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Abstract

This article describes a new numerical scheme to model surface tension for an interface
represented by a level-set function. In contrast with previous schemes, the method
conserves fluid momentum and recovers Laplace’s equilibrium exactly. It is formally
consistent and does not require the introduction of an arbitrary interface thickness,

as is classically done when approximating surface-to-volume operators using Dirac
functions. Variable surface tension is naturally taken into account by the scheme
and accurate solutions are obtained for thermocapillary flows. Application to the
Marangoni breakup of an axisymmetric droplet shows that the method is robust also
in the case of changes in the interface topology.

1 Introduction

A wide range of numerical models for interfacial flows rely on an Eulerian description of the
velocity, pressure and material property fields. This is natural for interfacial fluid flows that
involve very large deformations as well as topological changes (merging and fragmentation).
The discrete volumetric representation of fields which results from the Eulerian approach
is however not naturally suitable for the accurate representation of surface forces, such as
surface tension [23]. A classical “trick” is to formally transform the surface force density
into a volumetric force density (a body force) through multiplication by a surface Dirac
function. For example, the contribution of surface tension to fluid momentum is usually
written

Dt(ρu) =−∇p+ γκn δs,

with Dt the total derivative, ρ the density, u the velocity, p the pressure, γ the surface
tension coefficient, κ the interface curvature, n the unit normal to the interface. The surface
Dirac function δs is non-zero only on the interface. The surface tension γ κ is a force per
unit area ; it is transformed into a force per unit volume through product with the Dirac
function (the inverse of a vanishingly-small length scale).

This volumetric transform is exploited by a range of closely-related numerical models
which can be traced back to the original “immersed boundary” method of Peskin [21]. The
surface tension force density is rewritten as

γ κn δs = γκ∇Hs, (1)
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with Hs the interface Heaviside function. Various numerical approximations can be chosen
for Hs. In the Continuum-Surface-Force (CSF) method of Brackbill et al. [3] and sub-
sequent papers Hs = c, where c is the volume fraction; in levelset methods and in the
immersed boundary method of Peskin, as well as some front-tracking implementations,
Hs = f(φ) where φ is the levelset function and f is some smooth approximation of a
Heaviside function (e.g. a hyperbolic tangent or cosine function); in the Ghost-Fluid-
Method (GFM), Hs = (sign(φ) + 1) / 2. These different approximations have a minor
influence on the overall scheme and all these CSF-based methods share common properties
[23]. In particular, the characteristic interface thickness is always of order ∆, the mesh size,
which is consistent with the introduction of this length scale through the Dirac function.
Note that this diffusion of the interface over ∆ is also true for the GFM, despite claims
that it is a “sharp interface” method, in contrast with the others. As a consequence, all
the above methods are formally first-order accurate in space. This follows from detailed
analysis of Peskin’s scheme by LeVeque & Li [13] and is independent from the order of
accuracy of the curvature κ.

A very important property explains the success of this class of methods. As first noted
by Renardy & Renardy [25], the equilibrium condition between pressure and surface tension
can be written

−∇p+ γ κn δs =−∇p+ γκ∇Hs = 0,

which reduces to

∇(peq− γκeqHs) = 0 (2)

in the case of constant surface tension and curvature. Hence peq = γ κeq Hs, which is
just Laplace’s relation for a spherical droplet in equilibrium. From a numerical point of
view, this well-balancing property holds only if the discrete gradient operator applied to
p is identical to that applied to Hs, otherwise truncation errors may not cancel. Another
condition for well-balancing is that the numerical method converges toward a constant
curvature estimate, which is far less trivial. Curvature estimation techniques, rather than
Heaviside approximations, are indeed the discriminating ingredient within well-balanced
CSF methods. Well-balancing is crucial in practice, because interfacial flows often involve
small deviations from Laplace equilibria. Any numerical imbalance can thus swamp the
true solution. Exact well-balancing was first demonstrated by Popinet [22] for a Volume-
Of-Fluid (VOF) method with a Height-Function curvature estimation and has since been
obtained also for levelset [1].
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Figure 1. Controle volume and interface tangents.

A discrete surface tension model can also be derived in a very different manner. If one
considers the discrete volume Ω of Figure 1, intersected by an interface, the resultant of
the surface tension forces acting on Ω is simply

∮

A

B

γ dt= γB tB− γA tA, (3)
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with γA, tA the surface tension coefficient and unit tangent at intersection point A (resp.
B). Note that this is mathematically equivalent to the volumetric formulation since we have

∮

A

B

γ dt =

∮

A

B

γ κn ds=

∫

Ω
γκn δs,

where we used the first Frenet–Serret relation for parametric curves. From a discrete
point-of-view this is very different, however. This is because we replaced the estimation of
interface curvature, normal and Dirac/Heaviside with the estimation of interface tangents
and positions. Furthermore, we avoided the introduction of an arbitrary length scale (the
interface thickness) so that the interface is now truly sharp. The order of the method is
controlled only by the accuracy with which we describe the interface geometry.

