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The finite Larmor radius regime for the

Vlasov-Poisson equations. The three dimensional

setting with non uniform magnetic field

Mihäı BOSTAN ∗, Aurélie FINOT †

Abstract

The subject matter of this paper concerns the mathematical analysis of toka-

mak plasmas. We focus on the finite Larmor radius regime with general magnetic

shapes. We concentrate on the asymptotic analysis for the Vlasov-Poisson equa-

tions under strong external magnetic fields, by averaging with respect to the fast

cyclotronic motion around the magnetic lines. The main properties of the limit

model are emphasized : mass and energy balances, Hamiltonian structure.

Keywords: Vlasov-Poisson system, Hamiltonian formulation, Finite Larmor radius

regime.

AMS classification: 78A35, 82D10.

1 Introduction

We consider a population of charged particles of mass m, charge q, whose presence

density is denoted by f(t, x, v). Motivated by the study of tokamak plasmas, we analyse
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the dynamics of this population under the effect of a given magnetic field B(x) =

B(x)e(x), with B > 0, |e| = 1. We use the Vlasov-Poisson equations, that is, the

particles are transported under the action of the electro-magnetic force q(E(t, x) +

B(x) v ∧ e(x) ), where E is the self-consistent electric field corresponding to the charge

density ρ(t, x) = q
∫
R3 f(t, x, v) dv, (t, x) ∈ R+ × R3. The evolution of the presence

density f and the electric field E is given by the Vlasov-Poisson system :

∂tf + v · ∇xf +
q

m
(E(t, x) +B(x) v ∧ e(x) ) · ∇vf = 0, (t, x, v) ∈ R+ ×R3 ×R3 (1)

E(t, x) = −∇xφ, −ε0∆xφ = q

∫
R3

f(t, x, v) dv, (t, x) ∈ R+ × R3 (2)

supplemented by the initial condition

f(0, x, v) = f in(x, v) ≥ 0, (x, v) ∈ R3 × R3. (3)

Here ε0 stands for the electric permittivity of the vacuum. By introducing the funda-

mental solution of the Laplace operator in R3, x → 1
4π|x| , x ∈ R3 \ {0}, the Poisson

equation (2) becomes

φ(t, x) =
1

4πε0

∫
R3

ρ(t, y)

|x− y|
dy =

q

ε0

∫
R3

∫
R3

f(t, y, w)

4π|x− y|
dwdy

and therefore the electric field writes

E(t, x) =
q

4πε0

∫
R3

∫
R3

f(t, y, w)
x− y
|x− y|3

dwdy, (t, x) ∈ R+ × R3.

The well posedness of the Vlasov-Poisson problem (1), (2), (3) is well understood.

Weak solutions have been constructed in [3], strong solutions have been investigated

in [13]. For the propagation of the moments and regularity results we refer to [4, 15].

Clearly, as the field v ·∇x+ q
m

(E(t, x) +B(x) v ∧ e(x) ) ·∇v is divergence free, we have

the mass conservation

d

dt

∫
R3

∫
R3

f(t, x, v) dvdx = 0, t ∈ R+.

The total energy is conserved as well. Indeed, the balance of the kinetic energy gives

d

dt

∫
R3

∫
R3

m
|v|2

2
f(t, x, v) dvdx−

∫
R3

E(t, x) · j(t, x) dx = 0 (4)
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where j(t, x) = q
∫
R3 f(t, x, v)v dv is the current density. Combining the continuity

equation and the Poisson equation ε0divxE = ρ, we obtain

divx{ε0∂tE + j} = 0.

After multiplication by the potential φ and integration by parts one gets the balance

for the electric energy

d

dt

ε0

2

∫
R3

|E(t, x)|2 dx+

∫
R3

E(t, x) · j(t, x) dx = 0. (5)

The total energy conservation follows by (4), (5). We assume that the initial presence

density has finite mass and total energy∫
R3

∫
R3

f in(x, v) dvdx < +∞

∫
R3

∫
R3

m
|v|2

2
f in(x, v) dvdx+

q2

2ε0

∫
R3

∫
R3

∫
R3

∫
R3

f in(x, v)f in(y, w)

4π|x− y|
dwdydvdx < +∞.

We focus on the asymptotic regimes concerning the magnetic fusion : the charged

particles are confined under the effect of strong magnetic fields. It is very instructive

to consider first a uniform magnetic field B = t(0, 0, B), B > 0 and to neglect the

electric field. In this case, the characteristic equations of (1), or the motion equations

of the charged particles in the phase space writes

dX
dt

= V(t;x, v),
dV
dt

=
qB

m
t(V2(t;x, v),−V1(t;x, v), 0)

together with the conditions X (0;x, v) = x,V(0;x, v) = v. It is easily seen that

t(V1(t;x, v),V2(t;x, v)) = R(−ωt) t(v1, v2), V3(t;x, v) = v3, X3(t;x, v) = x3 + tv3.

The space coordinates in the orthogonal directions with respect to the magnetic field

come by observing that

d

dt

{
(X1,X2) +

(V2,−V1)

ω

}
= (0, 0), with ω =

qB

m
.

As
√

(V2
1 + V2

2 )(t;x, v) =
√
v2

1 + v2
2, we deduce that the particle trajectories in the

orthogonal plane are circles of center (x1, x2)+ (v2,−v1)
ω

and radius
√
v2

1 + v2
2/|ω|. When

the magnetic field is high, this radius (called the Larmor radius) becomes small and
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the plasma remains confined around the magnetic lines. Notice also that the dynam-

ics in the orthogonal directions evolves on a smaller time scale than in the parallel

direction. Indeed, X1,X2,V1,V2 are periodic in time, of cyclotronic period Tc = 2π
ω

,

which is small when B is large. We are face to a multi-scale problem (see [1, 16]),

and solving numerically for both slow and fast dynamics would require a huge amount

of computation efforts. Alternatively, we can search for homogenization procedure :

determine the effective particle trajectories, after averaging with respect to to the fast

dynamics. Several mathematical analysis have been performed in the framework of

uniform magnetic fields [11, 12, 14, 5, 8, 9].

In this paper we intend to investigate the setting of general magnetic fields, by

taking into account the curvature of the magnetic lines. Our paper is organized as

follows. In Section 2 we present the main results : the limit model and its conservations.

Section 3 is devoted to the homogenization process with respect to fast rotation. In

Section 4 we extend the previous analysis to general transport operators. We appeal to

the hamiltonian formalism. The finite Larmor radius regime is investigated in Section

5. We present formal arguments, by following the rigorous analysis in [9]. We refer to

Appendix A for a classical result concerning the hamiltonian flows (the invariance of

the symplectic structure).

2 Presentation of the main results

Based on the analysis in the case of uniform magnetic fields, we intend to extend

the asymptotic study to non uniform magnetic fields. Therefore we have to average

with respect to the fast motion in the orthogonal directions. This corresponds to a

separation between the evolution time scales of the advections entering the vector field

v · ∇x +
q

m
( E(t, x) +B(x) v ∧ e(x) ) · ∇v. (6)

Such a separation is obtained when splitting the kinetic energy of the Hamiltonian

H = m
|v|2

2
+ qφ

into the parallel and orthogonal contributions

Ha = m
(v · e(x))2

2
+ qφ, Hb = m

|v ∧ e(x)|2

2
.
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To this decomposition of H it corresponds the following decomposition of the vector

field in (6)

a(t, x, v) · ∇x,v = (v · e(x))e(x) · ∇x +
[ q
m
E(t, x)− (v · e(x)) t∂xe v

]
· ∇v

b(x, v) · ∇x,v = [v − (v · e(x))e(x)] · ∇x +
[
ω(x)v ∧ e(x) + (v · e(x)) t∂xe v

]
· ∇v

where ω(x) = qB(x)/m. The dynamics generated by the advection b ·∇x,v corresponds

to the cyclotronic motion. It preserves the modulus of the perpendicular velocity

and evolves at a time scale related to the cyclotronic period Tc = 2π/ω. The dynamics

generated by the advection a·∇x,v conserves the sum between the parallel kinetic energy

and the potential energy. It contains oscillations in the parallel direction at the plasma

frequency. We are interested on the asymptotic limit such that the dynamics generated

by the advection a·∇x,v, characterizing the parallel motion, occurs at a much larger time

scale with respect to the cyclotronic period. Therefore we are looking to the asymptotic

behavior of the presence densities (f ε)ε>0 solving the Vlasov-Poisson problems (1), (2),

(3) when the ratio between the time scales characterizing the dynamics of b · ∇x,v and

a ·∇x,v becomes small (the parameter ε refers to this ratio). We proceed by smoothing

out the oscillations due to the fast cyclotronic motion. We search for a new family of

presence densities (F ε)ε>0 such that at any time t, f ε(t) appears as the composition

between F ε(t) and the fast oscillating characteristic flow of b · ∇x,v

f ε(t, x, v) = F ε(t,X (−t;x, v),V(−t;x, v)), (t, x, v) ∈ R+ × R3 × R3, ε > 0

where
dX
dt

= [I3 − e(X (t;x, v))⊗ e(X (t;x, v))]V(t;x, v)

dV
dt

= ω(X (t;x, v))V(t;x, v)∧e(X (t;x, v))+(V(t;x, v) ·e(X (t;x, v))) t∂xe(X )V(t;x, v)

and X (0;x, v) = x,V(0;x, v) = v. We expect that the family (F ε)ε>0 is stable, and

determine the problem satisfied by the limit density F = limε↘0 F
ε, giving us the

asymptotic behavior for small ε

f ε(t, x, v) = F (t,X (−t;x, v),V(−t;x, v)) + o(1), as ε↘ 0.

