
HAL Id: hal-01706138
https://hal.science/hal-01706138v1

Submitted on 10 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Two-Level Plagiarism Detection System for Arabic
Documents

El Moatez Billah Nagoudi, Ahmed Khorsi, Hadda Cherroun, Didier Schwab

To cite this version:
El Moatez Billah Nagoudi, Ahmed Khorsi, Hadda Cherroun, Didier Schwab. A Two-Level Plagiarism
Detection System for Arabic Documents. Cybernetics and Information Technologies, 2018, 18 (1),
pp.124-138. �10.2478/cait-2018-0011�. �hal-01706138�

https://hal.science/hal-01706138v1
https://hal.archives-ouvertes.fr

 BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume XX, No X

Sofia 201X

A Two-Level Plagiarism Detection System for Arabic Documents
El Moatez Billah Nagoudi *, Ahmed Khorsi **, Hadda Cherroun *, Didier Schwab***

* Laboratoire d’Informatique et de Mathématique LIM, Amar Telidji University, Laghouat, Algeria.

** Al-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia.

*** Laboratoire d’Informatique et de Grenoble GETALP, Univ. Grenoble Alpes, Grenoble, France.
1 e.nagoudi@lagh-univ.dz 2 amakhorsi@imamu.edu.sa 3 h.cherroun@ lagh-univ.dz 4 didier.schwab@imag.fr

Abstract: Measuring the amount of shared information between two documents is

a key to address a number of Natural Language Processing (NLP) challenges

such as Information Retrieval (IR), Semantic Textual Similarity (STS), Sentiment

Analysis (SA) and Plagiarism Detection (PD). In this paper, we report a

plagiarism detection system based on two layers of assessment: 1. fingerprinting

which simply compares the documents fingerprints to detect the verbatim

reproduction. 2. Word embedding which uses the semantic and syntactic

properties of words to detect much more complicated reproductions. Moreover,

Word Alignment (WA), Inverse Document Frequency (IDF) and Part-of-Speech

(POS) weighting are applied on the examined documents to support the

identification of words that are most descriptive in each textual unit. In the present

work, we focused on Arabic documents and we evaluated the performance of the

system on a data-set of holding three types of plagiarism: 1. Simple reproduction

(copy and paste), 2. Word and phrase shuffling 3. Intelligent plagiarism including

synonym substitution, diacritics insertion and paraphrasing. The results show a

recall of 88% and a precision of 85%. Compared to the results obtained by the

systems participating in the Arabic Plagiarism Detection Shared Task 2015, our

system outperforms all of them with a plagiarism detection score (Plagdet) of

83%.

Keywords: Plagiarism Detection, Intelligent Plagiarism, Fingerprinting, Word

Embedding, Arabic Language.

1. Introduction

1.1. Plagiarism Detection

“Plagiarism is the use of ideas, concepts, words, or structures without

appropriately acknowledging the source to benefit in a setting where originality is

expected” [1]. The easy access to the vast amount of information on the net has

shown to be an appealing opportunity for authors of diverse backgrounds to steel

and claim others' works. In the last few years, the phenomenon has been reported

to have spread over different areas including academia, literature, media and not to

mention the industry [2]. In academia, for instance, a study conducted by Guibert

and Michau [3], reported that about 35% of the students in Europe have re-used all

mailto:e.nagoudi@lagh-univ.dz
mailto:amakhorsi@imamu.edu.sa
mailto:h.cherroun@mail.lagh-univ.dz

or a portion of a document to present it as their own work. McCabe [4] who studied

a sample of more than 80.000 students in the U.S. and Canada between 2002 to

2005 showed that more than 25% of graduate and 38% of undergraduate students

have at least copied or paraphrased sentences without citing the source.

 Compared to formal languages (i.e. programs) plagiarism in natural language is

relatively more difficult to identify because of the flexibility of morphology and

syntax [8]. In addition, plagiarists use different ways to bypass the plagiarism

detection systems. A plagiarism detection system task is then to uncover what the

plagiarist did his best to hide using rewording, synonym substitution, paraphrasing,

text manipulation, text translation and idea adoption [5].

 From the perspective of the resources used to make the detection, there are two

approaches: (1) Intrinsic, (2) Extrinsic [5]. The first one examines the linguistic

features of a document against itself to spot the catching variations in styles, this

technique is known as stylometry [11]. The extrinsic plagiarism, however,

compares the suspicious document with a source collection of documents [9]. One

could say the first technique tries to find the differences while the second tries to

spot similarities.

 1.2. Arabic Language

As the language we study in the present work brings a number of linguistic

challenges we extend this section with a brief introduction to this language. The

Arabic language is a Semitic language with rich and complex morphology

compared to the Indo-European languages [6]. It is spoken by more than 330

million people as a native language and it is the fourth most used language on the

Internet
1
. Arabic is written from right to left and it has 28 alphabet letters. In

Arabic text, letters are attached and they change shape in accordance with their

position in the word. In the other hand, diacritic marks may optionally be present,

consequently, for a word with k letters, we can have at least 2
k
 different

representations [7]. Another issue is the fact that some letters are frequently used

interchangeably, such as (ً ، ى), (ة ، ه) and (آ ، ا أ ، إ ،) [34].