It is obvious from expression (3) that the net force exerted by surface tension on a closed
contour/surface is necessarily zero (i.e. surface tension has no effect on the variation of
total momentum). This is clearly true for the discrete scheme since the force γA tA acting
on a control volume also acts on the neighboring control volume but with the sign reversed.
Surface tension is indeed a locally and globally momentum-conserving force (indeed a
contact force rather than a body force), which can thus be written

∮

A

B

γ dt=

∫

Ω
∇ ·σ ,

with σ the surface tension stress tensor. This formulation was used in particular by
Gueyffier et al. [9] to derive a different model, the Continuum-Surface-Stress (CSS) approx-
imation. Note that the volumetric formulations (1) offer no such guarantee with respect
to momentum conservation.

One last significant advantage of the integral formulation (3) is that it naturally includes
the tangential stresses due to a variable surface tension (i.e. Marangoni stresses). For
volumetric methods, the term δs ∇sγ needs to be added, and computing the surface
gradient ∇s accurately is not trivial [17, 27].

It is clear that the integral formulation has significant formal and possibly practical
advantages over the volumetric formulation. So why is it not more commonly used? A first
element of answer is that the simple well-balancing relation (2) is lost, so that it is not
obvious whether this method can be well-balanced. A second element is that, up-to-now,
it was only applied within a high-order (spline-based) front-tracking interface description
framework by Popinet & Zaleski [24]. While very accurate, this formulation was complex
and could not handle changes in interface topology.

In this work, we revisit the integral formulation of Popinet & Zaleski (1999) coupled this
time with a levelset representation of the interface. We seek to evaluate and understand
whether the method is well-balanced, clarify its formulation and its practical implementa-
tion. The ultimate goal is to obtain a method which is both well-balanced and momentum-
conserving, in contrast with current schemes.

2 Numerical scheme

We develop discrete expressions for the components of the surface tension tensor σ. To
illustrate the principle of the derivation, we consider the control volume for the horizontal
velocity/momentum component sketched on Figure 1. Note that the derivation assumes
a standard Marker-And-Cell (MAC) staggered discretisation, where the discrete velocity
components reside at cell faces and the pressure at cell centers (Figure 2). The method can
also be applied to discretisation schemes where the pressure and velocity are collocated,
provided the acceleration is expressed at cell faces, which is necessary for well-balancing
(see [22] for details).
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As pointed out in Popinet & Zaleski (1999), we need to consider the pressure and
surface tension contributions to the stress tensor simultaneously in order to derive well-
balanced expressions. For the particular case depicted in Figure 1 these contributions to
the horizontal momentum can be written as

[
∫

Ω
−∇p+ δs (γκn +∇sγ)

]

·x = −

∮

∂Ω
pn ·x ds+

∮

A

B

γ dt ·x

=

∮

D

E

p ds−

∮

F

C

p ds+(γB tB− γA tA) ·x

with x the unit vector in the horizontal direction. The pressure along the CF and DE

faces is discontinuous due to surface tension and we have jump relations atA andB, namely

[p]A = γAκA,

[p]B = γB κB ,

with κA and κB the corresponding interface curvatures. Assuming piecewise-constant pres-
sures, we get the following first-order-accurate approximations:

∮

D

E

p ds ≃ |EB | pi−1 + |BD | (pi−1− γB κB) (4)

= ∆ pi−1− |BD | γB κB ,
∮

F

C

p ds ≃ ∆ pi + |AF | γAκA. (5)

The signs for the pressure contributions from surface tension are different in the two
expressions. This is because the pressures lie on different sides of the interface. Note that
in contrast with Popinet & Zaleski (1999), we use the curvature of the interface to impose
the jump explicitly. Appendix A describes how to compute this jump implicitly.

Expressions (4) and (5) can be generalised if we introduce the surface fractions si i.e.
the relative length of cell faces wetted by one of the two-phases. In our example, they are

si
x =

|AF |
∆

,

si−1
x =

|BE |
∆

.

The general expression for the face-integrated pressure is

∮

i

p ds= ∆ pi +∆ γi κ̃i

{

si
x if si< 1/2
si
x− 1 otherwise

where κ̃i is the curvature of the interface at its intersection with face i (or zero if there is
no intersection).

Combining the contributions of surface tension and pressure gradient, we get for the
example of Figure 1
∫

Ω
−∂xp+ δs (γ κnx + ∂s

xγ) = −∆ (pi− pi−1)−∆ γi κ̃i si
x + ∆ γi−1 κ̃i−1 (si−1

x − 1) +

γi−1 ti−1
x − γi ti

x

= −∆ (pi + σi
xx− pi−1− σi−1

xx )

with ti
x the horizontal component of the unit tangent to the interface at its intersection

with face i (or zero if there is no intersection), and

σi
xx = γi

[

tx

∆
+ κ̃

{

sx if sx< 1/2
sx− 1 otherwise

]

i

(6)
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In the more general case where the horizontal faces CD and EF may be intersected by
the interface, we need to add the contributions from the non-diagonal term of the surface
tension stress tensor. There is no pressure contribution to this term since the horizontal
component of the normal direction nx is zero for horizontal faces. This horizontal face
component can simply be written as

σj+1/2
xy =

[

γ
tx

∆

]

j+1/2

,

with tj+1/2
x the horizontal component of the unit tangent to the interface at its intersection

with face j + 1 / 2 (or zero if there is no intersection). The general expression for the
horizontal momentum component thus becomes

∫

Ω
−∂xp+ δs (γ κnx + ∂s

xγ) = −∆
(

pi− pi−1 + σi
xx− σi−1

xx + σj+1/2
xy − σj−1/2

xy
)

The corresponding expressions for the vertical components are simply obtained by rotation
of the indices. The final scheme is a consistent discretisation of

∫

Ω
−∇p+ δs (γκn +∇sγ) =

∫

Ω
−∇ · (p I +σ)

This guarantees that the scheme conserves momentum. Note that, as is usual for the
discretisation of stresses on a staggered grid, the stress tensor components are located as
depicted in Figure 2.

