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Carrier-grade networks comprise several layers where dif-
ferent protocols coexist. Nowadays, most of these networks
have different control planes to manage routing on different
layers, leading to a suboptimal use of the network resources
and to additional operational costs. However, some routers are
able to encapsulate, decapsulate, and convert protocols, and
act as a liaison between these layers. A unified control plane
would be useful to optimize the use of the network resources
and to automate the routing configurations. Software-Defined
Networking based architectures, offer an opportunity to design
such a control plane. One of the most important problems to deal
with in this design is the path computation process. Classical path
computation algorithms cannot resolve the problem as they do
not take into account encapsulations and conversions of protocols.
In this paper, we propose algorithms to solve this problem, and
we study several cases. If there is no bandwidth constraint,
we propose a polynomial algorithm that compute the optimal
path. We also give lower and upper bounds on the optimal path
length. On the other hand, we show that the problem is NP-
hard if there is a bandwidth constraint (or other Quality of
Service parameters), even if there is only two protocols and in
a symmetric graph. We study the complexity and the scalability
of our algorithms and evaluate their performances on real and
random topologies. The results show that they are faster than
the previous ones proposed in the literature. These algorithms
can also have important applications in automatic tunneling.

Index Terms—Protocols, Encapsulation, Path computation,
multi-layer networks, Complexity theory, automata theory.

I. INTRODUCTION

Carrier-grade networks generally encompass several layers
that involve different technologies and protocols. To support
some services, such as a Virtual Private Network (VPN), a path
across network equipments must be identified and the equip-
ments be configured accordingly. Under stringent requirements
of Quality of Service (QoS – e.g., end-to-end delay, geographic
zone avoidance, etc.), computing such a path within a single
layer is not always possible. Hence, one of the key challenges
is to determine the end-to-end path that uses the appropriate
adaptation functions over the protocols: The mapping from
a protocol to another being realized through encapsulation
(e.g., Ethernet over IP/MPLS [1]), decapsulation (the reverse
operation) or conversion (e.g., IPv4 to IPv6 [2]) functions.
Consequently, the path computation process should take into
account the adaptation function capabilities of the network
equipments in order to ensure path feasibility: If a protocol is

encapsulated in another one, then it must be decapsulated (or
unwrapped) further in the path. If several encapsulations are
nested, then the corresponding decapsulations must occur in
the right order. A path complying with this requirement is said
to be feasible. Here, the multi-layer context should be taken in
a broad sense: Presence of several protocols and technologies
that can be nested, encapsulated, converted, etc.

Dealing with protocol heterogeneity is increasingly im-
portant nowadays. In addition to the IPv4/IPv6 migration,
this heterogeneity appears in tunneling, some architectures
(e.g., The Pseudo-Wire architecture [3]), hybrid networks, and
last but not least, most carrier-grade networks, which have
separate control planes for IP and Transport layers. In all
these contexts, a unified control plane would be very useful for
optimizing the network resources and for reducing operational
and management costs.

OpenFlow, and specifically protocol-agnostic versions such
as Protocol-Oblivious Forwarding (POF) [4] or P4 [5], are an
opportunity to design such a control plane. Some previous
works [6], [7] present an OpenFlow-based architecture to
achieve this challenge, but they only focus on the convergence
of packet and circuit networks. Other works tackle the traffic
engineering problem in SDNs but they circumscribe it to a
single layer [8] or to the IPv4/IPv6 migration [9]. However,
an important problem to solve remains the path computation
process in a multi-layer context. Taking into account the
adaptation functions is not trivial and classical algorithms such
as (Edsger) Dijkstra’s one cannot achieve the task as they do
not handle these functions. Here, we design several algorithms
to compute minimum cost paths dealing with protocol changes
and adaptation functions.

Our contributions:
1) We widely generalize the language theoretic approach

of Lamali et al. [10] to perform path computation
in multi-layer networks (without bandwidth constraint).
Our model takes into account all possible types of
protocol changes (encapsulation, conversion, etc.) and
any additive metric (or weight). We drastically improve
the algorithm complexity and show its efficiency through
simulations on real and random topologies.

2) For simulation purposes, we empirically study the dis-
tribution of adaptation functions over the network nodes
and its impact on feasible path existence. We exhibit a
phase transition phenomenon, i.e., a gap where the prob-
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ability of existence of a feasible path hugely increases.
3) We provide lower and upper bounds on the length of the

shortest feasible path: We show that the shortest feasible
path length can be superpolynomial in the network size,
but cannot be more than doubly exponential.

4) We prove that path computation in multi-layer networks
under bandwidth constraint is NP-hard even with two
protocols and on symmetric1 graphs, thus improving
a result of Kuipers and Dijkstra [11]. We also obtain
results on the complexity of some subproblems: It is
polynomial on Directed Acyclic Graphs (DAG) and the
general problem is not approximable. We propose a
new heuristic to resolve the problem and we show its
efficiency through simulations.

5) We propose the first algorithm to perform path com-
putation in multi-layer networks under several QoS
constraints by adapting the Self-Adaptive Multiple Con-
straints Routing Algorithm (SAMCRA – Van Mieghem
and Kuipers [12]) to the multi-layer context. We study
its scalability through simulations.

Taking into account an additive metric, such as the delay,
is important in the shortest feasible path computation. These
metrics may depend on the links, but also on the performed
adaptation functions along the path. For example, an encap-
sulation may induce a higher delay than a simple forwarding,
a conversion of headers may induce additional computational
costs and a delay due to the overhead, etc. Another example
is provided by NRENs2, which have optical and IP inter-
connection points. The technology choice (optic or IP) may
lead to a different path cost, since the technical characteristics
(reliability, delay, bandwidth, etc.) of these technologies may
differ. However, the weighted problem is challenging. In [10],
the shortest protocol sequence corresponding to the shortest
feasible path is derived. However, this sequence does not
always correspond to the minimum weight feasible path. Thus,
the algorithm should not focus on the length of the protocol
sequence, but on the way and the cost of its computation. This
involves more complex tools (weighted models in language
theory). The reason of the efficiency of our solution is that
it takes advantage of the nontrivial structure of feasible paths.
Having a better view of the structure of the candidate solutions
allows to speed up the solution search. Moreover, this structure
fits in well-known models of language theory, and there are
powerful tools to generate the solutions in these models.

The most important possible applications of our algorithms
are the unification of control planes and automatic (nested)
tunneling. This paper extends the work published in [13]. It
provides the detailed algorithms, together with their proofs of
correctness and complexity analysis. It also provides lower
and upper bounds on the shortest path length. This has an
important impact on the complexity of the problem.

The paper is organized as follows: Section II describes the
problem of path computation in multi-layer networks, and
recalls the related work; Section III formalizes the problem

1We define a symmetric directed graph as a graph where a link (U, V )
exists if and only if the reverse link (V, U) exists.

2National Research and Education Networks.

and describes our model of multi-layer network; Section IV
proposes algorithms to perform path computation without
bandwidth constraint; Section V provides lower and upper
bounds on the shortest path length; Section VI studies the com-
plexity of path computation under bandwidth constraint and
proposes heuristic solutions to tackle the problem; Section VII
proposes the first algorithm computing paths under multiple
additive QoS constraints; Section VIII shows the efficiency
of our algorithms through simulations, it also studies the
phase transition phenomenon in multi-layer networks; finally,
Section IX concludes the paper.

II. PATH COMPUTATION IN MULTI-LAYER NETWORKS

A. Connectivity in multi-layer networks

We aim to present the different concepts of path com-
putation in multi-layer networks through an example. While
this example relates to multi-domain multi-layer networks, the
underlying problem of path computation is the same as in
a single domain network3. Figure 1 (inspired by the Inter-
Provider Reference Model [15]) depicts a network involving
multiple domains and adaptation function capabilities of net-
work equipments: A company owning a Local Area Network
(LAN) wishes the Virtual Machines (VMs) of a data-center
to be within the same routing domain (for instance through
a Layer 2 VPN or a Generic Routing Encapsulation tunnel).
Hence, the switches of the LAN and the VMs of the data-
center must communicate through Ethernet datagrams and a
path has to be determined across Domains 1 and 2.

