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Abstract: Measuring the amount of shared information between two documents is 

a key to address a number of Natural Language Processing (NLP) challenges 

such as Information Retrieval (IR), Semantic Textual Similarity (STS), Sentiment 

Analysis (SA) and Plagiarism Detection (PD). In this paper, we report a 

plagiarism detection system based on two layers of assessment: 1. fingerprinting 

which simply compares the documents fingerprints to detect the verbatim 

reproduction. 2. Word embedding which uses the semantic and syntactic 

properties of words to detect much more complicated reproductions. Moreover, 

Word Alignment (WA), Inverse Document Frequency (IDF) and Part-of-Speech 

(POS) weighting are applied on the examined documents to support the 

identification of words that are most descriptive in each textual unit. In the present 

work, we focused on Arabic documents and we evaluated the performance of the 

system on a data-set of holding three types of plagiarism: 1. Simple reproduction 

(copy and paste), 2. Word and phrase shuffling 3. Intelligent plagiarism including 

synonym substitution, diacritics insertion and paraphrasing. The results show a 

recall of 88% and a precision of 85%. Compared to the results obtained by the 

systems participating in the Arabic Plagiarism Detection Shared Task 2015, our 

system outperforms all of them with a plagiarism detection score (Plagdet) of 

83%.   

Keywords: Plagiarism Detection, Intelligent Plagiarism, Fingerprinting, Word 

Embedding, Arabic Language. 

1. Introduction 

1.1. Plagiarism Detection 

“Plagiarism is the use of ideas, concepts, words, or structures without 

appropriately acknowledging the source to benefit in a setting where originality is 

expected” [1]. The easy access to the vast amount of information on the net has 

shown to be an appealing opportunity for authors of diverse backgrounds to steel 

and claim others' works.  In the last few years, the phenomenon has been reported 

to have spread over different areas including academia, literature, media and not to 

mention the industry [2]. In academia, for instance, a study conducted by Guibert 

and Michau [3], reported that about 35% of the students in Europe have re-used all 
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or a portion of a document to present it as their own work.  McCabe [4] who studied 

a sample of more than 80.000 students in the U.S. and Canada between 2002 to 

2005 showed that more than 25% of graduate and 38% of undergraduate students 

have at least copied or paraphrased sentences without citing the source.  

    Compared to formal languages (i.e. programs) plagiarism in natural language is 

relatively more difficult to identify because of the flexibility of morphology and 

syntax [8]. In addition, plagiarists use different ways to bypass the plagiarism 

detection systems. A plagiarism detection system task is then to uncover what the 

plagiarist did his best to hide using rewording, synonym substitution, paraphrasing, 

text manipulation, text translation and idea adoption [5]. 

     From the perspective of the resources used to make the detection, there are two 

approaches: (1) Intrinsic, (2) Extrinsic [5]. The first one examines the linguistic 

features of a document against itself to spot the catching variations in styles, this 

technique is known as stylometry [11]. The extrinsic plagiarism, however, 

compares the suspicious document with a source collection of documents [9]. One 

could say the first technique tries to find the differences while the second tries to 

spot similarities. 

 

 1.2. Arabic Language 

As the language we study in the present work brings a number of linguistic 

challenges we extend this section with a brief introduction to this language. The 

Arabic language is a Semitic language with rich and complex morphology 

compared to the Indo-European languages [6]. It is spoken by more than 330 

million people as a native language and it is the fourth most used language on the 

Internet
1
. Arabic is written from right to left and it has 28 alphabet letters. In 

Arabic text, letters are attached and they change shape in accordance with their 

position in the word. In the other hand, diacritic marks may optionally be present, 

consequently, for a word with k letters, we can have at least 2
k
 different 

representations [7]. Another issue is the fact that some letters are frequently used 

interchangeably, such as (ً ، ى ), (ة ، ه ) and  ( آ ، ا أ ، إ ،    ) [34]. 

