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Readability of the gaze and expressions of a robot museum visitor:
impact of the low level sensory-motor control

Aliaa Moualla1, Ali Karaouzene 1, Sofiane Boucenna 1, Denis Vidal2 and Philippe Gaussier1

Abstract— In this paper we propose a neural network
allowing a mobile robot to learn artwork appreciation. The
learning is based on the social referencing approach. The
robot acquires its knowledge (artificial taste) from the in-
teraction with humans. We present and analyze specifically
the visual system, its impact on the robot behavior, and at
the end, we analyze the readability of our robot behavior
according to visitors comments. We show that the low level
spatial competition between the values associated to areas of
interest in the image are important for the coherence of the
robot’s object evaluation and the readability of its behavior.

Index Terms— Artificial intelligence, neural networks, Hu-
man robot interactions, computer vision.

I. INTRODUCTION

This work belongs to an interdisciplinary project between
robotics and anthropology. Our global goal is to find a simple
neural model to study the emergence of "Artificial Aesthetic"
in robots. Our robot Berenson exhibits complex behavior
based on a simple sensory-motor architecture (PerAc)[13].
Using this architecture, the robot learns social referencing
skills [16]. It develops in the museum of Quai Branly in
Paris a new kind of art appreciation (artificial aesthetics taste)
through social interactions. Here, we present the model of
Berenson’s visual system and its impact on low level control
of the robot actions. Two types of visual information are
processed in parallel : the what and where information [12]
(the recognition of some local views and their position).

At the social interaction level, it is primordial to un-
derstand the intentions of people who are involved in the
interaction with us. However, could visitors understand the
intentions of our robot or at least its artistic preferences
without any explicit language ? How do people expect the
robot to communicate ? Can they explain and predict the
behavior of our robot when the robot behavior is only
controlled thanks to a sensory-motor architecture ?.

As a first step for our robot to participate in social interac-
tions, we expect that its behavior should be understandable to
the museum visitors. Analyzing the movement of our robot
and capturing its expressivity in front of artworks should give
the visitors an indication of its preferences. Often, when a
robot is used in museums, it is used either as an artwork as
in Tinguely’s work or as a guide for visitors [1], [2], [3]. In
our case, our robot Berenson is a new kind of visitor. It has
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Fig. 1. The robot Berenson at the right looking at an artwork in the Quai Branly
Museum.

to develop its own artwork preferences thanks to the social
interaction. And even if there are still very few studies in
robotics with long-term interactions in a real life context, we
chose the challenge of putting a humanoid at the Quai Branly
Museum, an environment where no one expects a robot to
walk alone. In this paper, we begin with a presentation of the
experiment in the museum. Next, we present the architecture
of the visual system, the sensory-motor architecture allowing
to associate an emotional values with an observed object. We
study the performance of the visual system with and without
a spatial competition mechanism. Then we present the model
controlling the robot’s navigation. At the end, we analyze the
results of the visual system performance and some tests that
were done in the museum to evaluate the readability of the
robot’s behavior (its movements and facial expressions).

II. MATERIAL AND METHODS

The setup is composed of a robot and a distant worksta-
tion. Berenson is composed of a robulab 10 from Robosoft,
associated with an embedded computer, and an expressive
head. Its weight is almost 20 kg and height 1.80 meters. To
avoid obstacles, Berenson is equipped with some proximity
sensors, 15 infrared sensors and 9 ultrasonic rangers and
a laser. The sensors are placed all around its frame. One
magnetic compass is used to navigate. Berenson uses the
camera in its right eye to perform the artwork recognition
task. The expressive head has 9 degrees of freedom (DoF),
4 for eyebrows, 3 for the mouth, 1 for the front tilt and 1 for
the eyes tilt. The embedded computer manages the sensors
(including camera) and the actuators. It computes low-level
algorithms (artwork recognition). A WiFi connexion can be
used to debug the robot behavior.