1.3. Our contribution

In this paper, we present a Two-Level Arabic Plagiarism Detection system (2L-

APD), built around the extrinsic plagiarism detection approach. The proposed 2L-

APD system is based on two modules (levels), (1) Fingerprinting detection module,

(2) Word embedding detection module. The first one is designed to detect literal

reproduction of texts. The word embedding detection module tries to discover

synonym substitution and paraphrasing if any.

 The rest of this paper is organised as follows, in the next section we provide a

quick overview of Arabic plagiarism detection published works. Section 3

introduces some background on fingerprinting and word embedding models.

Section 4 describes the architecture of our plagiarism detection system 2L-APD. In

1
 http://www.internetworldstats.com/stats7.htm

Section 5, we report the test results and compare it to the results of similar systems.

Finally, our conclusions and some future research directions are drawn in Section 6.

2. Arabic Plagiarism Detection Systems

While we focus on Arabic language the interested reader may refer to a number of

surveys on the subject of plagiarism detection in general and on other languages

[27], [9], [5] and [2]. In the context of Arabic language, several plagiarism

detection systems are proposed. For instance, Alzahrani and Salim [28] have

introduced a statement-based plagiarism detection system for Arabic (FS-APD)

using fuzzy-set information retrieval model [18]. The degree of similarity between

two statements is computed and compared to a fixed threshold value to judge

whether are similar or not. This approach led to perform well on verbatim

reproductions. To address the rewording, they have proposed another system named

fuzzy semantic-based string similarity for extrinsic plagiarism detection (SFS-APD)

[30]. This uses a shingling algorithm, Arabic WordNet lexical database [31] and

Jaccard coefficient for retrieving a list of candidate documents. The suspicious

document is then compared sentence by sentence with the candidate documents to

compute the fuzzy degree of similarity.

 Meni [6] proposed a plagiarism detection tool for Arabic documents (Aplag).

Aplag is based on heuristics to compare suspect documents at different hierarchical

levels to avoid unnecessary comparisons. In addition, to address the problem of

rewording, Aplag replaces each word’s root by the most frequent synonym

extracted from Arabic WordNet [31].

 Jadalla and Elnagar [32] introduced a plagiarism detection system for Arabic

text-based documents named Iqtebas. It uses a fingerprint search engine to compute

the distance between each sentence in the suspected text and the closest sentence in

the source documents. Iqtebas seems to perform well the copy-and-paste (C&P)

plagiarism, but it handles neither word shuffling nor rewording.

 Recently, Hussein [33] proposed a new plagiarism detection system for Arabic

documents based on modeling the relation between texts and their n-gram unique

sentences. The system involves several steps, including Part-of-Speech (POS)

tagging, text indexing, stop-words removal, synonyms substitution and heuristic

pairwise phrase matching algorithm to build documents Term Frequency-Inverse

Document Frequency (TF-IDF) model [45]. The Latent Semantic Analysis (LSA)

[46] and Singular Value Decomposition (SVD) [47] are then used to analyse the

hidden associations between text documents.

The Arabic Plagiarism Detection Shared Task 2015 (AraPlagDet)
2
 [34] is the first

and only shared task that addresses the evaluation of plagiarism detection methods

for Arabic texts. It has two sub-tasks: extrinsic and intrinsic plagiarism detection. A

major advantage of the AraPlagDet evaluation campaign is enabling the evaluation

of different systems on the same dataset. In AraPlagDet 2015 three systems are

participated in the extrinsic plagiarism detection subtask: Magooda [35], Alzahrani

2
 http://misc-umc.org/AraPlagDet/

http://misc-umc.org/AraPlagDet/

[36] and Palkovskii
3
. Two participants (Magooda and Alzahrani) among the three

submitted working notes describing their systems.

 Magooda et al. [35] proposed an extrinsic plagiarism detection system named

RDI_RED. In this system, Lucene search engine [44] is used to select a list of

candidate source documents. The candidate documents are aligned to detect

plagiarised segments (aligned parts). Finally, a set of rules is applied by a filtering

module in order to filter the aligned parts. RDI_RED system can be easily deployed

on-line. Though, it does not address synonyms substitution and paraphrasing.

 Alzahrani’s [36] system goes through four main steps: (1) Pre-processing which

includes tokenization and stop-word removal, (2) retrieve a list of candidate source

documents for each suspicious document using n-gram fingerprinting and Jaccard

coefficient, (3) An in-depth comparison between the suspicious documents and the

associated source candidate documents using k-overlapping approach [30], (4) Post-

processing where consecutive n-grams are joined to form united plagiarised

segments. Table 1 summarizes the Arabic plagiarism detection systems described

above according to the technique used, the comparison level and their efficiency in

detecting different plagiarism types.