Domains 1 and 2 use IPv6/MPLS-TE technology and are
linked by equipments providing Ethernet encapsulation and
decapsulation. The Provider Edge (PE) of Domain 1 is linked
to the Customer Edge (CE) of the data-center. The adaptation
capabilities of each node are shown above it. An instance of a
feasible path would cross the PE of Domain 1, converting IPv4
packets into IPv6 ones. Then it would apply the encapsulation
and decapsulation of the border routers of Domains 1 and 2
respectively, and the PE of Domain 2 would apply a conversion
of IPv6 packets into IPv4 ones. The protocol stacks (i.e., the
sequences of encapsulated protocols) of the packets at each
stage are illustrated at the bottom of Figure 1. As an example
of unfeasible path, a direct Ethernet connection between the
CE of the data-center and the border router of Domain 1
appears. This configuration leads to a decapsulation of an
IPv6 packet from an Ethernet frame (by the border router of
Domain 2) whereas at this stage the frame encapsulates IPv4
packets. Note that we only considered a unidirectional path.
The reverse path from the LAN to the data-center should be
computed independently.

This example depicts the constraints to comply with when
computing a multi-layer (and multi-domain, in this case)
path: Being physically linked is not sufficient to establish
connectivity. Protocol continuity (by analogy with wavelength
continuity in optical networks) must hold and the adaptation

3The algorithms presented in this paper can be applied in a single-domain
or a multi-domain context. For the latter, however, a mechanism for sharing
the network information (such as the topology) is needed. This can be done
through a PCE for example [14].
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Fig. 1. Carrier-grade network comprising several domains and different layers.

functions should occur in the right order. Moreover, feasible
paths can involve loops and their subpaths are not necessary
feasible [11], [16]. Nowadays, such paths are manually deter-
mined and configurations are operated and applied by scripts.

B. Related work

The initial works dealing with protocol and technology
heterogeneity circumscribed the problem at the optical layer.
For instance, Chlamtac et al. [17] described a model and
algorithms to compute a path under wavelength continuity
constraints. Zhu et al. [18] addressed the same problem
in WDM mesh networks tackling traffic grooming issues.
In [19], Gong and Jabbari provided an algorithm to compute an
optimal path under constraints on several layers: wavelength
continuity, label continuity, etc.

However, the models of these past works are not adapted
to the problem of nested encapsulation and decapsulation
capabilities, for which a kind of stack mechanism is needed.
In [20], Dijkstra et al. addressed this issue in the context of the
ITU-T G.805 recommendations on adaptation functions. They
stressed the lack of solutions on path computation. Kuipers
and Dijkstra [11] demonstrated that the problem of path
computation with encapsulation and decapsulation capabilities
is NP-hard under bandwidth constraint. They proposed a
Breadth-First Search (BFS) algorithm that explores all possible
paths until finding a feasible one. In [10], Lamali et al. proved
that the problem is polynomial if the bandwidth constraint
is relaxed. They used automata and language theory tools
to compute a shortest feasible path, but only considering
the number of hops or adaptation functions. More recently,
Iqbal et al. [21] underlined the need of path computation
algorithms in NRENs. They proposed a new matrix-based
model for multi-layer networks and k-shortest paths algo-
rithms to tackle the problem. However, the model deals with
technologies4 instead of protocols. Thus, the nested protocols
are not transparent to the nodes. Moreover, the proposed
exact algorithm is exponential and can compute only loopless
feasible paths.

C. Proposed approach

Our goal is to study the path computation problem in
a multi-layer context and to propose efficient algorithms

4A technology is an exhaustive description of the protocol stack at some
node, e.g., IP over Ethernet over ATM.

to resolve it. To this end, we focus on three cases: Path
computation without bandwidth constraint (by adapting the
language theoretic approach of Lamali et al. [10]), under
bandwidth constraint (by using graph transformation in order
to overcome the problem complexity) and under several QoS
constraints. The simulations showing the efficiency of our
algorithms follow a methodology based on the probabilistic
distribution of the adaptation functions over the nodes.

III. MODEL AND PROBLEM FORMALIZATION

This section describes a mathematical model of multi-layer
networks and formalizes the notion of path feasibility.

A. Multi-layer network model

A multi-layer network is a 4-tuple N = (G,A,F , h) where:
• G = (V, E) is a directed graph modeling the network

topology. The set of nodes V models the routers of the
network. The set of edges E models the physical links
between the routers. The number of nodes is denoted by
|V| = n and the number of links is denoted by |E| = m.

• A = {a, b, c, . . . } is the set of protocols available in the
network, but not necessarily at each router. The number
of protocols is denoted by |A| = λ.

• For each node U ∈ V , F(U) is the set of adaptation
functions available on node U . These functions are:

– Conversion: A protocol a is converted into a protocol
b without any change of the possible underlying
protocols. It is denoted by (a→ b). E.g., Wavelength
conversion on the optical layer, IPv4 to IPv6, etc.

– Passive function: A protocol a is left as it is. It is a
classical retransmission without any protocol change
and can be considered as a special case of protocol
conversion where a = b. It is denoted by (a→ a).

– Encapsulation: A protocol a is encapsulated in a
protocol b. It is denoted by (a→ ab).

– Decapsulation: A protocol a is decapsulated from a
protocol b. It is denoted by (a→ ab).

• h : V × F × V → <+ is the weight (or cost) function.
The value h(U, f, V ) (where U, V ∈ V and f ∈ F(U) )
is the cost of using the link (U, V ) with the adaptation
function f on U . Hence, function h allows representing
any additive metric either only associated to the links or
to both links and adaptation functions.
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B. The protocol stack

A sequence of adaptation functions induces a protocol stack.
For example, the sequence

(a→ a)(a→ ab)(b→ b)(b→ ba)(a→ ab)

induces the stack abab (from bottom to top). Let f0 . . . fk be
an adaptation function sequence. For each i ≤ k, Hi denotes
the protocol stack induced by f0 . . . fi. The protocol at the
top of a stack H is denoted by Top(H) and the protocol just
below Top(H) in the stack is denoted by Top−1(H). The
“forbidden” stack (that should not be confused with the empty
word ε) is denoted by ∅.

More formally, let f be an adaptation function, and let H
be a stack and H ′ the same stack without its top protocol, i.e.,
H = H ′.T op(H)5, where H ′ is eventually empty. By abuse
of language, we will also denote by f the function taking as
argument a stack and performing the adaptation function on
this stack:
• if f = (a→ b) and Top(H) = a, then f(H) = H ′.b

• if f = (a→ ab) and Top(H) = a, then f(H) = H.b

• if f = (a→ ab) and Top(H) = b and Top−1(H) = a,
then f(H) = H ′

• f(H) = ∅ otherwise.
In fact, f(H) = ∅ if the adaptation function f cannot handle
the stack H (e.g., f is a decapsulation while there is no
encapsulated protocol in H). Note that f(∅) = ∅ for any
function in our context. Thus, the protocol stack Hi induced
by a sequence of adaptation functions f0 . . . fi, is recursively
defined as following:
• H0 = a if f0 = (a→ a)
• Hi = fi(Hi−1)

This allows to give a formal definition of path feasibility.

C. Path feasibility

Let (S,D) be a pair of nodes in G corresponding to the
source and the destination of the path to be computed. We
consider a path from S to D as a sequence of nodes and
adaptation functions P = Sf0U1f1U2f2 . . . UkfkD where
each Ui, i = 1, . . . , k, is a node and each fi is an adaptation
function (f0 being dummy). A path P is feasible if:

1) The sequence SU1U2 . . . UkD is a path in G = (V, E)
and each fi ∈ F(Ui);

2) The stack induced by the sequence f0 . . . fk is Hk = a,
where a is the protocol emitted by the source S.

Actually, the protocol sequences of feasible paths can be
characterized as a well-parenthesized language [10].

The weight of a path P = Sf0U1f1U2f2 . . . UkfkD is the
sum of the weights of its links and its adaptation functions. It
is denoted by h(P)

def
=
∑k
i=1 h(Ui, fi, Ui+1) with Uk+1 = D.

5The notation “.” stands for a simple concatenation. For example, if H =
abab then H.b = ababb.

IV. PATH COMPUTATION WITHOUT BANDWIDTH
CONSTRAINT

This section proposes a polynomial algorithm to resolve the
path computation problem without bandwidth constraint.

A. Problem definition

The problem we aim to resolve is to compute the feasible
path (if any) of minimum cost from a source S to a destination
D.