As explained above, Berenson learns with museum visitors



to relate an artwork with an emotional value (positive or
negative) and in a second step it will move towards those
artworks and will express the associated value. Museum
mediators asked visitors (those who agree to interact with
Berenson and teach it their preferences) to select an artwork
they found more interesting or impressive than the others
(positive judgment) or at the opposite end one less interesting
than the others (negative judgment). A joystick is used to
drive the robot in front of the artworks during the teaching
phase. It controls the direction of the robot’s attention.
The goal is to center the desired object (selected by the
mediators or the visitors) in the robot field of view. After
that, using a two-button mouse, the mediator assigns the
visitor’s appreciation to the observed object. Then, the robot
associates the recognized artwork with the given emotional
value. More natural interactions were done using facial
expression recognition in previous works [7].

Berenson visits randomly the museum avoiding the obs-
tacles (objects or visitors). When an interesting object (po-
sitively learned) enters its field of view, Berenson heads to
this object and changes its direction to center the positive
object in its field of view, expressing the associated facial
expression (joy). If Berenson perceives a negative object
it expresses a negative facial expression and heads in the
direction of any other object (positive object or neutral object
if no positive object can be found in its field of view).

The robot’s navigation is controlled by a dynamical neural
field [15]. The system for object tracking is inspired by
[10]. Our neural network associates the where information
(local view positions in the image) with the what information
(visual features) and the system takes into account the what
and where information during the recognition of the object
and the choice of the object to follow. The field of view is
discretized in a set of neurons (population coding). The most
active neuron on the field gives the direction of the motor
angular command.

The first experiment took place at the Quai Branly Mu-
seum, in Paris in the Insulinde (Insular South-est Asia) area
art display for 4 hours a day. A second one took place in the
same museum in PERSONA exposition from 26 january to
13 November 2016.

A. The What channel estimation

This section describes how Berenson’s visual system func-
tions and how Berenson learns to associate an artwork with a
positive/negative or neutral emotional value. Berenson uses
a bio-inspired visual system. The visual system input is a
subsampled grayscale image (320x240 pixels). A gradient
image is computed from this image. Then a convolution
between the gradient image and an off-center filter is used
to extract focus points through a local competition between
all the salient areas. Around each focus point, the system
extracts a local view of a radius of 60 pixels (5 local views
per image are extracted during the learning mode and 15
local views in test mode). Since there is no simple way to
segment one object from the others (one artwork may be
confused with other proximal objects). During the learning

phase the field of view is reduced to the central area of the
image to avoid a noisy learning.

Local views are transformed into log/polar coordinates to
allow robustness to scale variation and small perspective
changes. Then the SAW (selective adaptive winner) algo-
rithm (a real-time K-means algorithm) learns and categorizes
compressed local view pattern on a set of neurons [5]
(Fig. 2).

V Fj = netj .Hγ(netj) (1)

netj = 1− 1

N

N∑
i=1

|Wij − Ii| (2)

V Fj is the activity of neuron j in the group V F (visual
feature). netj is the complement to 1 of the sum of the
distances between the input feature and the nearest similar
feature learned. N is the local view size, Ii is the input
visual feature, and the learned features are coded on the
neuron’s weight Wij . Hγ(x) is the Heaviside function 1. γ
is a vigilance parameter (the threshold of recognition).

Incoming local views are compared with learned patterns.
If the maximum activity is below a given threshold, the ob-
served local view is learned as a new pattern and associated
to a recruited neuron, which means if the recognition activity
netj < γ one new neuron is recruited (learning of a new
local view). Otherwise the SAW algorithm adapts the link
between the winner neuron and the input pattern as in the
K-means algorithm.