The derivation of the equation satisfied by the limit density F relies on the averaging

techniques for hamiltonian vector fields cf. Proposition 4.2. The key point is to appeal
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to the classical result saying that any hamiltonian vector field preserves the symplectic

structure, see Proposition A.1.

Theorem 2.1 Let f in be a non negative smooth enough presence density, with finite

mass and total (kinetic and electric) energy∫
R3

∫
R3

f in(x, v) dvdx < +∞

∫
R3

∫
R3

m
|v|2

2
f in(x, v) dvdx+

q2

2ε0

∫
R3

∫
R3

∫
R3

∫
R3

f in(x, v)f in(y, w)

4π|x− y|
dwdydvdx < +∞.

We denote by (f ε, φε)ε>0 the solutions of the Vlasov-Poisson problems (1), (2), (3).

Let (X ,V) be the characteristic flow of the vector field

b(x, v) · ∇x,v = [v − (v · e(x))e(x)] · ∇x +
[
ω(x)v ∧ e(x) + (v · e(x)) t∂xe v

]
· ∇v

and E the function given by

E(X, V, Y,W ) = lim
T→+∞

1

T

∫ T

0

dt

4π|X (t;X, V )−X (t;Y,W )|
, (X, V, Y,W ) ∈ R12.

We denote by F the solution of the problem

∂tF + (F (t),H[F (t)] ) = 0, (t,X, V ) ∈ R+ × R3 × R3 (7)

F (0, X, V ) = f in(X, V ), (X, V ) ∈ R3 × R3 (8)

where

H[F (t)](X, V ) = m
〈(v · e)2〉

2
(X, V ) +

q2

ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY (9)

and the Poisson bracket (·, ·) is given by

m(F,H[F ] ) = ∇VH[F ] · ∇XF −∇XH[F ] · ∇V F + (∇V F ∧∇VH[F ]) · qB
m
. (10)

Then we have the asymptotic behavior

f ε(t, x, v) = F (t,X (−t;x, v),V(−t;x, v)) + o(1), as ε↘ 0.

The notation 〈·〉 stands for the average along the flow (X ,V), see Proposition 4.2.

The above limit model conserves the mass and the total energy. Actually, the perpen-

dicular kinetic energy is preserved as well.
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Theorem 2.2 Assume that the hypotheses in Theorem 2.1 hold true. Let us denote

by F the solution of the problem (7), (8), (9), (10). Then we have

d

dt

∫
R3

∫
R3

F (t,X, V ) dV dX = 0, t ∈ R+

d

dt

∫
R3

∫
R3

m
|V ∧ e(X)|2

2
F (t,X, V ) dV dX = 0, t ∈ R+

d

dt

∫
R3

∫
R3

F (t,X, V )

{
m
〈(v · e)2〉

2
+

q2

2ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY

}
dV dX = 0.

3 Effective transport under fast rotation

Before analyzing the non linear Vlasov-Poisson system, it is very instructive to consider

the linear transport problem

∂tg + a(t, z) · ∇zg + ω ⊥z · ∇zg = 0, (t, z) ∈ R+ × R2 (11)

g(0, z) = gin(z), z ∈ R2 (12)

where a(t, z) is a given smooth, divergence free vector field of amplitude a := ‖a‖L∞(R+×R2),

ω > 0 and ⊥z = (z2,−z1), for any z = (z1, z2) ∈ R2. We assume that the variations of

the initial condition gin occurs on a typical length L, that is
∣∣∣∇zgin

gin

∣∣∣ ∼ 1
L

, and that

L

a
>>

1

ω
. (13)

The above condition says that the dynamics generated by the advection a · ∇z evolves

on a much longer time scale than the dynamics generated by the advection ω ⊥z · ∇z,

whose period is 2π/ω. In this case it is legitimate to approximate the global dynamics,

by averaging with respect to the fast rotation corresponding to the transport operator

ω ⊥z · ∇z, see also [9, 7]. The idea is to filter out the fast rotation and after that to

pass to the limit when ε = a
Lω

becomes small. More exactly, let us introduce the flow

dZ
dt

= ω ⊥Z(t; z), Z(0; z) = z

and the new unknowns (Gε)ε>0 given by

gε(t, z) = Gε(t, Z), Z = Z(−t; z) = R(ωt)z

7



where (gε)ε>0 solve (11), (12) with a
Lω

= ε, and R(s) stands for the rotation of angle

s ∈ R. The family (Gε)ε>0 satisfy

∂tG
ε + ϕ̃(ωt)a(t) · ∇ZG

ε = 0, (t, Z) ∈ R+ × R2 (14)

Gε(0, Z) = gin(Z), Z ∈ R2

where for any vector field c = c(z), the notation ϕ̃(s)c stands for the vector field

(ϕ̃(s)c)(Z) = R(s)c(R(−s)Z), Z ∈ R2, s ∈ R.

The family (Gε)ε>0 contains no fast rotation, and therefore we expect stability as

ε ↘ 0. In order to identify the limit model, we appeal to the following two-scale

Hilbert development

Gε(t, Z) = G(t, s = ωt, Z) +G1(t, s = ωt, Z) +G2(t, s = ωt, Z) + ... (15)

where G1(t, s, Z) ∼ εG(t, s, Z), G2(t, s, Z) ∼ ε2G(t, s, Z).... Plugging the Ansatz (15)

in (14) we obtain

∂tG(t, ωt, Z) + ω∂sG(t, ωt, Z) + ∂tG
1(t, ωt, Z) + ω∂sG

1(t, ωt, Z) + ...

+ ϕ̃(ωt)a(t) · (∇ZG(t, ωt, Z) +∇ZG
1(t, ωt, Z) + ...) = 0.

Identifying the contributions of the same orders, one gets

∂sG(t, s, Z) = 0, (t, s, Z) ∈ R+ × R+ × R2

∂tG(t, s, z)+ω∂sG
1(t, s, Z)+ϕ̃(s)a(t)·∇ZG(t, s, Z) = 0, (t, s, Z) ∈ R+×R+×R2. (16)

Therefore G depends only on t and Z and its evolution comes by (16), after eliminating

G1. As ϕ̃(s) is 2π-periodic, we expect that all dependencies with respect to s are 2π-

periodic and therefore, averaging for s ∈ [0, 2π] leads to the limit problem

∂tG(t, Z) +
1

2π

∫ 2π

0

ϕ̃(s)a(t) ds · ∇ZG(t, Z) = 0, (t, Z) ∈ R+ × R2 (17)

G(0, Z) = gin(Z), Z ∈ R2. (18)

We point out that in the non periodic case, it is possible to replace the mean over one

period by the ergodic mean. Indeed, when S → +∞, we have by (13)

1

S

∫ S

0

ω∂sG
1 ds =

[
ωG1

S

]S
0

∼
[
ωεG

S

]S
0

∼ 1

S

[ a
L
G
]S

0
<<

1

S

∫ S

0

ϕ̃(s)a(t) ds · ∇ZG
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and therefore in the general case (not necessarily periodic), the equation (17) becomes

∂tG+ lim
S→+∞

1

S

∫ S

0

ϕ̃(s)a(t) ds · ∇ZG = 0, (t, Z) ∈ R+ × R2

provided that the family ( 1
S

∫ S
0
ϕ̃(s)a(t)ds)S>0 admits a limit, when S → +∞, for

any t ∈ R+. The leading term in the development (15) satisfies a transport equation,

whose advection vector field at any time t appears as the average of a(t) along the

characteristic flow of ω ⊥z ·∇z. We call it the effective advection vector field under fast

rotation

〈a(t)〉 := lim
S→+∞

1

S

∫ S

0

ϕ̃(s)a(t) ds.