Problem 1.

min h(P) =
∑

(U,f,V )∈P

h(U, f, V )

s.t. P is a feasible path from S to D

B. General approach

Lamali et al. [10] proposed a language theoretic6 approach
to compute a shortest feasible path (involving encapsulations
and decapsulations of protocols) in a multi-layer network. The
metric considered was the number of hops or of encapsulations
in the path. The approach comprises the following steps:

1) Consider the set of protocols as an alphabet and the
multi-layer network as a Push-Down Automaton (PDA);

2) If the considered metric is the number of encapsulations,
transform the PDA in order to bypass passive transitions;

3) Convert the PDA to a Context-Free Grammar (CFG);
4) Compute the length of the shortest word generated by

the CFG, then generate this word. It is the protocol
sequence of a shortest path;

5) Compute a shortest path from this sequence.
We made several improvements to these algorithms:
• The PDA building is modified in order to support protocol

conversion by adding a new transition type;
• The PDA transitions are weighted in order to reflect

the weight function. Thus, our algorithm computes the
minimum cost path according to any additive metric
(instead of just the number of hops or encapsulations);

• The PDA transformation is no longer useful thanks to
the weight function: Simply put h(U, f, V ) = 1 (where
U, V ∈ V and f ∈ F(U)) for all triples where f is an
encapsulation, and h(U, f, V ) = 0 for all other triples.

• The conversion of the PDA into a CFG is adapted in
order to assign weights to the production rules;

• Since the production rules are weighted, the goal is no
longer to compute the shortest protocol sequence but
the one having the minimum weight derivation tree. The
derivation tree of a word is the way it is generated by
a given grammar, a more formal definition is given in
the proof of Proposition 4. This is done thanks to our
adaptation of Knuth’s algorithm described in [23].

• The computation of the path matching the protocol se-
quence is modified to take into account the weights.

In addition to these improvements, the algorithm complexity
is drastically decreased from O(λ8n7) in [10] to O

(
λ5n2m

)
.

6For the language theoretic terminology, the reader is referred to [22].



5

This is due to the uselessness of the PDA transformation to
bypass passive sequences, since this operation is costly. More-
over, adapting Knuth’s algorithm [23] to compute minimum
weight derivation tree allows to merge the generation of the
shortest (here minimum cost) word and the computation of its
length (here its cost).

C. Detailed algorithms

1) Theoretical language aspects of multi-layer paths
Considering a path P = Sf0U1f1U2f2 . . . UkfkD, and

its adaptation function sequence f0 . . . fk. Its trace TP =
x1 . . . xk+1 is defined as the sequence of protocols used
along path P . However, the symbols corresponding to the
protocols will be modified in order to indicate where the
adaptation functions will be performed along the path. If a
protocol appears overlined (resp. underlined) in the trace, it
means that an encapsulation (resp. a decapsulation) should be
performed at this stage. These indications will be used by
Algorithm 3 to derive the whole path from the trace. More
formally, we introduce the set A = {a | a ∈ A} and the set
A = {a | a ∈ A} as alphabets. For each xi:

• xi = a then fi is a conversion;
• xi = a then fi is an encapsulation;
• xi = a then fi is an decapsulation;

Here, some additional definitions are needed. The set of
protocol conversions available on node U is denoted by
CO(U). The set of encapsulations available on node U is
denoted by EN (U) and the set of decapsulations available
on node U is denoted by DE(U).
In(U) (resp. Out(U)) is the set of protocols that node U

can receive (resp. send). More formally:

• If (a→ b) ∈ CO(U) then a ∈ In(U) and b ∈ Out(U)
• If (a→ ab) ∈ EN (U) then a ∈ In(U) and b ∈ Out(U)
• If (a→ ab) ∈ DE(U) then b ∈ In(U) and a ∈ Out(U)

Several paths can have the same trace. The set of traces of
the feasible paths in a network N is a context-free language
but it is not regular as the encapsulations and decapsulations
should be balanced. In fact, it is a context-free language, and
thus requires a stack to be recognized and computed. PDAs are
the classical tools to recognize context-free languages. Using
weighted PDAs allows associating a weight to each link and
adaptation function in order to model any additive metric.

2) Definition of WPDA
A weighted PDA (WPDA) is a 8-tuple PDA =

(S,Σ,Γ, δ, Q0, Z0,SF , ω) where S is the set of states, Σ is the
input alphabet, Γ is the stack symbol set (i.e., stack alphabet)
not necessarily different from Σ, δ is the set of transitions, Q0

is the initial state, Z0 is the initial stack symbol, SF is the set
of final (accepting) states and ω is a weight function over the
set of transitions (i.e., ω : δ → <+). A transition t ∈ δ is
denoted by t = (Qi, 〈x, α, β〉, Qj), where Qi (resp. Qj) is the
state of PDA before (resp. after) the transition, x ∈ Σ∪ {ε},
where ε is the empty word, is an input symbol, α ∈ Γ is the
symbol that is popped from the top of the stack, and β ∈ Γ∗

is the symbol sequence that is pushed on the top of the stack.

Remark. WPDAs are more often formalized as 6-tuples
(S,Γ,M, Q0, Z0,SF ) whereM, called the Push-Down tran-
sition matrix. For simplicity, we opt for defining a WPDA
as a classical PDA with a weight function over the transition
set. For the theoretical foundations of WPDAs, the interested
reader can refer to [24].

3) From the graph to the WPDA
Algorithm 1 converts a multi-layer network N with a

specified pair of nodes (S,D) into a WPDA PDA =
(S,Σ,Γ, δ, Q0, Z0,SF = {QF }, ω).

Computing a feasible path requires to know the current
protocol and the last encapsulated one (in order to know if a
decapsulation can be performed). Thus Algorithm 1 creates a
state Ux for each node U and each protocol x ∈ In(U). Being
in a state Ux indicates that the current protocol is x. The last
encapsulated protocol is the one on the top of the stack. The
conversion functions (x→ y) between node U and node V are
turned into transitions (Ux, 〈x, α, α〉, Vy) in the WPDA. The
encapsulation functions (x → xy) are converted into pushes
of x on the stack (Ux, 〈x, α, xα〉, Vy) and the decapsulation
functions into pops of x from the stack (Uy, 〈y, x, ∅〉, Vx).

Algorithm 1 Convert a network into a WPDA
Input: A network N = (G = (V, E),A,F , h), a source S

and a destination D
Output: A WPDA PDA = (S,Σ,Γ, δ, Q0, Z0, {QF }, ω)

Σ← A∪A ∪A ; Γ← A
Create a single state Q0 corresponding to node S
Create a dummy final state QF
for each node U 6= S in V and each x ∈ In(U) do

Create a state Ux
for each state Ux s.t. (S,U) ∈ E and each x ∈ Out(S) do

Create the transition t = (Q0, 〈ε, Z0, Z0〉, Ux)
ω(t)← 0

for each x ∈ In(D) do
Create the transition t = (Dx, 〈x, Z0, ∅〉, QF )
ω(t)← 0

for each link (U, V ) ∈ E s.t. U 6= S do
for each (x→ y) ∈ CO(U) do

if y ∈ In(V ) then
for all α ∈ Γ do

Create the transition t = (Ux, 〈x, α, α〉, Vy)
ω(t)← h(U, (x→ y), V )

for each (x→ xy) ∈ EN (U) do
if y ∈ In(V ) then

for all α ∈ Γ do
Create the transition t = (Ux, 〈x, α, xα〉, Vy)
ω(t)← h(U, (x→ xy), V )

for each (x→ xy) ∈ DE(U) do
if x ∈ In(V ) then

Create the transition t = (Uy, 〈y, x, ∅〉, Vx)

ω(t)← h(U, (x→ xy), V )

Complexity of Algorithm 1. The complexity of Algorithm 1
is in O(λ3m). The number of states created is at worst 2 +
λ(n − 1). The number of transitions created is in O(λ3m),
which is also the complexity of the whole algorithm.
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Proposition 1. A path P in a network N is feasible if and
only if its trace TP is accepted by PDA.

Proof. Let P = Sf0U1f1U2f2 . . . UkfkD be a feasible path.
By construction, for each 3-tuple (Ui, fi, Ui+1) there is a
transition:
• t = ((Ui)x, 〈x, α, α〉, (Ui+1)y) if fi = (x→ y)
• t = ((Ui)x, 〈x, α, xα〉, (Ui+1)y) if fi = (x→ xy)

• t = ((Ui)x, 〈x, y, ∅〉, (Ui+1)y) if fi = (y → yx)

This transition recognizes the ith letter of the trace TP . It is
easy to show by induction that TP is accepted by PDA.