Table1 Details of the Arabic plagiarism detection systems.
 Systems

 FS-APD
 [30]

 SFS-APD
 [32]

 Aplag
 [6]

Iqtebas
[34]

 Hussein
 [35]

 RDI-RED
 [37]

 Alzahrani
 [38]

2L-APD

T
ec

h
n

iq
u

e

 Fingerprinting

Fuzzy-set

SVD

LSA

Search

Engine

Linguistic

Resources

Word

Embedding

C
o

m
p

a
ri

so
n

L
ev

el

Sentence-

Level

Paragraph -

Level

P
la

g
ia

ri
sm

T
y

p
e

C&P

Reordering

Synonyms

substitution

 Paraphrasing

3 http://plagiarism-detector.com/

http://plagiarism-detector.com/

3. Background

3.1. Fingerprinting

Fingerprinting is widely applied extrinsic plagiarism [29]. The purpose is to reduce

the size of the compared texts and speed up the comparison without missing a

significant match. A document fingerprint is a list of integers resulting from

hashing substrings of the document. The comparison is then performed on the

fingerprint rather than the whole text [11]. The process of creating a fingerprint

involves three steps:

– Chunking: the document is segmented into substrings (called chunks or

minutiae). A chunk might be a sequence of letters, words or even sentences.

– Hashing: a hash function is applied to the chunks to generate list of integers.

– Selection: The final fingerprint is a subsequence of the list of hashes.

There are four factors which must be carefully balanced when constructing a

fingerprint: the fingerprint granularity, the hash function, the selection strategy and

the fingerprint resolution [12]:

• Fingerprint Granularity

The size of chunk determines the fingerprint granularity, and they have a significant

impact on the accuracy of fingerprint [11]. Large chunks fingerprint (coarse

granularity), is fast to compute but highly sensitive to changes, whereas small

chunks fingerprint (fine granularity) is less sensitive to such changes, yet they

require significant computational effort and allows a higher rate of false positive.

• Hash Function

A hash function maps the chunks to integers. It is especially important to choose the

hash function in such a way as to minimize the collisions due to mapping different

chunks to the same hash [11].

• Selection Strategy

While hashing all chunks is likely to be the best choice for strict matching, keeping

only a subsequence of the checks has shown to be more efficient and less sensitive

to insignificant changes [11]. A number of chunk selection approaches have been

used so far such as “i
th
 hash” [15], “0 mod k” [13], first-k [12], first-k-sliding

strategy [12] and winnowing [14].

• Fingerprint Resolution

The number of the selected hashes to represent a document defines the fingerprint

resolution. The processing and the storage requirements increase proportionally

with the fingerprint resolution [14].

3.2. Word Embedding

Recently, word embedding representation has received a lot of attention in the NLP

community and has become a core building to many NLP applications, such as

information retrieval, plagiarism detection, machine translation, text classification

and text summarization. Word embedding represents words as vectors in a

continuous high-dimensional space. Indeed, these representations allow to capture

the syntactic and semantic properties of the language [20]. Most word embedding

techniques are relying on the neural network to train the word vectors from a large

collection of text documents. In the literature, several techniques are proposed to

build a word embedding model, among the most famous are: Collobert and Weston

model [21], Hierarchical Log-Bilinear Model (HLBL) [22], Turian et al. model

[23], Recurrent Neural Network (RNN) model [24], Continuous Bag-of-Words

model (CBOW) [20], Skip-gram model (SKIP-G) [25] and Global Vectors model

(GloVe) [26].

 In a comparative study conducted by Mikolov et al. [20] all the methods [21],

[22], [23], [24], and [25] have been evaluated and compared, and they show that

CBOW and SKIP-G are significantly faster to train with better accuracy. For this

reason, we have used the CBOW word representations for Arabic model proposed

by Zahran et al. [19]. To train this model, they have used a large collection from

different sources containing more than 5.8 billion words
4
. In this model, each word

w is represented by a vector v of 300-dimension. The similarity between two words

wi and wj is obtained by comparing their vector representations vi and vj
respectively [20]. This similarity can be evaluated using the Cosine similarity,

Manhattan distance, Euclidean distance or any other similarity measure functions.

For example: let “الجامعة” (university), “المساء” (evening) and “الكلَة” (faculty) be

three words. The similarity between them is measured by computing the cosine

similarity between their vectors as follows:

{
((الجامعة) (المساء)) الجامعة المساء

(الكلَة الجامعة) ((الكلَة) (الجامعة))

This means that the words “الكلَة” (faculty) and "الجامعة” (university) are semantically
closer than “المساء” (evening) and “الجامعة” (university).

4. Proposed System

In order to detect different types of plagiarism, our proposed 2L-APD system is

based on two modules (levels): Fingerprinting detection module and Word

embedding detection module. The fingerprinting module is designed to detect the

literal plagiarism (lexical level), such as C&P, reordering of words and adding filler

words. However, in the practical plagiarism cases especially in scientific research,

several intelligent plagiarism forms are used, including obfuscations, synonym

replacement and paraphrasing. These techniques often generate a significant change

4

https://sites google.com/site/mohazahran/data .

https://sites.google.com/site/mohazahran/data

in the structure of the original text, which can affect considerably the document

fingerprint. This fact makes the fingerprinting module quite weak against textual

modification. To address this issue, we have proposed a word embedding module

(semantic level). If the plagiarism is not detected in the fingerprinting module, the

suspect document is sent to the word embedding module to detect intelligent

plagiarism. Figure1 illustrates an overview of 2L-APD system.

 Let D = {d1, d2, ..., di} be a set of potential source of plagiarism documents and

let dsus denote a suspicious document. The main task of a plagiarism detector

consists in locating the highly similar pairs of passages (p, p′) from dsus and dsrc (dsrc

∊ D). These passages could have many levels of similarity, such as p′ is exactly

similar to p, p′ is obtained from p by obfuscation techniques or p′ and p are

semantically similar. In the following, we develop our proposed modules and we

provide for each one how the plagiarism detection is performed.

