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Reduction and Introducers in d-contexts

Concept lattices are well-known conceptual structures that organise interesting patterns -the concepts -extracted from data. In some applications, the size of the lattice can be a problem, as it is often too large to be efficiently computed and too complex to be browsed. In others, redundant information produces noise that makes understanding the data difficult. In classical FCA, those two problems can be attenuated by, respectively, computing a substructure of the lattice -such as the AOC-poset -and reducing the context. These solutions have not been studied in d-dimensional contexts for d > 3. In this paper, we generalise the notions of AOC-poset and reduction to d-lattices, the structures that are obtained from multidimensional data in the same way that concept lattices are obtained from binary relations.

Introduction

Formal concept analysis (FCA) is a mathematical framework introduced in the 1980s that allows for the application of lattice theory to data analysis. While it is now widely used, its main drawback, scalability, remains. Many ways to improve it have been proposed over the years. Some focus on reducing the size of the dataset by grouping or removing attributes or objects while others prefer to consider only a substructure of the lattice.

The end result of two of those approaches -respectively reduced contexts and AOC-posets -are of interest in our work. The first is the state of the dataset in which no element can be considered redundant. The second is the substructure of the lattice composed of its elements that best describe each individual object or attribute. Both have been extensively studied in traditional, bidimensional FCA. However, such is not the case in Polyadic Concept Analysis (PCA), the multidimensional generalization of FCA. The notion of reducibility of polyadic contexts have only proposed in the 3-dimensional case [START_REF] Rudolph | Reduction in triadic data sets[END_REF] and, to the best of our knowledge, no work on introducer multidimensional concepts exist.

PCA gives rise to an even greater number of patterns and so scalability is even more of an issue. Additionally, we believe that introducer concepts can be of use to better analyse d-dimensional data as each element is associated to multiple concepts instead of one. For these reasons, in this work, we define and study both the reducibility and the introducer d-ordered set of d-contexts.

The article is divided as follows: in the next section, Section 1, we give the necessary definitions and preliminaries in order to ensure a smooth reading of the paper. Section 2 is focused on dataset reduction while Section 3 introduces introducers. We conclude by highlighting some problems that may -or may not -be of interest in the future.

Formal and Polyadic Concept Analysis 1.Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical framework that revolves around formal contexts as a condensed representation of lattices. This framework allows one to inject the powerful mathematical machinery of lattice theory into data analysis. FCA has been introduced in the 1980's by a research team led by Rudolph Wille in Darmstadt. It is based on previous work by Garrett Birkhoff on lattice theory [START_REF] Birkhoff | Lattice theory[END_REF] and by Marc Barbut and Bernard Monjardet [START_REF] Barbut | Ordre et classification. Algebre et Combinatoire[END_REF].

In this section, we give the basic definitions of FCA. For an informative book, the reader can refer to [START_REF] Ganter | Formal concept analysis -mathematical foundations[END_REF]. From now on, we will freely alternate between notations ab and {ab} to denote the set {a, b}. A formal context naturally can be naturally represented as a cross table, as shown in Figure 1. A pair (o, a) ∈ R corresponds to a cross in cell (o, a) of the cross table. Such a pair is read "object o has attribute a". Since many datasets can be represented as binary relation such as the one in Figure 1, FCA finds natural applications in data analysis. To allow one to efficiently jump from a set of objects to the set of attributes that describes it, and vice versa, two derivation operators are defined. For a set O of objects and a set A of attributes, they are defined as follows:

a 1 a 2 a 3 a 4 a 5 o 1 × × × o 2 × × × o 3 × × × o 4 × × o 5 × × × o 6 × × × o 7 × × × ×
• : 2 O → 2 A O = {a ∈ A|∀o ∈ O, (o, a) ∈ R} and • : 2 A → 2 O A = {o ∈ O|∀a ∈ A, (o, a) ∈ R}.
The • derivation operator maps a set of objects (resp. attributes) to the set of attributes (resp. objects) that they share. The composition of the two derivation operators (• ) forms a Galois connection. As such, it forms a closure operator (an extensive, increasing and idempotent operator). Depending on which set the composition of operators is applied, we can have two closure operators :

• : 2 O → 2 O or • : 2 A → 2 A .
A set X such that X = X is said to be closed. A concept corresponds to a maximal rectangle of crosses in the cross table that represents a context, up to permutation on rows and columns. In Figure 1, the concept (o 2 o 7 , a 2 a 4 a 5 ) is highlighted. We denote by T (C) the set of all concepts of a context C.