 

1.3. Our contribution 

 

In this paper, we present a Two-Level Arabic Plagiarism Detection system (2L-

APD), built around the extrinsic plagiarism detection approach. The proposed 2L-

APD system is based on two modules (levels), (1) Fingerprinting detection module, 

(2) Word embedding detection module. The first one is designed to detect literal 

reproduction of texts. The word embedding detection module tries to discover 

synonym substitution and paraphrasing if any.  

     The rest of this paper is organised as follows, in the next section we provide a 

quick overview of Arabic plagiarism detection published works. Section 3 

introduces some background on fingerprinting and word embedding models. 

Section 4 describes the architecture of our plagiarism detection system 2L-APD. In 
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Section 5, we report the test results and compare it to the results of similar systems. 

Finally, our conclusions and some future research directions are drawn in Section 6. 
 

2. Arabic Plagiarism Detection Systems  

While we focus on Arabic language the interested reader may refer to a number of 

surveys on the subject of plagiarism detection in general and on other languages 

[27], [9], [5] and [2].  In the context of Arabic language, several plagiarism 

detection systems are proposed. For instance, Alzahrani and Salim [28] have 

introduced a statement-based plagiarism detection system for Arabic (FS-APD) 

using fuzzy-set information retrieval model [18]. The degree of similarity between 

two statements is computed and compared to a fixed threshold value to judge 

whether are similar or not. This approach led to perform well on verbatim 

reproductions. To address the rewording, they have proposed another system named 

fuzzy semantic-based string similarity for extrinsic plagiarism detection (SFS-APD) 

[30]. This uses a shingling algorithm, Arabic WordNet lexical database [31] and 

Jaccard coefficient for retrieving a list of candidate documents. The suspicious 

document is then compared sentence by sentence with the candidate documents to 

compute the fuzzy degree of similarity. 

      Meni [6] proposed a plagiarism detection tool for Arabic documents (Aplag). 

Aplag is based on heuristics to compare suspect documents at different hierarchical 

levels to avoid unnecessary comparisons. In addition, to address the problem of 

rewording, Aplag replaces each word’s root by the most frequent synonym 

extracted from Arabic WordNet [31].  

      Jadalla and Elnagar [32] introduced a plagiarism detection system for Arabic 

text-based documents named Iqtebas. It uses a fingerprint search engine to compute 

the distance between each sentence in the suspected text and the closest sentence in 

the source documents. Iqtebas seems to perform well the copy-and-paste (C&P) 

plagiarism, but it handles neither word shuffling nor rewording. 

      Recently, Hussein [33] proposed a new plagiarism detection system for Arabic 

documents based on modeling the relation between texts and their n-gram unique 

sentences. The system involves several steps, including Part-of-Speech (POS) 

tagging, text indexing, stop-words removal, synonyms substitution and heuristic 

pairwise phrase matching algorithm to build documents Term Frequency-Inverse 

Document Frequency (TF-IDF) model [45]. The Latent Semantic Analysis (LSA) 

[46] and Singular Value Decomposition (SVD) [47] are then used to analyse the 

hidden associations between text documents. 

The Arabic Plagiarism Detection Shared Task 2015 (AraPlagDet)
2
 [34] is the first 

and only shared task that addresses the evaluation of plagiarism detection methods 

for Arabic texts. It has two sub-tasks: extrinsic and intrinsic plagiarism detection. A 

major advantage of the AraPlagDet evaluation campaign is enabling the evaluation 

of different systems on the same dataset. In AraPlagDet 2015 three systems are 

participated in the extrinsic plagiarism detection subtask: Magooda [35], Alzahrani 
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[36] and Palkovskii
3
. Two participants (Magooda and Alzahrani) among the three 

submitted working notes describing their systems.  

      Magooda et al. [35] proposed an extrinsic plagiarism detection system named 

RDI_RED.  In this system, Lucene search engine [44] is used to select a list of 

candidate source documents. The candidate documents are aligned to detect 

plagiarised segments (aligned parts). Finally, a set of rules is applied by a filtering 

module in order to filter the aligned parts. RDI_RED system can be easily deployed 

on-line. Though, it does not address synonyms substitution and paraphrasing. 