3.1 Segmentation and Pre-processing

In a first step, each document dsus and dsrc is chunked into sentences. The average

length of Arabic sentence is widely higher than other languages, it is around 35

words per sentence [38]. Therefore, we have chosen to use (.), (,), (;), (:), (!) and (?)

punctuation marks as a segmentation point, provided that the sentence length should

be between 25 and 35 words. In order to normalize the sentences for detection

modules, a set of preprocessing steps are applied:

• Tokenization: decompose each sentence into a set of tokens (words).

• Remove diacritics and non-letters.

• Stop-words removal.

• Lemmatization: MADAMIRA tool [37] is used only for the fingerprinting

module to reduce words to their lemma, however, in the word embedding

module, we use the normal form of words to capture the semantic properties.

Figure 1: Overview of 2L-APD system

3.2 Fingerprinting Detection Module

Detecting plagiarism between a suspicious (dsus) and source document (dscr ∊ D) in
the fingerprinting module is carried out as follows:

1. Fingerprinting: we construct for each sentence its fingerprint as follows:

• Chunking: each sentence is broken into a set of n-grams (character-based).
• Selection: in this step, we propose a new selection strategy based on our

previous work presented in [16]. The key idea of [16] is how to effectively

exploit the uneven distribution of the n-grams frequencies in natural language

text, to reduce the n-gram inverted index size, where we store only the less

frequent n-grams. In fact, we proved that the least frequent n-grams are the

most significant. Let us illustrate this fact by considering the problem of

searching the word ’dozen’ within the Gutenberg corpus [17]. The sequential

search suggests starting either with the first letter ’d’, or the last one ’n’. If we

take the first choice, the text is scanned letter by letter until a match with ’d’ is

found. If so, the process compares the remaining letters in the word one by

one with those in the text until a full match is verified or a mismatch is faced.

Since the frequency of the letter ’d’ in our case is 387,163. Starting the search

by checking the first letter implies that we will look further nearly 387,163

times at the letter just next to ’d’ to check if it is an ’o’. However, the letter ’z’

appears no more than 4,735 times in the text. So, if the matching starts from

the letter ’z’ almost 99% of the fruitless extra comparisons are avoided. In this

way, we propose to select only the n-grams having a frequency smaller than

the sampling threshold (Tsmp).
• Hashing: the Brian Kernighan and Dennis Ritchie (BKDR) [39] hash

function is applied to the selected n-grams to generate the sentence
fingerprint.

2. Plagiarism Detection: measuring the similarity between two documents is

carried out by comparing their sentences fingerprints using the Jaccard

similarity. Then, the similarity is compared to a fixed threshold (Tlex) to judge

whether the existence of a shared text and suggest potential plagiarism. If the

similarity is lower than Tlex, then the suspect sentence is sent to the word

embedding module to detect a potential intelligent plagiarism.

3.3 Word Embedding Detection Module

Plagiarism detection at the semantic level is carried out as follows: let Ssrc= w1

,w2,...,wi and Ssus=w'1,w'2,…, w'j be a source and suspect sentences, their word

vectors in the Arabic CBOW are (v1,v2,…,vi) and (v'1,v'2,…,v'j) respectively. A

simple method to compare two sentences is to sum their word vectors [40]. Then,

the similarity between Ssrc and Ssus is obtained by calculating the cosine similarity

between Vsrc and Vsus, where: ∑

 ∑

 . For example, Ssrc

Ssrc= “ الكلَةذهب ٍوسف إلي ” (Joseph went to college) and Ssus= “ٍمضي ٍوسف مسرعا للجامعة”

(Joseph goes quickly to university).

The similarity between Ssrc and Ssus is obtained by calculating the Cosine similarity

Cos(), where:

 {
 الكلَة إلي ٍوسف ذهب

 ٍمضي ٍوسف مسرعا للجامعة

The similarity between Ssrc and Ssus is obtained by calculating the cosine similarity

between their sentence vectors Vsrc and Vsus as follows:
Sim(Ssrc , Ssus) = Cos(Vsrc , Vsus) = 0.71

 In order to improve the similarity results, we have used the word alignment

method presented by Sultan et al. [41], with the difference that we align the words

based on their semantic similarity in the word embedding model. We assume also

that the words do not have the same importance for the meaning of the sentences.

For that, we have used two weighting functions (IDF and POS) proposed by El

Moatez and Didier in [40] to weight the aligned words. Then, the similarity between

Ssrc and Ssus is measured by the formula (1):

(1)

∑

∑

∑

∑

where WT (wk) is a mix of both IDF and POS weight of wk , and BM (wk , Sx) is the
Best Match score between wk and all words in the sentence Sx. The BM function
aligns words based on their semantic similarity, BM is defined as:

(2)

Finally, the similarity Sim(Ssrc, Ssus) is compared to a second fixed threshold (Tsem)
to judge whether the existence of a potential plagiarism. Let us continue with the
same example above. The similarity between Ssrc and Ssus is obtained in four steps:

1. POS Tagging in this step the POS tagger of G. Braham et al. [42] is used to
estimate the POS of each word wk in Sk,

{

2. Word Alignment In this step, we align words that have similar meaning in

both sentences. For that, we compute the similarity between each word in Ssrc

and the semantically closest word in Ssus by using the BM function, e.g.