Conversely, if a trace TP is accepted by a transition se-
quence t1 . . . tk where each ti = ((Ui)x, 〈x, α, β〉, (Ui+1)y).
Then there is an adaptation function:
• fi = (x → y) ∈ CO(Ui) if the transition ti =

((Ui)x, 〈x, α, α〉, (Ui+1)x)
• fi = (x → xy) ∈ EN (Ui) if the transition ti =

((Ui)x, 〈x, α, xα〉, (Ui+1)y)

• fi = (y → yx) ∈ DE(Ui) if the transition ti =
((Ui)x, 〈x, y, ∅〉, (Ui+1)y)

Thus the path Sf0U1f1U2f2 . . . UkfkD is feasible in N .

The weight of a transition sequence is the sum of
the weights of each transition (i.e., ω({t1, t2, . . . , tk}) =∑k
i=1 ω(ti)). The weight of a word w, denoted by ω(w), is the

weight of the transitions that accept w in PDA. But as PDA
may be nondeterministic, a same word may be accepted by
different transition sequences. We consider only the transition
sequence of minimum weight that accepts w. More formally,
ω(w) = mint1,...,tk∈δ ω({t1 . . . tk}) s.t. {t1 . . . tk} accepts w.

4) From the WPDA to a WCFG
In order to compute the minimum weight trace and its cor-

responding path, PDA is converted into a weighted Context-
Free Grammar (WCFG). A WCFG is a CFG with a weight
function over the set of production rules. The conversion of a
PDA into a CFG is well-known. The conversion of a WPDA
into a WCFG is done in the same way, in addition the weight
of each transition is assigned to the corresponding production
rules (called rules in Algorithm 2) in the WCFG. Algorithm 2
is an adaptation of the method described in [22]. It converts
PDA into a WCFG CFG = (Q,Σ, [Q0],R, π) where:
• Q is the set of nonterminals,
• Σ is the alphabet or set of terminals (the same as the

WPDA input alphabet),
• [Q0] is the initial symbol (initial nonterminal, or axiom),
• R is the set of production rules,
• π : R → <+ is the weight function over the set of

production rules.
Complexity of Algorithm 2. The number of nonterminals is
bounded by O(|Γ| × |S|2). The number of production rules is
bounded by O(|δ|× |S|2), which is the worst case complexity
of Algorithm 2. This corresponds to O

(
λ5n2m

)
.

The minimum weight derivation tree: Generating the min-
imum weight trace (and then the minimum weight path)
requires to build its derivation tree. Let [X] be a nonterminal,
we define `([X]) as the sum of the weights of the productions
needed for, starting from [X], deriving a word in Σ∗. Thus
`([Q0]) is the weight of the minimum weight trace.

Algorithm 2 Convert a WPDA into a WCFG
Input: PDA = (S,Σ,Γ, δ, Q0, Z0, {QF }, ω)
Output: CFG = (Q,Σ, [Q0],R, π)

Create the axiom [Q0]
for each state Ux ∈ S do

Create nonterminal [Q0Z0Ux] and rule [Q0]→ [Q0Z0Ux]

for each transition (Ux, 〈x, α, β〉, Vy) do
if β = ∅ (pop) then

Create a nonterminal [UxαVy] and rule [UxαVy]→ x
π(r)← ω(Ux, 〈x, α, ∅〉, Vy)

if β = α (conversion transition) then
for each Qi ∈ S do

Create nonterminals [UxαQi] and [VyαQi]
Create the rule r = [UxαQi]→ x[VyαQi]
π(r)← ω(Ux, 〈x, α, β〉, Vy)

if β = xα, x ∈ Γ (push) then
for each (Qi, Qj) ∈ S2 do

Create nonterminals [UxαQj ], [VyαQi] and [QiαQj ]
Create the rule r = [UxαQj ]→ x[VyxQi][QiαQj ]
π(r)← ω(Ux, 〈x, α, xα〉, Vy)

The function is ` : {Q ∪ Σ ∪ {ε}}∗ → N ∪ {∞} s.t.:
• if w = ε or w ∈ Σ then `(w) = 0,
• if w = α1 . . . αk (with αi ∈ {Q∪Σ∪{ε}}) then `(w) =∑k

i=1 `(αi).
• Let r1 = [X]→ γ1, r2 = [X]→ γ2, . . . , rk = [X]→ γk

be the set of production rules having [X] as left part.
Then `([X]) = min{π(r1) + `(γ1), . . . , π(rk) + `(γk)}

Knuth’s algorithm [23] can be adapted to compute the mini-
mum weight derivation tree of a grammar. This corresponds
to the weight of TP , where P is the minimum cost path to
compute. The adapted algorithm maintains a list of production
rules and updates the `[X] according to the formula above. The
sketch of the algorithm is as follows:
• Initialize `([X]) to ∞ for each nonterminal [X]
• For each production rule [X]→ α1 . . . αn:
`([X])← min{`([X]), π(r) +

∑n
i=1 `(αi)}

The algorithm terminates when all the `[X] have the right
value and no additional update is possible. Implementing this
algorithm with Fibonacci heaps leads to a O(|Q| log |Q|+|R|)
complexity [25], which corresponds to O(λ5n2m).

When the value of `([X]) is updated, the production rule
that originates this update is stored as in the classical Dijkstra’s
algorithm. Then, starting from the axiom, each nonterminal is
replaced by the right side of its corresponding production rule,
until the generated word only contains terminals. This allows
to generate the desired word.

5) Deriving the minimum cost path from its trace
Algorithm 3 generalizes the algorithm proposed in [10]. It

takes as input the minimum weight trace TP accepted by PDA
and computes the path P that matches it.

Algorithm 3 starts on nodes[1] = S then checks at each
step all the links in E that match the current letter (protocol)
in TP . If TP = x1x2 . . . xk (xi ∈ A ∪ A ∪ A), then at each
step i, the algorithm starts from each node U in nodes[i] and
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adds to links[i] all the links (U, V ) which match xi. Each
V is added in nodes[i + 1]. The value weights[(U, V ), i]
is the cost of using link (U, V ) at step i. It corresponds to
the weight h(U, fi, V ) where fi is the adaptation function
used at step i. When the trace TP is covered, a classical
minimum cost path algorithm from S to D in the graph
(nodes, links, weights) computes the minimum weight path.
Complexity of Algorithm 3. The complexity of Algorithm 3

Algorithm 3 Computing the minimum cost path
Input: The network N and TP
Output: The minimum cost path P
nodes[1]← S ; i← 2
while The trace is not completely covered do

for each U ∈ nodes[i], V ∈ V s.t. (U, V ) ∈ E do
if xi ∈ A, xi ∈ Out(U), xi ∈ In(V ) and (xi−1 →

xi) ∈ CO(U) then
Add (U, V ) in links[i] and V in nodes[i+ 1]
weights[(U, V ), i]← h(U, (xi−1 → xi), V )

if xi ∈ A, xi ∈ Out(U), xi ∈ In(V ) and (xi−1 →
xi−1xi) ∈ EN (U) then

Add (U, V ) in links[i] and V in nodes[i+ 1]
weights[(U, V ), i]← h(U, (xi−1 → xi−1xi), V )

if xi ∈ A, xi ∈ Out(U), xi ∈ In(V ) and
(xi → xixi−1) ∈ DE(U) then

Add (U, V ) in links[i] and V in nodes[i+ 1]
weights[(U, V ), i]← h(U, (xi → xixi−1), V )

i+ +

Compute the minimum cost path from S to D in
(nodes, links, weights)

is bounded by O(|TP |nm) in the worst case.

V. BOUNDS ON FEASIBLE PATH LENGTH

In this section, we distinguish the cost of a path, i.e., the
sum of the weights of the links and the adaptation functions
involved in it, from the length of the path, i.e., the number of
links involved in it. In both cases, links in loops are counted
as many times as they are crossed by the path.

By computing the `-value of the axiom [Q0], Knuth’s algo-
rithm decides if a given multi-layer network contains a feasible
path between a specified pair of nodes. If `([Q0]) = ∞,
then there is no feasible path. Otherwise, there is a feasible
path of minimum cost `([Q0]). Thus, the existence problem is
solvable in O(λ5n2m), which depends only on the network
parameters. However, to effectively and explicitly compute
the feasible path P of minimum cost (if any), one needs to
generate its trace TP and to find the feasible path matching
it (Algorithm 3), which are in O(|TP |) and O(|TP |nm)
respectively. Note that |TP | is also the length of the feasible
path of minimum cost. Thus, the complexity of the whole
path computation process is in O

(
max

{
λ5n2m, |TP |nm

})
,

which is polynomial in the network parameters and in the
minimum cost path length. However, to accurately estimate
this complexity, bounds on the value of |TP | are needed.

Fig. 2. Example of multi-layer network in which the only feasible path is of
length Ω(n2).