(∅, a1a2a3a4a5) The concepts of T (C) can be ordered. Let (O 1 , A 1 ) and (O 2 , A 2 ) be concepts of a context. We say that

(o7, a1a2a4a5) (o6, a1a3a4) (o3, a1a2a3) (o1, a1a3a5) (o2o7, a2a4a5) (o5o7, a1a2a5) (o4o6, a3a4)(o6o7, a1a4) (o1o3o6, a1a3) (o3o5o7, a1a2) (o1o5o7, a1a5) (o2o5o7, a2a5) (o2o4o6o7, a4) (o1o3o4o6, a3) (o1o3o5o6o7, a1) (o2o3o5o7, a2) (o1o2o5o7, a5) (o1o2o3o4o5o6o7, ∅)
(O 1 , A 1 ) is a subconcept of (O 2 , A 2 ) (denoted (O 1 , A 1 ) ≤ (O 2 , A 2 )) if O 1 ⊆ O 2 .
As the Galois connection that rises from the derivation is antitone, this is equivalent to

A 2 ⊆ A 1 . The concept (O 2 , A 2 ) is a superconcept of (O 1 , A 1 ) if O 2 ⊇ O 1 (and then A 1 ⊇ A 2 ).
The set of concepts from a context ordered by inclusion on the extents forms a complete lattice called the concept lattice of the context. Additionally, every complete lattice is the concept lattice of some context, as stated in the basic theorem of formal concept analysis [START_REF] Ganter | Formal concept analysis -mathematical foundations[END_REF]. Figure 2 (left) shows the concept lattice corresponding to the example in Figure 1. One can check that the concepts of Figure 2 (left) correspond to maximal boxes of incidence in Figure 1. The highlighted concept (o 2 o 7 , a 2 a 4 a 5 ) corresponds to the highlighted concept of Figure 1. The concepts that are located directly above (upper cover) and directly below (lower cover) a concept X form the conceptual neighbourhood of X.

Two types of concepts can be emphasised. Definition 4. Let a be an attribute of a formal context. Then, the concept (a , a ) is called an attribute-concept. It is also called the introducer of the attribute a.

For example, in Figure 2, the emphasised concept corresponds to the concept (o 2 , o 2 ), and it introduces o 2 in the sense that it is the least concept that contains o 2 . In [START_REF] Ganter | Formal concept analysis -mathematical foundations[END_REF], such concepts are denoted respectively γo for object-concepts and μa for attribute-concepts. A concept can be both an object-concept and an attributeconcept. Concepts that are neither attribute-concepts nor object-concepts are called plain-concepts. Those concepts will be the main character in Section 3 of this article.

The simplified representation of a concept lattice is a representation where the labels of the concepts are limited, in order to avoid redundancy. The label for a particular object appears only in the smallest concept that contains it (its introducer). Reversely, the label for a particular attribute appears only in the greatest concept that contains it (its introducer). The other labels are inferred using the inheritance property. Figure 2 (right) corresponds to the concept lattice from Figure 2 (left), with simplified labels. The concept named Concept_10 has both labels empty. By applying the inheritance, we can retrieve that Concept_10 is in fact the concept

(o 3 o 5 o 7 , a 1 a 2 ).
This representation allows for a better reading into the concepts (with a clear separation between the extent and the intent of a concept). It allows to see at first glance which concepts are objects-concepts and attribute-concepts (by definition, the introducers have non-empty labels). The plain-concepts are, quite literally, plain.

Polyadic Concept Analysis

Polyadic Concept Analysis is a natural generalisation of FCA. It has been introduced firstly by Lehmann and Wille [START_REF] Lehmann | A triadic approach to formal concept analysis[END_REF][START_REF] Wille | The basic theorem of triadic concept analysis[END_REF] in the triadic case, and then generalised by Voutsadakis [START_REF] Voutsadakis | Polyadic concept analysis[END_REF].

