and the
supersolution. Concerning the subsolution, we can use the weaker estimate

√
W− ≤

(6ψ)2/3

2
, (C.5)

which leads to, taking k− = 7/3,

∂sW− − 2bW− +
3b

2
ψ∂ψW− −

√
W−∂ψψW− + 2

≤ −A−
1

4
bb̃5/4ψ7/3 +

62/3

2
A−

28

9
ψb̃5/4 + 2.
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The right-hand side above is negative if ε is small enough and

ψ7/3 >
16

A−
b̃−9/4.

Noticing that 27/28 < 5/4, we infer that if s0 is large enough, b̃−
3k−+2

4 � b̃
− 3

4

3k−−2

3k−−4 ,
and thus (C.1) is proved on the set [C−b̃

−3/4,∞) ∩ {W− > 0} if s0 is sufficiently large.

We now consider the supersolution, choosing k+ := 10/3. We replace estimate (C.5) by

√
W+ ≤

(
(6ψ)2/3

2
+
√
A+ψ

5/3b̃

)
,

so that

∂sW+ − 2bW+ +
3b

2
ψ∂ψW+ −

√
W+∂ψψW+ + 2

≥ A+bb̃
2ψ10/3 − C̄

(
1 +A

3/2
+ ψ3b̃3

)
,

for some universal (and computable) constant C̄. It is easily checked that the right-
hand side is positive as soon as ψ � s9/10. Furthermore, since k+ = 10/3, 3

4
3k+−2
3k+−4 = 1,

and therefore s9/10 � b̃
− 3

4

3k+−2

3k+−4 . Thus inequality (C.2) is proved for ψ ≥ C10/3b̃
−3/4

provided s0 is sufficiently large.

Proof of inequality (C.3)

Inequality (C.3) is an immediate consequence of the asymptotic expansion (3.6). Indeed, we
need to choose A± such that

−A−C7/3
− b̃−1/2 ≤ b̃−1/2

(
(6C−)2/3

2
− 3

5
a4
b

b̃
(6C−)2

)
+O(s

a+2
8 ) ≤ A+C

10/3
− b̃−1/2.

It is clear that once C− is fixed, we can pick A± sufficiently large (depending only on k±
and C−) so that the above inequality is satisfied provided ε is small (e.g. ε < 1/2, recalling

Lemma 3.5) and s0 is sufficiently large, so that the O(s
a+2
8 ) term can be neglected.

Proof of inequality (C.4)

Since −M0 inf(s−1
0 Y 2, 1) ≤ UY Y (s0)− 1 ≤ 0, we infer that

Y +
Y 2

2
− M0

12
s−1

0 Y 4 ≤ U(s0, Y ) ≤ Y +
Y 2

2
∀Y ≥ 0.

Then for 1� ψ � s
3/2
0 , performing the same computations as the ones leading to (3.6),

W (s0, ψ) =
(6ψ)4/3

4

(
1 + 2(6ψ)−2/3 +O(s−1

0 ψ2/3 + ψ−1)
)

and therefore there exists a constant M , depending only on M0, such that

(6ψ)4/3

4
+

(6ψ)2/3

2
−Ms−1

0 ψ2−Mψ1/3 ≤W (s0, ψ) ≤ (6ψ)4/3

4
+

(6ψ)2/3

2
+Ms−1

0 ψ2 +Mψ1/3.
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The estimate follows on the set C−s
3/4
0 ≤ ψ � s

3/2
0 , provided A−, A+ are large enough

(depending on M0). Furthermore, recall that W−(s0, Cs
3
4

3k−2
3k−4

0 ) = 0 and s
3
4

3k−2
3k−4

0 � s
3/2
0 since

k > 2 (if s0 is large). Thus the inequality W−(s0, ψ) ≤ W (s0, ψ) is valid on the domain of

definition of ψ. On the other hand, for ψ ≥ cs
6/5
0 , W+(s0, ψ) ≥ A+

2 c10/3s2
0. Therefore, since

W (s0, ψ) ≤ limY→∞ U(s0, Y )2 . s2
0, we infer that W (s0, ψ) ≤W+(s0, ψ) for ψ ≥ cs6/5

0 . Since

s
6/5
0 � s

3/2
0 , we infer that W (s0, ψ) ≤W+(s0, ψ) on the domain of definition of W+.