∆W I−V F
ij = aj(t)Ii + ε(Ii −Wij)(1− V Fj) (3)

In eq.3, when a new neuron is recruited aj = 1, otherwise,
aj = 0. The threshold γ was set to 0.98 in learning mode
and 0.78 in test mode. The vigilance γ is set at a high
value when the robot is instructed to learn something to
ensure strong learning. Low vigilance in test mode allows
generalization to unlearned objects. The robot can attribute
valences to objects it has never seen before. This ability
to generalize on unlearned objects is very interesting to
generalize learned aesthetic preferences to new objects. Ne-
vertheless, it is necessary to have a compromise between
generalization and discrimination. We added a system of
normalization and competition between categories to filter
out stronger generalizations (see Section. II-C). The results
in Section. III will show the performance enhancement due to
this competition mechanism. The emotional value association
is supervised. Associations of a local view V F and an
emotional value EV (indicated by the visitor) is made thanks
to a Pavlovian conditioning (Fig. 2), based on a least mean
square (LMS) algorithm [14]. LMS minimizes the error
between desired output (one to one unconditional links) and
the actual output (one to all conditional links). OEV is

1. Heaviside function :

Hθ(x) =

{
1 if θ < x
0 otherwise



Neutral

Fig. 2. Artwork appreciation architecture. Architecture inputs are local views (from
a camera) and human signal (from a two-button mouse). The outputs are a direction
and a proposed facial expression redirected respectively to the robot control (neural
field).

the learned object emotional value. After learning, the local
views are associated to a positive or negative value according
to the visitor’s instructions.

∆WV F−OEV
ij = ε1.V Fi.(EVj −OEVj) (4)

The groups V F learns and categorises the visual features
(the SAW group in our model). ε1 is the learning rate. The
system learns to associate an emotional state with an object
or a scene.

We added a constant input to associate neutral objects to
a non-emotional value (neutral state). Association with the
neutral state is done 10000 times slower than others. When
facing an undesired object, like a wall or a window, the
neutral association can be sped up manually to reduce the
teaching duration. The slow learning rate allows Berenson
to forget very old learned artworks, and to avoid paying
attention to undesired objects in order to express a neutral
facial expression when facing those objects. After the LMS,
(Fig. 2) a WTA activates only the neuron with the highest
activity, the first neuron represents a positively learned local
view ; the second one is for negatively learned views and
the last for neutral ones. This represents Berenson’s internal
feeling state EI .

B. The Where channel estimation

The way Berenson navigates in the museum is influenced
by its previous interactions with visitors. It will move in a
preferred way by going to the objects it appreciates (positive
objects) according to its learning. An object is considered as
a set of local views. Estimating the object position (location)
in the camera field of vision remains to estimate the relative
positions of its components according to a given referential.
The Where information associated to a positive value is
projected on a population of neurons coding for the robot
orientation. More precisely, the θL group associates the
predicted Where information with each local view V F

in order to compute the artwork shift in the image and
then the robot angular command. Next equations shows the
weight modification for each iteration (the t time variable is
not represented). The θL group corresponds to the learned
position.

θL = [W ].V F (5)
∆WV F−θL

ij = ε1V Fi(θj − θLj) (6)

The groups θ, θL, θS , use population coding for angle
computation (Fig. 2). The first neuron codes the image’s
left border position and the last neuron in the field codes
the image’s right border. The number of neurons in θ, θL,
θS , depends on the desired population coding quantization.
Here, arbitrarily, 60 neurons are used, one neuron per camera
degree. Our camera has a field of view of 60◦. The neurons
in the θ group corresponds to the focus point’s position along
the x coordinates in the input image (the same model is used
for the y coordinates).

θt(x) =
M∑
m=0

θ′t(m). 1
2πσ2

1
e

−(xt−m)2

2σ21 : θt
′(m) = δdt(m)(7)

⇒ θt(x) =
1

2πσ2
1

e
−(xt−dt)2

2σ21 (8)

θt(x) is the resultant vector of the convolution of the local
view position with a gaussian kernel. M is the vector size.
During the learning phase the θL group associates each local
view explored with the central position in the image thanks to
the LMS rule eq.6 (the central position should match with the
global position of the object if the object was well centered
by the subject). The learning between neurons associated to
the view recognition and the angular position of the object
center is done via one to all conditional links. They work like
a memory storing the local views position during the learning
phase. Thus, in use mode, when a local view is recognized
the neuron coding for its learned position is activated. the
θS group corresponds to the shifted position. θS computes
the distance between the learned and the current position as
formalized in eq.9. When the local view is at the learning
position then θS = 0. If the local view is translated by a ∆d
distance then θ = θL+∆d the neuron ∆d is activated in θS .