A. Lower bounds on the shortest feasible path

Obviously, if P does not involve loops, then |TP | is upper
bounded7 by m. Otherwise, can the length of the minimum
cost path be upper bounded by a linear function of n or m?

Unfortunately, the answer is no. Consider the example
depicted on Figure 2. The nodes (except S and D) are
partitioned into two sets. For convenience and without loss
of generality, we suppose that n is even. Nodes U1, . . . , Uk
where k = n

2−1 form a loop. Each node in this loop is passive
(only able to transmit passively any protocol), except the last
one which is able to encapsulate any protocol in protocol b.
Nodes V1, . . . , Vk connect U1 to D via a directed path. All
these nodes are able to decapsulate any protocol from protocol
b (thus they delete an occurrence of protocol b from the top of
the protocol stack). To reach D, a feasible path should cross
the sequence of nodes V1, . . . , Vk and delete an occurrence of
b at each of these nodes. Thus, when reaching node V1, the
protocol stack of a feasible path should contain k occurrences
of b at its top. However, each crossing of the loop U1, . . . , Uk
adds only one occurrence of b on the top of the stack (at Uk).
Therefore, a feasible path should cross the loop k times before
reaching V1. The length of the shortest (and actually the only
one) feasible path is k2 + k + 2 = n2

4 −
n
2 + 2.

Proposition 2 generalizes this result.

Proposition 2. For any number of nodes n and any set of
protocols A = {a1, . . . , aλ}, there is a multi-layer network
N with two specified nodes S and D such that the shortest
feasible path from S to D contains Ω

((
n
λ

)λ)
links.

Proof. Let N be a multi-layer network and suppose without
loss of generality that n = λk+1 for some integer k. We first
construct the underlying graph as following: Create a directed
path containing all the nodes where the first one is S and
the last one is D. The node Ui,j (0 ≤ j < k) denotes the
ki + j + 1th node in the path. Thus D is denoted by Uλ,0.
Then create a link from node Ui,0 to S for all i ≤ k− 1. The
adaptation functions are allocated as follows:
• Node S emits protocol a1 and nodes U0,1, . . . , U0,k−1 are

passive and can only transmit any protocol as received,

7Since the weights and other possible QoS parameters depend on the links
(and the adaptation functions) but not on vertices, paths involving several
times the same vertices are not an issue and are considered as loopless.
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• Nodes Ui,1, . . . , Ui,k−1 (1 ≤ i ≤ λ− 1) are only able to
deacpsulate protocol ai+1 from any protocol,

• Nodes Ui,0 (1 ≤ i ≤ λ− 1) are only able to encapsulate
any protocol in protocol ai+1.

A path must have the sequence ak−1
i+1 at the top of the

protocol stack8 to cross the nodes Ui,1, . . . , Ui,k−1 (1 ≤ i ≤
λ − 1) and reach Ui+1,0. To do so, it must cross the node
Ui,0 k − 1 times because it is the only node able to add an
occurrence of ai+1 on the top of the protocol stack. And at
each time it reaches Ui,0 (except the last one), it must cross
the link (Ui,0, S) again. Let φi be the shortest path length (in
links) to reach Ui,0. Then reaching Ui,0 k − 1 times requires
(k − 2)(φi + 1) + φi links. Thus, reaching Ui+1,0 requires
(k − 2)(φi + 1) + φi + k links. Rearranged, this gives the
recurrent equation

φi+1 = (k − 1)φi + 2k − 2 with φ1 = k (1)

Resolving the equation gives φλ = Ω(kλ). Replacing k by
n−1
λ concludes the proof.

The previous result gives an example of a shortest feasible
path that is exponential in the number of protocols but polyno-
mial in the number of nodes. However, it is possible to obtain
a superpolynomial shortest path with only two protocols. It
is well-known that the shortest word generated by a CFG
can be of exponential length in the CFG size. On the other
hand, there is a polynomial relation between the size of
a (W)CFG and an equivalent (W)PDA. This suggests that
the shortest feasible path can be exponential. However, the
classical algorithm that converts a CFG into a PDA produces
a PDA with a fixed number of states (generally only one -
see [22] for more details). Thus, the resulting (W)PDA is
unlikely to be converted into a multi-layer network. Instead,
we build a multi-layer network where the shortest path length
is superpolynomial. Proposition 3 details this construction.

Proposition 3. For any number of nodes n, there is a multi-
layer network having 2 protocols with two specified nodes
S and D, such that the shortest feasible path from S to D

contains Ω
(√

n2Ω(
√
n)
)

links.

Proof. Let N be the multi-layer network built in the proof
of Proposition 2 with λ protocols. We will convert it into
a multi-layer network N ′ with two protocols a and b. The
key idea of the proof is to emulate a protocol ai+1 with the
sequence of protocols abia. To do so, each node Ui,0 (1 ≤ i ≤
λ− 1) is replaced by a sequence of i+ 2 nodes U0

i,0 . . . U
i+1
i,0

where U0
i,0 and U i+1

i,0 are able to encapsulate any protocol in
protocol a and the nodes U1

i,0 . . . U
i
i,0 are able to encapsulate

any protocol in protocol b. Thus, crossing this sequence push
abia on the top of the protocol stack. Analogously, each node
Ui,j (1 ≤ i ≤ λ − 1 and 1 ≤ j ≤ k − 1) is replaced by a
sequence of i + 2 nodes U0

i,j . . . U
i+1
i,j where U0

i,j and U i+1
i,j

are able to deapsulate protocol a from any protocol and the
nodes U1

i,j . . . U
i
i,j are able to decapsulate protocol b from any

8The notation ak stands for aa . . . a︸ ︷︷ ︸
k times

.

Fig. 3. Derivation tree of a word corresponding to a feasible path.

protocol. To cross this sequence of nodes, the top of the stack
should contain abia. Now, let φi be the shortest path length
(in links) to reach U i+1

i,0 . The recurrent relation (1) becomes

φi+1 = (k − 1)φi + (i+ 3)k − 2 with φ1 = k + 2

Resolving the equation gives φλ = Ω(λkλ). Replacing λ by
n−1
k and setting k = 3 gives Ω(n3

n
3 ). However, here n is the

number of nodes of N while the path we exhibit is in N ′. The
number of nodes in N ′ is n′ = O(n2), thus n = Ω(

√
n′). The

shortest feaisible path length in N ′ is in Ω
(√

n′3Ω(
√
n′)
)

=

Ω
(√

n′2Ω(
√
n′)
)

B. Upper bound on the shortest feasible path length

Proposition 4. For any multi-layer network N , the shortest
feasible path (if any) between two nodes contains at most
O(2ψ) hops, where ψ = (λ+ 1)λ2n2.

Proof. We prove that the shortest word (if any) generated
by a CFG corresponding to any multi-layer network contains
at most 2|Q| − 1 terminals, where |Q| is the number of
nonterminals in the CFG. The proof is similar to the one
showing bounds on the length of the shortest word generated
by a CFG in Chomsky normal form [22].

Let N be any multi-layer network and let (S,D) be the
source and the destination of a feasible path in N . Recall that
the CFG corresponding to N and produced by Algorithm 2
contains production rules of the following forms:

1) [X]→ a
2) [X]→ a[Y ]
3) [X]→ a[Y ][Z]

Where a is a terminal or the empty word ε, and [X],[Y ],[Z]
are nonterminals. Let w be the trace of the shortest feasible
path from S to D in N . The word w is then the shortest one
generated by the CFG. The derivation tree of w is a tree where
the axiom is the root, the internal nodes are nonterminals and
the leafs are terminals or the empty word. A nonterminal [X] is
the parent of a nonterminal [Y ] if the derivation of w contains
a production rule where [X] is the left side and [Y ] appears
in the right side. [X] is the parent of a leaf a in the same
way. For example, if the production rule [X] → a[Y ][Z] is
used to derive w, then [X] will be the parent of the leaf a and
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the nodes [Y ] and [Z]. Such a tree is a derivation tree of w
means that the sequence of leafs of the tree from left to right
corresponds exactly to w.