      Alzahrani’s [36] system goes through four main steps: (1) Pre-processing which 

includes tokenization and stop-word removal, (2) retrieve a list of candidate source 

documents for each suspicious document using n-gram fingerprinting and Jaccard 

coefficient, (3) An in-depth comparison between the suspicious documents and the 

associated source candidate documents using k-overlapping approach [30], (4) Post-

processing where consecutive n-grams are joined to form united plagiarised 

segments. Table 1 summarizes the Arabic plagiarism detection systems described 

above according to the technique used, the comparison level and their efficiency in 

detecting different plagiarism types. 

Table1 Details of the Arabic plagiarism detection systems. 
 Systems 

  FS-APD     
   [30] 

  SFS-APD     
   [32] 

 Aplag   
 [6] 

Iqtebas    
[34] 

  Hussein    
   [35] 

  RDI-RED 
   [37] 

 Alzahrani   
    [38] 
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3. Background  

3.1. Fingerprinting 

 

Fingerprinting is widely applied extrinsic plagiarism [29]. The purpose is to reduce 

the size of the compared texts and speed up the comparison without missing a 

significant match.  A document fingerprint is a list of integers resulting from 

hashing substrings of the document. The comparison is then performed on the 

fingerprint rather than the whole text [11]. The process of creating a fingerprint 

involves three steps: 

– Chunking: the document is segmented into substrings (called chunks or 

minutiae). A chunk might be a sequence of letters, words or even sentences. 

– Hashing: a hash function is applied to the chunks to generate list of integers. 

– Selection: The final fingerprint is a subsequence of the list of hashes. 

There are four factors which must be carefully balanced when constructing a 

fingerprint: the fingerprint granularity, the hash function, the selection strategy and 

the fingerprint resolution [12]: 

• Fingerprint Granularity 

The size of chunk determines the fingerprint granularity, and they have a significant 

impact on the accuracy of fingerprint [11]. Large chunks fingerprint (coarse 

granularity), is fast to compute but highly sensitive to changes, whereas small 

chunks fingerprint (fine granularity) is less sensitive to such changes, yet they 

require significant computational effort and allows a higher rate of false positive. 

• Hash Function 

A hash function maps the chunks to integers. It is especially important to choose the 

hash function in such a way as to minimize the collisions due to mapping different 

chunks to the same hash [11]. 

• Selection Strategy 

While hashing all chunks is likely to be the best choice for strict matching, keeping 

only a subsequence of the checks has shown to be more efficient and less sensitive 

to insignificant changes [11]. A number of chunk selection approaches have been 

used so far such as “i
th
 hash” [15], “0 mod k” [13], first-k [12], first-k-sliding 

strategy [12] and winnowing [14].  

• Fingerprint Resolution 

The number of the selected hashes to represent a document defines the fingerprint 

resolution. The processing and the storage requirements increase proportionally 

with the fingerprint resolution [14]. 

 

 



  

 

3.2. Word Embedding  

Recently, word embedding representation has received a lot of attention in the NLP 

community and has become a core building to many NLP applications, such as 

information retrieval, plagiarism detection, machine translation, text classification 

and text summarization. Word embedding represents words as vectors in a 

continuous high-dimensional space. Indeed, these representations allow to capture 

the syntactic and semantic properties of the language [20]. Most word embedding 

techniques are relying on the neural network to train the word vectors from a large 

collection of text documents. In the literature, several techniques are proposed to 

build a word embedding model, among the most famous are: Collobert and Weston 

model [21], Hierarchical Log-Bilinear Model (HLBL) [22], Turian et al. model 

[23], Recurrent Neural Network (RNN) model [24], Continuous Bag-of-Words 

model (CBOW) [20], Skip-gram model (SKIP-G) [25] and Global Vectors model 

(GloVe) [26]. 

      In a comparative study conducted by Mikolov et al. [20] all the methods [21], 

[22], [23], [24], and [25] have been evaluated and compared, and they show that 

CBOW and SKIP-G are significantly faster to train with better accuracy. For this 

reason, we have used the CBOW word representations for Arabic model proposed 

by Zahran et al. [19]. To train this model, they have used a large collection from 

different sources containing more than 5.8 billion words
4
. In this model, each word 

w is represented by a vector v of 300-dimension. The similarity between two words 

wi and wj is obtained by comparing their vector representations vi and vj  
respectively [20]. This similarity can be evaluated using the Cosine similarity, 

Manhattan distance, Euclidean distance or any other similarity measure functions. 