θS(Circ(x− arg max(θL)) = θ(x) (9)

Circ(x) =

{
x, x > 0

x+N, x < 0
(10)

The arg max(θL) give a position at which θ is maximized.
θS is the vector θ circularly shifted. Now, if we assume
that the object to learn is well centered in the camera field,
the referential becomes the object center (in the x abscissa).
The local views belonging to this object predict in θS their
distance to the object center. The system can estimate the
object pose by integrating the activity of the neurons in θS .

The Position Integration PI group integrates the local
views distances to the referential with a Gaussian kernel



Q1 Q2 Q3 Q4 Q5
PV 0.3301 0.722 0.8902 0.0076 0.5947

P1/P2 P1/P2 P1/P2 P1/P2 P1/P2
Mean 3.7/3.4 3.6/3.5 3.4/3.5 3.7/2.4 3.2/3.0
SD 1.0/1.1 0.9/1.1 1.0/1.3 1.1/1.6 1.3/1.3

SEM 0.2/0.2 0.2/0.2 0.2/0.3 0.2/0.3 0.3/0.3
N 17/20 16/20 17/19 17/20 17/20

TABLE I
SURVEY STATISTICAL ANALYSIS,PV :P-VALUE

summation eq.11. In the learning phase when the object is in
the center of the field of view the sum of the activity creates
a peak at the image center. When the object is translated, the
peak is also translated in the image referential. The Gaussian
kernel summation provides a robustness to small rotation
and perspective changes. The robustness is driven by the
Gaussian standard deviation (sd). The larger the sd, the more
robust the system is, the less discriminant it becomes.

PI(x) =

τ∑
t=1

1

2πσ2
1

e
−(xt−dst)2

2σ21 (11)

dst = (Circ(dt − arg max(θL)).

An example is shown in Fig.3, Fig.4. If an object is
composed by slightly the same V F as the learned object
but put in different position, the system creates small peaks
scattered in the PI field. The activity in PI group may
represent the confidence level the system has in the estimated
pose.

θ

θ1 θ2

θ3 θ4

(a)

θ

θ1 θ2

θ3 θ4

(b)

θ

θ1
θ2

θ3
θ4

(c)

θ

θ1 θ2
θ3θ4

(d)

Fig. 3. Schematic example of pose estimation applied to a square. 3(a) is the learned
object at the image center. Below is the activity in the PI group. It creates a peak at
the object location. 3(b) shows the same square translated and the translation result in
PI group. 3(c) is the same square with deformation, and its estimated pose below. In
3(d) contains same local view as 3(a) scattered in the image.

σ is the kernel sd. All kernels have the same sd. dst is
the distance of each local view to the the referential. When
dst − dst−n < 2σ, the local views V Ft and V Ft−n predict
the same pose. Thus, the estimation uncertainty could be
driven by the kernel sd. Fixing the σ depends on the wanted
application, the environment and the object sizes. At this
level, we already could make a decision about the object
recognition confidence. A high neuron activity level in PI
represents good object recognition and a low activity repre-
sents bad recognition. The object pose estimation system is
parallel to the object recognition.

C. Adding the normalization and the competition mechanism
to the model

In this section, we propose some methods to take into
account the What and Where information during the recog-
nition of the object and the choice of the object to follow. In

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Schematic example of pose estimation applied to a an XBox pad. 4(a) is
the learned phase. Below is the activity in the PI group. All the patterns vote for the
object center. The pink cross shows the predicted object location. 4(b) and 4(c) show
the same object translated to the upper left and upper right. The resulting predictions
are depicted in 4(f) and 4(g). 4(d) is the same object rotated, and its estimated pose
below. The system is invariant under translation changes and robust to small rotation,
scale and perspective changes.

the learning phase, the robot associates the local views of an
artwork with the emotional value attributed by the visitor.