To maximize the size of the derivation tree of w, suppose
that it contains only production rules of form 3, except those of
the bottom of the tree, which must be in form 1 (otherwise w
would contains nonterminals). Furthermore, suppose that in all
the production rules of the derivation tree, a is never the empty
word. Figure 3 illustrates the shape of such a tree and the way
the word w is derived. This is the biggest possible derivation
tree for w. The key argument is the following : Each branch
in the derivation tree contains each nonterminal of the CFG at
most once. If a nonterminal appears twice or more in a branch,
one could generate a shorter word by using this nonterminal
only once, and this would contradict the fact that w is the
shortest word. Thus, the biggest possible derivation tree for w
is a complete tree where each internal node is parents of one
leaf (terminal) and two internal nodes (nonterminals), except
the last node of each branch which is parent of only a leaf.
The depth of the tree is at most |Q|, and the number of internal
nodes is at most 2|Q| − 1. Since each internal node gives at
most one terminal, then the length of w is at most 2|Q|−1. The
number of nonterminals in the CFG is at most |Γ| × |S|2 =
(λ+ 1)λ2n2 (see Algorithm 2 and its complexity). Thus, the
path length is bounded by 2(λ+1)λ2n2 − 1

VI. ADDRESSING BANDWIDTH CONSTRAINT

This section studies the complexity of path computation
under bandwidth constraint and proposes heuristic solutions
to resolve the problem.

A. Problem formalization

For Traffic Engineering purposes, a feasible path may be
constrained by a minimal bandwidth. But it is possible that
feasible paths in a multi-layer network involve loops (i.e.,
involving the same link several times but using different
protocols). It implies that the bandwidth constraint is no longer
prunable: Even if the links with not enough bandwidth are
deleted by topology filtering prior to path computation, other
links can have enough bandwidth if they are selected once but
not if more. For example, if a link has a capacity of 10Gbps
and the bandwidth constraint is 5Gbps, then this link cannot
be crossed more than twice. The (optimization) problem of
computing the minimum cost path in a multi-layer network
under bandwidth constraint is defined as follows:

Problem 2.

min h(P) =
∑

(U,f,V )∈P

h(U, f, V )

s.t.


P is a feasible path between S and D

minE∈P
qb(E)

nb(E)
≥ qminb

where nb(E) is the number of times a link E is crossed by
path P , qb(E) is the bandwidth capacity of E and qminb is the
bandwidth constraint.

B. Path computation complexity under bandwidth constraint
The bandwidth constraint impacts the complexity of feasible

path computation. In a single-layer network, computing a path
under bandwidth constraint is trivial: It suffices to prune all
the links without enough bandwidth. This is no longer possible
in a multi-layer network. In fact, the decision problem is NP-
hard as shown by Kuipers and (Freek) Dijkstra [11]. But this
proof does not work on symmetric directed graphs. However,
most communication networks are symmetric. We show that
the decision version of the problem remains NP-hard even
with two protocols and in a symmetric graph. Consider the
following problem:

Problem (2’). Given a multi-layer network N = (G =
(V, E),A,F , h), a function assigning to each link E ∈ E an
available bandwidth qb(E), a bandwidth constraint qminb and
a pair S and D of nodes in V . Is there a feasible path from
S to D satisfying the bandwidth constraint?

Proposition 5. Problem (2’) is NP-hard with two protocols
even if G = (V, E) is a symmetric directed graph.

Proof. First consider the problem of finding a Hamiltonian
path in a symmetric directed graph between two nodes S′

and D′. Call this problem SYM-HAM. SYM-HAM is NP-
complete (a polynomial reduction from the classical Hamilto-
nian path problem to SYM-HAM is trivial).

Now we provide a polynomial reduction from SYM-HAM
to Problem (2’) restricted to symmetric directed graph and two
protocols. Given an instance of SYM-HAM, i.e., a symmetric
directed graph H = (V ′, E ′) and a pair of nodes (S′, D′),
we build an instance of Problem (2’), i.e., a network N =
(G,A,F , h) and a pair of nodes (S,D) as following:
Step 1: Splitting the nodes. For each node U ′ ∈ V ′, four
nodes U1, U2, U3 and U4 are created in G. Links (Ui, Ui+1)
and (Ui+1, Ui) are created for i = 1, 2, 3. For each link
(U ′, V ′) ∈ E ′, a link (U1, V1) is created in G. This step is
illustrated on Figure 4.
Step 2: Adding a tail. G = (V, E) is augmented by a set
C = {C0, . . . , Cn+1} of nodes, where C0 = S is the source
node. There are a link (Ci, Ci+1) and a link (Ci+1, Ci) for i =
0, . . . , n. Moreover, there is also a link from Cn+1 to S1 (the
first node resulting from the splitting of S′) and conversely.
Figure 5 shows this construction. Finally, two nodes X and D
are added, as well as the four links (D1, X), (X,D1), (X,D)
and (D,X) (recall that D1 is the first node resulting from the
splitting of D′, see Step 1).
Step 3: Allocating the adaptation functions and available
bandwidth. All the links have available bandwidth 1. The
bandwidth constraint is set to 1. Thus, any feasible path must
cross a link at most once. There is no possible loop. Let the set
of protocols be A = {a, b}. Node S emits packets of protocol
a. For i = 1 . . . , n, each node Ci in the tail can encapsulate
protocol a in itself. Node Cn+1 can only encapsulate a in b.
For each node U ′ ∈ V ′, node U1 can encapsulate any protocol
in b. Node U2 can either decapsulate protocol b from itself or
passively transmit protocol a. Node U3 can either decapsulate
protocol a from b or passively transmit protocol a. Node U4

is able to decapsulate protocol a from itself. Finally, node X
can decapsulate protocol a from b.
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Fig. 4. Reduction from SYM-HAM to feasible path under bandwidth
constraint (node splitting).

Now, we prove that there is a Hamiltonian path from S′ to
D′ in H if and only if there is a feasible path from S to D in
N that satisfies the bandwidth constraint. First, assuming that
there is a Hamiltonian path from S′ to D′ in H, we construct
a feasible path P in N as follows: Starting from S in N , P
crosses the tail and each Ci (i = 1 . . . n) adds an occurrence
of protocol a in the stack of encapsulated protocols. Then
crossing Cn+1 adds b as current protocol. Thus, at the end
of the tail, there are n + 1 encapsulated protocols a (the one
emitted by S and n occurrences added in the tail) and the
current protocol is b. Following the same node order as in the
Hamiltonian path, replace each occurrence of a node U ′ ∈ V ′
(including S′ and D′) in the Hamiltonian path by the sequence:

U1(b→ bb)U2(b→ bb)U3(a→ ab)U4(a→ aa)U3(a→ a)

U2(a→ a)U1(a→ ab)
(2)

Thus, at node U1 an encapsulation of protocol b occurs, at
U2 protocol b is decapsulated, at U3 it is decapsulated again,
and at U4 protocol a is decapsulated. Path P then crosses
passively nodes U3 and U2, and finally encapsulates protocol
b at U1. Thus, at each time the path crosses an occurence of
Sequence (2), then one occurrence of protocol a is removed
from the protocol stack. Crossing all U4 s.t. U ′ ∈ H removes
all encapsulated occurrences of protocol a except the first one.
When the path leaves D1 to reach node X , the current protocol
is b and there is a last occurrence of protocol a which is
encapsulated. Finally, node X decapsulates protocol a from
protocol b and node D receives protocol a as emitted by S.
Thus, P is a feasible path, and each link is crossed at most
once, the bandwidth constraint is satisfied.

Conversely, we show that from any feasible path P sat-
isfying the bandwidth constraint in N , one can extract a
Hamiltonian path between S′ and D′ in H. A feasible path
must cross all nodes U4 s.t. U ′ ∈ V ′ in order to decapsulate all
occurrences of protocol a encapsulated when crossing the tail.
Thus, it involves Sequence (2) for all U ′ ∈ V ′. By removing
the tail part and the nodes X and D from P and replacing each
occurrence of Sequence (2) by the corresponding node U ′, the
resulting path starts from S′ and crosses all the nodes in H
before reaching D′. The only problem is the possibility that
there are sequences other than Sequence (2) in the remaining
path. There are two possible cases:
• An incomplete Sequence (2) where U4 is not reached

(e.g., U1fU2f
′U3f

′′U2f
′′′U1): This cannot happen be-

cause such a sequence forbids to reach U4 later, and
thus one encapsulated occurrence of protocol a is never
decapsulated and P cannot be feasible. Such a sequence
cannot occur after an occurrence of Sequence (2) on the
same nodes because if a node Ui (i = 2, 3) is reached

in a Sequence (2) it cannot be reached again due to the
bandwidth constraint.

• A sequence U1fV1f
′W1: Let P be a feasible path from

S to D containing a sequence U1fV1f
′W1 (where U1

and W1 may be the same node). These three nodes can
only encapsulate protocol a or b in protocol b. Thus, after
crossing such a sequence, there are three occurrences of
protocol b on the top of the protocol stack. However, in
network N , there is no possible sequence of nodes and
adaptation functions able to decapsulate protocol b three
consecutive times. Thus, P is not feasible.