At this stage, the argument are completely formal. Nevertheless we will prove that

the family (Gε)ε>0 converges strongly in L∞loc(R+, L
2(R2)) toward G when ε ↘ 0,

under suitable hypotheses. For doing that, let us analyse the family of transformations

(ϕ̃(s))s∈R in L2(R2)2.

Proposition 3.1 The family of linear transformations c→ ϕ̃(s)c = R(s)c(R(−s)·), s ∈

R is a C0-group of unitary operators on L2(R2)2. If c ∈ L2(R2)2 is divergence free,

then so is ϕ̃(s)c, for any s ∈ R

Proof. We only check that divZϕ̃(s)c = 0 for any divergence free vector field c ∈

L2(R2)2. Let c ∈ L2(R2)2 be a vector field such that divzc = 0 in D′(R2). For any test

function Ψ(Z) ∈ C1
c (R2) and any s ∈ R we have∫

R2

ϕ̃(s)c · ∇ZΨ dZ =

∫
R2

R(s)c(R(−s)Z) · ∇ZΨ(Z) dZ

=

∫
R2

c(R(−s)Z) · (∇z(Ψ ◦ R(s)))(R(−s)Z) dZ

=

∫
R2

c(z) · (∇z(Ψ ◦ R(s)))(z) dz = 0

saying that divZϕ̃(s)c = 0 in D′(R2).

We denote by L the infinitesimal generator of (ϕ̃(s))s∈R

L : domL ⊂ L2(R2)2 → L2(R2)2, domL =

{
c ∈ L2(R2)2 : ∃ lim

s→0

ϕ̃(s)c− c
s

in L2(R2)2

}
and

Lc = lim
s→0

ϕ̃(s)c− c
s

= ⊥z · ∇zc− ⊥c, c ∈ domL.

The properties of the operator L are summarized below.

9



Proposition 3.2

1. The domain of L is dense in L2(R2)2 and L is closed.

2. The operator L is skew-adjoint.

3. The average operator c ∈ L2(R2)2 → 〈c〉 := 1
2π

∫ 2π

0
ϕ̃(s)c ds coincides with the

orthogonal projection on kerL = {c ∈ L2(R2)2 : ϕ̃(s)c = c, s ∈ R}. If the vector

field c is divergence free, then so is the vector field 〈c〉.

4. We have the Poincaré inequality

‖c‖L2(R2) ≤
π

2
‖Lc‖L2(R2)

for any c ∈ domL ∩ (kerL)⊥ and RangeL = (kerL)⊥.

Proof.

1. The operator L is the infinitesimal generator of a C0-group, and therefore domL is

dense in L2(R2)2 and L is closed.

2. The skew-adjointness of L is a consequence of the fact that (ϕ̃(s))s∈R is a C0-group

of unitary operators.

3. It is easily seen that for any c ∈ L2(R2)2, the average 〈c〉 is left invariant by the

group (ϕ̃(s))s∈R. Indeed, by periodicity, we have for any h ∈ R

ϕ̃(h) 〈c〉 = ϕ̃(h)
1

2π

∫ 2π

0

ϕ̃(s)c ds =
1

2π

∫ 2π

0

ϕ̃(s+ h)c ds =
1

2π

∫ 2π+h

h

ϕ̃(s)c ds = 〈c〉

and therefore 〈c〉 ∈ kerL. For any a ∈ kerL we have∫
R2

a · c dz =

∫
R2

ϕ̃(s)a · ϕ̃(s)c dz =

∫
R2

a · ϕ̃(s)c dz, s ∈ R.

Averaging with respect to s over one period, one gets∫
R2

a · c dz =

∫
R2

a · 〈c〉 dz

saying that c−〈c〉 ⊥ kerL. Therefore we have the equality 〈c〉 = ProjkerLc, c ∈ L2(R2)2.

Assume that c ∈ L2(R2)2 is a divergence free vector field. By Proposition 3.1 we know

that ϕ̃(s)c is divergence free for any s ∈ R. For any test function Ψ ∈ C1
c (R2) we have∫

R2

〈c〉 · ∇ZΨ dZ =

∫
R2

1

2π

∫ 2π

0

ϕ̃(s)c ds · ∇ZΨ dZ =
1

2π

∫ 2π

0

∫
R2

ϕ̃(s)c · ∇ZΨ dZds = 0
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saying that divZ 〈c〉 = 0.

4. Let a ∈ L2(R2)2 be a vector field such that 〈a〉 = 0. We consider the vector field

c =
1

2π

∫ 2π

0

sϕ̃(s)a ds.

We have

ϕ̃(h)c =
1

2π

∫ 2π

0

sϕ̃(s+ h)a ds =
1

2π

∫ 2π+h

h

(σ − h)ϕ̃(σ)a dσ =
1

2π

∫ 2π+h

h

σϕ̃(σ)a dσ

and we deduce that limh→0(ϕ̃(h)c − c)/h = a, saying that c ∈ domL and Lc = a.

Observe also that c has zero average

4π2 〈c〉 =

∫ 2π

0

∫ 2π

0

sϕ̃(s+ h)a dsdh =

∫ 2π

0

s

∫ 2π

0

ϕ̃(s+ h)a dh︸ ︷︷ ︸
2π〈a〉=0

ds = 0.

Moreover, we have the inequality

‖c‖L2 =

∥∥∥∥ 1

2π

∫ 2π

0

(s− π)ϕ̃(s)a ds

∥∥∥∥
L2

≤ ‖a‖L
2

2π

∫ 2π

0

|s− π| ds =
π

2
‖a‖L2 .

The range of L is closed, since we have

(kerL)⊥ ⊂ RangeL ⊂ RangeL = (kerL?)⊥ = (kerL)⊥.

Remark 3.1

1. The group (ϕ̃(s))s∈R acts also on L∞(R2)2. More exactly, if c ∈ L∞(R2)2, then

ϕ̃(s)c ∈ L∞(R2)2 and ‖ϕ̃(s)c‖L∞ = ‖c‖L∞, for any s ∈ R.

2. We define the average operator on L∞(R2)2 by the same formula

〈c〉 =
1

2π

∫ 2π

0

ϕ̃(s)c ds, c ∈ L∞(R2)2

and we have ‖ 〈c〉 ‖L∞ ≤ ‖c‖L∞ for any c ∈ L∞(R2)2.

3. For any a ∈ L2(R2)2∩L∞(R2)2∩(kerL)⊥, there is a unique c ∈ domL∩L∞(R2)2∩

(kerL)⊥ such that Lc = a. Moreover we have

‖c‖L∞ ≤
π

2
‖a‖L∞ .
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In order to check the asymptotic behavior Gε−G = O(ε) in L∞loc(R+, L
2(R2)), as ε↘ 0,

we need to introduce a corrector. Thanks to the fourth statement of Proposition 3.2,

for any t ∈ R+ we consider c(t) ∈ domL ∩ (kerL)⊥ such that a(t) − 〈a(t)〉 = Lc(t).

Observe that

∂tG+ ϕ̃(s)a(t) · ∇ZG = ϕ̃(s)a(t) · ∇ZG− 〈a(t)〉 · ∇ZG

= ϕ̃(s)(a(t)− 〈a(t)〉) · ∇ZG

= ϕ̃(s)Lc(t) · ∇ZG

=
d

ds
{ϕ̃(s)c(t) · ∇ZG}

and therefore (16) is equivalent to

ωG1(t, s, Z) + ϕ̃(s)c(t) · ∇ZG = ωG1(t, 0, Z) + c(t) · ∇ZG.

The choice G1(t, 0, Z) = 0, (t, Z) ∈ R+ × R2, leads to the corrector

ωG1(t, s, Z) = (c(t)− ϕ̃(s)c(t)) · ∇ZG. (19)

If the initial condition gin is smooth enough, we prove that G remains smooth and

thanks to the inequalities

‖c(t)− ϕ̃(s)c(t)‖L∞(R2) ≤ 2‖c(t)‖L∞(R2) ≤ π‖Lc(t)‖L∞(R2) ≤ 2π‖a(t)‖L∞(R2)

we expect that

sup
s∈R+

‖G1(t)‖L2(R2) ≤
2πa

ω

‖∇ZG(t)‖L2(R2)

‖G(t)‖L2(R2)

‖G(t)‖L2(R2)

∼ 2πa

ω

‖∇zg
in‖L2(R2)

‖gin‖L2(R2)

‖G(t)‖L2(R2) ∼ ε‖G(t)‖L2(R2).