Figure 2. Locations of the discrete velocity, pressure and stress tensor components.

2.1 Implementation for a levelset interface representation

We now consider an interface described by the zero-level of a levelset function φ, taken to
be an approximation of the signed distance function to the interface. The discrete values
of φ are defined at the same locations as the pressure and diagonal components of the
surface tension tensor i.e. for integer indices i, j.

2.1.1 Curvature estimation

The interface curvature is required to compute the diagonal terms of the surface tension
stress tensor. It is estimated at integer locations using a classical finite-difference discreti-
sation of

κi,j =

(

∇ ·
∇φ

|∇φ|

)

i,j

=

(

φx
2 φyy− 2 φxφyφxy + φy

2 φxx

(φx
2 + φy

2)3/2

)

i,j
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where the derivatives are estimated using central differencing, specifically

(φx)i,j ≃
φi+1,j− φi−1,j

2 ∆
,

(φxx)i,j ≃
φi+1,j− 2 φi,j + φi−1,j

∆2

(φxy)i,j ≃
φi+1,j+1− φi−1,j+1− φi+1,j−1 + φi−1,j−1

(2∆)2

2.1.2 Diagonal terms

We first consider the diagonal term for the horizontal component of velocity, defined
at location i, j i.e. σi,j

xx. This corresponds to face FC of Figure 1. The corresponding
diagonal term for the vertical component of velocity, σi,j

yy, will be obtained using the same
formulation by rotation of the indices and components.

The levelset function is defined at location i, j, the middle of face FC. Levelset values
at corner points C and F can be obtained by simple averaging as

φi,j+1/2 =
φi,j + φi,j+1

2

for point C and respectively for φi,j−1/2 (point F ).

Depending on the relative signs of φi,j−1/2, φi,j and φi,j+1/2, the interface can intersect

face FC zero, one or two times. It is important to properly account for all these combi-
nations. This can be simply done by summing up contributions from each configuration.
We first describe the approach used for the intersection depicted in Figure 1, for which
φi,j and φi,j−1/2 have different signs. Following (5) the corresponding contribution to the

diagonal term is

σi
xx = γA

[

tA
x

∆
+κA sA

x

]

,

where tA
x is the outward, horizontal unit tangent component at point A, κA the interface

curvature at point A and sA
x the surface fraction. If we assume that φ is the signed distance

function to the interface, the horizontal component of the unit tangent to the interface at
point C is the vertical component of the unit normal, i.e.

ti,j+1/2
x = (φy)i,j+1/2 =

φi,j+1− φi,j

∆
,

and respectively for the tangent at point F , ti,j−1/2
x . The unit tangent at point A is

obtained by linear interpolation between C and F i.e.

tA
x = 2 ξ ti,j−1/2

x +(1− 2 ξ)
ti,j−1/2
x + ti,j+1/2

x

2
,

with

ξ=
φi,j

φi,j− φi,j−1
,

the relative position of the intersection. This gives after simplification

tA
x =

1
∆

[

φi,j+1− φi,j−1

2
− ξ (φi,j−1− 2 φi,j + φi,j+1)

]

, (7)
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which is simply the centered-difference derivative with a second-order correction. Note that
if φ is the exact signed distance function the normal/tangent to the interface verifies

|n|= |∇φ|=1,

however this is not true of the linearly interpolated normal/tangent defined by (7), which
should in principle be re-normalised.

The pressure jump γAκA sA
x is then computed using the linearly interpolated values

γA = γi,j + ξ (γi,j−1− γi,j)

κA = κi,j + ξ (κi,j−1− κi,j)

and

sA
x =

1
2
− ξ.

Note that the interpolation of curvature seems to make little difference on the accuracy of
the method so that the approximation κA≃κi,j can be used.

Using the above expressions, a simple general algorithm for the computation of σi,j
xx is

obtained by summing contributions from all possible intersections and taking into account
the relevant interface orientations (this explains the absolute value and sign expressions in
the last line of the algorithm).

Algorithm 1

Computation of σi,j
xx given φi,j the signed distance function, κi,j the corresponding

curvature and γi,j the (variable) surface tension coefficient.

σi,j
xx← 0

for k in −1, 1 :
if φi,j (φi,j + φi,j+k)6 0 :

ξ ←
φi,j

φi,j− φi,j+k

tx ←
1
∆

[

φi,j+1− φi,j−1

2
+ k ξ (φi,j−1− 2 φi,j + φi,j+1)

]

κ ← κi,j + ξ (κi,j+k−κi,j) or simply κi,j

γ ← γi,j + ξ (γi,j+k− γi,j)

σi,j
xx ← σi,j

xx + γ

[

|tx|

∆
− sign(φi,j)κ

(

1
2
− ξ

)]

2.1.3 Off-diagonal terms

Figure 3. A circular interface intersecting a control volume for the horizontal component of
velocity.
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The off-diagonal term σi−1/2,j−1/2
xy (see Figure 3) is simpler to compute since the lev-

elset function can only define a single intersection point (A on Figure 3) on face [i − 1,
j − 1/2: i, j − 1/2]. Furthermore there is no pressure jump contribution to this term.
Applying the same reasoning as for the diagonal term then gives the following simple
algorithm.