It deals with d-ary relations between sets instead of binary ones. More formally, a d-context can be defined in the following way. When needed, one can represent a d-context by separating the "slices" of the cross table. For instance, Figure 4 shows a 3-context which dimensions are N umbers, Latin, and Greek. In the same way as in the 2 dimensional case, d-dimensional maximal boxes of incidence have an important role.

a b c a b c a b c α × × × × β × × × × γ × × × × 1 2 3
Definition 6. A d-concept of C = (S 1 , . . . , S d , R) is a d-tuple (X 1 , . . . , X d ) such that i∈{1,...,d} X i ⊆ R and, for all i ∈ {1, . . . , d}, there is no k ∈ S i \ X i such that {k} × j∈{1,...,d}\{i} X j ⊆ R.
When the dimensionality is clear from the context, we will simply call d-concepts concepts.

Definition 7. Let i , i ∈ {1, . . . , d}, be quasi-orders on a set P . Then, P = (P, 1 , . . . , d ) is a d-ordered set if, for A and B in P :

1. A ∼ i B, ∀i ∈ {1, . . . , d} implies A = B (Uniqueness Condition) 2. A i1 B, . . . , A i d-1 B implies B i d A (Antiordinal Dependency)
Let us now define d quasi-orders on a set of d-concepts of a d-context C:

(A 1 , . . . , A d ) i (B 1 , . . . , B d ) ⇔ A i ⊆ B i
The resulting equivalence relation ∼ i , i ∈ {1, . . . , d} is then:

(A 1 , . . . , A n ) ∼ i (B 1 , . . . , B n ) ⇔ A i = B i
We can see that the set of concepts of a d-context, together with the quasi-orders and equivalence relations defined here, forms a d-ordered set. Additionally, the existence of some particular joins makes this d-ordered set a d-lattice. For a more detailed definition, we refer the reader to Voutsadakis' seminal paper on Polyadic Concept Analysis [START_REF] Voutsadakis | Polyadic concept analysis[END_REF].

We can see that concept lattices are in fact 2-ordered sets that satisfy both the uniqueness condition and the antiordinal dependency.

In order to fully understand d-lattices, let us illustrate the definition with a small digression about graphical representation. In 2 dimensions -i.e. concept latticesthe two orders (on the extent and on the intent) are dual and only one is usually mentioned (the set of concepts ordered by inclusion on the extent, for example). Thus, their representation is possible with Hasse diagrams. From dimension 3 and up, the representation of d-ordered sets is harder. For example, in dimension 3, as of the time of writing, no good (in the sense that it allows to represent any 3-ordered set) graphical representation exists. However there is still a possible representation in the form of triadic diagrams. Figure 5 shows an example of a triadic diagram, a representation of a 3-ordered set. Let us explain how this diagram should be read. The white circles in the central triangle are the concepts. The lines of the triangle represent the equivalence relation between concepts: the horizontal lines represent ∼ 1 , the north-west to south-east lines represent ∼ 2 and the south-west to north-east lines represent ∼ 3 . Recall that two concepts are equivalent with respect to ∼ i if they have the same coordinate on dimension i. This coordinate can be read by following the dotted line until the diagrams outside the triangle. In [START_REF] Lehmann | A triadic approach to formal concept analysis[END_REF], Lehmann and Wille call the external diagrams the extent diagram, intent diagram and modi diagram depending on which dimension they represent. Here, to pursue the permutability of the dimensions further, we simply denote them by dimension diagram for dimension 1, 2 or 3.

If we position ourselves on the red concept of Figure 5, we can follow the dotted line up to the dimension 1 diagram and read its coordinate on the first dimension. It is {13}. Following the same logic for dimension 2 and 3, we can see that the red concept is (13, 12, 23). The concept on the south-east of the red concept is on the same equivalence line, with respect to ∼ 2 . We know that its second dimension will be {12} too. When we follow the lines to the other dimension diagrams, we see that it is (23, 12, 13).

Here, every dimension diagram is a powerset on 3 elements. It is not always the case, as the three dimension diagrams are not always isomorphic. We mentioned earlier that this representation does not allow to draw any 3-lattice (with straight lines). In [START_REF] Lehmann | A triadic approach to formal concept analysis[END_REF], Lehmann and Wille explain this by saying that a violation of the so-called 'Thomsen Conditions [START_REF] Krantz | Foundations of measurement[END_REF]' and their ordinal generalisation [START_REF] Wille | Geometric representation of ordinal contexts[END_REF] may appear in triadic contexts. 12 Reduction in d-contexts

Reduction in 2-contexts

Two concept lattices from different contexts can be isomorphic. Reduction is a way of reaching a canonical context, the standard context, for any finite lattice. Reduction can be described as a two steps process. The first step of reduction in 2-dimension is the fusion of identical rows or columns (clarification). In [4, Definition 23], the authors use the Figure 6 example of a context that represents the service offers of an office supplies business and the associated clarified context.