BM(ٌٍمض, Ssrc)= Max{Cos(ٌٍمض, vk), wk ∊ Ssus }=Cos(v(ٌٍمض),v(ذهب)).

3. IDF & POS Weighting In order to weight the descriptive aligned words, we

retrieve for each word wk in the Sx its IDF weight id f (wk), we also use the POS

weights proposed in [40]. The weight of each word wk is obtained as follows:

WT(wk) = idf(wk) Pos_weight(wk), where Pos_weight(wk) is the function

which return the weight of POS tagging of wk.

4. Calculate the similarity the similarity between Ssrc and Ssus is obtained by

using the formula (1), which gives us:

5. Experiments and Results

5.1. Data Set

In order to evaluate our system and monitor its performance against other systems

on the same dataset, we have used the “External Arabic Plagiarism Corpus”

(ExAra-2015)
5
. This corpus is released as part of the AraPlagDete Shared Task

2015 [34]. The ExAra-2015 corpus contains two sets of documents: (1) the source

documents, from which passages of text are extracted; and (2) the suspicious

documents, in which the plagiarised passages are inserted directly or after

undergoing obfuscation processing. The suspicious documents contain two kinds of

plagiarism cases: artificial (created automatically) and simulated (created

manually). The first one, use two types of obfuscation, phrase shuffling and word

shuffling. The manually created plagiarism simulates a real plagiarism cases by

using a manual synonym substitution, diacritics insertion and paraphrasing. More

details about the ExAra-2015 and the obfuscation used are given in Table 2 and 3

respectively.

5.2. Performance Measures

The performance of our 2L-APD system is quantified by the character-based macro

recall and precision, supplemented by two other measures proposed in [43] called

granularity and plagdet. These measures are computed using the two sets:

plagiarism cases annotated in the corpus S (actual cases) and the cases detected by

our system R (detected cases). Let dp be a document that contains plagiarism. A

plagiarism case in dp is a 4-tuple s∊ S, where s=< sp, dp, ssr , dsr >, sp is a

plagiarized passage in dp, and ssr is its original passage in some source document

dsr . Let ∊ denote a plagiarism detection for the document dp, where r=< rp,

dp, rsr , d’sr >, rp is a potential plagiarized passage in dp, and rsr its source d’sr. We

say that, s is detected by r iff dsr = d’sr , rp sp ≠ ø and rsr dsr = ø.
• Recall and Precision: recall and precision is the fraction of the true positive part

in each actual and detected case respectively. Their formulas are given in the

equations (2) and (3).

(2)

| |
∑

⋃

| | ; (3)

| |
 ∑

⋃

| |

 {

Neither recall nor precision account for the fact that plagiarism systems may report

multiple or overlapping detections for the same plagiarism case. To address this

issue, also a granularity detector is used [29].

• Granularity: quantifies whether the contiguity between plagiarized text passages

is properly recognized [43]. The granularity is depicted in the formula (4).

 (4)

| |
∑ | |

5
 http://misc-umc.org/AraPlagDet/#datasets

http://misc-umc.org/AraPlagDet/#datasets

where SR⊆S is the set of the actual cases that have been detected, and Rs⊆R are the
detections of a given s:

 | , |

• Plagdet: precision, recall, and granularity not allow for an absolute ranking

among different system [43], plagdet that combines these measures in one

measure as expressed in the formula (5).

 (5)

()

where F1 is the equally-weighted harmonic mean of recall and precision.

 Table 2: Details of ExAra-2015 corpus [34]

 Generic

Information

Documents number

Cases number

Source documents

Suspicious documents

1171

1727

48.68%

51.32%

 Plagiarism

 per document

Without plagiarism

With plagiarism

 Hardly (1%-20%)

 Medium (20%-50%)

 Much (50%-80%)

28.12%

71.88%

36.94%

32.95%

 2.00%

Length of

plagiarism case

Very short (300 chars)

Short (300-1k chars)

Medium (1k-3k chars)

Long (3k-30k chars)

21.25%

42.50%

28.26%

7.99%

Plagiarism type

and
obfuscation

Artificial

Without obfuscation

Phrase shuffling

Word shuffling

Simulated

Manual synonym substitution.

Manual paraphrasing

88.94%

 40.30%

 10.42%

 38.22%

11.06%

 9.79%
 1.27%

Table 3: Types of plagiarism and obfuscation used in ExAra-2015 corpus

Type
Obfuscatio

n

Description

Manual
Synonym

Substitution

Replaced some words with their synonyms by using the Microsoft Word
synonym checker, Almaany dictionary, Arabic WordNet Browser, and the
synonyms provided by Google translate.

Added and/or
removed

diacritics

Diacritics in Arabic are optional and their exclusion or inclusions are

orthographically acceptable. For example:

الفلسطينية القضية ≡ … ≡ الفِلسَْطِينيِةّ ُ القضَِيَّة ُ ≡ القضََةُّ الفِلسَطَنَةُ ≡ الفِلَسْطينيِةّ ُ القضَيةّ ُ

Automatically
obfuscation

Phrase shuffling and word shuffling strategy are used to create

automatically obfuscation cases, e.g.
 يشارُمصطلحُ والتاريخيُيشارُبهُللخلافُالسياسيمصطلحُالقضيةُالفلسطينيةُ

 يللخلافُالتاريخيُوالسياس به الفلسطينيةُالقضية

Manual

Paraphrasing

The passages to be obfuscated are manually selected from the source

documents then paraphrased manually, e.g.

