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This paper presents generic exact methods for the bi-objective vehicle routing problems
(BOVRP). The first part explains the BOVRP. Then, an efficient mono-objective solution
method used as a component of bi-objective methods is introduced. After that, the methods
are presented. The computational evaluation is performed on a specific variant of the VRP,
the VRP with time windows (VRPTW).

1 Context
The Vehicle Routing Problem was first introduced in 1959 by Dantzig and Ramser [3] which
aimed to minimize the cost of gasoline transportation between a bulk terminal and several
service stations.

The bi-objective VRP with time windows (BOVRPTW) is a variant of the VRP. Let G =
(V,E) be a non-oriented graph. A node i ∈ V \v0 is called a customer and has a demand qi.
These demands are satisfied by a fleet of K vehicles of capacity Q. A vehicle k starts and
returns at a node v0 called the depot and performs a route rk by passing through a set of
customers. The route rk is said to be feasible if each customer i served by the route is visited
between the due time dti and the end time eti and if the total capacity of a vehicle is not
exceeded.

An edge of the graph has two costs c1 and c2. Each route rk provides two costs c1
k and c2

k

representing the sum of the two costs on the used edges. The aim of the BOVRP is to minimize
the sum of each cost of the routes used.

Let Ω be the set of feasible routes rk, k ∈ [1, .., K] and aik be equal to 1 if the customer
i belongs to the route rk. The Set Partitioning formulation of the BOVRPRTW [2] can be
stated as follows: 

minimize (
∑

rk∈Ω
c1

kθk,
∑

rk∈Ω
c2

kθk)∑
rk∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}),

∑
rk∈Ω

θk ≤ K,

θk ∈ {0, 1} (rk ∈ Ω).

(1)

where θk is a variable that indicates if the route rk, k ∈ [1, .., K], is selected in the solution
(θk = 1) or not (θk = 0).

This formulation has an exponential number of variables and a polynomial number of con-
straints. It is therefore suitable for a column-generation-based solution method such as the
method of Baldacci et al. [1] presented in section 2.



The ε-constraint method, introduced in section 3, is one of the most efficient exact method
for bi-objective integer problems as for the bi-objective prize-collecting steiner tree problem[4].
To compare our methods, the reference method (3.1) reproduced a classical ε-constraint.

2 Solution in mono-objective vehicle routing problems

Solving the BOVRP requires a method that optimally solve the mono-objective VRP (MOVRP).
One of the state-of-the-art methods is the one of Baldacci et al. [1]: an exact method to solve
the MOVRP, based on the set partitioning formulation (1) with only one cost to minimize.
This method allows to restrict the number of routes to obtain the optimal integer solution with
a three steps algorithm:

1. Compute a good lower bound LB with column generation and a good upper bound UB
via a heuristic. Compute the gap γ = UB − LB.

2. Generate all routes with a reduced cost less or equal to γ. Indeed, it can be proven that
routes with a reduced cost higher than γ can not be in the optimal integer solution [4].

3. Solve the initial integer problem on the restricted set of routes from step 2 to obtain the
optimal (integer) solution.

As previously mentioned, this method will be used to solve the BOVRP. In the following, we
will refer to the step 2 by BALD(UB,LB) with UB and LB the upper bound and the lower
bound previously computed. It returns a restricted set of routes Ω.

3 Methods

This section presents three methods that compute the minimum complete Pareto front of the
BOVRPTW introduced in section 1. So, all supported and non-supported non-dominated
points are given, but only one efficient solution is provided for each one. They are based on
the Baldacci et al. method, presented in section 2.

3.1 Reference method

The first method is called the reference method as it is the more direct way to use the Baldacci
et al. method in a BOVRP with an ε-constraint method.

The algorithm, summarized in Algorithm 1, is based on the ε-constraint formulation that
aims to minimize the first cost c1 under the constraint that the second cost has to be lower
than a certain value ε. This formulation CMP(ε) can be stated as follows:



minimize
∑

rk∈Ω
c1

kθk∑
rk∈Ω

c2
kθk ≤ ε∑

rk∈Ω
aikθk ≥ 1 (vi ∈ V \{v0}),

∑
rk∈Ω

θk ≤ K,

θk ∈ N (rk ∈ Ω).

(2)

where all notations are the same as in the formulation (1).
The reference method consists in finding LB, the optimal value of the linear relaxation of the

problem (2) (LCMP) and UB, a feasible solution of the integer problem (2) (RCMP). Then, it
applies BALD(UB,LB) to obtain Ω, the restricted set of routes with their reduced cost within
the gap γ. And finally, the algorithm optimally solves the ε-constraint formulation (2).

This process is repeated from ε = +∞ to a certain value for which there is no more solution.