Furniture

Computers

Copymachine Typewriters Specialised machines Consulting

× × × × × Planning × × Installation × × × × × Instruction × × × × Training × Spare parts × × × × × Repairs × × × × × Service contracts × × ×

Furniture Computers

Copy-machine and Typewriters Specialised machines Consulting, Installation, Spare parts, repairs Another possible action is the removal of attributes (resp. objects) that can be written as combination of other attributes (resp. objects). If a is an attribute and A is a set of attributes that does not contain a but have the same extent, then a is reducible. Full rows and full columns are always reducible.

× × × × Planning × × Instruction × × × Training × Service contracts × ×
In a lattice, an element x is ∨-irreducible if x = a ∨ b implies x = a or x = b with a and b two elements of the lattice. An element x is ∧-irreducible if x = a ∧ b implies x = a or x = b, with a and b two elements of the lattice. Definition 9 (Reformulated from [4, Definition 24]). A context (S 1 , S 2 , R) is called row reduced if every object-concept is ∨-irreducible and column reduced if every attribute-concept is ∧-irreducible. A context that is both row reduced and column reduced is reduced. This yields that for every finite lattice L, there is a unique (up to isomorphism) reduced context such that L is the concept lattice of this context. This context is called the standard context of L. This standard context can be obtained from any finite context by first clarifying the context and then deleting all the objects that can be represented as intersection of other objects and attributes that can be represented as intersection of other attributes.

Generalisation to d-dimensions

A first generalisation to 3-dimensional contexts was made in [START_REF] Rudolph | Reduction in triadic data sets[END_REF] by Rudolph, Sacarea and Troanca. Here, we generalise further to the d-dimensional case.

To define reduction in multidimensional contexts, we need to recall some definitions. The following notations are borrowed from [START_REF] Voutsadakis | Polyadic concept analysis[END_REF]. A d-context gives rise to nu-merous2 k-contexts, with k ∈ {2, . . . , d}. Those k-contexts correspond to partitions π = (π 1 , . . . , π k ) of {1, . . . , d} into k disjoint subsets. The k-context corresponding to π is then C π = ( i∈π1 S i , . . . , i∈π k S i , R π ), where (s (1) , . . . , s (k) ) ∈ R π if and only if (s 1 , . . . , s d ) ∈ R with s i ∈ s (j) ⇔ i ∈ π j . The contexts C π are essentially the context C flattened by merging dimensions with the Cartesian product.

In the following, we consider only binary partitions with a singleton on one side and all the other dimensions on the other. Let π = (i, {1, . . . , d} \ i) be such a partition of {1, . . . , d}. Then, from the context C = (S 1 , . . . , S d , R) we obtain the dyadic context

C π = (S i , j∈{1,...,d}\{i} S j , R π ) where (a, b) ∈ R π if and only if a ∈ S i and b = b 1 × • • • × b d-1 ∈ j∈{1,...,d}\i S j and (a, b 1 , . . . , b d-1 ) ∈ R.
We refer the reader to figures 4 and 7 for a graphical representation of this transformation. Such a binary partition gives rise to the dyadic derivation operators We first define clarified d-contexts. Just as in the 2-dimensional case, our definition is equivalent to the fusion of identical (d -1)-dimensional layers. Definition 10. A d-context (S 1 , . . . , S d , R) is called clarified if, for all i in {1, . . . , d} and any

X → X (π) on the 2-context C π . (1,a) (1,b) (1,c) (2,a) (2,b) (2,c) (3,a) (3,b) (3,c) α × × × × β × × × × γ × × × ×
x 1 , x 2 in S i , x (π) 1 = x (π) 2 implies x 1 = x 2 , with π = (i, {1, . . . , d} \ i).
As with the 2-dimensional case, we provide an example in Figure 8.

Definition 11. A clarified d-context C = (S 1 , . . . , S d , R) is called i-reduced if every object-concept from C (π) , with π = (i, {1, . . . , d} \ {i}), is ∨-irreducible. A d-context is reduced if it is i-reduced for all i in {1, . . . , d}.
The most important property of reduction in the two dimensional setting is that the lattice structure obtained from the concepts of a given context is isomorphic to the one of its reduced context. The following proposition proves that the same holds for our definition of reduction in d dimensions.

