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Abstract Implicational bases are objects of interest in formal concept
analysis and its applications. Unfortunately, even the smallest base, the
Duquenne-Guigues base, has an exponential size in the worst case. In
this paper, we use results on the average number of minimal transversals
in random hypergraphs to show that the base of proper premises is, on
average, of quasi-polynomial size.
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1 Introduction

Computing an implication base is a task that has been shown to be costly [1],
due to their size and to the enumeration delay. Even the smallest base (the
Duquenne-Guigues base) is, in the worst case, exponential in the size of the
relation [2]. While the extremal combinatorics of implicational bases is a well
studied subject, up to now, the average case has not received a lot of attention.

In this paper, we adapt the results presented in [3] to give some average-case
properties about implicational bases. We consider the base of proper premises
and the Duquenne-Guigues base. We give the average size of the base of proper
premises and show that the size of the base of proper premises is, on average,
quasi-polynomial. This implies that the size of the Duquenne-Guigues base is on
average at most quasi-polynomial. We then give an almost sure lower bound for
the number of proper premises.

The paper is organised as follows: in section 2 we introduce the definitions
and notations that we use in the remainder of the paper. Section 3 contains the
main results of this work. In section 4, we discuss randomly generated contexts
and the models that are used in this paper. We then conclude and discuss future
works.

2 Definitions and Notations

In this section, we provide the definitions and results that will be used in this
paper. Most of the FCA definitions can be found in [4]. From now on, we will
omit the brackets in the notation for sets when no confusion is induced by this
simplification.



2.1 Formal Concept Analysis

A formal context is a triple C = (O,A,R) in which O and A are sets of objects
and attributes and R ⊆ O×A is a binary relation between them. A pair (o, a) ∈
R is read “object o has attribute a”. Formal contexts can naturally be represented
by cross tables, where a cross in the cell (o, a) means that (o, a) ∈ R.

a1 a2 a3 a4 a5

o1 × ×

o2 × × ×

o3 × × ×

o4 × ×

o5 × ×

Table 1. Toy context C.

Table 1 shows a toy context with 5 objects and 5 attributes. It will serve as
a running example throughout this paper.

Let O be a set of objects and A a set of attributes, we denote by O′ the set of
all attributes that are shared by all objects of O and A′ the set of all objects that
have all the attributes of A. More formally, O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ R}
and A′ = {o ∈ O | ∀a ∈ A, (o, a) ∈ R}.

The composition of those two operators, denoted ·′′, forms a closure operator.
A set X = X ′′ is said to be closed. A pair (O,A) with O ⊆ O, A ⊆ A, A′ = O

and O′ = A is called a (formal) concept of the (formal) context C. In this case,
we also have that A′′ = A and O′′ = O.

The set of all the concepts of a context, ordered by inclusion on either their
sets of attributes or objects forms a complete lattice. Additionally, every com-
plete lattice is isomorphic to the one formed by the concepts of a particular
context.

Definition 1. An implication (between attributes) is a pair of sets X,Y ⊆ A.
It is noted X → Y .

Definition 2. An implication X → Y is said to hold in a context C if and only
if X ′ ⊆ Y ′.

Many implications are redundant, that is if an implication a → c holds, then
ab → c holds and is redundant. The number of implications that hold can be
quite large [2]. It is necessary to focus on the interesting ones.

Definition 3. An implication set that allows for the derivation of all implica-
tions that hold in a context, and only them, through the application of Arm-
strong’s axioms is called an implication base of the context.



Definition 4 (Duquenne-Guigues Base). An attribute set P is a pseudo-
intent if and only if P 6= P ′′ and Q′′ ⊂ P for every pseudo-intent Q ⊂ P . The
set of all the implications P → P ′′ in which P is a pseudo-intent is called the
Duquenne-Guigues Base.

The Duquenne-Guigues Base, also called canonical base, or stem base has
first been introduced in [5] and is the smallest (cardinality-wise) of all the bases.
Here, we denote this base as Σstem. The complexity of enumerating the elements
of this base is studied in [1].

Base of Proper Premises While the Duquenne-Guigues Base is the smallest
base, the base of proper premises, or Canonical Direct Base, noted here ΣProper,
is the smallest base for which the logical closure can be computed with a single
pass. The Canonical Direct Base was initially known under five independent
definitions, shown to be equivalent by Bertet and Montjardet in [6].

2.2 Hypergraphs and Transversals

Let V be a set of vertices. A hypergraph H is a subset of the powerset 2V . Each
E ∈ H is called an (hyper)edge of the hypergraph. A set S ⊆ V is called a
hypergraph transversal of H if it intersects every edge of H, that is S ∩ E 6=
∅, ∀E ∈ H. A set S ⊆ V is called a minimal hypergraph transversal of H if
S is a transversal of H and S is minimal with respect to the subset inclusion
among all the hypergraph transversals of H. The set of all minimal hypergraph
transversals of H forms a hypergraph, that we denote Tr(H) and that is called
the transversal hypergraph.