Conclusion

Putting together inequalities (C.1), (C.2), (C.3) and (2.22) and applying the maximum prin-
ciple on the domain {s ∈ [s0, s1], ψ ≥ C−b̃

−3/4}, we deduce that W−(s, ψ) ≤ W (s, ψ) ≤
W+(s, ψ) within this parabolic domain.

D Proof of Lemma 3.7

As in paragraph 3.2, the real issue is to control UY Y −1 in the zone Y & s1/4 (or equivalently,
ψ & s3/4). To that end, we rely on the equation in von Mises variables, and we use the
computations in the proof of Lemma 3.2. We set

F (s, ψ) :=
√
W∂ψψW − 2

and we recall that F satisfies (3.3). We now construct a function F such that |−M2bY (s, ψ)2 ≤
F (s, ψ) ≤ 0 for some constant M2 and for ψ = O(s), and such that

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF ≤ 0 in s > s0, ψ > Cb̃−3/4,

F (s, ψ) ≤ F (s0, ψ) on {s0} × (Cs
3/4
0 ,∞) ∪ {ψ = Cb̃−3/4, s > s0} ∪ {ψ =∞, s > s0}.

Let us postpone for a moment the construction of F and explain why the estimate of the
Lemma follows. First, notice that (F − F ) satisfies

∂s(F−F )− 1

2W
(F−F )(F+F+2)+

3b

2
ψ∂ψ(F−F )−

√
W∂ψψ(F−F ) ≤ 0 in s > s0, ψ > Cb̃−3/4,

and (F − F )+ = 0 on the parabolic boundary of the domain {s ≥ s0, ψ ≥ Cb̃−3/4}. We
then multiply the above inequality by (F − F )+, integrate in ψ over [Cb̃−3/4,+∞) and use
the same argument as in Lemma 3.2. It follows that (F − F )+ ≡ 0, and thus F ≥ F for all
s ≥ s0, ψ ≥ Cb̃−3/4. In particular, for Y ≤ cs1/3,

UY Y (s, Y )− 1 ≥ −M2

2
bY 2,

and the estimate announced in the statement of the Lemma follows.
We now turn towards the construction of F . According to Lemma 3.6, there exists A− > 0

and C− > 0 such that if ψ ≥ C−b̃−3/4,

W (s, ψ) ≥ (6ψ)4/3

4
−A−ψ7/3b̃5/4
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Let us construct F by treating separately the intervals (C−b̃
−3/4, cb̃−5/4) and (cb̃−5/4,+∞),

for some small constant c > 0 to be determined.
• For ψ ∈ (C−b̃

−3/4, cb̃−5/4) we take F (s, ψ) = −b̃α (ψ2/3 − ψ1/3)︸ ︷︷ ︸
=:g(ψ)

, for some large constant

α to be determined. Then

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF

= −bb̃α
2
ψ1/3 − 1

2W
F 2 + b̃α

√
W
[ g

W 3/2
+ g′′

]
.

Let us evaluate the term in brackets in the right-hand side. On the set (C−b̃
−3/4, cb̃−5/4), we

have

1

W 3/2
≤

(
(6ψ)4/3

4
−A−ψ7/3b̃5/4

)−3/2

=
2

9ψ2

(
1 +

A−

61/3
ψb̃5/4 +O(ψ2s−5/2)

)
.

Therefore

g

W 3/2
+ g′′

≤ 2

9ψ2

(
1 +

A−

61/3
ψb̃5/4 +O(ψ2s−5/2)

)
(ψ2/3 − ψ1/3)− 2

9
ψ−4/3 +

2

9
ψ−5/3

≤ 2A−

9 · 61/3
ψ−1/3b̃5/4 +O(ψ2/3b̃5/2 + ψ−2/3b̃5/4).

Using Lemma 3.6, we see that W = O(ψ4/3) for ψ ≤ cb̃−1. Therefore, for any α > 0, provided
c is small enough and s0 is large enough, we have∣∣∣b̃α√W [ g

W 3/2
+ g′′

]∣∣∣ ≤ bb̃α
4
ψ1/3,

whence

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF ≤ 0 on s ∈ (s0, s1), ψ ∈ (C−b̃

−3/4, cb̃−1).

