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This work develops firstly a nonlinear framework for concurrent topology optimization of material and structure. It is shown that though linear models are assumed at both scales, the structural equilibrium is nonlinear due to the adaptation of the optimized materials. Secondly, the new regime of nonlinearity due to material optimization is approximated by a precomputed database model. As a result of this off-line step, the effective strain-energy and stress-strain relations required for the concurrent design are provided in a numerically explicit manner, which significantly reduces computational cost.

Introduction

Most of the existing research of structural topology optimization focuses on an individual scale, either designing homogeneous structures [START_REF] Deaton | A survey of structural and multidisciplinary continuum topology optimization : post 2000[END_REF], or designing materials for expected effective performance [START_REF] Cadman | On design of multi-functional microstructural materials[END_REF]. A usual strategy applied to bridge the two scales is designing an universal material microstructure at the local scale either for a fixed [START_REF] Cadman | On design of multi-functional microstructural materials[END_REF] or concurrently changed [START_REF] Yan | Concurrent topology optimization of structures and their composite microstructures[END_REF] structure at the macroscopic scale. Obviously, such designs have not yet released full potentiality of multiscale structure.

In [START_REF] Xia | Concurrent topology optimization design of material and structure within FE 2 nonlinear multiscale analysis framework[END_REF], we revisited concurrent topology optimization of material and structure while using an iterative solution, FE 2 [START_REF] Feyel | FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials[END_REF], to address the equilibrium nonlinearity due to the optimization of materials. Discrete topology optimization model, Bi-directional Evolutionary Structural Optimization (BESO) [START_REF] Huang | Topology Optimization of Continuum Structures : Methods and Applicationsn[END_REF] was used for designs at both scales. Note that, this concurrent design framework requires intensive computational cost due to large number of repetitive local material optimizations.

In our successive work [START_REF] Xia | Multiscale structural topology optimization with an approximate constitutive model for local material microstructure[END_REF], we made a step further and adapt the Numerically EXplicit Potentials (NEXP) model [START_REF] Yvonnet | Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials[END_REF] to represent this new regime of nonlinearity due to material optimization. By this model, we constructed firstly a database by means of a set of numerical experiments to describe the effective strain energy density function in a test space of macroscopic strain tensor. By tensor decomposition, a continuous representation of the strain energy density function is built as a sum of products of one-dimensional interpolation functions.

2 Multiscale structural topology optimization [START_REF] Xia | Concurrent topology optimization design of material and structure within FE 2 nonlinear multiscale analysis framework[END_REF] Let ρ(x) and η(x, y) denote the design variables at the two scales, respectively. A defines an integral admissible set consisting of two subsets A ρ and A η for ρ(x) and η(x, y), respectively. Both variables take binary values : 0 or 1 and volume constraints are considered at both scales. Using the principle of minimum potential energy, the minimum compliance problem in a displacement-based formulation is [START_REF] Bendsøe | Topology optimization : theory, methods and applications[END_REF] max

(ρ,η)∈A min u∈U 1 2 Ω C i jkh (x, ρ, η) ∂u i ∂x j ∂u k ∂x h dΩ -l(u) , (1) 
where C i jkh (x, ρ, η) is the fourth-order elastic stiffness tensor at point x depending on ρ(x) and η(x, y). U denotes the space of kinematically admissible displacement fields and l(u) is the loading potential term. Since ρ(x) and η(x, y) defined independently at two scales, Eq. ( 1) can be reformulated to max

ρ∈A ρ min u∈U Ω max η∈A η 1 2 C i jkh (x, ρ, η) ∂u i ∂x j ∂u k ∂x h dΩ -l(u) , (2) 
where the pointwise maximization of strain energy density is treated as a subproblem. Note that, because materials defined at the microscopic scale are optimized according to the current strain loading statuses and the optimized materials in turn update the constitutive behavior at the macroscopic scale, the interface equilibrium is therefore in general nonlinear even though linear models are assumed at both scales.

To address this interface nonlinearity, we employed the FE 2 scheme [START_REF] Feyel | FE 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials[END_REF]. Stress and strain fields at the macroscopic scale are volume averages of the corresponding microscopic fields, σ(x, y) and e(x, y). The interface equilibrium is solved iteratively using the Newton-Raphson method :

R(u, ρ, η) = f ext - Ω ρ(x)B T σ(x, y) dΩ, (3) 
where R(u, ρ, η) and f ext stand for the force residual and external force at the macroscopic scale, respectively, and B is the linear strain-displacement matrix. It is important to emphasize that σ(x, y) is evaluated on the optimized material, which is obtained using the BESO method [START_REF] Huang | Topology Optimization of Continuum Structures : Methods and Applicationsn[END_REF] according to the imposed macroscopic strain value at point x.