Algorithm 2

Computation of σi−1/2,j−1/2
xy given φi,j the signed distance function and γi,j the (vari-

able) surface tension coefficient.

if (φi−1,j + φi−1,j−1) (φi,j + φi,j−1)> 0 :

σi−1/2,j−1/2
xy ← 0

else :

ξ ←
φi−1,j + φi−1,j−1

φi−1,j + φi−1,j−1− φi,j− φi,j−1

tx ←
1
∆

[φi−1,j− φi−1,j−1 + ξ (φi,j− φi−1,j + φi−1,j−1− φi,j−1)]

γ ←
1
2

[γi−1,j + γi−1,j−1 + ξ (γi,j− γi−1,j− γi−1,j−1 + γi,j−1)]

σi−1/2,j−1/2
xy ← −γ sign(φi,j + φi,j−1)

tx

∆

The corresponding σi−1/2,j−1/2
yx component (the discrete tensor is not symmetric) is

obtained from the same algorithm by rotation of the indices.

2.2 Brief description of the Navier–Stokes solver

We solve the incompressible variable-density Navier–Stokes equations

∂tρ+u ·∇ρ = 0

ρ (∂tu+ u ·∇u) = ∇ · [µ (∇u +∇
T
u)]−∇p+∇ ·σ (8)

∇ ·u = 0

The interface kinematics are described by the level-set advection equation:

∂φ

∂ t
+ u ·∇φ= 0. (9)

The different fluid viscosities and densities are determined based on the level-set function:

µ(φ) = µ1 + (µ2− µ1)H(φ), (10)

and

ρ(φ)= ρ1 + (ρ2− ρ1)H(φ), (11)

where the subscripts 1 and 2 denote the fluid phases, andH(φ) is the smooth approximation
of the Heaviside function

H(φ) =
1

2

[

1− erf

(

φ

ǫ

)]

,

where erf is the error-function and ǫ is the width of the interface transition, set to 1.5 times
the grid size.
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The conservative surface tension (CST) force in Eq. 8 is computed through the diver-
gence of the surface tension stress tensor as elaborated in Section 2.1.

To discretize the Navier–Stokes equations, the structured Marker And Cell (MAC)
method is employed. The velocity vector field u is defined at the grid-cell faces, and the
scalar fields (p, µ, ρ, and φ) are defined at the grid-cell centers (Figure 2). The continuity
and momentum equations are solved using the projection method [5]. The advection of
the level-set function, Eq. 9, is discretized using a fifth-order WENO scheme in space [11]
and the forward-Euler scheme in time. The surface tension contribution to the momentum
in Eq. 8 is taken into account when the intermediate velocity u

∗ is computed. This is the
first step in the projection method, which is as follows:

u
∗= u

n + ∆t [−(u ·∇)u+ ∇ · (µ (∇u +∇u
T)) + ∇ ·σ]n,

The second step in the projection method is the Poisson equation:

∇ ·

(

∇pn+1

ρn+1

)

=
∇ ·u∗

∆t
.

Finally, the divergence-free velocity is estimated by the following correction step:

u
n+1 =u

∗−∆t
∇pn+1

ρn+1
.

In the test cases and examples discussed in this article, the timestep is set according to
the classical stability condition for the explicit discretisation of the surface tension term [3]

∆t <
(ρ1 + ρ2)∆3

4π γ

√

,

with a safety prefactor varying between 0.5 and 0.8. The influence of the timestep has been
studied and shown to have a negligible impact on the results.

Due to velocity gradients in the flow field, the level-set field has to be reinitialized
to maintain it as a signed distance field (which verifies |∇φ| = 1). This is particularly
important in the present context since we assumed that this property is verified when
estimating the surface tension tensor in section 2.1. The Hamilton-Jacobi (HJ) PDE-based
reinitialization with high-order discretization scheme is used in this work. To minimize
the artificial displacement of the interface and maintain accurate curvature and tangent
computations, the subcell fix approach that takes the interface location into consideration
is used [26]. The HJ PDE reinitialization equation is

∂φ

∂τ
+S(φo) (|∇φ| − 1) = 0,

where S(φo)= φo/ φo
2 + |∇φ|2 ∆2

√

. For level-set values smaller than the grid size (|φo| ≤
∆), the subcell third-order ENO scheme proposed in [7] is used to evaluate the derivatives
in the Godunov fluxes. To find the subcell distances required for the grid cells near the zero
level-set, quadratic interpolation (following the approach in [18]) is used. When |φo|>∆,
the fifth-order WENO scheme [11] is used to discretize the level-set derivatives. For the
temporal discretization, the forward-Euler scheme proposed in [18] is used. As for the
number of HJ-PDE iterations, the strategy in [14] is used, since it has been found to
provide a good balance between accurate level-set field and computational efficiency. In
this method, the reinitialization process is applied when

‖|∇φ| − 1‖L1(B)> (∆)n, (12)

Numerical scheme 9



where L1(B) is the L1 error-norm of the level-set deviation from the Euclidean distance
property in the narrow region B. In the simulations below, the width of the region B

around the fluid interface is B={|φ|<6 ∆} which is wide enough to compute the interface
geometric properties as well as advect accurately the level-set field while avoiding large
levelset gradients. Based on trial and error, the exponent n is chosen to be 2, which was
found to be a good balance between accuracy and computational efficiency. With this
exponent the curvature converges to first-order even when the interface is advected or
deformed.