Algorithm 1 Algorithm of the reference method
ε← +∞
while ∃ a solution do

Solve LCMP(ε) to obtain LB
Solve RCMP (ε) to obtain UB
Ω ← BALD(UB,LB)
Solve CMP (ε) on Ω to obtain SOP T

Set ε← S2
OP T − 1

end while

3.2 Generate-one-time

The second method requires as input:
• LB: the cost c1 of the optimal solution of the linear relaxation of the problem which

minimizes the cost c1.
• UB: the cost c1 of the optimal solution of the linear relaxation of the problem which

minimizes the cost c2.

The method applies BALD(UB,LB) and performs an ε-constraint method of the formulation
(2) on this new set of routes. It is summarized in the Algorithm 2.

Algorithm 2 Algorithm of generate-one-time
Ω ← BALD(UB,LB)
ε← +∞
while ∃ a solution do

Solve CMP (ε) on Ω to obtain SOP T

Set ε← S2
OP T − 1

end while

3.3 Two-steps

This method is based on the parametrized formulation that optimizes a weighted-sum of the
two objectives. The formulation is noted PMP(λ):

minimize λ
∑

rk∈Ω
c1

kθk + (1− λ)
∑

rk∈Ω
c2

kθk∑
rk∈Ω

aikθk ≥ 1 (vi ∈ V \{v0}),

∑
rk∈Ω

θk ≤ K,

θk ∈ N (rk ∈ Ω).

(3)

We also need to introduce the call of the second step of Baldacci et al. method for the
direction λ : BALD(UB,LB,λ), where the cost of a solution is computed for the weight λ.

It requires as input the list of N points LB (the front of the linear relaxation of the
BOVRPTW obtained by the parametric simplex) and their associated dual solutions. It also
needs a list ofN+1 directions λ in which the points LBi and LBi+1, i ∈ [1, .., N−1] are optimal.

The method is composed of two steps. First, a non-complete Pareto front of S points
is computed and then, the area in which non dominated point could be are explored. The
first step iteratively takes a point LBi, i ∈ [1, .., N ], its dual solutions and its direction λi.
In this direction, a feasible solution UBi is computed and BALD(UBi,LBi,λi) is applied to
obtain a non-dominated point. The second step searches all non-dominated points between
two successive points found in the first step. The search between two points Si and Si+1,
i ∈ [1, .., S − 1], can be summarized as follows:



Algorithm 3 Second step of two-steps method
Require: Point Si and Si+1
Compute direction λi’, gradient between Si and Si+1
Solve LPMP(λi’) to obtain LBi’ (in practice LBi’ is in the initial list of N points LB)
Solve RPMP(λi’) to obtain UBi’ (in practice UBi’ is the nadir point)
Ω ← BALD(LBi’,UBi’,λi’)
Solve PMP(λi’) on Ω to obtain Si’
if PMP(λi’) is feasible then

Repeat algorithm for Si and Si’ and for Si’ and Si+1
end if

4 Results
Each method returns the minimum complete set of non-dominated points. To compare the
three methods introduced in Section 3, pairs of Solomon’s instances have been merged to create
BOVRPTW. The implementation is in C++ and the linear problems and the integer problems
are solved with Gurobi 7.1. The following table shows the results of the execution with the CPU
time in seconds and on a graph with 25 customers. The column called BALD represents the
number of calls to procedure BALD and the one called col is the average number of generated
columns per call.

Ref. generate-one-time two-steps
Instance time BALD col. time BALD col. time BALD col.
R101_C101 10 24 735 2 1 1192 5 30 420
R101_C201 8 22 745 2 1 1224 3 25 438
R105_RC105 43 37 3736 22 1 7119 119 66 2505
R105_C201 47 35 3911 30 1 6225 108 57 2471
R109_C101 750 26 33149 318 1 62 072 2611 56 1492
R109_RC105 1112 48 30559 259 1 53 513 4828 82 7666
RC101_C101 15 10 5128 4 1 4850 15 17 3423
RC105_R101 248 18 26797 137 1 42 602 189 32 8298
RC106_C101 373 14 45113 35 1 18 280 243 18 11 985

It demonstrates that the generate-one-time is more efficient than the two others and also that
two-steps method is a lot less efficient. Regarding the number of calls to the procedure BALD,
we can notice that two-steps method has a very high number of calls, but the number of
generated routes is lower than for generate-one-time method.

5 Conclusion and perspectives
The results in Section 4 show that two-steps method is less efficient, but the resulting integer
problems are easier to solve than for the generate-one-time method. For larger graphs, the
generate-one-time method could produce a prohibitively high number of routes. Therefore,
the two-steps can not be disregarded based only on the results on small graphs, although it
remains to be improved, for example using parallelism or a hybridization of the two methods.
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