We also need to check that F ≤ F on {s = s0, ψ ∈ (C−s
3/4
0 , cs

5/4
0 )} ∪ {ψ = C−b̃

−3/4}.
According to Lemma 3.4, we have, for ψ = C−b̃

−3/4,

F (s, ψ) = −62/3

2
bψ2/3 +O(s

a−6
8 ).

Therefore it is sufficient to take α ≥ 62/3 and s0 large enough. On the other hand, on the set

{s = s0, ψ ∈ (C−s
3/4
0 , cs

5/4
0 )}, since we know that

Y +
Y 2

2
−M0s

−1
0

Y 4

12
≤ U(s0, Y ) ≤ Y +

Y 2

2
∀Y ≥ 0,

we have Y = (6ψ)1/3 +O(1), and therefore assumption (3.9) implies

F (s0, ψ) ≥ −2M062/3s−1
0 ψ2/3.
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Therefore, choosing α = max(62/3, 12M0), we have F ≤ F on {s = s0, ψ ∈ (C−s
3/4
0 , cs

5/4
0 )} ∪

{ψ = C−b̃
−3/4}. Note that since Y ∼ (6ψ)1/3 for 1 � ψ . s1/3, this choice of α amounts to

taking M2 = M̄ max(1,M0).
• We now define F for ψ ≥ cb̃−5/4. On that interval, we choose F = −f(s, ψb̃5/4), for

some function f to be determined. Since F , ∂Y F should be continuous at ψ = cb̃−5/4, we
require that

f(s, c) = α
[
c2/3b̃1/6 − c1/3b̃7/12

]
=: g1(s),

∂ζf(s, c) =
α

3

[
2c−1/3b̃1/6 − c−2/3b̃7/12

]
=: g2(s).

As a consequence, we choose

f(s, ζ) := (g1(s) + g2(s)(ζ − c))χ(ζ) +H(ζ),

where H ∈ C2 ∩W 2,∞(R) is strictly increasing on [c,+∞[ and such that H(c) = H ′(c) = 0,
and χ ∈ C∞0 (R) is a cut-off function. We make the following additional assumptions: there
exists c′′ > c′ > c such that χ ≡ 1 on [c, c′], χ ≡ 0 on [c′′,+∞[, and H ′′(ζ) ≤ −1 for ζ ∈ [c′, c′′],
H ′′(ζ) ≤ 0 and 2 ≤ H(ζ) ≤ 4 for ζ ≥ c′′. With this choice, and recalling that W ≥ C̄c4/3b̃−5/3

for ψ ≥ cb̃−5/4 for some universal constant C̄, we have

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF

≤ −
[
g′1(s) + g′2(s)(ζ − c) +

1

4
bζg2(s)

]
χ(ζ)

+C̄c−4/3b̃5/3 ((g1(s) + g2(s)(ζ − c))χ(ζ) +H(ζ))

−1

4
bζH ′(ζ) +

√
Wb̃5/2∂2

ζH

+ (g1(s) + g2(s)(ζ − c))
(
−1

4
bζχ′(ζ) +

√
Wb̃5/2χ′′(ζ)

)
+ 2g2(s)

√
Wb̃5/2χ′(ζ).

We now prove that the right-hand side of the above inequality is non-positive by looking
separately at the zones (c′′,+∞), [c′, c′′] and [c, c′]:

• For ζ ≥ c′′, we have χ(ζ) = 0, and therefore

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF

=
1

2W
H(ζ)(2−H(ζ))− 1

4
bζH ′(ζ) +

√
Wb̃5/2H ′′.

The assumptions H ′(ζ) ≥ 0, H ′′(ζ) ≤ 0, H(ζ) ≥ 2 on (c′′,+∞) ensure that the right-
hand side is non-positive on this interval.