In test phase, high activity in the PI group represents a
high probability of recognizing the object while low activity
represents a low probability of recognizing the object. The
robot assigns an emotional value to some artworks or visitors
faces that present some similarities with the learned objects.

Like mentioned above estimating the position of an ob-
ject in the image reference is equivalent to estimating the
position of its local views with respect to the center of the
object and in order to know the valence associated with an
object, the responses of the local views are summed. In the
beginning we used a simple product between the What and
Where information. This solution was problematic because
with the generalization, a lot of neurons associated with
the recognition of local views looking more or less like
the learned views were activated as well as the direction
associated to their learned position in the image. Fig. 6
shows how we can use the emotional value (EI) to affects
the choice of the winner object when Berenson is facing
some distractors. In this figure, the pentagon on the left
is associated with a negative emotional value. Five focal
points and their associated local views are extracted on this
object. The triangle on the right, with only three local views
extracted, is associated with a positive value. The result of
the position estimation is shown below the objects. A higher
bubble is associated with the pentagon because it is the
sum of five bubbles of activity while the triangle is only
associated with 3 local views. A direct competition between
those two bubbles induces the selection of the pentagon
as the winner object (the object to follow). If we consider
that the robot should select objects that please him (positive
valence objects), the robot reaction is incorrect in this case.

Then we will add a modulation with the emotional value
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Fig. 5. Functional diagram of the control architecture. The direction of positive object and image analysis are part of the artwork appreciation behavior. The main behaviors
(route following and artwork appreciation) determine the directions θA and θR using camera input. behavior switching alternatively inhibits one of the main behaviors. The neural
field merges activities from the main behaviors, manual control and sensors. Rotation speed is computed as the derivative of the neural field activation as read-out mechanisms.

Fig. 6. Example of the effect of modulation by valence

see eq.12 and a normalization see eq.14. (We use the
annotation of A(i, j) to represent a matrix, Ai(j) to the
vector that represent the ith row of the matrix A(i, j), A(i)
for vectors). On one hand, the valence modulation of local
views facilitates the reconstruction of the object and assists
decision making.

β(e, x) = V (e)T .θs(x) (12)

PV Ie(x) =

τ∑
t=1

βte(x) (13)

β(e, x) is a matrix representing the estimated positions θs(x)
weighted by the emotional valence V (e).

On the other hand, in heavily textured environments, the
number of local views varies from one object to another.
To give the same order of magnitude to all predictions, the
position field has to be normalized. For this, the position
estimated by the integration of the estimates of all the local
views is divided by the number of views in this same
position. NPV I(e, x) is the result matrix of the prediction
after normalization. NPV Ie(x) = [a1, a2, ..., ai] is a row
of this matrix that correspond to specific emotionol value e.
Like mentioned above, this field results from the division of
PV I by the estimated positions θs(x) without multiplying

them by the emotional value.

ai =
PV Ie(xi)∑G

g=1 θsg(xi) +A
(14)

PV Ie(x) is the integration field that allows estimation of the
position of the object in the image for a specific emotional
value e. It is obtained by the sum of β(e, x) for each
emotional category. G is the number of local view. A is
a normalization constant which makes possible to avoid
attributing too great importance to the very small number of
thumbnails. Then we will apply the competition mechanism
see eq.15.

Ce(x) = NPV Ie(x)−NPV Iα(x) where : (15)
NPV Iα(x) = max[NPV I(α, x)] and e 6= α

C(e, x) =

E∑
e=1

δe(x)T .Ce(x) (16)

δe(x) = [ae1, ae2, ....aeE ], aex = 1 when e = x

Ce(x) is the competition between activities for each
emotional value. NPV Iα(x) is the winner row where is
the maximum activity, α ∈ E correspond to the winner
emotional value for each competition Ce(x). The C(e, x)
represent the matrix resulting from all competition. and e ∈
E is the emotional value. Thus, the object with the highest
emotional value is selected independently of the extracted
local views.