2.3 Proper Premises as Hypergraph Transversals

In this section, we introduce a definition of the base of proper premises based
on hypergraph transversals.

Proposition 1 (from [4]). P ⊆ A is a premise of a ∈ A if and only if (A \
o′) ∩ P 6= ∅ holds for all o ∈ O such that (o, a) 6∈ R. P is a proper premise for
m if and only if P is minimal with respect to subset inclusion for this property.

Proposition 23 from [4] uses o ւ a instead of (o, a) 6∈ R. It is a stronger
condition that implies a maximality condition that is not necessary here.

The set of proper premises of an attribute is equivalent to the minimal
transversals of a hypergraph induced from the context with the following propo-
sition:

Proposition 2 (From [7]). P is a premise of a if and only if P is a hypergraph
transversal of Ha where

Ha = {A \ o′|o ∈ O, (o, a) 6∈ R}

The set of all proper premises of a is exactly the transversal hypergraph Tr(Ha).



To illustrate this link, we show the computation of the base of proper premises
for context 1. We must compute the hypergraph Ha for each attribute. Let’s
begin with attribute a1. We have to compute Ha1

= {A \ o′ |o ∈ O, (o, a1) 6∈ R}
and Tr(Ha1

). In C, there is no cross for a1 in the rows o2, o3, o4 and o5. We
have :

Ha1
= {{a1, a3}, {a1, a5}, {a1, a2, a3}, {a1, a2, a4}}

and
Tr(Ha1

) = {{a1}, {a2, a3, a5}, {a3, a4, a5}

We have the premises for a1, which give implications a2a3a5 → a1 and
a3a4a5 → a1. {a1} is also a transversal of Ha1

but can be omitted here, since
a → a is always true.

In the same way, we compute the hypergraph and its transversal hypergraph
for all other attributes. For example,

Ha2
= {{a1, a2, a3}, {a1, a2, a4}} and Tr(Ha2

) = {{a1}, {a2}, {a3, a4}}

Ha5
= {{a1, a5}, {a3, a4, a5}} and Tr(Ha5

) = {{a5}, {a1, a3}, {a1, a4}}

The set of all proper premises of ai is exactly the transversal hypergraph Tr(Hai
),

∀i ∈ {1, . . . , 5}, to which we remove the trivial transversals (ai is always a
transversal for Hai

). The base of proper premises for context C is the union of
the proper premises for each attributes:

ΣProper(C) =
⋃

a∈A

Tr(Ha) \ a

3 Average size of an implication base

In [7], Distel and Borchmann provide some expected numbers for proper premises
and concept intents. Their approach, like the one in [3], uses the Erdös-Rényi
model [8] to generate random hypergraphs. However, in [7], the probability for
each vertex to appear in a hyperedge is a fixed 0.5 (by definition of the model)
whereas the approach presented in [3] consider this probability as a variable of
the problem and is thus more general.

3.1 Single parameter model

In the following, we assume all sets to be finite, and that |O| is polynomial in |A|.
We call p the probability that an object o has an attribute a. An object having
an attribute is independent from other attributes and objects. We denote by
q = 1− p the probability that (o, a) 6∈ R. The average number of hyperedges of
Ha, ∀a ∈ A, is m = |O| × q. Indeed, Hai

has one hyperedge for each (o, ai) 6∈ R.
The probability of an attribute appearing in a hyperedge of Hai

is also q.

We note n the number of vertices of Ha. At most all attributes appear in
Ha, so n ≤ |A|



Proposition 3 (Reformulated from [3]). In a random hypergraph with m

edges and n vertices, with m = βnα, β > 0 and α > 0 and a probability p that a
vertex appears in an edge, there exists a positive constant c such that the average
number of minimal transversals is

O

(

n
d(α)log 1

q

m+c ln lnm
)

with q = 1− p, d(α) = 1 si α ≤ 1 and d(α) = (α+1)2

4α otherwise.

Proposition 3 bounds the average number of minimal transversals in a hy-
pergraph where the number of edges is polynomial in the number of vertices.
In [3], the authors also prove that this quantity is quasi-polynomial.

From Prop. 3 we can deduce the following property for the number of proper
premises for an attribute.

Proposition 4. In a random context with |A| attributes, |O| objects and prob-
ability p that (o, a) ∈ R , the number of proper premises for an attribute is on
average:

O

(

|A|

(

d(α)log 1

p

(|O|×q)+c ln ln(|O|×q))

))

and is quasi-polynomial in the number of objects.

Proposition 4 states that the number of proper premises of an attribute is
on average quasi-polynomial in the number of objects in a context where the
number of objects is polynomial in the number of attributes.