For example: let “الجامعة” (university), “المساء” (evening) and “الكلَة” (faculty) be 

three words. The similarity between them is measured by computing the cosine 

similarity between their vectors as follows:       

{
((الجامعة)  (المساء)  )      الجامعة المساء             

(الكلَة الجامعة)        ((الكلَة)  (الجامعة)  )                    
   

This means that the words “الكلَة” (faculty) and "الجامعة” (university) are semantically 
closer than “المساء” (evening) and “الجامعة” (university). 

 

4. Proposed System 

In order to detect different types of plagiarism, our proposed 2L-APD system is 

based on two modules (levels): Fingerprinting detection module and Word 

embedding detection module. The fingerprinting module is designed to detect the 

literal plagiarism (lexical level), such as C&P, reordering of words and adding filler 

words. However, in the practical plagiarism cases especially in scientific research, 

several intelligent plagiarism forms are used, including obfuscations, synonym 

replacement and paraphrasing. These techniques often generate a significant change 
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in the structure of the original text, which can affect considerably the document 

fingerprint. This fact makes the fingerprinting module quite weak against textual 

modification. To address this issue, we have proposed a word embedding module 

(semantic level). If the plagiarism is not detected in the fingerprinting module, the 

suspect document is sent to the word embedding module to detect intelligent 

plagiarism. Figure1 illustrates an overview of 2L-APD system. 

      Let D = {d1, d2, ..., di} be a set of potential source of plagiarism documents and 

let dsus denote a suspicious document. The main task of a plagiarism detector 

consists in locating the highly similar pairs of passages (p, p′) from dsus and dsrc (dsrc 

∊ D). These passages could have many levels of similarity, such as p′ is exactly 

similar to p, p′ is obtained from p by obfuscation techniques or p′ and p are 

semantically similar. In the following, we develop our proposed modules and we 

provide for each one how the plagiarism detection is performed.  

 

3.1 Segmentation and Pre-processing 

In a first step, each document dsus and dsrc is chunked into sentences. The average 

length of Arabic sentence is widely higher than other languages, it is around 35 

words per sentence [38]. Therefore, we have chosen to use (.), (,), (;), (:), (!) and (?) 

punctuation marks as a segmentation point, provided that the sentence length should 

be between 25 and 35 words. In order to normalize the sentences for detection 

modules, a set of preprocessing steps are applied: 

• Tokenization: decompose each sentence into a set of tokens (words). 

• Remove diacritics and non-letters. 

• Stop-words removal. 

• Lemmatization: MADAMIRA tool [37] is used only for the fingerprinting 

module to reduce words to their lemma, however, in the word embedding 

module, we use the normal form of words to capture the semantic properties. 

Figure 1: Overview of 2L-APD system 



  

3.2 Fingerprinting Detection Module 
 

Detecting plagiarism between a suspicious (dsus) and source document (dscr ∊ D) in 
the fingerprinting module is carried out as follows:  

1. Fingerprinting: we construct for each sentence its fingerprint as follows: 

• Chunking: each sentence is broken into a set of n-grams (character-based). 
• Selection: in this step, we propose a new selection strategy based on our 

previous work presented in [16]. The key idea of [16] is how to effectively 

exploit the uneven distribution of the n-grams frequencies in natural language 

text, to reduce the n-gram inverted index size, where we store only the less 

frequent n-grams. In fact, we proved that the least frequent n-grams are the 

most significant. Let us illustrate this fact by considering the problem of 

searching the word ’dozen’ within the Gutenberg corpus [17]. The sequential 

search suggests starting either with the first letter ’d’, or the last one ’n’. If we 

take the first choice, the text is scanned letter by letter until a match with ’d’ is 

found.  If so, the process compares the remaining letters in the word one by 

one with those in the text until a full match is verified or a mismatch is faced. 