3 Test cases

3.1 Stationary droplet

For a static droplet inside a closed domain, we measure the spurious currents as the
simulation proceeds in time. Convergence of the spurious currents to machine precision
indicates a balance between the pressure jump across the interface and the surface tension
force (Laplace balance). In the CSF formulation, it is well known that exact equilibrium
between the pressure and the surface tension force can be achieved in the level-set without
reinitialization, Volume-of-Fluid, and front tracking methods [1, 22, 2]. However, the well-
balanced property has not been previously demonstrated for a momentum-conserving sur-
face tension force formulation. Figure 4 demonstrates that with our new conservative
surface tension method, the maximum velocity converges to zero within machine precision
for different grid sizes. The parameters used in this case can be characterized by the Laplace
dimensionless number, which is a Reynolds number based on the visco-capillary velocity
γ/µ:

La=
ρ γD

µ2
, (13)

where D is the droplet diameter. In this example La=600. The evolution of the maximum
velocity

Camax=
‖u‖∞ µ

γ
,

as a function of the dimensionless “viscous” time

t⋆ = t
µ

ρD2 ,

is illustrated in Figure 4. The initial numerical error in the estimation of interface geometric
properties leads to initial spurious currents which decay exponentially due to viscosity on
a timescale comparable to the viscous dissipation timescale D2/µ. The initial amplitude
depends on the spatial resolution as expected and all the simulations converge toward
zero to within machine accuracy, irrespective of spatial resolution. The spurious current
behavior is similar to the one observed in the CSF formulation [22]. For the given grid
resolutions, the initial velocity error is small such that the level-set field is slightly distorted

10 Section 3



from the signed distance property. The level-set field distortion stays below the threshold
defined by Eq. 12 therefore there is no need to reinitialize in this test case.

t*

C
a
m
a
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

10
-15

10
-13

10
-11

10
-9

10
-7

10
-5  = 1/8 R

 = 1/16 R

 = 1/32 R

 = 1/64 R

Figure 4. Evolution of the maximum velocity Camax =‖u‖∞ µ/γ as a function of the dimension-
less time t⋆ = t µ/ρ D2, for the spatial resolutions indicated in the legend.

If the reinitialization process is enforced once per timestep, the equilibrium solution
is not reached, as already demonstrated for the classical levelset scheme by [1]. Table 1
shows the steady state value of Camax (at t⋆ = 1) for different grid resolutions. Note that
Camax converges with grid refinement. The amplitudes obtained are consistent with those
reported by [1], Figure 5, for the LS-CCSF and LS-SSF methods.

∆ Camax

1/16R 4.8× 10−5

1/32R 1.4× 10−5

1/64R 4.7× 10−6

Table 1. The maximum steady-state velocity Camax = ‖u‖∞ µ / γ for the static droplet with
enforced reinitialization at different spatial resolutions.

It is interesting to consider the stationary pressure field obtained at equilibrium. In the
case of the well-balanced CSF method the equilibrium pressure field is simply

p= γ κ̃H + constant, (14)

where H is the approximation of the Heaviside function used by the method, and κ̃ is a
spatially-constant numerical estimate of the curvature, which converges toward the exact
curvature with spatial resolution (see [22, 23] for a detailed discussion).
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For the CST formulation, a simple relation such as (14) does not exist, however we
observe constant pressures on either sides of the interface almost everywhere. Figure 5
illustrates the equilibrium pressure distribution obtained for a spatial resolution ∆=R/16
and t⋆ = 0.87, for which Camax < 10−15. Only the blue cells in Figure 5(b) have values
which differ from either the constant inside or outside pressures. These deviations are
due to numerical errors in the subcell distances and unit tangents which then violate the
equilibrium relations discussed in appendix B. We have checked that if the exact subcell
distances and unit tangents are imposed the exact Laplace sharp jump is recovered.

Remarkably, when linear approximations of unit tangents are used, well-balancing (i.e.
spurious velocities convergence to machine precision) is obtained, while some pressure
values do not obey the Laplace jump. Figure 6 shows the case where the pressure pi,j

differs from pi−1,j, pi−1,j−1, and pi,j−1. This case does not happen in the CSF formulation
because the surface tension in CSF does not contribute to the x-momentum cell ρ ui−1/2,j

x

or the the y-momentum ρ ui,j−1/2
y . In contrast, the CST model includes a surface tension

contribution as the interface intersects both momentum cells. As a result, the pressure pi,j

differs from the surrounding values within the fluid phase.
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(a) (b)

Figure 5. The pressure distribution at equilibrium for the conservative surface tension (CST)
model for La=600 and ∆=1/16 R. (a) pressure field. (b) deviations from the exact Laplace jump.

Figure 6. The surface tension contribution to the momentum for the case where the pressure
field is not uniform within the fluid phase.
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The accuracy of the numerical equilibrium solution can be estimated using the max-
imum error on the pressure jump

‖[p]comp− [p]exact‖∞
[p]exact

=
‖κcomp−κexact‖∞

κexact
. (15)

The evolution with spatial resolution of this error is displayed in Figure 7 for the CST
and the CSF models. For CSF, the pressure jump is constant spatially, as required by
the discrete well-balancing relation (2). Convergence is thus identical in all norms and
is governed only by the accuracy of the curvature estimation. This leads to second-order
convergence for our scheme.