ُ السياسيُوُالتاريخيُوُالأزمةُالانسانيةُفيُفلسطينفلسطينيةُمصطلحُيشارُبهُللخلافُالقضيةُال
التاسعُعشرُمماُُفلسطينُمنذُأواخرُالقرنُياسيُفيبدءُالخلافُالس ٤٨ٓٔ بدءاُمنُعام

 ُُ الفلسطينية أدىُإلىُأزمةُإنسانيةُأصبحتُتعرفُبالقضية

5.2. Thresholds

Before presenting the results, we should mention that the sampling (Tsmp), lexical

(Tlex) and semantic (Tsem) thresholds are empirically fixed using the training data of

the AraPlagDet 2015 (Tr-ExAra-2015 corpus) [34]. In Tr-ExAra-2015 each

suspicious document is associated with an XML document that locates the exact

position of the plagiarised passages. Additionally, the suspicious documents are

classified into four sets according to the type of plagiarism used which include:

without plagiarism, C&P plagiarism, artificial plagiarism (phrase shuffling and

word shuffling) and simulated plagiarism (synonym substitution, added diacritics

and paraphrasing). In fact, we have used the C&P and artificial plagiarism cases to

determine the lexical threshold value Tlex and the simulated plagiarism cases for the

semantic threshold Tlex. Thus, Tlex is set to 15%, which means that two fingerprints

describing two different sentences have an intersection less than 15%, and Tsem is

set to 60% to indicate a potential intelligent plagiarism. Regarding the sampling

threshold Tsmp, it is adjusted according to n-gram size used. As we have chosen to

use 3-gram as a unit of chunk, Tsmp is set to 0.008%, 0.01%, and 0.05% respectively

for selecting 10%, 20% and 50% of all 3-grams.

5.3. Results

Several variants of 2L-APD were tested to measure the impact of the fingerprint
resolution and the word embedding level on the detection accuracy. The values of
the precision, recall , granularity and plagdet for different fingerprint resolution:
Fine (F), Medium (M) and Coarse (C) (10%, 20% and 50% off all 3-grams are
selected receptively), with and without the Word Embedding (WE) detection
module are shown in Table 4. The results obtained can be summarized as follows:
when the fingerprint resolution is Fine, the precision is reasonable where 73% of
detected cases were correct, but the recall is very low and equal to about 43%.
When applying the Medium resolution the precision increases slightly to 79%,
however, the recall is greatly enhanced to 62%. This is due to increased number of
n-grams selected in the fingerprint (i.e. more information is encoded and used as
indicative of reused text segments). For the coarse resolution, the rate of increase is
not significant compared to the Medium. This means that the medium resolution is
able to encode sufficient information about the documents to ensure the detection.
Interestingly, employing the word embedding model significantly enhances the
recall (with a mean of +24.3%). This is due to the inability to detect the intelligent
plagiarism in the fingerprint model.

 Table 4: Performance of the 2L-APD on the ExAra-2015 corpus

 Method Precision Recall Granularity Plagdet

FP(F) 0.7315 0.4347 1.055 0.5255
FP(M) 0.7713 0.6251 1.058 0.6631

FP(C) 0.7856 0.6383 1.059 0.6882

FP(F)+WE 0.7521 0.6623 1.057 0.6769

FP(M)+WE 0.8593 0.8781 1.064 0.8308

FP(C)+WE 0.8413 0.8867 1.068 0.8236

5.4. Comparison

We have compared our best method FP(M)+WE to the ones obtained by Magooda
(3 methods) [35], Alzahrani [36], Palkovskii (3 methods) and the baseline [34].
Table 5 shows the overall performances of the plagiarism detectors methods that
were tested on the ExAra-2015 corpus. As expected, in terms of the recall, plagdet
and granularity our method outperforms the baseline. The overall best performing
method is the FP(M)+WE with a gain of +2.89% on plagdet. In term of recall,
FP(M)+WE leads to an overall recall score of 87.81% against 83.10% for
Magooda(2). The low recall of other methods due to their inability to detect some
obfuscation plagiarism cases like manual paraphrasing.

 Table 5: Comparison Results
Method Precision Recall Granularity Plagdet

FP(M)+WE 0.859 0.878 1.064 0.831
Magooda(2) 0.852 0.831 1.069 0.802

Magooda(3) 0.854 0.759 1.058 0.772

Magooda(1) 0.805 0.786 1.052 0.767

Palkovskii(1) 0.997 0.542 1.062 0.627

Baseline 0.990 0.535 1.209 0.608

Alzahrani 0.831 0.530 1.186 0.574
Palkovskii(3) 0.658 0.589 1.161 0.560

Palkovskii(2) 0.564 0.589 1.163 0.518

6. Conclusion and Future Work

In this paper, we presented a Plagiarism Detection system acting at two layers:
fingerprinting and word embedding. At the first layer, the system computes the
fingerprints of all sentences in the source and suspect documents. The comparison
is then performed between fingerprints rather than original texts. Our contribution
to such classical approach of plagiarism detection is the introduction of a novel
selection strategy in which the statistical characteristics of the natural text are used
to select only the less frequent n-grams as a fingerprint.