Since the frequency of the letter ’d’ in our case is 387,163. Starting the search 

by checking the first letter implies that we will look further nearly 387,163 

times at the letter just next to ’d’ to check if it is an ’o’. However, the letter ’z’ 

appears no more than 4,735 times in the text. So, if the matching starts from 

the letter ’z’ almost 99% of the fruitless extra comparisons are avoided. In this 

way, we propose to select only the n-grams having a frequency smaller than 

the sampling threshold (Tsmp). 
• Hashing: the Brian Kernighan and Dennis Ritchie (BKDR) [39] hash 

function is applied to the selected n-grams to generate the sentence 
fingerprint.  

2. Plagiarism Detection: measuring the similarity between two documents is 

carried out by comparing their sentences fingerprints using the Jaccard 

similarity. Then, the similarity is compared to a fixed threshold (Tlex) to judge 

whether the existence of a shared text and suggest potential plagiarism. If the 

similarity is lower than Tlex, then the suspect sentence is sent to the word 

embedding module to detect a potential intelligent plagiarism.  
 

3.3 Word Embedding Detection Module 
 

Plagiarism detection at the semantic level is carried out as follows: let Ssrc= w1 

,w2,...,wi and Ssus=w'1,w'2,…, w'j be a source and suspect sentences, their  word  

vectors in the Arabic CBOW are (v1,v2,…,vi) and  (v'1,v'2,…,v'j) respectively.  A 

simple method to compare two sentences is to sum their word vectors [40]. Then, 

the similarity between Ssrc and Ssus is obtained by calculating the cosine similarity 

between Vsrc and  Vsus, where:        ∑          
 
        ∑    

 
   . For example, Ssrc 

Ssrc= “ الكلَةذهب ٍوسف إلي  ” (Joseph went to college) and Ssus= “ٍمضي ٍوسف مسرعا للجامعة” 

(Joseph goes quickly to university).  



  

The similarity between Ssrc and Ssus is obtained by calculating the Cosine similarity 

Cos(          ), where:             

                          { 
                             الكلَة       إلي      ٍوسف       ذهب        

            ٍمضي       ٍوسف       مسرعا       للجامعة            
 

 

The similarity between Ssrc and Ssus is obtained by calculating the cosine similarity 

between their sentence vectors Vsrc and Vsus as follows: 
Sim(Ssrc , Ssus) = Cos(Vsrc , Vsus) = 0.71 

      In order to improve the similarity results, we have used the word alignment 

method presented by Sultan et al. [41], with the difference that we align the words 

based on their semantic similarity in the word embedding model. We assume also 

that the words do not have the same importance for the meaning of the sentences. 

For that, we have used two weighting functions (IDF and POS) proposed by El 

Moatez and Didier in [40] to weight the aligned words. Then, the similarity between 

Ssrc and Ssus is measured by the formula (1): 
 

(1)                 
 

 
 
∑                           

∑                
 

∑                           

∑                
  

where WT (wk ) is a mix of both IDF and POS weight of wk , and BM (wk , Sx) is the 
Best Match score between wk and all words in the sentence Sx. The BM function 
aligns words based on their semantic similarity, BM is defined as: 

(2)                                                        
  

Finally, the similarity Sim(Ssrc, Ssus) is compared to a second fixed threshold (Tsem) 
to judge whether the existence of a potential plagiarism. Let us continue with the 
same example above. The similarity between Ssrc and Ssus is obtained in four steps: 

1. POS Tagging  in this step the POS tagger of G. Braham et al. [42] is used to 
estimate the POS of each word wk in Sk,  

{ 
                                                   

                                               
     

2. Word Alignment In this step, we align words that have similar meaning in 

both sentences. For that, we compute the similarity between each word in Ssrc 

and the semantically closest word in Ssus by using the BM function, e.g.  

BM(ٌٍمض, Ssrc)= Max{Cos(ٌٍمض, vk),   wk ∊ Ssus }=Cos(v(ٌٍمض),v(ذهب)). 