The idea will be to estimate Gε(t, Z) − G(t, Z) − G1(t, ωt, Z) and to combine with a

triangular inequality, by taking into account that G1 ∼ εG. Notice that

d

dt
{G(t, Z) +G1(t, ωt, Z)}+ ϕ̃(ωt)a(t) · ∇Z{G(t, Z) +G1(t, ωt, Z)} = ∂tG(t, Z)

+ ∂tG
1(t, ωt, Z) + ω∂sG

1(t, ωt, Z) + ϕ̃(ωt)a(t) · ∇Z{G+G1}

= ∂tG
1(t, ωt, Z) + ϕ̃(ωt)a(t) · ∇ZG

1(t, ωt, Z)

which together with (14), gives

d

dt
{Gε(t, Z)−G(t, Z)−G1(t, ωt, Z)}+ ϕ̃(ωt)a(t) · ∇Z{Gε(t, Z)−G(t, Z)−G1(t, ωt, Z)}

= −∂tG1(t, ωt, Z)− ϕ̃(ωt)a(t) · ∇ZG
1(t, ωt, Z).
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As at any time t, the vector field a(t) is divergence free, we know by Proposition 3.1

that ϕ̃(ωt)a(t) is also divergence free, and by standard computations one gets

d

dt
‖Gε(t)−G(t)−G1(t, ωt)‖L2 ≤ sup

s∈R+

‖∂tG1(t, s)‖L2 + sup
s∈R+

‖ϕ̃(s)a(t) · ∇ZG
1(t, s)‖L2 .

Integrating with respect to t and taking into account that Gε(0) − G(0) − G1(0, 0) =

gin − gin − 0 = 0, we obtain

‖Gε(t)−G(t)‖L2(R2) ≤ sup
s∈R+

‖G1(t, s)‖L2(R2) (20)

+

∫ T

0

{
sup
s∈R+

‖∂tG1(t, s)‖L2(R2) + sup
s∈R+

‖ϕ̃(s)a(t) · ∇ZG
1(t, s)‖L2(R2)

}
ds, t ∈ [0, T ].

It remains to estimate the L2 norms of G1(t, s), ∂tG
1(t, s), ϕ̃(s)a(t) · ∇ZG

1(t, s) locally

in t and uniformly in s ∈ R+. This is a little bit tedious, but can be done under suitable

smoothness assumptions. It comes by appealing to the explicit expression (19) of the

corrector G1 and the regularity of G, the solution of the limit model (17), (18). The

estimates are uniform with respect to s thanks to the fact that (ϕ̃(s))s∈R is a C0-group

of unitary transformations in L2(R2). For details we refer to [10]. Finally, under the

condition (13), we obtain

sup
(t,s)∈[0,T ]×R+

{
‖G1(t, s)‖L2 + ‖∂tG1(t, s)‖L2 + ‖ϕ̃(s)a(t) · ∇ZG

1(t, s)‖L2

}
≤ C(T,G)ε

and (20) becomes

sup
t∈[0,T ],ε>0

‖Gε(t)−G(t)‖L2(R2) ≤ C̃(T,G)ε

for some constants C, C̃ depending on T and G. Coming back to the unknowns

gε(t, z) = Gε(t,R(ωt)z), we deduce that

gε(t, z)−G(t,R(ωt)z) = O(ε) in L∞loc(R+, L
2(R2)), as ε↘ 0.

4 Effective transport under fast advection

We generalize the previous analysis to the case of two vector fields a(t, z) ·∇z, b(z) ·∇z

whose associated phase flows evolve on different time scales Ta, Tb. We only indicate

the main lines, following the arguments developed in Section 3. For a complete rigorous
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study we refer to [10]. We investigate the asymptotic behavior of the solutions (gε)ε>0

solving

∂tg
ε + a(t, z) · ∇zg

ε + b(z) · ∇zg
ε = 0, (t, z) ∈ R+ × Rm (21)

gε(0, z) = gin(z), z ∈ Rm (22)

when ε = Tb/Ta becomes small. We suppose that the initial density belongs to L2(Rm)

and that the total advection vector field is divergence free

divz{a(t) + b} = 0, t ∈ R+

which guarantees the L2 norm conservation∫
Rm

(gε(t, z))2 dz =

∫
Rm

(gin(z))2 dz, t ∈ R+, ε > 0.

If the vector field b(z) ·∇z is smooth, with growth at most linear at infinity, it possesses

a smooth global flow Z(t; z)

dZ
dt

= b(Z(t; z)), Z(0; z) = z, (t, z) ∈ R× Rm.

Filtering out the fast motion along b, and taking into account the mass constraint, we

are led to the new unknown given by

gε(t, z) dz = Gε(t, Z) dZ, Z = Z(−t; z)

that is

Gε(t, Z) = gε(t, z)J(t, Z), z = Z(t;Z), J(t, Z) = det
∂Z
∂Z

(t;Z).

Recall that the Jacobian determinant satisfies J(0, ·) = 1 and

∂tJ(t, Z) = J(t, Z)(divzb)(Z(t;Z)) = −J(t, Z)(divza(t))(Z(t;Z)), (t, Z) ∈ R× Rm.

In the next proposition we identify the transport problems satisfied by the densities

(Gε)ε>0.

Proposition 4.1 The new densities (Gε)ε>0 given by Gε(t, Z)dZ = gε(t, z)dz, Z =

Z(−t; z) verify

∂tG
ε + divZ {Gεϕ(t)a(t)} = 0, (t, Z) ∈ R+ × Rm (23)
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Gε(0, Z) = gin(Z), Z ∈ Rm (24)

where for any vector field c = c(z), the notation ϕ(t)c stands for the vector field

(ϕ(t)c)(Z) = ∂Z(−t;Z(t;Z))c(Z(t;Z)), (t, Z) ∈ R× Rm.

Proof. Let us pick a compactly supported smooth test function Ψ(t, Z) in R+ × Rm.

Using the weak formulation of (21), (22) with ψ(t, z) = Ψ(t,Z(−t; z)), one gets

0 =

∫
Rm

gin(z)ψ(0, z) dz +

∫
R+

∫
Rm

(∂tψ + a(t, z) · ∇zψ + b(z) · ∇zψ)gε(t, z) dzdt

=

∫
Rm

gin(Z)Ψ(0, Z) dZ +

∫
R+

∫
Rm

a(t,Z(t;Z)) · t∂Z(−t;Z(t;Z))∇ZΨ(t, Z)Gε(t, Z) dZdt

+

∫
R+

∫
Rm

{(∂tψ)(t,Z(t;Z)) + b(Z(t;Z)) · (∇zψ)(t,Z(t;Z))}Gε(t, Z) dZdt

=

∫
Rm

gin(Z)Ψ(0, Z) dZ +

∫
R+

∫
Rm

{∂tΨ(t, Z) + ϕ(t)a(t) · ∇ZΨ}Gε(t, Z) dZdt

and therefore the density Gε satisfies (23), (24).

Remark 4.1 If gin ∈ Lp(Rm), 1 ≤ p < +∞, then we have∫
Rm

|gε(t, z)|p dz =

∫
Rm

|gin(z)|p dz, t ∈ R+, ε > 0

implying that ∫
Rm

|Gε(t, Z)|p

Jp−1(t, Z)
dZ =

∫
Rm

|gin(Z)|p dZ, t ∈ R+, ε > 0.

Remark 4.2 For any vector field c, we have the formula

divZ {J(t, Z)ϕ(t)c} = J(t, Z)(divzc)(Z(t;Z)). (25)

Indeed, let us pick a compactly supported smooth test function Ψ(Z) and consider

ψ(z) = Ψ(Z), z = Z(t;Z). By the chain rule, we obtain

〈divZ {J(t, Z)ϕ(t)c},Ψ〉D′,D = −
∫
Rm

J(t, Z)ϕ(t)c · ∇ZΨ dZ

= −
∫
Rm

∂Z(−t; z)c(z) · (∇ZΨ)(Z(−t; z)) dz

= −
∫
Rm

c(z) · t∂Z(−t; z)(∇ZΨ)(Z(−t; z)) dz

= −
∫
Rm

c(z) · ∇z(Ψ ◦ Z(−t; ·)) dz

= −
∫
Rm

c(z) · ∇zψ(z) dz

= 〈divz c, ψ〉D′,D
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saying that (25) holds true. In particular, if the vector field b is divergence free, we

have J = 1, and in that case we obtain

divZ ϕ(t)c = (divz c) ◦ Z(t; ·).

Moreover, if the vector field c is divergence free, then so is the vector field ϕ(t)c, see

also Proposition 3.1.