D. The movement of Berenson in the museum

The system for object tracking is inspired from [10]. The
robot must also avoid obstacles but turn softly and give
the impression that it moves from one artwork to another.
In the visual system 15 frames are processed each second
(which correspond to the 15 focus points extracted) and
the motor command is controlled at a frequency of 10 Hz
(limitation of the Robulab platform). Berenson’s linear speed
is bounded by a constant value (0.3 m/s) corresponding to
the speed of a visitor walking through the museum and is
reduced depending on the activity of its sensors. Moreover,



we must merge several behaviors within certain priorities,
such as artwork appreciation, manual control and obstacles
avoidances are in competition to determine robot direction.
A dynamical neural field [15] allows merging of the motor
commands coming from all behaviors, see Fig. 5. This gives
soft transitions between behaviors and a smooth movements.
Moreover, the hysteresis of the field allows robustness to
intermitent detections. The robot speed is the value of the
spatial derivative of the field at the position provided by the
robot proprioception. This allows the robot to avoid unstable
behavior when the levels of activities change. For instance, if
a new bubble (new goal) appears on the field, the robot will
remain in the direction of the first actived bubble until and
only if this bubble disappears because of the lateral inhibition
or because of the visual disappearance of the first target.
Linear speed is calculated as follows :

sj = Vmax ∗ (1−maxx∈[−θ,θ](A(x) ∗ C(x))) (17)

where x is the xth neuron of the field, x ∈ [−θ, θ]. In this
experiment θ is equal to 180 degrees. Sensors values are
added in the neural field where the index depends on the
angle between the sensor and the front of the robot. C(x)
is a Gaussian kernel, centered at 0, which has to decrease
the influence of out of center sensors. A(x) is the activity of
the xth neuron and is normalized in [0 ;1]. Rotation speed
is computed as the derivative of the neural field activation
(read-out mechanisms). We use the equation proposed by
Amari [15] to compute the neural field activation :

τ.
u(x, T )

dT
= −u(x, T ) + I(x, T ) + h (18)

+

∫
z∈Vx

w(z).g(u(x− z, T ))dz

where I(x, T ) are the inputs to the system provided by
main behavior (route following and artwork appreciation),
manual control and sensors activities. τ is the relaxation
rate of the system. w(z) is the interaction kernel in the
neural field activation. These interactions are modeled by
a Gaussian function. g(u(x− z, T )) is the activity of neuron
x according to the potential u(x, T ). We use a standard ramp
function.

III. RESULTS

A. Enhancement of coherent objects (normaliza-
tion/competition)

After we added the mechanisms of normalization and
competition, we wanted to test their efficiency on the object
and valence recognition performance. We compare the new
model (NM) with normalization and competition with the old
model (OM) in which the competition principle is missing, to
study how the addition of the concept of spatial competition
improves the object recognition performance.

For this test, 13 objects are used, 10 images per object
were learned and 100 images per object were chosen for
the test Fig. 7. The test measures the success rate of object
recognition but also the success rate of object position

Fig. 7. TOP : Learning mode, local views associated with the emotional value,
circles represents valence. BOTTOM : Test mode, Berenson associates the recognized
object to the given emotional value.

recognition (in pixels). The two histograms shows the per-
formance difference between the system without OM and
with the competition NM by comparing how many objects
were well recognized and what is the position estimation
error (between 1 pixels and 320 pixels, the width of our
image) Fig. 8. From 1300 test images, the object is well
recognised in 870 images, we accept a merge of error of
30 pixels (10% error) to consider an object well located, for
the model with competition NM objects are well located in
696 images, corresponding to 80% of total images where
the object is recognized, for the old model OM without
competition, the objects are well located in 604 images,
corresponding to 69.4% of total images where the objects is
recognized. The results show a higher success rate of object
recognition for the model with competition, and a lower error
of recognition of the position of the object. Table. II shows
the mean of position estimating error is about 25 pixels with
competition, and 34.5 pixels without competition. This shows
the improvement of object recognition when the competition
is added to the N.N. model. The standard deviation (sd) of
position estimating error is 37.4 pixels with competition and
46.4 pixels without competition. This means we must be
careful with the ranking of the error in position since the
sd is hight as compared to the mean values. Yet the fact
that the sd is clearly lower when using the competition show
the important improvement we observe in practice (the high
variance of the numerical results is related to the objects
which are badly recognized and not only to the presence of
distractors).