 To push the capabilities of the system further to handle more advanced

plagiarism cases such obfuscations, synonym substitution and paraphrasing. The

second layer uses the semantic properties of words characterised in the word

embedding combined with word alignment, IDF and POS weighting to support the

identification of the words that are the most descriptive in each textual units.

 The performance of the system is confirmed in terms of recall which reached

88% and precision with 85%. Our system outperformed all systems participating in

the Arabic Plagiarism Detection Shared Task 2015 with a plagiarism detection

score of 83%. The tests show clearly the ability of the system to handle various

types of plagiarism including literal plagiarism, reordering, rewording, synonym

substitution and paraphrasing.

 As our method consists in cutting up the document into sentences, an

improvement would be to use a sentence2vec model instead of a word2vec model.

We would also like to further investigate the plagiarism detection task with more

sophisticated methods, such as Recurrent Neural Network (RNN) and

Convolutional Neural Networks (CNN) trained on a pre-trained word/sentence

embedding vectors.

 While the investigation has been conducted on one application namely the

plagiarism detection, intuition suggests that an efficient assessment of shared

information is applicable to other applications such as authorship classification,

semantic similarity and sentiment analysis. An obvious elaboration would be to

investigate the performance of the system once adapted to other languages.

R e f e r e n c e s

1. Teddi Fishman. “we know it when we see it” is not good enough: toward a standard definition of

 plagiarism that transcends theft, fraud, and copyright. 2009.

2. Bela Gipp. Citation-based plagiarism detection. In Citation-based Plagiarism Detection, pages 57–

88, Springer, 2014.

3. Pascal Guibert and Christophe Michaut. Le plagiat étudiant. Education et sociétés (2):149–

163, 2011.
4. Donald L McCabe. Cheating among college and university students: A north American perspective.

International Journal for Educational Integrity, 1(1), 2005.

5. AS Bin-Habtoor and MA Zaher. A survey on plagiarism detection systems. International Journal of

Computer Theory and Engineering, 4(2):185, 2012.

6. Mohamed El Bachir Menai. Detection of plagiarism in Arabic documents. International journal of

information technology and computer science (IJITCS), 4(10):80, 2012.

7. Farghaly, A., & Shaalan, K. (2009). Arabic natural language processing: Challenges and solutions.

ACM Transactions on Asian Language Information Processing (TALIP), 8(4), 14.

8. Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. Gplag: detection of software plagiarism by

program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 872–881. ACM, 2006.

9. Salha M Alzahrani, Naomie Salim, and Ajith Abraham. Understanding plagiarism linguistic

patterns, textual features, and detection methods. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 42(2):133–149, 2012.

10. Martin Potthast, Matthias Hagen, Tim Gollub, Martin Tippmann, Johannes Kiesel, Paolo Rosso,

Efstathios Stamatatos, and Benno Stein. Overview of the 5th international competition on

plagiarism detection. In CLEF Conference on Multilingual and Multimodal Information

Access Evaluation, pages 301–331. CELCT, 2013.

11. Benno Stein and Sven Meyer Zu Eissen. Near similarity search and plagiarism analysis. In From

 data and information analysis to knowledge engineering, pages 430–437. Springer, 2006.

12. Timothy C Hoad and Justin Zobel. Methods for identifying versioned and plagiarized documents.

 Journal of the Association for Information Science and Technology, 54(3):203–215, 2003.

13. Manber Udi, Finding similar files in a large file system, In Proceedings of the USENIX Winter

1994 Technical Conference, 1994.

14. Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for document

fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, pages 76–85. ACM, 2003.

15. Richard M Karp and Michael O Rabin. Efficient randomized pattern-matching algorithms. IBM

 Journal of Research and Development, 31(2):249–260, 1987.

16. El Moatez Billah Nagoudi, Ahmed Khorsi, and Hadda Cherroun. Efficient inverted index with n-

gram sampling for string matching in arabic documents. In The 13th IEEE/ACS International

Conference on Computer Systems and Applications, Agadir, Morocco, 2016, pp. 1-7.

17. Marie Lebert. Project Gutenberg (1971-2008). Project Gutenberg, 2008.

18. Yasushi Ogawa, Tetsuya Morita, and Kiyohiko Kobayashi. A fuzzy document retrieval system

using the keyword connection matrix and a learning method. Fuzzy sets and systems,

39(2):163–179, 1991.

19. Mohamed A Zahran, Ahmed Magooda, Ashraf Y Mahgoub, Hazem Raafat, Mohsen Rashwan, and

Amir Atyia. Word representations in vector space and their applications for arabic. In

International Conference on Intelligent Text Processing and Computational Linguistics,

pages 430–443. Springer, 2015.

20. Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

 representations in vector space. In In: ICLR: Proceeding of the International Conference on

 Learning Representations Workshop Track, pages 1301–3781, 2013.

21. Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep

neural networks with multitask learning. In Proceedings of the 25th international conference

on Machine learning, pages 160–167. ACM, 2008.