Thus, if a feasible path exists, then it contains only one
occurrence of Sequence (2) for each node U ′ ∈ V ′. Replacing
each Sequence (2) by the corresponding node in V ′ induces a
Hamiltonian path in H. This concludes the proof.

Remark. In the conference version of this paper [13],
Proposition 1 incorrectly states that Problem (2’) is NP-
complete, and thus being in NP. This claim was based on
the supposition that the shortest feasible path length should
be polynomial in the size of the network. However, in the
light of the results stated in Section V, this claim is false and
the shortest path cannot be a polynomial certificate.

Corollary 1. Problem (2) is not approximable.

Corollary 2. Problems (2) and (2’) are polynomial if the
graph G = (V, E) is a DAG.

C. DAG Heuristic

Minimum cost feasible paths involving loops are infrequent
(see Section VIII). Combining this fact with Corollary 2
suggests a heuristic to compute feasible path under bandwidth
constraint: Convert the network into a DAG and perform the
PDA algorithm to compute a minimum cost feasible path.
DAG Conversion. The network is converted into a DAG in
the following way:

1) Set the number 0 to node S and n−1 to node D (recall
that S and D are the extremities of the graph diameter);

2) Perform a BFS algorithm starting from node S and
number the nodes in the visit order. The nodes at
the same distance from S are visited randomly, thus
performing several times this heuristic does not always
give the same node numbering and the same DAG;

3) Delete all the links that start at a node and end at a node
with a smaller number.

The DAG heuristic is as follows:
1) Convert the network into a DAG;
2) Prune the links without enough bandwidth;
3) Perform the PDA algorithm of Section IV.

VII. PATH COMPUTATION UNDER QOS CONSTRAINTS

A. Multi-constrained feasible path

LetN be a multi-layer network. Each link E = (U, V ) is as-
sociated to a set of k additive QoS metrics (q1(E), . . . , qk(E))
in addition to its available bandwidth qb(E). These additive
metrics can be the delay, logarithm of the packet-loss, etc. Let
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Fig. 5. Reduction from SYM-HAM to feasible path under bandwidth constraint (graph transformation).

qmin
b be the bandwidth constraint and (qmax

1 , qmax
2 . . . , qmax

m )
be a vector of QoS constraints, the problem of computing
a minimum cost feasible path under these constraints is
formalized as:

Problem 3.
min h(P) =

∑
(U,f,V )∈P

h(U, f, V )

s.t.



P is a feasible path from S to D

minE∈P
qb(E)

nb(E)
≥ qmin

b

∑
E∈P (qi(E)× nb(E)) ≤ qmax

i , i = 1 . . . k

The problem of QoS multi-constrained path computation
(on a single layer) is well studied and it is well-known that
the decision version is NP-complete, even with 2 additive
and/or multiplicative constraints [26]. It is a particular case
of Problem 3, corresponding to the case where there is only
one protocol and passive transitions. Thus the decision version
associated to Problem 3 is NP-hard.

B. ML-SAMCRA
Van Mieghem and Kuipers [12] proposed the Self-Adaptive

Multiple Constraints Routing Algorithm (SAMCRA) to re-
solve the problem of multi-constrained path computation on
a single layer. It computes paths under several (additive) QoS
constraints but it ignores the feasibility constraint as defined
in our paper. The algorithm has exponential time worst case
complexity but the authors have shown that it exhibits a
reasonable processing time in practice. We propose to adapt
SAMCRA to the multi-layer context.

1) The main concepts of SAMCRA
The idea of SAMCRA is to maintain a path list from the

source node S to all other nodes until reaching the destination
node D. It progressively removes the paths that do not comply
with the QoS constraints. The main concepts of SAMCRA are:
• Non-linear path length: It reduces the solution space to

scan but the algorithm can apply with any metric. Hence,
it is not a strict requirement.

• The k-shortest path algorithm: The k-shortest path algo-
rithm maintains the list of the paths that are not (yet)
removed from the path list.

• Non-dominance: A multi-constrained path P dominates
another path P ′ if ∀i,

∑
E∈P qi(E) ≤

∑
E∈P′ qi(E) (i.e.,

if P is better than P ′ for each QoS parameter). A path
P is non-dominated if there is no path which dominates
it. The concept of non-dominance induces a partial order
over the paths. It avoids the exploration of several paths
thus substantially reducing the average complexity of
SAMCRA.

The only concept that is impacted by the multi-layer context
is the non-dominance. It must be redefined to meet the path
feasibility constraint and to take into account possible loops.

2) Extension of the non-dominance definition
A multi-layer path is characterized by its nodes but also

by its protocol stack at the end node. Thus in the algorithm
path list, each path should be stored with its protocol stack at
its final node. A path can involve the same link several times.
Before checking if it complies with some QoS parameters, the
parameters of each link should be multiplied by the number
of times this link is involved in the path. The bandwidth
constraint is not prunable in multi-layer context, the new non-
dominance definition should take it into account.

A path P dominates a path P ′ if and only if:
• minE∈P

qb(E)
nbP(E) ≥ minE∈P′

qb(E)
nbP′ (E)

•
∑
E∈P qi(E)× nbP(E) ≤

∑
E∈P′ qi(E)× nbP′(E)

∀i = 1, . . . , k
• P and P ′ have the same final node;
• P and P ′ have the same protocol stack at this node.

Where nbP(E) (resp. nbP′(E)) is the number of times the
link E is involved in path P (resp. P ′). According to this
new definition of non-dominance, ML-SAMCRA explores all
the possible paths until reaching the destination node with
satisfactory QoS parameters. Along the exploration, it removes
all paths that are dominated or not feasible.

VIII. SIMULATIONS

A. Path computation without bandwidth constraint

We implemented our algorithm (called PDA) and compared
it to a classical BFS approach.

1) Networks used for the simulations and methodology
Large multi-layer topologies are generally not available.

Some public ones as the Internet2 network [27] are not
large enough to show the scaling of our algorithm. Thus, we
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performed simulations on two real topologies described in [28]
and random scale-free topologies:
• Topology T1 is a simplified version of Time Warner

network. It has 41 nodes and 296 directed links.
• Topology T2 corresponds to the network of Exodus as in

2002. It has 79 nodes and 294 directed links.
• Scale-free topologies are generated according to the

Barabsi-Albert model [29]. A complete graph of 10 nodes
is created. Then nodes are iteratively added according
to a preferential attachment mechanism: A new node is
randomly linked to 5 existing nodes. The probability for
a node to be selected is proportional to its degree.

Since these topologies are not layered, the adaptation func-
tions are randomly allocated to the nodes. For a set of proto-
cols A, there are 3λ2 possible adaptation functions (for each
ordered pair of protocols: a conversion, an encapsulation and
a decapsulation). For each node U , each of these adaptation
functions is available on U with probability p. The source
and the destination nodes are the diameter extremities, which
corresponds to 5 (resp. 10) hops for Topology T1 (resp. T2).

2) Phase transition in path feasibility
Depending on the network topology and the adaptation

function distribution, there is not always a feasible path.
It is interesting to know the probability of a feasible path
existence according to probability p in order to set appropriate
parameters for the simulations. In case of path existence,
knowing the probability that the minimum cost one involves
loops allows comparing the different algorithms (some of them
allow loops and others do not). To compute this probability,
we performed 200 runs for each value of p and counted the
number of times there was a feasible path.

Figure 6a shows the evolution of feasible path existence
probability according to p and the proportion of minimum
cost paths that involve loops. Not surprisingly, the probability
of feasible path existence grows according to p. On both
topologies, the probability of path existence reaches 50%
when p = 0.22 and follows a phase transition phenomenon.
For example, in the interval p ∈ [0.10, 0.38], the probability
of path existence in Topology T1 grows from 5% to 90%.
This interval is the most suitable to perform simulations. The
phase transition phenomenon also holds with more than 2
protocols. The more the number of protocols is high, the more
the phase transition is shifted to the left. If there are few
feasible paths (for small p), the probability that the minimum
cost ones involve loops is high. However, this probability
quickly decreases. The phase transition phenomenon can be
seen in [21]. But the results consider only loopless paths and
deals with technologies rather than adaptation functions.