with without
competition competition

mean of distances 25 29.83
Standard deviation 37.4 46.4

TABLE II
RECOGNITION PERFORMANCE WITH AND WITHOUT COMPETITION MECHANISM

B. Results of the survey

For the second experiment in the museum and after giving
time to the visitors to observe and interact with the robot,
we invited the visitors to answer a survey. The participants
rated the overall quality of the robot interaction. The majority
of visitors (according to the answers on our survey) felt
curiosity and surprise when they saw the robot during their
museum visit. Here we should mention that the majority of
the visitors (70% of the museum visitors) indicate it was the



Fig. 8. TOP : The histogram represents the number of images (in which the
object was well recognized) according to the distance between the correct position
and the (answer) position) without competition. BOTTOM : The histogram represents
the number of images (in which the object was well recognized) according to the
distance between the correct position and the (answer) position) with competition.

Answers AF CF
IP UP IP UP

Never 1 2 0,05 0,1
Rarely 1 0 0,05 0

Sometimes 3 10 0,17 0,5
Often 8 4 0,47 0,2

Always 4 4 0,23 0,2

TABLE III
IP : INFORMED POPULATION, UP : UNINFORMED POPULATION,

AF : ABSOLUTE FREQUENCY, CF : CUMULATIVE FREQUENCY

first time they met a robot. We tried to ask some questions
about the consistency in the robot behavior and if the visitors
could understand what Berenson was doing but the questions
were problematic for the subject : what is the consistency
for a robot behavior (for a naive subject) ? Yet looking and
speaking about the interaction with Berenson was easy for
the majority of the visitors. We ended with the following set
of questions where answers is a 5 value scale (Never, Rarely,
Sometimes, Often, Always) : Q1 : Is Berenson guided by
what it sees ? Q2 : Did Berenson’s behavior seem coherent ?
Q3 : Did the interaction with Berenson seem easy to you ?
Q4 : Did you understand what Berenson was doing ? Q5 :
In your opinion, does Berenson react on its own ? (Table.II
represent answers to Q1).

This experiment took place at the Quai Branly Museum,
in the Insulinde (Insular South-est Asia) area art display,
comparing two visitor populations P1 = 17 and P2 = 20.
The P1 population was informed about the robot and how it

Q1 Q2 Q3 Q4 Q5
PV 0.3301 0.722 0.8902 0.0076 0.5947

P1/P2 P1/P2 P1/P2 P1/P2 P1/P2
Mean 3.7/3.4 3.6/3.5 3.4/3.5 3.7/2.4 3.2/3.0
SD 1.0/1.1 0.9/1.1 1.0/1.3 1.1/1.6 1.3/1.3

SEM 0.2/0.2 0.2/0.2 0.2/0.3 0.2/0.3 0.3/0.3
N 17/20 16/20 17/19 17/20 17/20

TABLE IV
SURVEY STATISTICAL ANALYSIS,PV :P-VALUE

works before letting them observe and respond to our survey.
By contrast the population P2 was completly naive (unin-
formed). We gave them our survey without any explanation,
and therefore the members of this population relied solely on
their observation to answer our questions, which allows us
to judge how readable Berenson’s behavior was. The two-
tailed P value from the Table.III for the Q1, Q2, Q3, Q5
show by conventional criteria, that this difference between
the two populations is considered to be not statistically
significant. This means that without our explanations the
naives (uninformed) visitors manage more or less to read the
behavior of our robot. But when the question become more
specific (Did you understand what Berenson was doing ?)
The naive visitors hesitated a lot and were not able to answer.
The P-value shows this results P=0.0076 for the question
number 4 showing that the difference between informed and
not informed population is considered to be very significant
statistically.