22. Mnih, A., & Hinton, G. E. (2009). A scalable hierarchical distributed language model. In

Advances in neural information processing systems (pp. 1081-1088).

23. Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general

method for semi-supervised learning. In Proceedings of the 48th annual meeting of the

association for computational linguistics, pages 384–394. Association for Computational

Linguistics, 2010.

24. Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space

word representations. In Hlt-naacl, volume 13, pages 746–751, 2013.

25. Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013.

26. Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word

representation. In EMNLP, volume 14, pages 1532–1543, 2014.

27. Hermann A Maurer, Frank Kappe, and Bilal Zaka. Plagiarism a survey. J. UCS, 12(8):1050–1084,

2006.

28. Salha Mohammed Alzahrani and Naomie Salim. Plagiarism detection in arabic scripts using fuzzy

information retrieval. In Student Conf., Johor Bahru, Malaysia, pages 281–285, 2008.

29. Martin Potthast, Matthias Hagen, Tim Gollub, Martin Tippmann, Johannes Kiesel, Paolo Rosso,

Efstathios Stamatatos, and Benno Stein. Overview of the 5th international competition on

plagiarism detection. In CLEF Conference on Multilingual and Multimodal Information

Access Evaluation, pages 301–331. CELCT, 2013.

30. Salha Alzahrani and Naomie Salim Fuzzy semantic-based string similarity for extrinsic plagiarism

detection: Lab report for PAN at CLEF’10,” presented at the 4th Int. Workshop PAN-10,

Padua, Italy, 2010.

31. William Black, Sabri Elkateb, Horacio Rodriguez, Musa Alkhalifa, Piek Vossen, Adam Pease, and

Christiane Fellbaum. Introducing the arabic wordnet project. In Proceedings of the third

international Word- Net conference, pages 295–300, 2006.

32. Ameera Jadalla and Ashraf Elnagar. A plagiarism detection system for arabic text-based

documents. In Pacific-Asia Workshop on Intelligence and Security Informatics, pages 145–

153. Springer, 2012.

33. Ashraf S Hussein. A plagiarism detection system for arabic documents. In Intelligent Systems’

2014, Springer International Publishing, 2015. p. 541-552.

34. Imene Bensalem, Imene Boukhalfa, Paolo Rosso, Lahsen Abouenour, Kareem Darwish, and

Salim Chikhi. Overview of the araplagdet pan@ fire2015 shared task on arabic plagiarism

detection. In FIRE Workshops, pages 111–122, 2015.

35. Ahmed Magooda, Ashraf Y Mahgoub, Mohsen Rashwan, Magda B Fayek, and Hazem M Raafat.

Rdi system for extrinsic plagiarism detection (rdi red), working notes for panaraplagdet at

fire 2015. In FIRE Workshops, pages 126–128, 2015.

36. Salha Alzahrani. Arabic plagiarism detection using word correlation in n-grams with k-

overlapping approach, working notes for panaraplagdet at fire 2015 workshops, p 123–125,

2015.

37. Arfath Pasha, Mohamed Al-Badrashiny, Mona T Diab, Ahmed El Kholy, Ramy Eskander, Nizar

Habash, Manoj Pooleery, Owen Rambow, and Ryan Roth. Madamira: A fast, comprehensive

tool for morphological analysis and disambiguation of arabic. In LREC, v 14, pages 1094–

1101, 2014.

38. Ryan McDonald, Kevin Lerman, and Fernando Pereira. Multilingual dependency analysis with a

two-stage discriminative parser. In Proceedings of the Tenth Conference on Computational

Natural Language Learning, pages 216–220. Association for Computational Linguistics,

2006.

39. Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. The C programming language.

Prentice Hall Englewood Cliffs, 1988.

40. El Moatez Billah Nagoudi and Didier Schwab. Semantic Similarity of Arabic Sentences with

Word Embeddings. In Proceedings of the Third Arabic Natural Language Processing

Workshop (WANLP), pages 18–24. Association for Computational Linguistics, 2017.

41. Md Arafat Sultan, Steven Bethard, and Tamara Sumner. Dls@ cu: Sentence similarity from word

alignment and semantic vector composition. In Proceedings of the 9th International

Workshop on Semantic Evaluation, pages 148–153, 2015.

42. Souhir Gahbiche-Braham, Hélene Bonneau-Maynard, Thomas Lavergne, and Franc¸ois Yvon.

Joint segmentation and pos tagging for arabic using a crf-based classifier. In LREC, pages

2107–2113, 2012.

43. Martin Potthast, Benno Stein, Alberto Barrón-Cedeño, and Paolo Rosso. An evaluation

framework for plagiarism detection. In Proceedings of the 23rd international conference on

computational linguistics: pages 997–1005.Association for Computational Linguistics, 2010.

44. McCandless, M., Hatcher, E., & Gospodnetic, O. (2010). Lucene in Action: Covers Apache

Lucene 3.0. Manning Publications Co.

45. Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of.

Reading: Addison-Wesley.

46. Sabrina Simmons and Zachary Estes. Using latent semantic analysis to estimate similarity. In

 Proceedings of the Cognitive Science Society, pages 2169–2173, 2006

47. Zdenek Ceska. Plagiarism detection based on singular value decomposition. In Advances in

 natural language processing, pages 108–119. Springer, 2008.