Proposition 12. Let C = (S 1 , . . . , S d , R) be a d context. Let π be a binary partition (i, {1, . . . , d} \ {i}). Let y i be an element of S i and Y i be a subset of

S i such that y i is a b c a b c a b c α × × × × β × × × × × γ × × × × × 1 2 3 (α, 1) (α, 2) (α, 3) (β, 1) (β, 2) (β, 3) (γ, 1) (γ, 2) (γ, 3) a × × × × × b × × × × × c × × × ×
a and b c a and b c a and b c

α × × β × × × × γ × × × 1 2 3 Figure 8: A 3-context C = (N umbers, Greek, Latin, R) (above) and the 2-context C π with π = (Latin, {Greek, N umbers}). We can see that a (π) = b (π) = {(α, 1), (α, 2), (β, 2), (γ, 1), (γ, 3) 
}, which means that a and b can be aggregated into a new attribute "a and b". Below, the corresponding clarified 3-context.

not in Y i and y

(π) i = Y (π) i
. Then,

T (C) ∼ = T     S 1 , . . . , S i \ {y i }, . . . , S d , R ∩   S i \ {y i } × j∈{1,...,d}\{i} S j       .
Proof. Without loss of generality, let us assume that y i is an element of S 1 . We have to ensure that if

(X 1 , . . . , X d ) is a concept of C, then (X 1 \ {y i }, . . . , X d ) is a concept in the reduced context. In C, (X 1 \ {y i }, . . . , X d ) is a d-dimensional box full of crosses.
We have to show that removing y i from X 1 does not allow it to be extended on any other dimension. As (X 1 , . . . , X d ) is a d-concept, its components X j , j = i form a (d -1)-concept in the intersection of all the layers induced by the elements of X i . As C is not reduced because of y i , C yi is the intersection of at least two layers C a and C b . Obviously, a and b are elements of X 1 . If (X 2 , . . . , X d ) is not a (d -1)concept in the intersection of the layers C x , x ∈ X 1 \ {y i }, then it can be extended using crosses that both C a and C b share. This means that C yi should have them too, preventing (S 1 , . . . , S d , R) from being a concept in the first place. This ensures that (X 1 \ {y i }, . . . , X d ) is indeed a concept.

This proposition states that removing a reducible element from a d-context does not change the structure of the underlying d-lattice. If we keep track of the reduced and clarified elements during the process, it is possible not to lose information (by creating aggregate attributes or objects for example). It is still a deletion from the dataset. In the next section we speak about introducer concepts in a multidimensional setting.

3 Introducer concepts

Introducer d-concepts

Reduction induces a loss of information in a dataset since reducible elements are erased. Lots of applications cannot afford this loss of information and have to use other ways of reducing the complexity. Another structure, smaller than the concept lattice, has been introduced by Godin and Mili [START_REF] Godin | Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices[END_REF] in 1993. This structure consists in the restriction of the lattice to the set of introducer concepts. In the general case, the properties that make a concept lattice a lattice are lost and we are left with a simple poset. Since dyadic FCA deals with objects and attributes, such a poset is also called an Attribute-Object-Concept poset, or AOC-poset for short. In this section, we introduce the introducer concepts in a d-dimensional setting.

Due to the unicity of the dyadic closure (one component of a concept leaves only one choice for the other), each element of a dimension has only one introducer. This bounds the size of an AOC-poset by the number of objects plus the number of attributes of a context, when a concept lattice can have an exponential number of objects or attributes. As we will see in the following, this property is lost when we go multidimensional.