A two-scale MBB beam is considered for design. Due to the symmetry of the problem, only half beam is considered (Fig. 1). The macroscopic structure is discretized into 40×16 4-node elements, where each integration point is attributed with a cellular material model of 40 × 40 4-node elements. Volume constraints at both scales are set to 60%. Young's modulus and Poisson's ratio of the solid material in the cellular material model are set to 1 and 0.3, respectively. The BESO method [START_REF] Huang | Topology Optimization of Continuum Structures : Methods and Applicationsn[END_REF] removes gradually redundant or inefficient material from the structure until the prescribed volume constraint is reached. Fig. 2 shows the optimized two-scale structural topology together with several typical microstructures.

3 Reduced multiscale structural topology optimization [START_REF] Xia | Multiscale structural topology optimization with an approximate constitutive model for local material microstructure[END_REF] In viewing the local material optimization process as a particular regime of material nonlinearity, the main objective of this part of work is to construct an explicit representation of W over the tensor space spanned by e such that the concurrent design can be performed with an effective stress-strain relationship provided at an extremely reduced computational cost. For such reason, we follow the NEXP strategy [START_REF] Yvonnet | Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials[END_REF] to construct an approximate expression of W (x, e ) using a precomputed database. An illustrative scheme is shown in Fig. 3.

The NEXP model aims to construct an explicit approximation W (x, e ) over the tensor space using a precomputed database and interpolation schemes, expecting W (x, e ) approaches enough to W (x, e ) W (x, e ) ≈ W (x, e ) = ∑ N q ( e )W q , (4)

where N q are interpolation functions and W q are the strain energy density values stored in the database, which are evaluated by means of a set of numerical experiments over the test tensor space. It is important 
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FIGURE 4 -Comparison of the exact and approximate values evaluated using FEM and NEXP.

to emphasize that W q corresponds to the energy density of an optimized material for a given e q . Once the database model is built, the effective stress-strain relationship obtained as

σ(x, y) ≈ ∑ ∂N q ( e ) ∂ e W q , (5) 
provided the interpolation functions N k are continuously differentiable.

Still following [START_REF] Yvonnet | Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials[END_REF], the off-line precomputed full database is further approximated by a sum of products of one-dimensional interpolation functions via higher-order tensor decomposition. Let W denote the hypermatrix which stores the database. It can be approximated in a tensor decomposed representation

W ≈ R ∑ r=1 φ r 1 ⊗ φ r 2 ⊗ • • • ⊗ φ r 6 , (6) 
where φ r j are real-valued vectors corresponding to the effective strain tensor components e j and R is the number of expanded terms. The vectors φ r j involved in [START_REF] Huang | Topology Optimization of Continuum Structures : Methods and Applicationsn[END_REF] are determined by solving the following least square problem for a given value of R

inf φ r j W - R ∑ r=1 φ r 1 ⊗ φ r 2 ⊗ • • • ⊗ φ r 6 2 , ( 7 
)
where • is the Frobenius norm. Once the decomposed vectors in [START_REF] Huang | Topology Optimization of Continuum Structures : Methods and Applicationsn[END_REF] 

where φr j ( e j ) are the interpolated values of φ r j . The tensor decomposed database requires only onedimensional interpolations for effective stress evaluation, which further reduces computing time.

Consider the same cellular material model setting as in the previous section, the NEXP model is built over the strain domain. Each dimension of the strain space is discretized into p = 21 uniformly distributed points, which means in total 21 3 local material optimizations are performed. With a relative reconstruction error chosen as 0.01, we obtain R = 9 truncated modes in each dimension for the reduced 

Conclusion

This work develops a FE 2 -based multiscale structural topology optimization framework and adapts the NEXP strategy into this framework to limit its computational cost. This framework is independent with the type of design variables, other parameters such as geometrical or even manufacturing process parameters can be considered for the design. Future works will focus on considering more realistic multiscale structures constituted by composite materials with more complex nonlinear constitutive behaviors.
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 1 FIGURE 1 -Illustration of a discretized two-scale half MBB beam.
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 2 FIGURE 2 -Topology design of the two-scale half MBB beam and several typical microstructures.
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 3 FIGURE 3 -Illustration of the mono-scale structural design with NEXP model.
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 5 FIGURE 5 -Two-scale design of half MBB beam with retrieved local optimal material topologies.

  are obtained, the continuous representation of W ( e ) written in terms of separated components can be constructed by interpolation W ( e 1 , e 2 , . . . , e 6 ) ≈
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