C. Readability of Berenson behavior

The third experiment took place at the same museum in
the PERSONA exposition one year later. We wanted to know
at what point the movement of our robot is informative. What
are the advantages and disadvantages of its way to navigate in
the museum ? Could visitors understand the intentions of our
robot or at least its artistic preference ? This time we wanted
to test the readability of Berenson’s behavior. The facial
expressions give already strong indications. Also, the choice
of objects towards which to head should enrich the behavior
and make it more readable. A map with the objects learned
by the robot was provided to the visitors. They were asked
to note on this map one or several of these objects if they
noticed that Berenson was interested in some objects and to
add information if Berenson likes or dislikes these objects.
We had 28 objects in our working area that were learned and
associated to an emotional value (positive or negative). The
majority of the objects (18 objects) have been quoted very
few times with a high rate of error on the emotional reaction
of Berenson. At the opposite, some objects (11 objects)
were cited many times and with a high success rate (70%
of success) for the recognition of Berenson appreciation.
This shows that on certain object visitors succeed to read
the behavior of our robot correctly see Table.IV. There is
a clear link between the incorrect evaluation of the subjects
and the over-generalization of Berenson on the same objects.
The limitation is related to its recognition performance for
objects that can be easily confused with other objects. When
the point of view is changed from the one used for learning
the object can be confused with another object. Learning



N.of objects success observation success/observed
OM < 3 18 12 21 0,57
OM > 3 11 46 60 0.76

TABLE V
FREQUENCY OF SPECIAL CHARACTERS, OM :OBJECT MENTIONED

should be improved or the robot should indicate the risk of
confusion on some way (in the network when a local view
is ambiguous several neurons associated to the recognition
of the looking like learned views have almost the same level
of activation).

IV. CONCLUSION AND DISCUSSION

We showed that the system can generalize on the data that
it does not learn, which is a very interesting property. It was
necessary to have the compromise between generalization
and discrimination. With the vigilance parameter that allows
us to filter in low-level visual stimuli and to filter out strong
generalizations, we added the mechanism of normalization
and competition between categories. Berenson’s way of
navigation in museum is influenced by the object winner, so
by the spacial computation mechanism added to the model.
Once Berenson learns the association between an artwork
and a positive/negative emotional value, it will express the
facial expression according to what it sees in its visual fields,
and will move in a preferred way by going to the objects
it appreciates according to its learning. It will control its
direction to reach positive artworks. This behavior seem to
be clear and readable generally. From the last experiment we
can summarize that the behavior of the robot is more clear for
some learned object than others. We deduce that a possible
similarity between the objects learned with different emo-
tional value reduces the recognition rate of each one in the
test phase. The more singular objects (that share fewer visual
features with the others) retain a high level of recognition.
Then the robot goes more often to these objects, the visitors
notice it more, and they understand more easily the robot’s
behavior. We can also find another cause to explain this
result, but in any case, this hypothesis remains to be verified.
The spot was really hard because the object was learned
very few times and then the robot was asked to generalize
enormously. We can conclude therefore that the way of the
robot navigation based on the neural field is informative. The
dynamic neural field and the normalization allow to choose
the right object and keep it during the approach, and the
robot expressions associated with the correct value shows
well the robot preference. The motricity (direction of choice
of the object) and the expressivity (expression in front of
the objects) of the robot is almost readable, and the visitors
come to understand the robot’s preferences many times. But
the robot doesn’t stop in front of its preferred object for
some duration because of obstacle avoidance mechanism.
This could also affect the readability of Berenson’s behavior
negatively. For that, we will add a mechanism that will stop
the robot in front of artworks (the time to habituate to the
visual scene) and enhance its behavior readability.
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