For the CST model, the error is dominated by the few points where the jump is not
constant (blue squares in Figure 5.b). This maximum error converges at less than first-
order rate (red dots in Figure 7). Note however that this maximum error is always small
(less than 1%) and that other error norms are much smaller (the L1-norm relative error is

smaller than 10−4 for ∆= 1/64R). The L1-norm errors are similar to CSF.

CST L

CST L
1

CSF
1st-order
2nd-order

Figure 7. The L∞ and L1 errors in the curvature as functions of the grid resolution for the
conservative surface tension (CST) and CSF models. The red (resp. black) lines indicate a first-
order (resp. second-order) rate of convergence.
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3.2 Translating droplet

When the droplet is advected by a constant periodic velocity field, the spurious currents
are due to the coupling between interface advection errors and surface tension errors. The
Laplace balance is still the exact solution in the frame of reference of the drop. This test
case, initially proposed in [22], has been studied by Abadie et al. [1] for CSF formulations
coupled with both VOF and levelset interface representations. We repeat this case with
the CST integral formulation. For simplicity, we choose the vertical velocity as a measure
of the error, for which the reference solution is zero. Figure 8 shows the L∞ norm of uy

scaled by γ /µ for several grid resolutions. The dimensionless time t⋆ is scaled by D/U .
The Laplace number is La = 600. The imposed horizontal velocity U corresponds to a
capillary number Ca= µ U /γ=5×10−5. The L∞ norm of the spurious currents converges
with grid refinement. For a grid size of ∆ =1/16R or smaller, the numerical method can
simulate flows for capillary numbers down to Ca=10−5. The proposed method is also able
to simulate flows of Ca= 10−6 for ∆=1/64 R without introducing errors greater than the
imposed flow velocity.
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a
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-4

 = 1/8 R

 = 1/16 R

 = 1/32 R

 = 1/64 R

Figure 8. The spurious currents for the moving droplet case at Ca = µ U / γ = 5 × 10−5 for
different grid resolutions. Camax = ‖uy‖∞ µ/γ indicates the magnitude of the spurious currents,
and t⋆ = t U /D is the dimensionless time.

Table 2 shows both the L∞-norm and L1-norm of Camax. The L∞-norm is the maximum
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value of Camax throughout the simulation time, and the L1-norm is the average Camax over
the period of time where Ca max oscillates. The oscillation period of Camax corresponds
to the droplet movement across one grid cell.

∆ ‖Camax‖∞ ‖Camax‖1
1/8R 1.7× 10−5 9.0× 10−6

1/16R 4.5× 10−6 2.2× 10−6

1/32R 1.6× 10−6 8.9× 10−7

1/64R 4.6× 10−7 3.0× 10−7

Order 1.74 1.64

Table 2. The norms of the amplitude of spurious currents for the moving droplet case at Ca =
µ U /γ = 5× 10−5 for different grid resolutions. The last row indicates the rate of convergence.

We now compare the CST model with the CSF model as well as with the results
reported in [1]. The Weber number We = ρ U2 D/ γ is chosen to be 0.4 and the Laplace
number is La = 250. Figure 9 shows the magnitude of spurious currents as a function of
the dimensionless time t⋆ = t U /D for the grid resolution ∆ = 1/12.8R. The amplitude
of spurious currents for the CST method is larger than for CSF but remains small. The
amplitudes for both methods are smaller than 10−4 which compares favourably with the
results reported by [1], Figure 8(a). Our CSF implementation with linearly interpolated
curvature is similar to the LS-SSF method in [1].
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CSF (  = 1/12.8 R)

CST (  = 1/12.8 R)

Figure 9. The spurious currents for the moving droplet case at We = 0.4 and La = 250 for the
CST and CSF formulations. Camax=‖uy‖∞ µ/γ indicates the magnitude of the spurious currents,
and t⋆ = t (U /D) is the dimensionless time.
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Figure 10 illustrates the effect of reinitialization when it is carried out once per timestep
for the translating droplet case at ∆ = 1/12.8R. The spurious currents increase slightly
but the effect is marginal which shows that most of the curvature disturbance is caused by
errors in transport rather than redistancing.

t*

C
a m

ax

0.2 0.4 0.6 0.8

10-5

10-4

CST (w/o reinit)
CST (w/ reinit)

Figure 10. The effect of reinitialization on the amplitude of spurious currents for the moving
droplet case at We= 0.4 and La= 250 for the CST formulation. Camax = ‖uy‖∞ µ/γ indicates the
magnitude of the spurious currents, and t⋆ = t (U /D) is the dimensionless time. The grid size is
∆ = 1/12.8R.
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3.3 Oscillating droplet

We now test the dynamics of the fluid interface by perturbing slightly the initial circular
droplet. This interface perturbation causes the droplet to oscillate, due to a physical
imbalance between the pressure field and the surface tension force. Lamb [16] derived an
analytical solution for the frequency of a slightly perturbed droplet in a vacuum. For a 2D

droplet, the oscillation frequency of the second mode ω2 is 6 γ/ρR3
√

. Figure 11 shows
the amplitude of the oscillation when the droplet diameter is perturbed by a factor of 1.04
relative to equilibrium. The Laplace number is La=20,000. The viscosity and density ratio
between the droplet and its surrounding are 1/1000. The proposed method agrees with
the theoretical oscillation frequency. Table 3 and Figure 12 show the frequency error with
respect to grid resolution. Second-order convergence is obtained. Level-set reinitialization
is carried out according to (12).
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 = 1/12.8 R

 = 1/25.6 R

Figure 11. The amplitude of the horizontal droplet diameter vs. dimensionless time t⋆ = t ω2/
(2π) at different grid resolutions.