Motivated by the example in Section 3, we introduce the average operator

〈c〉 = lim
T→+∞

1

T

∫ T

0

ϕ(t)c dt = lim
T→+∞

1

T

∫ T

0

∂Z(−t;Z(t; ·))c(Z(t; ·)) dt

and we claim that G = limε↘0G
ε solves the problem

∂tG+ divZ(G 〈a(t)〉) = 0, (t, Z) ∈ R+ × Rm

G(0, Z) = gin(Z), Z ∈ Rm.

Moreover, under suitable hypotheses, we expect the asymptotic behavior

gε(t, ·) =
G(t,Z(−t; ·))
J(t,Z(−t; ·))

+O(ε) in L∞loc(R+, L
2(Rm)), as ε↘ 0.

The average operator behaves nicely with respect to hamiltonian vector fields. Consider

a symplectic structure on Rm (with m an even integer), that is, let σ be a differential

2-form on Rm, which is non degenerate and closed. We denote by Σ the matrix field

corresponding to the differential 2-form σ.

Proposition 4.2 Let b and c be two hamiltonian vector fields on the symplectic man-

ifold (Rm, σ), corresponding to the Hamiltonians Hb, Hc respectively. Then the average

vector field

〈c〉 = lim
T→+∞

1

T

∫ T

0

∂Z(−t;Z(t; ·))c(Z(t; ·)) dt

is hamiltonian, and corresponds to the average Hamiltonian

〈Hc〉 := lim
T→+∞

1

T

∫ T

0

Hc(Z(t; ·)) dt.

Proof. The differential 2-form is left invariant by any hamiltonian flow cf. [2] pp. 204,

see also Appendix A. In particular we have (here Z is the flow of b)

Z(t; ·)?σ = σ, t ∈ R
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or equivalently

t∂Z(t; ·)Σ(Z(t; ·))∂Z(t; ·) = Σ(·), t ∈ R.

Taking into account that

∂Z(−t;Z(t; ·))∂Z(t; ·) = Im

we obtain

∂Z(−t;Z(t; ·))Σ−1(Z(t; ·)) t∂Z(−t;Z(t; ·)) = Σ−1(·), t ∈ R.

As the vector field c is hamiltonian, we have c = −Σ−1∇Hc and therefore

ϕ(t)c = ∂Z(−t;Z(t; ·))c(Z(t; ·))

= −∂Z(−t;Z(t; ·))Σ−1(Z(t; ·))(∇Hc)(Z(t; ·))

= −Σ−1(·) t∂Z(t; ·)(∇Hc)(Z(t; ·))

= −Σ−1(·)∇(Hc ◦ Z(t; ·)).

Finally the average of c is given by

〈c〉 = lim
T→+∞

1

T

∫ T

0

ϕ(t)c dt = −Σ−1 ∇ lim
T→+∞

1

T

∫ T

0

Hc(Z(t; ·)) dt = −Σ−1 ∇〈Hc〉

saying that the average field 〈c〉 is hamiltonian, and corresponds to the average Hamil-

tonian 〈Hc〉 (see [6] for more details on function averages).

5 The finite Larmor radius regime

Let us come back to the Vlasov-Poisson equations (1), (2), (3). In order to apply the

previous formalism, we need to identify the advection vector fields acting on different

time scales. Clearly, when the magnetic field is uniform, that is B = t(0, 0, B), the

advection vector field in the Vlasov equation writes (a(t, x, v) + b(x, v)) · ∇x,v, where

a(t, x, v) · ∇x,v = v3∂x3 +
q

m
E(t, x) · ∇v (26)

b(x, v) · ∇x,v = v1∂x1 + v2∂x2 + ω(v2∂v1 − v1∂v2), ω =
qB

m
. (27)

Notice that when the magnetic field is strong, b ·∇x,v generates a periodic group, whose

period 2π/ω is much smaller than the time scale on which evolves the group generated
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by a · ∇x,v. Therefore it is legitimate to average a · ∇x,v with respect to b · ∇x,v. In

order to better understand the decomposition of the particle dynamics into slow and

fast motions, let us recall that the charged particle flows under electro-magnetic fields

are hamiltonians. More exactly, if φ,A are the scalar and vector potentials of the

electro-magnetic field (E,B), that is

E = −∇xφ, B = ∇x ∧ A

let us consider the differential 2-form θ on R6, whose matrix field is

Θ =

 qM [B] mI3

−mI3 O3

 .

Here, for any vector u ∈ R3, the notation M [u] stands for the matrix of the endomor-

phism v ∈ R3 → u ∧ v ∈ R3, that is

M [u] =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 , u ∈ R3.

By straightforward computations we obtain the formula

θ = d[(qA1 +mv1)dx1 + (qA2 +mv2)dx2 + (qA3 +mv3)dx3]

and therefore the differential 2-form θ is closed, i.e., dθ = 0. Notice also that θ is non

degenerate

Θ−1 =

 O3 − I3
m

I3
m

q
m2M [B]


and therefore θ is a symplectic structure on R6. Observe that the vector field v · ∇x +

q
m

(E + v ∧B) · ∇v is hamiltonian, and corresponds to the Hamiltonian

H = m
|v|2

2
+ qφ.

Indeed, we have

∇x,vH = −Θ t
(
v,
q

m
(E + v ∧B)

)
or equivalently

dH(η) = θ
(
η, t

(
v,
q

m
(E + v ∧B)

))
, η ∈ R6.
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The Poisson bracket of the functions f and H, that is, the derivative of the function f

in the direction of the characteristic flow with Hamiltonian H, is given by

(f,H) = ∇x,vf · t
(
v,
q

m
(E + v ∧B)

)
= −∇x,vf ·Θ−1∇x,vH

=
1

m

{
∇vH · ∇xf −∇xH · ∇vf + (∇vf ∧∇vH) · qB

m

}
.

Therefore, the Vlasov-Poisson equations (1), (2) write

∂tf + (f(t), H[f(t)]) = 0, (t, x, v) ∈ R+ × R3 × R3

H[f(t)](x, v) = m
|v|2

2
+
q2

ε0

∫
R3

∫
R3

f(t, y, w)

4π|x− y|
dwdy, (x, v) ∈ R3 × R3.

We distinguish between the parallel and orthogonal kinetic energy, leading to the de-

composition

H = Ha +Hb, Ha = m
(v · e(x))2

2
+ qφ, Hb = m

|v ∧ e(x)|2

2
.

To these Hamiltonians it corresponds the vector fields a · ∇x,v and b · ∇x,v, given by

∇x,vHa = −Θa, ∇x,vHb = −Θb.

Obviously, these hamiltonian vector fields represent a decomposition of v ·∇x + q
m

(E+

v ∧B) · ∇v

−Θ t
(
v,
q

m
(E + v ∧B)

)
= ∇x,vH = ∇x,v(Ha +Hb) = −Θ(a+ b).

This decomposition writes

a(t, x, v) · ∇x,v = (v · e(x))e(x) · ∇x +
[ q
m
E(t, x)− (v · e(x)) t∂xe v

]
· ∇v (28)

b(x, v) · ∇x,v = [v − (v · e(x))e(x)] · ∇x +
[
ω(x)v ∧ e(x) + (v · e(x)) t∂xe v

]
· ∇v (29)

where ω(x) = qB(x)/m. Notice that both a · ∇x,v, b · ∇x,v are divergence free

divx,va = divx[(v · e)e] + divv

[ q
m
E − (v · e) t∂xe v

]
= (v · e)divxe+ e(x) · t∂xe v − e(x) · t∂xe v − (v · e) trace(t∂xe) = 0

divx,vb = divx,v(a+ b)− divx,va = 0.
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In the case of uniform magnetic fields B = t(0, 0, B), the decomposition (28), (29) is

exactly that in (26), (27). Motivated by that, in the case of non uniform magnetic fields,

we consider the asymptotic regime where the dynamics generated by the advection (28)

evolves on a much larger time scale than the dynamics generated by the advection (29).

Therefore we need to average a · ∇x,v with respect to b · ∇x,v, when considering the

Vlasov equation

∂tf
ε + a · ∇x,vf

ε + b · ∇x,vf
ε = 0, (t, x, v) ∈ R+ × R3 × R3.

The characteristic flow of b · ∇x,v writes

dX
dt

= [I3 − e(X (t;x, v))⊗ e(X (t;x, v))] V(t;x, v), t ∈ R

dV
dt

= ω(X (t;x, v)) (V ∧ e(X )) (t;x, v)+(V · e(X )) (t;x, v) t∂xe(X (t;x, v))V(t;x, v), t ∈ R

with the conditions (X ,V)(0;x, v) = (x, v). At any time t ∈ R+, we perform the change

of coordinates

(X, V ) = (X (−t;x, v),V(−t;x, v))

and we introduce the new presence densities

F ε(t,X, V ) = f ε(t, x, v)J(t,X, V ), (x, v) = (X ,V)(t;X, V ), J(t,X, V ) = det
∂(X ,V)(t)

∂(X, V )
.