• For ζ ∈ [c′, c′′], we have H ′′(ζ) ≤ −1, and without loss of generality, we also assume
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that H ′(ζ) ≥ 1 on this interval. It follows that

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF

≤ C̄

(
αbb̃1/6c−1/3c′ + c−4/3b̃5/3 sup

[c′,c′′]
H

)
−1

4
c′b− C̄c2/3b̃5/3

+C̄‖χ‖W 2,∞αb̃11/6c1/3 max(c′, 1).

It is clear that the term −1/4c′b dominates all others for s0 sufficiently large.

• For ζ ∈ [c, c′], the computation is slightly more complicated because we expect that
H ′′(ζ) ≥ 0 in a vicinity of ζ = c, and H ′(c) = 0, so we cannot use the good sign of H ′

in a vicinity of ζ = c. However, using the formulas for g1, g2, we have

g′1(s) + g′2(s)(ζ − c) +
1

4
bζg2(s)

=
αb

18

[
b̃1/6c−1/3(ζ − c) + b̃7/12c−2/3 (2ζ + 7c)

]
≥ 0.

Noticing that b̃5/3 � bb̃7/12 and
√
Wb̃5/2 = O(b̃5/3) on the interval ζ ∈ [c, c′], we infer

that all terms are easily dominated by the above quantity, so that

∂sF −
1

2W
F (F + 2) +

3b

2
ψ∂ψF −

√
W∂ψψF ≤ 0

in this region as well.

The assumptions on the initial data also ensure that F (s0, ψ) ≤ F (s0, ψ) for ψ ≥ cs
5/4
0 .

The result follows.

E Proof of Lemma 4.11

Recall that
C̄a,µ := 4 sup

r>0
ϕ(r, a, µ),

where

ϕ(r, a, µ) :=

∫ ∞
r

Y −a(
µY + Y 2

2

)2dY

(∫ r

0
Y a

(
Y +

Y 2

2

)
dY

)
.

For all µ ∈ (0, 1), for all a > 0, r > 0

ϕ(r, a, µ) ≤
(∫ ∞

r

4

Y 4+a
dY

)(∫ r

0

(
Y 1+a +

Y 2+a

2

)
dY

)
≤ 2

(3 + a)2
+

4

(3 + a)(2 + a)

1

r
≤ 2

9
+

2

3r
.
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Let K ≥ 1 such that
8

9
+

8

3K
≤ 9

10
.

Then 4 supr≥K ϕ(r, a, µ) ≤ 9/10, so that for all µ ∈ (0, 1), for all a > 0,

C̄a,µ ≤ max

(
9

10
, 4 sup

0<r<K
ϕ(r, a, µ)

)
.

Now, for all r ∈ [0,K], for a, µ > 0,

∂aϕ(r, a, µ) = −

∫ ∞
r

lnY
Y −a(

µY + Y 2

2

)2dY

(∫ r

0
Y a

(
Y +

Y 2

2

)
dY

)

+

∫ ∞
r

Y −a(
µY + Y 2

2

)2dY

(∫ r

0
lnY Y a

(
Y +

Y 2

2

)
dY

)
.

There exists a constant CK such that for all a ∈ (0, 1/2), for all µ ∈ (1/2, 1),∫ ∞
K

(1 + lnY )
Y −a(

µY + Y 2

2

)2dY,

∫ K

0
(1 + | lnY |)Y a

(
Y +

Y 2

2

)
dY ≤ CK .

It follows that for all r ∈ [0,K], for all a ∈ (0, 1/2), for all µ ∈ (1/2, 1),

|∂aϕ(r, a, µ)| ≤ CK + CK sup
0≤r≤K

(∫ K

r

| lnY |
Y 2+a

dY

)(∫ r

0
Y 1+adY

)
+CK sup

0≤r≤K

(∫ K

r

1

Y 2+a
dY

)(∫ r

0
| lnY |Y 1+adY

)
.

Notice that if Y ∈ [0,K], then | lnY | ≤ ln(2K)− lnY . Then, performing explicit integrations
by part in the integrals, we observe that there exists a constant CK such that

sup
a∈[0,1/2]

sup
µ∈[1/2,1]

sup
r∈[0,K]

|∂aϕ(r, a, µ)| ≤ CK .