∆ Error %

1/6.4 R 2.05

1/12.8 R 0.37

1/25.6 R 0.09

Table 3. The frequency error for the oscillating droplet case for different grid resolutions.
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CST

CSF

2nd-order

Figure 12. Convergence of the oscillating frequency with spatial resolution for the CST and CSF
models. The black line indicates second-order convergence.

3.4 Marangoni-induced translation due to a temperature gradient

In this test case, we evaluate the quality of the Marangoni tangential stress evaluation
which is trivially formulated within the integral surface tension model. The surface tension
coefficient is a linear function of temperature:

γ= γ0 + γT (T −T0).

This surface tension temperature dependency induces a thermo-capillary motion caused
by the non-zero tangential Marangoni stresses. The droplet migrates from the cold region
to the hot region. Young et al. [28] derived an expression for the velocity of a spherical
droplet due to thermocapillarity for small Re and Ca, which is:

Udrop=
−2

(2 + 3 µdrop/µbulk) (2 + cdrop/cbulk)
γTR∇T
µbulk

, (16)

where R is the droplet radius, γT is the surface tension temperature coefficient, and c is the
thermal conductivity. The Reynolds and capillary numbers are defined as Re= ρbulkUR/
µbulk and Ca= µbulkU /γ0, where the velocity scale is defined as U = γTR∇T /µbulk.

Figure 13 shows the ratio between the computed axisymmetric droplet velocity and the
theoretical solution for different grid sizes. The domain size is 16R×16R, which has been
found to be large enough to minimize the influence of boundaries on the droplet velocity.
The average droplet velocity is computed as follows:

udrop=

∫

H(φ)uc
x d V

∫

H(φ) d V
=

Σcvψcv uc
x

Σcvψcv
, (17)

where uc
x is the horizontal velocity defined at the grid center through arithmetic averaging,

and ψcv is the volume fraction enclosed by the droplet. The volume fraction is computed
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by reconstructing the droplet interface from the level-set information. The interface recon-
struction is second-order, where each computational cell is divided into simplexes and the
interface intersection points are determined through linear interpolation [6]. The relevant
flow parameters are Re=0.066 and Ca=0.066. The density ratio is one. This configuration
has been studied in [20, 27, 10, 4]. The time is scaled by µb / γT ∇ T . The ratio of the
thermal conductivity cdrop/cbulk is unity, which means that the temperature distribution
in the domain remains the same. The predicted droplet velocity converges quickly with
refinement and matches the theoretical solution almost exactly for ∆6 1/16 R (Table 4).
The results improve on previous studies based on refined level-set grid (RLSG) [4], and
Volume-Of-Fluid (VOF)/Height Function method [27]. The quality of the solution, and
in particular the absence of spurious velocities, can also be assessed qualitatively through
Figure 14.

The effect of the viscosity ratio has been studied. Figure 13(b) shows the evolution of
the droplet velocity when the droplet viscosity is halved. The droplet velocity increases as
expected (Table 4) and matches the theoretical solution almost exactly for ∆ = 1/32 R.
In this test case, level-set re-initialization is required to have accurate results because the
velocity gradients are significant. The re-initialization process is applied as specified by
(12).
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Figure 13. The ratio of the computed axisymmetric droplet velocity udrop over the theoretical
solution Udrop as a function of t⋆ = t (γT ∇T /µb) for different viscosity ratios, for Re= 0.066 and
Ca= 0.066.

µdrop/µbulk=1 µdrop/µbulk= 0.5

∆ udrop/U Udrop/U udrop/U Udrop/U

1/8R 0.1378 0.13333 0.1785 0.19048

1/16R 0.1347 0.13333 0.1860 0.19048

1/32R 0.1345 0.13333 0.1890 0.19048

Order 1.74 1.5

Table 4. The computed terminal velocity udrop/U and the theoretical droplet velocity Udrop/U

(eq. 16) for different viscosity ratios, with U = γT R ∇T / µbulk the characteristic velocity scale,
Re= 0.066 and Ca= 0.066. The last row indicates the rate of convergence.
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-0.05 0 0.04 0.085 0.13 0.175 0.22 0.265 0.31 0.355 0.4

Figure 14. Velocity field and magnitude of the horizontal velocity component (ux / U) for
Marangoni-induced translation of a drop. Re= 0.066, Ca= 0.066 and µdrop/µbulk = 1.

4 Bubble break-up due to variable surface tension

We now apply the conservative surface tension (CST) method to a more complex case that
includes interface break-up. Interface break-up is a key mechanism in many two-phase flow
applications such as spray atomization [8], oil trapping in porous media [15], and foam
generation [12]. In this example we study the break-up of a bubble due to variable surface
tension. This has important potential applications, for example as a way to control bubble
distribution in microfluidics devices [19].