3. IDF & POS Weighting In order to weight the descriptive aligned words, we 

retrieve for each word wk in the Sx its IDF weight id f (wk ), we also use the POS 

weights proposed in [40]. The weight of each word wk is obtained as follows: 

WT(wk) = idf(wk)  Pos_weight(wk), where Pos_weight(wk) is the function 

which return the weight of POS tagging of wk.  

4. Calculate the similarity the similarity between Ssrc and Ssus is obtained by 

using the formula (1), which gives us:                                         



  

5. Experiments and Results 

5.1. Data Set  

In order to evaluate our system and monitor its performance against other systems 

on the same dataset, we have used the “External Arabic Plagiarism Corpus” 

(ExAra-2015)
5
. This corpus is released as part of the AraPlagDete Shared Task 

2015 [34]. The ExAra-2015 corpus contains two sets of documents: (1) the source 

documents, from which passages of text are extracted; and (2) the suspicious 

documents, in which the plagiarised passages are inserted directly or after 

undergoing obfuscation processing. The suspicious documents contain two kinds of 

plagiarism cases: artificial (created automatically) and simulated (created 

manually). The first one, use two types of obfuscation, phrase shuffling and word 

shuffling. The manually created plagiarism simulates a real plagiarism cases by 

using a manual synonym substitution, diacritics insertion and paraphrasing. More 

details about the ExAra-2015 and the obfuscation used are given in Table 2 and 3 

respectively. 

 

5.2. Performance Measures 

The performance of our 2L-APD system is quantified by the character-based macro 

recall and precision, supplemented by two other measures proposed in [43] called 

granularity and plagdet. These measures are computed using the two sets: 

plagiarism cases annotated in the corpus S (actual cases) and the cases detected by 

our system R (detected cases). Let dp be a document that contains plagiarism.  A 

plagiarism case in dp is a 4-tuple s∊ S, where s=< sp, dp, ssr , dsr >, sp is a 

plagiarized passage in dp, and ssr is its original passage in some source document 

dsr .  Let   ∊     denote a plagiarism detection for the document dp, where r=< rp, 

dp, rsr , d’sr >, rp is a potential plagiarized passage in dp, and rsr its source d’sr. We 

say that, s is detected by r iff dsr = d’sr , rp   sp ≠ ø and rsr   dsr = ø. 
• Recall and Precision: recall and precision is the fraction of the true positive part 

in each actual and detected case respectively. Their formulas are given in the 

equations (2) and (3). 

(2)                
 

|  |
∑

⋃         

| |     ;  (3)                    
 

|  |
     ∑

⋃         

| |
         

               {
                               
                                  

 

Neither recall nor precision account for the fact that plagiarism systems may report 

multiple or overlapping detections for the same plagiarism case. To address this 

issue, also a granularity detector is used [29].     

• Granularity: quantifies whether the contiguity between plagiarized text passages 

is properly recognized [43]. The granularity is depicted in the formula (4). 

 (4)                                
 

|  |
∑ |  |     
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where SR⊆S is the set of the actual cases that have been detected, and Rs⊆R are the 
detections of a given s: 

      |                              ,         |                      

• Plagdet: precision, recall, and granularity not allow for an absolute ranking 

among different system [43], plagdet that combines these measures in one 

measure as expressed in the formula (5). 

 (5)                                               
  

(                   )
 

where F1  is the equally-weighted harmonic mean of recall and precision. 

                   Table 2: Details of ExAra-2015 corpus [34] 

      
      Generic 

Information 

Documents number 

Cases number 

Source documents 

Suspicious documents 

1171 

1727 

48.68% 

51.32% 

 

   Plagiarism 

 per document 

Without plagiarism 

With plagiarism  

   Hardly      (1%-20%) 

   Medium   (20%-50%) 

   Much        (50%-80%) 

28.12% 

71.88% 

36.94% 

32.95% 

     2.00% 

 
Length of 

plagiarism case 

Very short (300 chars) 

Short (300-1k chars) 

Medium (1k-3k chars) 

Long (3k-30k chars) 

21.25% 

42.50% 

28.26% 

7.99% 

 
 
Plagiarism type 

and 
obfuscation 

Artificial 

Without obfuscation  

Phrase shuffling  

Word shuffling 

Simulated 

Manual synonym substitution. 