We infer that for all r ∈ [0,K], for all a ∈ [0, 1/2], for all µ ∈ [1/2, 1],

ϕ(r, a, µ) ≤ ϕ(r, 0, µ) + CKa.

Let us now compute explicitely ϕ(r, 0, µ). We have

1(
µY + Y 2

2

)2 =
1

µ

(
1

2µ+ Y
− 1

Y

)
+

1

Y 2
+

1

(2µ+ Y )2
,

so that

ϕ(r, 0, µ) =
1

µ2

(
1

µ
ln

(
r

2µ+ r

)
+

1

r
+

1

2µ+ r

)(
r2

2
+
r3

6

)
.
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The function (r, µ) 7→ ϕ(r, 0, µ) is W 1,∞ in [0,K]×[1
2 , 1], and therefore |ϕ(r, 0, µ)−ϕ(r, 0, 1)| ≤

CK |µ− 1|.
A careful study of the function

r 7→ ϕ(r, 0, 1) =

(
ln

(
r

2 + r

)
+

1

r
+

1

2 + r

)(
r2

2
+
r3

6

)
shows that it is increasing and converges towards 2/9 as r →∞. Eventually, we obtain

C̄a,µ ≤ max

(
9

10
, 4 sup

0≤r≤K
ϕ(r, 0, 1) + CKa+ CK |µ− 1|

)

≤ max

(
9

10
,
8

9
+ CKa+ CK |µ− 1|

)
.

Therefore, choosing a sufficiently small and µ sufficiently close to 1, we obtain

C̄a,µ ≤
9

10
.

F Proofs of Lemmas 2.14 and 2.15

Proof of the trace result (Lemma 2.14)

For any Y ∈ [0, L], write

|g(Y )− g(0)| =
∣∣∣∣∫ Y

0
∂Y g

∣∣∣∣ ≤ 1√
1 + a

(∫ L

0
(∂Y g)2Y −adY

)1/2

Y
1+a
2 .

It follows that

|g(0)|2 ≤ 2g(Y )2 + 2

(∫ L

0
(∂Y g)2Y −adY

)
Y 1+a.

Mutliply the above equation by (Y + Y 2)Y −a and integrate over [0, L]. We obtain

L3−a|g(0)|2 ≤ C̄
(∫ L

0
|g(Y )|2(Y + Y 2)Y −a dY + L4

(∫ L

0
(∂Y g)2Y −adY

))
,

which leads to the desired inequality.

Proof of the coercivity result (Lemma 2.15)

Let us consider the quantity ∫ ∞
0

U(∂Y L2
UV )2w̃1, (F.1)

where w̃1 = Y −a(1+s−β1Y )−m1−2 = w1(1+s−β1Y )−2. In order to prove the coercivity result,
we go back to the diffusion term that is bounded from below by D1 (plus some lower order
terms), namely

−
∫ ∞

0
∂2
Y L2

UV ∂2
Y LUV w1,
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or rather, to the same integral where w1 is replaced by w̃1. We set

D̃1(s) :=

∫ ∞
0

(∂2
Y LUV )2

U2
w̃1 +

∫ ∞
0

(∂3
Y LUV )2

U
w̃1.

Note that we obviously have D̃1 ≤ D1.
We recall (see the proof of Lemma 4.7 with f = ∂2

Y LUV ) that for any δ > 0, P > 0,
provided m1 and s0 are sufficiently large,

c̄D̃1 − δbẼ1 − s−P − s−PD0 ≤ −
∫ ∞

0
∂2
Y L2

UV ∂2
Y LUV w̃1 ≤ c̄−1D̃1 + bẼ1 + s−P + s−PD0.