(30)

Since divx,vb = 0, the jacobian determinant equals 1 and (30) reduces to

F ε(t,X, V ) = f ε(t, x, v), (X, V ) = (X (−t;x, v),V(−t;x, v))

The new presence densities (F ε)ε>0 satisfy cf. Proposition 4.1

∂tF
ε + divZ {F εϕ(t)a[F ε(t)]} = 0, t ∈ R+, Z = (X, V ) ∈ R6 (31)

F ε(0, Z) = f in(Z), Z = (X, V ) ∈ R6 (32)

where

−Θ(x, v)a[F ε(t)] = ∇x,v

{
m

(v · e)2

2
+
q2

ε0

∫
R3

∫
R3

F ε(t, Y,W )

4π|x−X (t;Y,W )|
dWdY

}
(33)

and

(ϕ(t)a[F ε(t)])(X, V ) = ∂Z(−t;Z(t;Z))a[F ε(t)](Z(t;Z))
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z = (x, v), Z = (X, V ), Z(t;Z) = (X (t;X, V ),V(t;X, V )).

The behavior of (F ε)ε>0, as ε becomes small, that is, when the characteristic time of

the perpendicular dynamics is negligible with respect to the characteristic time of the

parallel dynamics, follows by passing to the limit in the weak formulation of (31), (32)∫
R+

∫
R3

∫
R3

F ε(t,X, V )∂tΨ dV dXdt+

∫
R3

∫
R3

f in(X, V )Ψ(0, X, V ) dV dX

+

∫
R+

∫
R3

∫
R3

F ε(t,X, V )(ϕ(t)a[F ε(t)])(X, V ) · ∇X,V Ψ dV dXdt = 0 (34)

for any Ψ ∈ C1
c (R+ × R3 × R3). Obviously, the main difficulty is the treatment of the

non linear term∫
R+

∫
R3

∫
R3

F ε(t,X, V )(ϕ(t)a[F ε(t)])(X, V ) · ∇X,V Ψ dV dXdt (35)

due to the fact that the advection field a·∇x,v depends on the unknown presence density

F ε, cf. (33). The linear case is now well understood [10]. The mathematical study

is much more elaborated in the non linear case. Two-scale analysis arguments should

be combined to compactness arguments, and the formal derivation can be completely

justified, at least in the case of strong uniform magnetic fields, see [8, 9]. We concentrate

on the formal derivation of the limit model (with non uniform magnetic field) and the

study of its properties, the rigorous justification being out of the scope of this paper.

In order to pass to the limit in (35), we distinguish between the slow and fast time

21



dependencies. Following the computations in Proposition 4.2, we obtain

lim
ε↘0

∫
R+

∫
R3

∫
R3

F ε(t,X, V )(ϕ(t)a[F ε(t)])(X, V ) · ∇X,V Ψ dV dXdt

= lim
ε↘0

∫
R+

∫
R3

∫
R3

F ε(t,X, V )∂Z(−t;Z(t;X, V ))a[F ε(t)](Z(t;X, V )) · ∇X,V Ψ dV dXdt

= − lim
ε↘0

∫
R+

∫
R3

∫
R3

F ε(t,X, V )∂Z(−t;Z(t;X, V ))Θ−1(Z(t;X, V ))

∇x,v

{
m

(v · e)2

2
+
q2

ε0

∫
R3

∫
R3

F ε(t, Y,W )

4π|x−X (t;Y,W )|
dWdY

}
(Z(t;X, V )) · ∇X,V Ψ dV dXdt

= − lim
ε↘0

∫
R+

∫
R3

∫
R3

F ε(t,X, V )Θ−1(X, V ) t∂Z(t;X, V )

∇x,v

{
m

(v · e)2

2
+
q2

ε0

∫
R3

∫
R3

F ε(t, Y,W )

4π|x−X (t;Y,W )|
dWdY

}
(Z(t;X, V )) · ∇X,V Ψ dV dXdt

= − lim
ε↘0

∫
R+

∫
R3

∫
R3

F ε(t,X, V )Θ−1(X, V )

∇X,V

{
m

(V · e(X ))2

2
+
q2

ε0

∫
R3

∫
R3

F ε(t, Y,W )

4π|X (t;X, V )−X (t;Y,W )|
dWdY

}
· ∇X,V Ψ dV dXdt.

We denote by F the limit of the presence densities (F ε)ε>0, when ε goes to 0. Notice

that F = F (t,X, V ) varies slowly with respect to t. Actually F is the limit of the

densities (F ε)ε>0, obtained from the densities (f ε)ε>0, after filtering the fast oscillations

corresponding to the fast dynamics associated to the advection field b · ∇x,v. All the

other time dependencies, through the flow (X ,V), are fast and thus, averaging with

respect to the fast time variable, one gets

lim
ε↘0

∫
R+

∫
R3

∫
R3

F ε(t,X, V )(ϕ(t)a[F ε(t)])(X, V ) · ∇X,V Ψ dV dXdt

= −
∫
R+

∫
R3

∫
R3

F (t,X, V )Θ−1(X, V )∇X,VH[F (t)] · ∇X,V Ψ dV dXdt

where for any density G = G(X, V ), the notation H[G] stands for

H[G](X, V ) = lim
T→+∞

1

T

∫ T

0

{
m

(V · e(X ))2

2
+
q2

ε0

∫
R3

∫
R3

G(Y,W ) dWdY

4π|X (t;X, V )−X (t;Y,W )|

}
dt

= m
〈(v · e)2〉

2
+
q2

ε0

∫
R3

∫
R3

E(X, V, Y,W )G(Y,W ) dWdY

with

E(X, V, Y,W ) = lim
T→+∞

1

T

∫ T

0

1

4π|X (t;X, V )−X (t;Y,W )|
dt. (36)
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Finally, passing to the limit in the weak formulations (34) yields∫
R+

∫
R3

∫
R3

F (t,X, V )∂tΨ dV dXdt+

∫
R3

∫
R3

f in(X, V )Ψ(0, X, V ) dV dX

−
∫
R+

∫
R3

∫
R3

F (t,X, V )Θ−1(X, V )∇X,VH[F (t)] · ∇X,V Ψ dV dXdt = 0

for any Ψ ∈ C1
c (R+ × R3 × R3). It is easily seen that for any smooth function H =

H(X, V ), the hamiltonian vector field −Θ−1(X, V )∇X,VH is divergence free. Indeed,

we have

divX,V
{
−Θ−1(X, V )∇X,VH

}
=

1

m
{divX∇VH− divV∇XH− ω(X)divV (e(X) ∧∇VH)}

= −ω(X)

m
divV (e(X) ∧∇VH) = 0. (37)

Therefore the limit density F solves the problem

∂tF −Θ−1(X, V )∇X,VH[F (t)] · ∇X,V F = 0, (t,X, V ) ∈ R+ × R3 × R3 (38)

F (0, X, V ) = f in(X, V ), (X, V ) ∈ R3 × R3

which ends the proof of Theorem 2.1, by observing that

−Θ−1(X, V )∇X,VH[F (t)] · ∇X,V F (t)

=
1

m

{
∇VH[F (t)] · ∇XF (t)−∇XH[F (t)] · ∇V F (t) + (∇V F (t) ∧∇VH[F (t)]) · qB

m

}
= (F (t),H[F (t)] ).

We focus now on the mass and energy balances for the limit model (7), (8), (9), (10).

We establish first the following properties of the function E .

Proposition 5.1 The function E = E(X, V, Y,W ) given in (36) satisfies

1.

E(X, V, Y,W ) = E(Y,W,X, V ), (X, V, Y,W ) ∈ R12.

2.

E(Z(h;X, V ),Z(h;Y,W )) = E(X, V, Y,W ), h ∈ R, (X, V, Y,W ) ∈ R12.

23



3.

(∇ZE)(X, V, Y,W )·b(X, V )+(∇ZE)(Y,W,X, V )·b(Y,W ) = 0, (X, V, Y,W ) ∈ R12

where ∇Z stands for the gradient with respect to the first two arguments (X, V )

of E.

Proof.