As attributes can share proper premises, |ΣProper| is on average less than

|A| ×O

(

|A|
(d(α)log 1

p

(|O|×q)+c ln ln(|O|×q))
)

Since |Σstem| ≤ |ΣProper|, Prop. 4 immediately yields the following corollary:

Corollary 1. The average number of pseudo-intents in a context where the
number of objects is polynomial in the number of attributes is less than or equal
to:

|A| ×O

(

|A|

(

d(α)log 1

p
(|O|×q)+c ln ln(|O|×q))

)
)

Corollary 1 states that in a context where the number of object polynomial
in the number of attributes, the number of pseudo-intents is on average at most
quasi-polynomial.



3.2 Almost sure lower bound for the size of the number of proper
premises

An almost sure lower bound is a bound that is true with probability close to 1.
In [3], the authors give an almost sure lower bound for the number of minimal
transversals.

Proposition 5 (Reformulated from [3]). In a random hypergraph with m

edges and n vertices, and a probability p that a vertex appears in an edge, the
number of minimal transversals is almost surely greater than

LMT = n
log 1

q

m+O(ln lnm)

Proposition 5 states the in a random context with probability p that a given
object has a given attribute, one can expect at least LMT proper premises for
each attribute.

Proposition 6. In a random context with |A| attributes, |O| objects and prob-
ability q that a couple (o, a) 6∈ R, the size of ΣProper is almost surely greater
than

|A| × |A|

(

log 1

p

(|O|×q)+O(ln ln(|O|×q))

)

As Prop 6 states a lower bound on the number of proper premises, no bound
on the number of pseudo-intents can be obtained this way.

3.3 Multi-parametric model

In this section we consider a multi-parametric model. This model is more accu-
rate with respect to real life data. In this model, each attribute j has a probability
pj of having an object. All the attributes are not equiprobable.

We consider a context with m objects and n attributes. The set of attributes
is partitioned into 3 subsets:

– The set U represents the attributes that appear in a lot of objects’ descrip-
tions (ubiquitous attributes). For all attributes u ∈ U we have qu = 1−pu <
x
m

with x a fixed constant.
– The set R represents rare events, that is attributes that rarely appear. For

all attributes r ∈ R we have that pr = 1− 1
lnn

tends to 0.
– The set F = A \ (U ∪R) of other attributes.

Proposition 7 (Reformulated from theorem 3 [3]). In the multi-parametric
model, we have:

– If |O∪R| = O(ln |A|), then the number of minimal transversal is on average
at most polynomial.

– If |R| = O((ln |A|)c), then the number of minimal transversal is on average
at most quasi-polynomial.



– If |R| = Θ(|A|), then the number of minimal transversal is on average at
most exponential on |R|.

Proposition 7 states that when most of the attributes are common (that
is, are in the set U), |ΣProper| is on average at most polynomial. When there
is a logarithmic quantity of rare attributes (attributes in R), |ΣProper| is on
average at most quasi-polynomial (in the number of objects). When most of the
attributes are rare events, |ΣProper| is on average at most exponential.

As in the single parameter model, Prop. 7 also yields the same bounds on
the number of pseudo-intents.

4 Discussion on randomly generated contexts

The topic of randomly generated contexts is important in FCA, most notably
when used to compare performances of algorithms. Since [9], a few experimental
studies have been made. In [10], the authors investigate the Stegosaurus phe-
nomenon that arises when generating random contexts, where the number of
pseudo-intents is correlated with the number of concepts [11].

As an answer to the Stegosaurus phenomenon raised by experiments on ran-
dom contexts, in [12], the author discusses how to randomly and uniformly gen-
erate closure systems on 7 elements.

In [13], the authors introduce a tool to generate less biased random con-
texts, avoiding repetition while maintaining a given density, for any number of
elements. However this tool doesn’t ensure uniformity.

The partition of attributes induced by the multi-parametric model allows
for a structure that is close to the structure of real life datasets [3]. However,
we can’t conclude theoretically on whether this model avoids the stegosaurus
phenomenon discussed in [10]. This issue would be worth further theoretical and
experimental investigation.

5 Conclusion

In this paper, we used results on average-case combinatorics on hypergraphs to
bound the average size of the base of proper premises. Those results concerns
only the proper premises, and can’t be applied on the average number of pseudo-
intents. However, as the Duquenne-Guigues base is, by definition, smaller than
the base of proper premises, the average size of the base of proper premises can
serve as an average bound for the number of pseudo-intents.

This approach does not give indications on the number of concepts. However,
there exists some works on this subject [14, 15].

As the average number of concepts is known [14, 15], and this paper gives
some insight on the average size of some implicational bases, future works can



be focused on the average number of pseudo-intents. It would also be interesting
to study the average number of n-dimensional concepts or implications, with
n ≥ 3 [16, 17].
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