Definition 13. Let i be a dimension called the height while all other dimensions are called the width. Let x be an element of dimension i. The concepts with maximal width such that x is in the height are the introducer concepts of x. 5) is 30. Indeed, by Proposition 15 we know that there exists a mapping between the 2-concepts of each layer induced by fixing an element of a dimension and the introducers. As, by definition, every layer of the context inducing a powerset trilattice has two 2-concepts, the number of introducer concepts in a powerset 3-lattice on a ground set of five elements is then bounded by 3 × 5 × 2. This number is reached as the unique "hole" in each layer intersects all the concepts of the other layers. A more formal proof is given for a more general proposition below (Proposition 16).

a b c a b c a b c a b c α × × × × × × β × × × × × × γ × × × × × × × 1 2 3 4
I ← ∅ 2 foreach x ∈ S i do 3 C ← ∅ 4 foreach X = (X 1 , . . . , X i-1 , X i+1 , . . . , X d ) ∈ T (C x ) do 5 X i ← ∅ 6 foreach y ∈ S i do 7 if j =i X j × y ⊆ R then 8 X i ← X i ∪ y 9 C ← C ∪ (X 1 , . . . , X i , . . . , X d ) 10 I ← I ∪ C 11 return I the powerset trilattice T(
In fact, for any powerset 3-lattice on a ground set of size n, the corresponding introducer d-ordered set has 3×2×n elements. Figure 10 shows a 4-adic contranominal scale on three elements. Figure 11 shows the introducers of the powerset 3-lattice on a ground set of 3 elements. Moreover, let X = (X 1 , . . . , X d ) be an introducer concept for element x of dimension i. Then X i = x. Indeed, by definition of a contranominal scale, there will be a 'hole' per layer of the context C that will be in the width of X.

A α × × × × × × × × β × × × × × × × × × γ × × × × × × × × × B α × × × × × × × × × β × × × × × × × × γ × × × × × × × × × C α × × × × × × × × × β × × × × × × × × × γ × × × × × × × × 1 2 3
This ensures that the d × (d -1) × n introducer concepts that arise from Proposition 15 are distinct and that this number is reached in the case of powerset d-lattices.

Open problems

With respect to reduction, it would be interesting to investigate the relation of irreducible elements to the Dedekind-MacNeille completion of d-ordered sets presented by Voutsadakis [START_REF] Voutsadakis | Dedekind-macneille completion of n-ordered sets[END_REF]. Some interesting questions remain open regarding the number of introducer concepts compared to the number of concepts, both experimentally and theoretically. Furthermore, it would be interesting to use introducer concepts in visualisation or explainable approaches in d-dimensions, as they give insight on the less general concepts containing an element.

Definition 1 .

 1 A (formal) context is a triple (O, A, R) where O and A are finite sets and R ⊆ O × A is a relation between them. We call O the set of (formal) objects and A the set of (formal) attributes.

Figure 1 :

 1 Figure 1: An example context with O = {o 1 , o 2 , o 3 , o 4 , o 5 , o 6 , o 7 } and A = {a 1 , a 2 , a 3 , a 4 , a 5 }. A cross in a cell (o, a) is read "object a has attribute a". A maximal rectangle of crosses is highlighted.

Definition 2 .

 2 A pair (O, A) where O ⊆ O and A ⊆ A are closed, A = O and O = A is called a concept. O is called the extent of the concept while A is called the intent of the concept.

Figure 2 :

 2 Figure 2: Concept lattice corresponding to the example in Figure 1 (left) and with simplified labels (right).

Definition 3 .

 3 Let o be an object of a formal context. Then, the concept (o , o ) is called an object-concept. It is also called the introducer of the object o.

Definition 5 . 1 S 2 S 3 Figure 3 :

 51233 Figure 3: Visual representation of a 3-context without its crosses.

Figure 4 :

 4 Figure 4: A 3-context C = (N umbers, Greek, Latin, R) where N umbers = {1, 2, 3}, Greek = {α, β, γ} and Latin = {a, b, c}. The relation R is the set of crosses, that is {(1, α, a), (1, α, b), (1, β, a), (1, γ, a), (2, α, a), (2, β, a), (2, γ, a), (2, γ, c), (3, α, a), (3, β, a), (3, β, b), (3, γ, c)}.

Figure 5 :

 5 Figure 5: Representation of a powerset 3-lattice. The red concept is (13, 13, 23).

Definition 8 (

 8 Reformulated from [4, Definition 23]). A context (S 1 , S 2 , R) is called clarified if for any objects o 1 and o 2 in S 1 , o 1 = o 2 implies that o 1 = o 2and for any attributes a 1 and a 2 in S 2 , a 1 = a 2 implies a 1 = a 2 .

Figure 6 :

 6 Figure 6: Context and clarified context (from [4])

Figure 7 :

 7 Figure 7: Let C be our context from Figure 4. Let π = ({Greek}, {N umber, Latin}). This figure represents the 2-context C π .