On the other hand, set h := L2
UV . Then ∂2

Y LUV = LUh, so that, using the identity

∂Y LU = U∂Y − UY Y
∫ Y

0 and performing several integrations by parts,

−
∫ ∞

0
∂2
Y L2

UV ∂2
Y LUV w̃1 =

∫ ∞
0

∂Y h (∂Y LUh) w̃1 +

∫ ∞
0

∂Y h LUh∂Y w̃1

=

∫ ∞
0

U(∂Y h)2w̃1 −
∫ ∞

0
∂Y h

(∫ Y

0
h

)
w̃1 +

∫ ∞
0

(1− UY Y )∂Y h

(∫ Y

0
h

)
w̃1

−1

2

∫ ∞
0

h2(U∂Y w̃1)Y −
∫ ∞

0
∂Y h

(∫ Y

0
h

)
UY ∂Y w̃1

=

∫ ∞
0

[
U(∂Y h)2 + h2

]
w̃1

+

∫ ∞
0

(1− UY Y )∂Y h

(∫ Y

0
h

)
w̃1 −

1

2

∫ ∞
0

(∫ Y

0
h

)2

∂Y Y w̃1

+

∫ ∞
0

h2UY ∂Y w̃1 +

∫ ∞
0

h

(∫ Y

0
h

)
(UY Y − 1)∂Y w̃1

−1

2

∫ ∞
0

(∫ Y

0
h

)2 (
(1 + UY Y )∂Y Y w̃1 + UY ∂

3
Y w̃1

)
.

The first term in the right-hand side is precisely (F.1). The two terms with (UY Y − 1) in the
integrand can be bounded in the same fashion as the analogous remainder terms in Lemma
4.7, and therefore satisfy, for any δ, P > 0,∣∣∣∣∫ ∞

0
(1− UY Y )∂Y h

(∫ Y

0
h

)
w̃1

∣∣∣∣+

∣∣∣∣∫ ∞
0

h

(∫ Y

0
h

)
(UY Y − 1)∂Y w̃1

∣∣∣∣
≤ δ

[
D1 + bE1 +

∫ ∞
0

[
U(∂Y h)2 + h2

]
w̃1

]
+ s−P + s−PD0.

Using the bound |UY Y | ≤M2 and noticing that ∂3
Y w̃1 < 0, there remains to upper-bound∫ ∞

0
h2UY |∂Y w̃1|+

∫ ∞
0

(∫ Y

0
h

)2

∂Y Y w̃1.

Notice that |∂Y w̃1| ≤ Cm1,aY
−1w̃1, and ∂Y Y w̃1 ≤ Cm1,aY

−2w̃1. Hence, using a Hardy in-
equality together with the bounds on UY , it is sufficient to upper-bound∫ ∞

0

(
1 + Y −1

)
h2w̃1.
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Let us first consider the integral between 0 and 1. By a Hardy inequality, we have∫ 1

0

(
1 + Y −1

)
h2w̃1 ≤ 4

∫ 1

0
h2 dY

Y 1+a
≤ Ca

∫ 1

0
Y 1−a(∂Y h)2dY.

Since

∂Y h = UY Y

∫ Y

0

∂2
Y LUV
U2

+
∂3
Y LUV
U

,

we have, for Y ∈ (0, 1),

|∂Y h|2 ≤ CaD̃1Y
a +

(∂3
Y LUV )2

Y 2
,

and therefore ∫ 1

0

(
1 + Y −1

)
h2w̃1 ≤ CaD̃1.

There remains to control the integral for Y ≥ 1. To that end, we write

h = L−1
U (∂2

Y LUV ) = UY

∫ Y

0

∂2
Y LUV
U2

+
∂2
Y LUV
U

.

Once again, a simple Cauchy-Schwartz inequality yields(∫ Y

0

∂2
Y LUV
U2

)2

≤
(∫ ∞

0

(∂2
Y LUV )2

Y 2U
w1

)(∫ Y

0

Y 2

U3w1

)
≤ Cm1,aD̃1(1 + Y −3w−1

1 ).

It follows that∫ ∞
1

h2w̃1 ≤ 2

∫ ∞
1

(∂2
Y LUV )2

U2
w̃1 + Cm1,aD1

∫ ∞
1

(1 + Y −3w1
−1)(1 + Y )2w̃1

≤ 2D̃1 + Cm1,as
(3−a)β1D1 ≤ Cm1,as

(3−a)β1D1.

Eventually, we infer that for any P > 0, provided m1 and s0 are large enough, for any s ≥ s0,∫ ∞
0

[
U(∂Y LUV )2 + (LUV )2

]
w̃1 ≤ Cm1,as

(3−a)β1D1 + bE1 + s−P + s−PD0. (F.2)
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