1. The first statement comes immediately, by the definition of E .

2. It is easily seen that for any h ∈ R, (X, V, Y,W ) ∈ R12 we have

E(Z(h;X, V ),Z(h;Y,W )) = lim
T→+∞

1

T

∫ T

0

dt

|X (t;Z(h;X, V ))−X (t;Z(h;Y,W ))|

= lim
T→+∞

1

T

∫ T

0

dt

|X (t+ h;X, V )−X (t+ h;Y,W )|

= lim
T→+∞

1

T

∫ T+h

h

dt

|X (t;X, V )−X (t;Y,W )|

= lim
T→+∞

1

T

∫ T

0

dt

|X (t;X, V )−X (t;Y,W )|

− lim
T→+∞

1

T

∫ h

0

dt

|X (t;X, V )−X (t;Y,W )|

+ lim
T→+∞

1

T

∫ T+h

T

dt

|X (t;X, V )−X (t;Y,W )|

= lim
T→+∞

1

T

∫ T

0

dt

|X (t;X, V )−X (t;Y,W )|

= E(X, V, Y,W ).

3. It follows by combining 1. et 2. If we denote by ∇Z′ the gradient with respect to

the last two arguments Y,W of E , we obtain by the first statement

(∇ZE)(X, V, Y,W ) = (∇Z′E)(Y,W,X, V ). (39)

Taking the derivative with respect to h, at h = 0, in the second statement, one gets

(∇ZE)(X, V, Y,W ) · b(X, V ) + (∇Z′E)(X, V, Y,W ) · b(Y,W ) = 0. (40)

Putting together (39), (40) yields the last statement.

Proof. (of Theorem 2.2)

Since the hamiltonian vector field −Θ−1(X, V )∇X,VH[F ] is divergence free cf. (37),
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see also Remark 4.2, it is easily seen by (38) that the mass is conserved. Multiplying

(38), written in conservative form, by Hb(X, V ) = m|V ∧ e(X)|2/2, and integrating

with respect to (X, V ), we obtain

d

dt

∫
R3

∫
R3

FHb(X, V ) dV dX = −
∫
R3

∫
R3

FΘ−1(X, V )∇X,VH[F ] · ∇X,VHb dV dX (41)

=

∫
R3

∫
R3

F (t,X, V )∇X,VH[F (t)] ·Θ−1∇X,VHb dV dX

= −
∫
R3

∫
R3

F (t,X, V )∇X,VH[F (t)] · b(X, V ) dV dX

= −
∫
R3

∫
R3

F (t,X, V )
q2

ε0

∇X,V

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY · b(X, V ) dV dX.

For the last equality we have used the fact that m 〈(v · e)2〉 /2 is constant along the

flow of b. We claim that the integral∫
R3

∫
R3

∫
R3

∫
R3

F (t,X, V )F (t, Y,W )b(X, V ) · (∇ZE)(X, V, Y,W ) dWdY dV dX

vanishes. Indeed, thanks to the last statement in Proposition 5.1, we can write∫
R3

∫
R3

∫
R3

∫
R3

F (t,X, V )F (t, Y,W )b(X, V ) · (∇ZE)(X, V, Y,W ) dWdY dV dX

=

∫
R3

∫
R3

∫
R3

∫
R3

F (t, Y,W )F (t,X, V )b(Y,W ) · (∇ZE)(Y,W,X, V ) dWdY dV dX

=
1

2

∫
R3

∫
R3

∫
R3

∫
R3

F (t,X, V )F (t, Y,W )

× {b(X, V ) · (∇ZE)(X, V, Y,W ) + b(Y,W ) · (∇ZE)(Y,W,X, V )} dWdY dV dX

= 0.

We inquire now about the conservation of the sum between the parallel kinetic energy

and the electric energy. Multiplying (38) by m 〈(v · e)2〉 /2 one gets, thanks to the

anti-symmetry of Θ−1

d

dt

∫
R3

∫
R3

F
m 〈(v · e)2〉

2
dV dX = −

∫
R3

∫
R3

FΘ−1(X, V )∇X,VH[F ] · ∇X,V
m 〈(v · e)2〉

2
dV dX

=

∫
R3

∫
R3

F∇X,V

{
m 〈(v · e)2〉

2
+
q2

ε0

∫
R3

∫
R3

EF dWdY

}
·Θ−1(X, V )∇X,V

m 〈(v · e)2〉
2

dV dX

=
q2

ε0

∫
R3

∫
R3

F (t,X, V )∇X,V

∫
R3

∫
R3

EF dWdY ·Θ−1(X, V )∇X,V
m 〈(v · e)2〉

2
dV dX.

(42)
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Multiplying (38) by q2

ε0

∫
R3

∫
R3 EF dWdY we deduce, thanks to the symmetry of E (see

the first statement of Proposition 5.1) and to the anti-symmetry of Θ−1

d

dt

∫
R3

∫
R3

F (t,X, V )
q2

2ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY dV dX (43)

=

∫
R3

∫
R3

∂tF (t,X, V )
q2

ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY dV dX

= −
∫
R3

∫
R3

F (t,X, V )Θ−1(X, V )∇X,VH[F (t)] · q
2

ε0

∇X,V

∫
R3

∫
R3

EF dWdY dV dX

= −
∫
R3

∫
R3

F (t,X, V )Θ−1(X, V )∇X,V
m 〈(v · e)2〉

2
· q

2

ε0

∇X,V

∫
R3

∫
R3

EF dWdY dV dX.

Combining (42), (43) yields the conservation

d

dt

∫
R3

∫
R3

F (t,X, V )

{
m 〈(v · e)2〉

2
+

q2

2ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY

}
dV dX = 0

(44)

Putting together (41), (44) we deduce also the conservation of the total (kinetic and

electric) energy. Indeed, as Hb(x, v) = m|v ∧ e(x)|2/2 is left invariant along the flow of

b, we have

m
〈|v|2〉

2
= m
〈|v ∧ e|2〉

2
+m
〈(v · e)2〉

2
= m
|V ∧ e(X)|2

2
+m
〈(v · e)2〉

2

and therefore

d

dt

∫
R3

∫
R3

F (t,X, V )

{
m 〈|v|2〉

2
+

q2

2ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY

}
dV dX = 0

We end our study by analyzing the case of well prepared initial conditions. We assume

that the initial presence density satisfies the constraint

b(x, v) · ∇x,vf
in = 0, (x, v) ∈ R3 × R3 (45)

where the vector field b · ∇x,v is given by (29). We will prove that at any time t > 0,

the limit presence density F = F (t,X, V ) satisfies the previous constraint and we will

relate the corresponding limit potential

Φ[F (t)](X, V ) :=
q

ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY, (t,X, V ) ∈ R+ ×R3 ×R3

(46)

to the solution of the Poisson equation associated to the right hand side term q
ε0

∫
R3 FdV .

The crucial point is the invariance of the limit model (38). We will establish first the

following lemma.
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Lemma 5.1 For any presence density F = F (X, V ) and h ∈ R we have

H[Fh] = (H[F ])h.

Here, for any function G = G(X, V ) and h ∈ R, the notation Gh stands for the

composition product G ◦ Z(h; ·).

Proof. It is easily seen that any average function is constant along the flow of b ·∇x,v,

and therefore we have (
m
〈(v · e)2〉

2

)
h

= m
〈(v · e)2〉

2
.

Thanks to the second statement in Proposition 5.1 we write(∫
R3

∫
R3

E(·, ·, Y,W )F (Y,W ) dWdY

)
h

(X, V )

=

∫
R3

∫
R3

E(Z(h;X, V ), Y,W )F (Y,W ) dWdY

=

∫
R3

∫
R3

E(Z(h;X, V ),Z(h;Y,W ))F (Z(h;Y,W )) dWdY

=

∫
R3

∫
R3

E(X, V, Y,W )Fh(Y,W ) dWdY

=

(∫
R3

∫
R3

E(·, ·, Y,W )Fh(Y,W ) dWdY

)
(X, V ), (h,X, V ) ∈ R× R3 × R3.

Finally we obtain

(H[F ])h(X, V ) =

(
m
〈(v · e)2〉

2
+
q2

ε0

∫
R3

∫
R3

E(·, ·, Y,W )F (Y,W ) dWdY

)
h

(X, V )

=

(
m
〈(v · e)2〉

2
+
q2

ε0

∫
R3

∫
R3

E(·, ·, Y,W )Fh(Y,W ) dWdY

)
(X, V )

= H[Fh](X, V ), (h,X, V ) ∈ R× R3 × R3.