Manual paraphrasing 

88.94% 

  40.30% 

  10.42% 

  38.22% 

11.06% 

   9.79% 
   1.27% 

 

Table 3: Types of plagiarism and obfuscation used in ExAra-2015 corpus  

Type 
Obfuscatio

n 

Description 

Manual       
Synonym 

Substitution 

Replaced some words with their synonyms by using the Microsoft Word 
synonym checker, Almaany dictionary, Arabic WordNet Browser, and the 
synonyms provided by Google translate. 

Added and/or  
removed 

diacritics 

Diacritics in Arabic are optional and their exclusion or inclusions are 

orthographically acceptable. For example: 

الفلسطينية القضية  ≡   … ≡  الفِلسَْطِينيِةّ ُ القضَِيَّة ُ ≡    القضََةُّ الفِلسَطَنَةُ  ≡  الفِلَسْطينيِةّ ُ القضَيةّ ُ  

 
Automatically 
obfuscation 

Phrase shuffling and word shuffling strategy are used to create 

automatically obfuscation cases, e.g. 
   يشارُمصطلحُ   والتاريخيُيشارُبهُللخلافُالسياسيمصطلحُالقضيةُالفلسطينيةُ

 يللخلافُالتاريخيُوالسياس به الفلسطينيةُالقضية    
 

   
 

 
Manual 

Paraphrasing 

The passages to be obfuscated are manually selected from the source 

documents then paraphrased manually, e.g. 
 

ُ السياسيُوُالتاريخيُوُالأزمةُالانسانيةُفيُفلسطينفلسطينيةُمصطلحُيشارُبهُللخلافُالقضيةُال
التاسعُعشرُمماُُفلسطينُمنذُأواخرُالقرنُياسيُفيبدءُالخلافُالس   ٤٨ٓٔ  بدءاُمنُعام

  ُُ الفلسطينية أدىُإلىُأزمةُإنسانيةُأصبحتُتعرفُبالقضية

 



  

5.2. Thresholds  

Before presenting the results, we should mention that the sampling (Tsmp), lexical 

(Tlex) and semantic (Tsem) thresholds are empirically fixed using the training data of 

the AraPlagDet 2015 (Tr-ExAra-2015 corpus) [34]. In Tr-ExAra-2015 each 

suspicious document is associated with an XML document that locates the exact 

position of the plagiarised passages. Additionally, the suspicious documents are 

classified into four sets according to the type of plagiarism used which include: 

without plagiarism, C&P plagiarism, artificial plagiarism (phrase shuffling and 

word shuffling) and simulated plagiarism (synonym substitution, added diacritics 

and paraphrasing). In fact, we have used the C&P and artificial plagiarism cases to 

determine the lexical threshold value Tlex and the simulated plagiarism cases for the 

semantic threshold Tlex. Thus, Tlex is set to 15%, which means that two fingerprints 

describing two different sentences have an intersection less than 15%, and Tsem is 

set to 60% to indicate a potential intelligent plagiarism. Regarding the sampling 

threshold Tsmp, it is adjusted according to n-gram size used. As we have chosen to 

use 3-gram as a unit of chunk, Tsmp is set to 0.008%, 0.01%, and 0.05% respectively 

for selecting 10%, 20% and 50% of all 3-grams. 

5.3. Results 

 
Several variants of 2L-APD were tested to measure the impact of the fingerprint 
resolution and the word embedding level on the detection accuracy. The values of 
the precision, recall , granularity and plagdet for different fingerprint resolution:  
Fine (F), Medium (M) and  Coarse (C) (10%, 20% and 50% off all 3-grams are 
selected receptively), with and without the Word Embedding (WE) detection 
module are shown in Table 4.  The results obtained can be summarized as follows: 
when the fingerprint resolution is Fine, the precision is reasonable where 73% of 
detected cases were correct, but the recall is very low and equal to about 43%. 
When applying the Medium resolution the precision increases slightly to 79%, 
however, the recall is greatly enhanced to 62%. This is due to increased number of 
n-grams selected in the fingerprint (i.e. more information is encoded and used as 
indicative of reused text segments).  For the coarse resolution, the rate of increase is 
not significant compared to the Medium. This means that the medium resolution is 
able to encode sufficient information about the documents to ensure the detection. 
Interestingly, employing the word embedding model significantly enhances the 
recall (with a mean of +24.3%). This is due to the inability to detect the intelligent 
plagiarism in the fingerprint model.  