Figure 15 shows the surface tension distribution described by the following equation:

γ(x⋆) = γ0max (1− 1.25 |x⋆−x0
⋆|, 0.1), (18)

where x0
⋆ is the location of the center of the bubble and x⋆=x/R, with R the bubble radius.

The threshold 0.1 prevents the surface tension value from reaching zero. The domain size

is 3.5R × 0.75R. The Laplace number, La = ρbubble γ0D/µbubble
2 , is 3.44. The viscosity

and density ratios are 1/25, where the bubble has the lower viscosity and density values.

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Figure 15. The surface tension distribution (normalized by γ0) and bubble interface. The domain
is axisymmetric and the axis of symmetry is aligned with the bottom boundary.
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Figure 16. The axisymmetric flow streamlines and the horizontal velocity field.

Figure 16 shows the streamlines of the flow driven by variable surface tension. Flow
takes place along the bubble interface from the low surface-tension regions at the bubble
extremities to the high surface-tension region in the bubble center. This transient regime
driven by variable surface tension is coupled with the classical Rayleigh–Plateau instability
and leads to bubble break-up.

Figure 17 illustrates the process of the bubble shape snap-off at different times. The
bubble break-up time converges with grid refinement as shown in Figure 18 and Table 5.
The results confirm that the proposed method can simulate the complex process of interface
break-up due to variable surface tension.

(a) t∗= 0 (b) t∗= 2.22 (c) t∗= 3.70

(d) t∗= 5.2 (e) t∗= 8.75 (f) t∗= 10

Figure 17. Bubble snap-off due to variable surface tension at different times, with t∗ = t/Tσ and

Tσ = ρ D3/γ0

√

.
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Figure 18. Convergence with grid resolution of the time evolution of the normalized minimum
droplet radius.

∆ t⋆

1/16R 8.95

1/32R 9.2

1/64R 9.3

Table 5. Convergence with grid resolution of the droplet break-up times.

5 Conclusion

We have developed a new conservative surface tension (CST) method inspired from the
integral formulation of Popinet and Zaleski [24], in the level-set framework. The scheme
relies on a finite-volume discretisation of the divergence of the surface tension stress tensor,
and thus guarantees strict conservation of momentum. In contrast with earlier work on con-
servative schemes for surface tension [24, 9], we show that the method is well-balanced and
competitive with the best available schemes in term of accuracy of equilibrium solutions.
The formal consistency of the integral formulation, which does not require approximate
surface-to-volume operators, leads to a true sharp interfacial force representation which
naturally includes Marangoni stresses. Classical thermocapillary motion is thus accurately
modelled in a straightforward manner.

Several avenues for further development are open. An obvious extension is the appli-
cation of the method to static and moving contact lines. This is trivial to implement since
the contact angle directly gives the tangent at the contact point required to compute the
corresponding component of the surface tension tensor.
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The extension to three dimensions is also of great interest. The formalism presented
here is applicable in three dimensions but requires the approximation of line integrals
rather than point-value estimates (contact lines instead of contact points). The fact that
the 2D formulation is simple (it is fully described by Algorithms 1 and 2) gives confidence
that a comparatively simple formulation can also be found in 3D. Whether this also leads
to well-balancing in 3D is more difficult to guess, since our 2D study has shown that some
choices of approximations do not lead to well-balancing (linearity of the operators seems
to be required). This remains to be clarified.

Finally, the generalisation of the method to other interface representations, for example
Volume-Of-Fluid combined with Height-Functions, would also be of great practical interest.

Appendix A Implicit jumps

We do not need to assume that the pressure jumps due to surface tension at the intersection
points are known (which requires the estimation of interface curvature). The pressure
jumps can be estimated using either a time-explicit approximation (as was done in Popinet
& Zaleski, 1999) or while inverting the Poisson equation for the pressure. In either case, the
expression for the diagonal component of the surface tension tensor needs to be modified to

σi
xx =

[

γ
tx

∆
+

{

sx (pj−1− pj) if sx< 1/2
(sx−1) (pj− pj+1) otherwise

]

i

Note that this formulation could be advantageous since it may relax some of the consistency
constraints between tangent and curvature estimations required for well-balancing. We
have not yet pursued this question further, however.

Appendix B Well-balancing

Let us consider the configuration illustrated in Figure 3. At equilibrium, the pressure and
surface tension terms must balance, which can be written

pi− pi−1 + σi
xx−σi−1

xx + σj+1/2
xy −σj−1/2

xy = 0,

where pi = pi−1 (since the pressure jumps are taken into account in the surface tension
tensor) and σi

xx =σj+1/2
xy =0 (since the interface does not intersect the corresponding faces

of the control volume). Using the discrete expressions for the components of the stress
tensor, we have

γi−1

[

tx

∆
+ κ̃ (sx− 1)

]

i−1

+

[

γ
tx

∆

]

j−1/2

= 0,

or, in the case of constant γ

ti−1
x + tj−1/2

x + κ̃i−1 (si−1
x − 1) ∆ = 0

This relation between tangents, intersection position and curvature is the discrete equiva-
lent of the Frenet–Serret relation (for constant κ)

∮

A

B

dt =

∮

A

B

κn ds

(tB− tA) ·x = κ

(

∮

A

B

n ds

)

·x

tB
x − tA

x = κ |BC |

Note that it is not trivial that this relation is verified discretely.
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