Figure 9 :

 9 Figure 9: This 3-context shall serve as an example of our definitions. Let us consider the 3-context from Figure 9 as an example. The set of introducers of element a, denoted I a is I a = {(12, αβγ, a), (123, αβ, a), (1234, α, a)}. For the element 3, we have I 3 = {(123, αβ, a), (3, β, ab), (34, βγ, b), (34, γ, bc)}.We denote by I(S i ) the union of the introducer concepts of all the elements of a dimension i and by I(C) the set of all the introducer concepts of a context C.Proposition 14. (I(C), 1 , . . . , d ) is a d-ordered set. Proof. Let A = (A 1 , . . . , A d ) and B = (B 1 , . . . , B d ) be elements of I(C). We recall that A i ⊆ B i ⇔ A i B and that A i = B i ⇔ A ∼ i B.Without loss of generality, A is an introducer for an element of dimension i and B for an element of dimension j. If, for all k between 1 and d, A ∼ k B, then for all k, A k = B k and A = B (Uniqueness Condition).Let us suppose that A and B are such that A i B, ∀i ∈ {1, . . . , d} \ {k}. Then, necessarily, B k ⊆ A k or A would not be a d-concept. Hence, B k A (Antiordinal Dependency).

Algorithm 1 :

 1 INTRODUCERDIM(C, i)Input: C a d-context, i ∈ {1, . . . , d} a dimension Output: I(S i ) the set of introducer concepts of elements of dimension i 1

Figure 10 :Figure 11 :

 1011 Figure 10: This is a 4-adic contranominal scale where the empty cells have been framed. Every layer induced by fixing an element (for example A) has three 3-concepts (in C A we have (123, αβγ, bc), (123, βγ, abc) and (23, αβγ, abc)).

I was unable to put my hands on those two books in order to learn more about that. If you have a copy, I am most interested.

Stirling number of the second kind, or number of ways of arranging d dimensions into k slots.

not that well known, but it is said in this paper[START_REF] Biedermann | Powerset trilattices[END_REF].

From now on we can mirror the terminology of the 2-dimensional case, where we have complete lattices and attribute-objects-concepts partially ordered set, and use complete d-lattices and introducers d-ordered sets.

The following proposition links introducer d-concepts with the (d -1)-concepts that arise on a layer of a d-context.

Proof. We suppose, without loss of generality, that x is in S 1 . The (d -1)-concepts of C x are of the form (X 2 , . . . , X d ). If (x, X 2 , . . . , X d ) is a d-concept of C, then it is maximal in width and has x in its height, so it is an introducer of x.

If (x, X 2 , . . . , X d ) is not a d-concept of C, it means that it can be augmented only on the first dimension (since (X 2 , . . . , X d ) is maximal in C x ). Thus, there exists a dconcept ({x} ∪ X 1 , X 2 , . . . , X d ) that is maximal in width and has x in its height and is, as such, an introducer for x.

Suppose that there is a X = (X 1 , . . . , X d ) that is an introducer of x but that is not obtained from a (d -1)-concept of C x by extending X 1 . It means that (X 2 , . . . , X d ) is not maximal in C x (or else it would be a (d-1)-concept). Then there exists a

for all i between 1 and d. This is in contradiction with the fact that X is an introducer of x.

Proposition 15 states that every (d -1)-concept of a layer C x maps to an introducer of x in C and that every introducer of x is the image of a (d -1)-concept of C x . This proposition results in a naive algorithm to compute the set of introducer concepts of a d-context. It is sufficient to compute the (d -1)-concepts of the (d -1)-contexts obtained by fixing an element of a dimension.

Algorithm 1 computes the introducers for each element of a dimension i. For a given element x ∈ S i , we compute T (C x ). Then, for each (d-1)-concept X ∈ T (C x ), we build the set X i needed to extend X into a d-concept. An element y is added to X i when y × j =i X j ⊆ R, that is if there exists a (d -1)-dimensional box full of crosses (but not necessarily maximal) in R, at level y. The final set X i always contains at least x. To compute the set introducer concepts for a d-context, one needs to call Algorithm 1 on each dimension of a d-context. In some applications, it may be useful to compute the introducer concepts with respect to a given quasi-order i . Let us consider a powerset 3-lattice T(5) on a ground set of size 5. It is well known 3 that T(5) has 3 5 = 243 concepts. However, the size of the introducer set of
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