Proposition 5.2 Let f in be a non negative smooth enough presence density, with finite

mass and total (kinetic and electric) energy. We denote by F the solution of (7), (8),

(9), (10). Then, for any h ∈ R, the presence density F (t)h = F (t,Z(h;X, V )) solves

(7), (9), (10) with the initial condition f in
h . In particular, if the initial presence density

f in satisfies the constraint (45), then, at any time t > 0, the presence density F (t)

satisfies the same constraint.
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Proof. The limit model (7) also writes, cf. (38)

∂tF −Θ−1(X, V )∇X,VH[F (t)] · ∇X,V F = 0, (t,X, V ) ∈ R+ × R3 × R3.

Recall that the differential 2-form θ is left invariant by the hamiltonian flow Z

t∂Z(h; ·)Θ(Z(h; ·))∂Z(h; ·) = Θ, h ∈ R

or equivalently

∂Z−1(h; ·)Θ−1(Z(h; ·)) t∂Z−1(h; ·) = Θ−1, h ∈ R.

By Lemma 5.1, we deduce that

Θ−1∇H[F (t)h] · ∇F (t)h = Θ−1∇(H[F (t)])h · ∇F (t)h

= Θ−1 t∂Z(h; ·)(∇H[F (t)])h · t∂Z(h; ·)(∇F (t))h

= ∂Z(h; ·)Θ−1 t∂Z(h; ·)︸ ︷︷ ︸
Θ−1(Z(h;·))

(∇H[F (t)])h · (∇F (t))h

= Θ−1(Z(h; ·))(∇H[F (t)])h · (∇F (t))h

=
(
Θ−1∇H[F (t)] · ∇F (t)

)
h
.

Therefore we obtain

∂tF (t)h −Θ−1∇H[F (t)h] · ∇F (t)h =
(
∂tF −Θ−1∇H[F (t)] · ∇F (t)

)
h

= 0

saying that F (t)h solves (7), (9), (10) with the initial condition

F (0)h(X, V ) = F (0,Z(h;X, V )) = f in(Z(h;X, V )), (X, V ) ∈ R3 × R3.

If the initial condition verifies f in = f in
h , h ∈ R, then F (t), F (t)h satisfy the same

problem, for any h ∈ R, and thus

F (t) = F (t)h, t ∈ R+, h ∈ R.

When the initial condition is well prepared, the limit potential (46) appears as the

average of the solution of the Poisson equation

−ε0∆φ̃(t) = q

∫
R3

F (t, x, v) dv, (t, x) ∈ R+ × R3. (47)
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Proposition 5.3 Let f in be a non negative smooth enough presence density, with finite

mass and total (kinetic and electric) energy, satisfying the constraint (45). We denote

by F the solution of (7), (8), (9), (10). The notations Φ[F (t)](X, V ), φ̃(t, x) stand for

the limit potential (46) and the solution of (47) respectively. Then we have

Φ[F (t)] =
〈
φ̃(t)

〉
, t ∈ R+.

Proof. By Proposition 5.2 we know that F (t) = F (t)h, t ∈ R+, h ∈ R and therefore

we write

Φ[F (t)](X, V ) =
q

ε0

∫
R3

∫
R3

E(X, V, Y,W )F (t, Y,W ) dWdY

=
q

ε0

∫
R3

∫
R3

lim
T→+∞

1

T

∫ T

0

dh

4π|X (h;X, V )−X (h;Y,W )|
F (t, Y,W ) dWdY

=
q

ε0

lim
T→+∞

1

T

∫ T

0

∫
R3

∫
R3

F (t,Z(h;Y,W ))

4π|X (h;X, V )−X (h;Y,W )|
dWdY dh

=
q

ε0

lim
T→+∞

1

T

∫ T

0

∫
R3

∫
R3

F (t, y, w)

4π|X (h;X, V )− y|
dwdydh

=
q

ε0

lim
T→+∞

1

T

∫ T

0

∫
R3

1

4π|X (h;X, V )− y|

∫
R3

F (t, y, w) dwdydh

= lim
T→+∞

1

T

∫ T

0

φ̃(t,X (h;X, V )) dh

=
〈
φ̃(t)

〉
(X, V ), (t,X, V ) ∈ R+ × R3 × R3.

A Invariance of the symplectic structure

For the sake of the presentation, we indicate here a proof for the invariance of the

symplectic differential 2-form along hamiltonian vector fields, as stated in Proposition

4.2.

Proposition A.1 Consider a symplectic structure on Rm (with m an even integer),

that is, let σ be a differential 2-form on Rm, which is non degenerate and closed. Then

the differential 2-form σ is left invariant by any hamiltonian flow.

Proof. The notation Σ stands for the matrix field corresponding to the differential

2-form σ. Let H be a Hamiltonian, whose hamiltonian vector field is denoted by b

∇H = −Σb.
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We are done if we prove that

t∂Z(t; ·)Σ(Z(t; ·))∂Z(t; ·) = Σ, t ∈ R

or equivalently

∂Z(−t;Z(t; ·))Σ−1(Z(t; ·)) t∂Z(−t;Z(t; ·)) = Σ−1, t ∈ R (48)

where Z is the flow of b. We introduce the family of transformations (G(t))t∈R, acting

on matrix fields, given by

G(t)C = ∂Z(−t;Z(t; ·))C(Z(t; ·)) t∂Z(−t;Z(t; ·)), t ∈ R.

We claim that (G(t))t∈R is a group. Indeed, for any matrix field C we have

G(t)G(h)C = ∂Z(−t;Z(t; ·))(G(h)C)(Z(t; ·)) t∂Z(−t;Z(t; ·))

= ∂Z(−t;Z(t; ·))∂Z(−h;Z(h;Z(t; ·)))C(Z(h;Z(t; ·)))
t∂Z(−h;Z(h;Z(t; ·))) t∂Z(−t;Z(t; ·))

= ∂Z−1(t; ·)∂Z(−h;Z(h+ t; ·))C(Z(h+ t; ·)) t∂Z(−h;Z(h+ t; ·)) t∂Z−1(t; ·).

Notice that

Z(−h;Z(h+ t; ·)) = Z(t; ·)

and by differentiation one gets

∂Z(−h;Z(h+ t; ·))∂Z(h+ t; ·) = ∂Z(t; ·)

saying that

∂Z−1(t; ·)∂Z(−h;Z(h+ t; ·)) = ∂Z−1(h+ t; ·) = ∂Z(−h− t;Z(h+ t; ·)).

Therefore we deduce that

G(t)G(h)C = ∂Z(−h− t;Z(h+ t; ·))C(Z(h+ t; ·)) t∂Z(−h− t;Z(h+ t; ·))

= G(t+ h)C, t, h ∈ R.

The condition (48) writes G(t)Σ−1 = Σ−1, t ∈ R, and therefore, thanks to the group

property, it is enough to check that the matrix field Σ−1 belongs to the kernel of the

infinitesimal generator of (G(t))t∈R

d

dt

∣∣∣∣
t=0

G(t)Σ−1 = 0 (49)
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Notice that for any smooth matrix field C, we have

d

dt

∣∣∣∣
t=0

G(t)C =
d

dt

∣∣∣∣
t=0

∂Z−1(t; ·)C(Z(t; ·)) t∂Z−1(t; ·)

= −∂bC + (b · ∇)C − C t∂b

and therefore (49) becomes

(b · ∇)Σ−1 = ∂bΣ−1 + Σ−1 t∂b

or equivalently

(b · ∇)Σ + Σ ∂b+ t∂bΣ = 0. (50)

As b is hamiltonian vector field we can write, by using the Einstein summation con-

vention

−∂zj(Σikbk) = ∂zj(∂ziH) = ∂zi(∂zjH) = −∂zi(Σjkbk), i, j ∈ {1, ...,m}.

Therefore one gets

∂zjΣikbk + Σik∂zjbk = ∂ziΣjkbk + Σjk∂zibk, i, j ∈ {1, ...,m}

implying that

(Σ ∂b)ij + ( t∂bΣ)ij = bk(∂ziΣjk + ∂zjΣki), i, j ∈ {1, ...,m}.

In the above equality we have used the anti-symmetry of Σ. Clearly, for justifying (50),

it is enough to check that

∂zkΣij + ∂ziΣjk + ∂zjΣki = 0, i, j, k ∈ {1, ...,m}

which is also equivalent to

∂zkΣij + ∂ziΣjk + ∂zjΣki = 0, 1 ≤ i < j < k ≤ m. (51)

But (51) is exactly the closedness of σ, since the condition dσ = 0 writes

0 = −2 dσ = d(Σijdzi ∧ dzj) = ∂zkΣij dzi ∧ dzj ∧ dzk

= 2
∑

1≤i<j<k≤m

(
∂zkΣij + ∂ziΣjk + ∂zjΣki

)
dzi ∧ dzj ∧ dzk.
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