Figure 6b shows the evolution of feasible path existence
probability according to p in a scale-free topology. It seems
that the probability is independent from the network size, or
varying too slowly depending on it. Whether for 50 or 200
nodes, the probability grows from 0.1% to 99% when p ∈
[0.01, 0.15]. The phase transition is shifted to the left compared
to the one observed on Topologies T1 and T2. This can be
explained by the fact that the diameter of a scale-free network
is asymptotically logn

log logn [30], which, for the chosen values of
n, is much smaller than the diameter of Topologies T1 and T2.
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Fig. 6. Probability of existence of a feasible path in real and scale-free
topologies according to the probability of existence of an adaptation function.

 0

 20

 40

 60

 80

 100

50 100 150 200

%
 o

f 
fe

a
s
ib

le
 p

a
th

s

Number of nodes

 length < 6
 length = 6
 length = 7
 length = 8
 length > 8

Fig. 7. Feasible path length distribution with p = 0.05.

3) Feasible path length distribution
In Section V, we have shown that the shortest feasible

path between two nodes may be of superpolynomial length.
However, such cases are very specific and are unlikely to
appear in practice. We performed simulations on random scale-
free topologies, in order to evaluate the effective distribution
of feasible path length according to the network size. Figure 7
shows the obtained results averaged over 1000 runs, with
p = 0.05. For a network of 50 nodes, 86% of the feasible
paths have a length ≤ 5, but 2% have a length ≥ 9. For
200 nodes, only 50% of the feasible paths have a length ≤ 5,
while 9% have a length ≥ 9. However, all the diameters of the
topologies where at most 4. This means that the probability for
a shortest feasible path to be more than double the diameter
is not negligible.

4) Simulation results on real topologies
Our algorithm is compared to a classical BFS which ex-

plores all possible paths until reaching the destination. During
the exploration process, all dominated9 paths are deleted. BFS
can be seen as a version of the algorithm in [11] where the
bandwidth constraint is relaxed. The first results has shown
that BFS algorithm is extremely slow even for small values
of p (processing time of the order of several hours). It was
impossible to perform a comparison with our algorithm. Due
to this tremendous running time, we fixed a maximum length
to the explored paths by BFS algorithm. If a path exceeds 10
hops (resp. 14 hops) on Topology T1 (resp. T2), it is deleted
and no longer considered. We performed 100 runs for each
value of p and averaged the processing time.

Figure 8a shows the processing time of PDA and BFS
algorithms on Topologies T1 and T2 according to the values

9In this context, a path dominates another one if they have the same
extremities and the same protocol stack, and the first path is shorter.
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Fig. 8. Processing time of PDA and BFS on scale free topologies and ratio of success of BFS according to the network size.

of p. For small values of p (< 0.22 for T1 and < 0.04 for T2)
BFS algorithm is faster than PDA. However, the processing
time of BFS hugely increases. We cannot put it on Figure 8a
because it would be unreadable. For example, the processing
time of BFS algorithm on Topology T2 for p = 0.24 is more
than 14 minutes, while that of PDA algorithm is 10s. On
Topology T1, for p = 0.38, the processing time of BFS is
more than 7 minutes, while that of PDA is 7s.

5) Simulation results on random scale-free topologies
Unlike fixed real topologies, random scale-free topologies

allow to study the algorithm efficiency according to the
network size, which is the goal of this section. As in the
previous case, simulating BFS without path length restriction
is impossible due to a prohibitive processing time. Instead, we
performed simulations of BFS with maximum path length k
from 5 to 9. Paths exceeding this length are deleted and no
longer considered. Moreover, BFS is only required to find a
feasible path, not necessarily the minimum cost one.

Figure 8b shows the processing time of PDA and BFS with
different maximum path lengths according to the network size
(number of nodes). Figure 8c shows the proportion of feasible
paths found by the different BFSs according to the network
size. The probability p is fixed to 0.05. All the results are
averaged over 1000 runs. The processing time of BFS with
k = 9 is tremendous and the algorithm is stopped when the
network size reaches 30 nodes. For instance, the processing
time of the latter is 177s for 30 nodes. For a number of nodes
≥ 100, BFSs with k = 5, 6, and 7 are faster than PDA.
For instance, when the network size is 160, the processing
time of PDA is 1261ms while the processing time of BFS
k = 5 (resp k = 6 and k = 7) is 1.23ms (resp. 9.78ms and
1005ms). However, as shown in Figure 8c, when the network
contains feasible paths, BFS with k = 5 finds only 47% of
them. This proportion is 83% for k = 7. When the network
size grows and k is fixed, this proportion tends to 0% since the
probability that a feasible path has length ≤ k tends to 0. The
advantage of PDA is that it is an exact algorithm, it always
finds the optimal path when it exists, while the BFS approach
lacks both efficiency and correctness since it can miss existing
feasible paths.

B. Path computation under bandwidth constraint

We study the efficiency of the DAG heuristic (called DAG-
PDA) and compare it with the algorithm of Kuipers and
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Dijkstra [11]. The latter is an exact (and thus exponential)
algorithm that performs a BFS and explores all the paths that
are not dominated and that satisfy the bandwidth constraint.
As in Section VIII-A4, the BFS algorithm is slow. Thus, we
also compare our algorithm with DAG-BFS algorithm, where
the network is converted into a DAG before performing the
BFS. The bandwidth capacity of the links is randomly and
uniformly selected in the set {1, 2, . . . , 10}. The bandwidth
constraint is set to 2.

1) Comparison of the feasibility ratio
Converting the network topology into a DAG deletes some

feasible paths in the original network. We measure how much
feasible paths are lost by comparing the probability of feasible
path existence before and after the DAG conversion according
to the probability of existence of adaptation functions (p).

Figure 9a shows that the probability of feasible path exis-
tence is shifted to the right after the DAG conversion. The
ratio Probability of feasible path existence in DAG Ti

Probability of feasible path existence in Ti (i = 1, 2) is clearly
decreasing and is less than 50% if p > 0.34, which is
important but balanced by the improvement of the processing
time.

2) Comparison of the processing time
Figure 9b shows the processing time of DAG-PDA, DAG-

BFS and BFS algorithms on both topologies according to
the probability of existence of an adaptation function. BFS
algorithm is slow even for small values of p. For p < 0.3
(resp. 0.4) on Topology T1 (resp. T2), DAG-BFS is faster
than DAG-PDA. Beyond these values, the processing time of
DAG-BFS hugely increases. For example, for p = 0.5, the
processing time of DAG-BFS is more than 35 minutes on
Topology T1 and more than 53 minutes on Topology T2,
while that of DAG-PDA is 3.8 seconds on T1 and 24 seconds
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on T2. These results show that the DAG-PDA algorithm is
clearly faster when there is a significant number of adaptation
functions, but the exponential DAG-BFS algorithm is faster if
there are few of them (for small values of p).

C. Path computation under several QoS constraints

We studied the efficiency of ML-SAMCRA through simula-
tions and checked if it is as scalable in a multi-layer context as
SAMCRA is in a single layer context. The results have shown
that for p > 0.08 (resp. 0.10) on Topology T1 (resp. T2)
the processing time hugely increases (more than 1 minutes).
Clearly, ML-SAMCRA does not scale above these values. The
main possible reason is that the paths are less comparable
in term of the new non-dominance definition: They should
have the same protocol stack. As there are less dominated
paths, the algorithm complexity increases. The second possible
reason is that taking into account loops increases the number
and the length of the paths, which in turn increases the
algorithm complexity. Thus, path computation under QoS
constraints in multi-layer networks is more complex than in
single layer networks. Exact algorithms are only suitable for
small instances.

IX. CONCLUSION

Most of carrier-grade networks manage their different layers
thanks to separate control planes. A unified control plane
would optimize the network resources and reduce the op-
erational management costs. One key problem to address is
path computation taking into account the protocol heterogene-
ity and the multi-layer context dealing with encapsulation,
conversion and decapsulation of protocols. This paper tackles
this issue by partitioning it into three cases: Path computation
without bandwidth constraint, under bandwidth constraint and
under additive QoS constraints. For the first case, we widely
generalized polynomial algorithms in the state of the art and
decreased their complexity. Through simulations, we have
shown that they are faster than the previous approaches in
the literature. We also provided lower and upper bounds for
the shortest path length. For the second case, we obtained
several complexity results and proposed efficient heuristics.
Finally, we designed the first algorithm to resolve the third
case. In future works, we plan to design heuristics to deal with
additive QoS metrics, as the exact approach is not scalable.
The problem of efficient generation of random topologies
being widely open, it would be interesting to analytically
study the phase transition phenomenon in order to generate
topologies having a suitable number of feasible paths.
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