                         Table 4:  Performance of the 2L-APD on the ExAra-2015 corpus 

    Method Precision Recall Granularity Plagdet 

FP(F) 0.7315 0.4347 1.055 0.5255 
FP(M) 0.7713 0.6251 1.058 0.6631 

FP(C) 0.7856 0.6383 1.059 0.6882 

FP(F)+WE 0.7521 0.6623 1.057 0.6769 

FP(M)+WE 0.8593 0.8781 1.064 0.8308 

FP(C)+WE 0.8413 0.8867 1.068 0.8236 



  

 

5.4. Comparison    

We have compared our best method FP(M)+WE to the ones obtained by Magooda 
(3 methods) [35], Alzahrani [36], Palkovskii (3 methods) and the baseline [34].  
Table 5 shows the overall performances of the plagiarism detectors methods that 
were tested on the ExAra-2015 corpus. As expected, in terms of the recall, plagdet 
and granularity our method outperforms the baseline. The overall best performing 
method is the FP(M)+WE with a gain of +2.89% on plagdet. In term of recall, 
FP(M)+WE leads to an overall recall score of 87.81% against 83.10% for 
Magooda(2). The low recall of other methods due to their inability to detect some 
obfuscation plagiarism cases like manual paraphrasing. 

                          Table 5:  Comparison Results 
Method Precision Recall Granularity Plagdet 

FP(M)+WE 0.859  0.878 1.064 0.831 
Magooda(2) 0.852 0.831 1.069 0.802 

Magooda(3) 0.854 0.759 1.058 0.772 

Magooda(1) 0.805 0.786 1.052 0.767 

Palkovskii(1) 0.997 0.542 1.062 0.627 

Baseline 0.990 0.535 1.209 0.608 

Alzahrani 0.831 0.530 1.186 0.574 
Palkovskii(3) 0.658 0.589 1.161 0.560 

Palkovskii(2) 0.564 0.589 1.163 0.518 

6. Conclusion and Future Work 

In this paper, we presented a Plagiarism Detection system acting at two layers: 
fingerprinting and word embedding.  At the first layer, the system computes the 
fingerprints of all sentences in the source and suspect documents. The comparison 
is then performed between fingerprints rather than original texts. Our contribution 
to such classical approach of plagiarism detection is the introduction of a novel 
selection strategy in which the statistical characteristics of the natural text are used 
to select only the less frequent n-grams as a fingerprint. 

    To push the capabilities of the system further to handle more advanced 

plagiarism cases such obfuscations, synonym substitution and paraphrasing. The 

second layer uses the semantic properties of words characterised in the word 

embedding combined with word alignment, IDF and POS weighting to support the 

identification of the words that are the most descriptive in each textual units. 

    The performance of the system is confirmed in terms of recall which reached 

88% and precision with 85%. Our system outperformed all systems participating in 

the Arabic Plagiarism Detection Shared Task 2015 with a plagiarism detection 

score of 83%. The tests show clearly the ability of the system to handle various 

types of plagiarism including literal plagiarism, reordering, rewording, synonym 

substitution and paraphrasing. 



  

    As our method consists in cutting up the document into sentences, an 

improvement would be to use a sentence2vec model instead of a word2vec model. 

We would also like to further investigate the plagiarism detection task with more 

sophisticated methods, such as Recurrent Neural Network (RNN) and 

Convolutional Neural Networks (CNN) trained on a pre-trained word/sentence 

embedding vectors. 

   While the investigation has been conducted on one application namely the 

plagiarism detection, intuition suggests that an efficient assessment of shared 

information is applicable to other applications such as authorship classification, 

semantic similarity and sentiment analysis. An obvious elaboration would be to 

investigate the performance of the system once adapted to other languages. 
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