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Iterative Solution of Sparse Linear Least Squares

using LU Factorization

Gary W. Howell∗∗ Marc Baboulin††

Abstract

In this paper, we are interested in computing the solution of an overde-
termined sparse linear least squares problem Ax ' b via the normal equa-
tions method. Transforming the normal equations using the L factor from
a rectangular LU decomposition of A usually leads to a better conditioned
problem. Here we explore a further preconditioning by L−1

1 where L1 is
the n × n upper part of the lower trapezoidal m × n factor L. Since the
condition number of the iteration matrix can be easily bounded, we can
determine whether the iteration will be effective, and whether further pre-
conditioning is required. Numerical experiments are performed with the
Julia programming language. When the upper triangular matrix U has
no near zero diagonal elements, the algorithm is observed to be reliable.
When A has only a few more rows than columns, convergence requires
relatively few iterations and the algorithm usually requires less storage
than the Cholesky factor of ATA or the R factor of the QR factorization
of A.

Keywords: Sparse linear least squares, iterative methods, preconditioning,
conjugate gradient algorithm, lsqr algorithm, LU factorization.

1 Introduction

Linear least squares (LLS) problems arise in many high-performance computing
(HPC) applications when the number of linear equations is not equal to the
number of unknown parameters. We consider the overdetermined full rank LLS
problem

min
x∈Rn

‖Ax− b‖2, (1)

with A ∈ Rm×n,m ≥ n and b ∈ Rm.
LLS solvers can be based on either direct methods (e.g., Cholesky factor-

ization of the normal equations, sparse LDLT factorization of the augmented
system, or QR factorization of A), or iterative methods (e.g., preconditioned
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Krylov subspace methods). In this paper, we focus on the iterative conjugate
gradient (CG) solution of the normal equations

ATAx = AT b. (2)

For the CG method, the linear rate of convergence is bounded by the quantity

κ− 1

κ+ 1
,

where κ = cond2(A) =
√
cond2(ATA) is the 2-norm condition number of A

(see [3, p. 289] for more details). Then having a better conditioning of the
normal equations matrix will influence positively the convergence of the solution
of Equation (2) via the CG algorithm.

As with linear systems, a variety of preconditioners have been proposed to
overcome the potential ill-conditioning of the normal equations (see [12] for a
comprehensive overview of these preconditioners). One possibility is to precon-
dition the normal equations by an incomplete Cholesky decomposition of ATA
(see, e.g., the RIF preconditioner [2] or its new left-looking variant in [23]).

There are also approaches based on LU factorization preconditioning [1, 4,
5, 21]. LU preconditioning has been also studied in [14] with the objective of
exploiting the recent progress in sparse LU factorization. For example, both
Matlab and Octave use fast sparse LU factorizations built on the UMFPACK
package [6]. Other direct sparse solvers (e.g., [16, 17, 19, 22]) offer scalable
sparse LU factorizations for large problems and are commonly used in HPC
applications.

For the overdetermined case m > n, we can perform a rectangular LU fac-
torization PAQ = LU of the m × n matrix A, where L is a lower trapezoidal
m×n matrix, U is an upper triangular n×n matrix, P is a permutation matrix
obtained with threshold pivoting (swap of rows so that the lower trapezoidal L
has 1′s on the diagonal) and Q is a permutation matrix obtained from column
pivoting to avoid fill-in in the L and U factors. As L tends to be better condi-
tioned than A [24, p. 231], it was explored in [14] transforming Equation (2) to

LTLy = LT c, (3)

with y = UQTx, and c = Pb, when U is nonsingular. As illustrated in [14], L
is usually better conditioned than A and fewer iterations are required for the L
iteration.

Regarding the storage issues, we plot in Figure 1 the storage required for an
LU factorization of A (with partial pivoting) and for the Cholesky factorization
of ATA for matrices from the Davis collection1 (modified such that most of
these matrices had ten percent more rows than columns). We observe that the
storage of L and U for a nearly square rectangular matrix is usually less than
that of the Cholesky factor of ATA (or equivalently, in exact arithmetic, the R
factor from the QR factorization of A). In fact, if every set of k columns of A

1http://www.cise.ufl.edu/research/sparse/matrices/
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has nonzero entries in at least k+ 1 rows, for all 1 ≤ k ≤ n−1 (i.e. A is “strong
Hall” [6, pp. 83-84]), the storage required by U is always bounded by that of
R (see [8, 9, 10]). Moreover, if the “strong Hall” property holds, the storage
required for L is bounded by that needed for an orthogonal Householder derived
Q, QR = AP [9, 10].
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Figure 1: Storage for LU factorization of A vs Cholesky factorization of ATA.

In this paper, we consider a partition of the lower trapezoidal matrix L as

L =

[
L1

L2

]
where L1 is n× n lower triangular and L2 is (m− n)× n. We explore iterating
with the normal equations in terms of

F = LL−11 =

[
In

L2L
−1
1

]
.

Note that a partition of A =
[
A1

A2

]
(instead of L here) is considered in [5]

where an LU factorization of A1 is used to precondition the normal equations.

In [1], a partition A =
[
A1

A2

]
is also used (where A1 is a set of basis obtained

with an LU factorization), and the augmented system is transformed into an
equivalent symmetric quasi-definite system.

We will show that iterating on LL−11 results in faster convergence than with
L, due to a better conditioning of LL−11 and does not require additional storage.
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Moreover, since a bound on the condition number of LL−11 can be explicitly
computed, this can indicate if further preconditioning is required.

The plan of this paper is as follows. Section 2 motivates the use of LL−11

preconditioning. Section 3 describes the experimental framework including the
test matrices and some implementation issues. Section 4 presents numerical
results on the test matrices. Section 5 concludes the paper.

2 LL−1
1 preconditioning

In this section we motivate our choice to precondition the conjugate gradient
solution of the normal equations by using the matrix F = LL−11 obtained from
the partition of the rectangular matrix L as

L =

[
L1

L2

]
where L1 is square and lower triangular and L2 is (m− n)× n so that

LL−11 =

[
In

L2L
−1
1

]
=

[
In
C

]
with C = L2L

−1
1 . Then Equation (3) becomes

[In|CT ]

[
In
C

]
z = [In|CT ]c,

or equivalently,
FTFz = FT c, (4)

with z = L1UQ
Tx, and c = Pb. Since L1 and U are respectively lower and upper

triangular, x is computed from z using forward and backward substitutions.
For matrices with only a few more rows than columns, explicit computation of
C = L2L

−1
1 may be worthwhile, being easily performed in parallel, and allowing

easy parallelization of the iteration. If we do not explicitly compute C, there is
no additional storage beyond that required for L.

In this paper, we solve Equation (4) using the lsqr algorithm [20], with the
iteration matrix F = LL−11 . The iteration requires multiplying both by F and
FT . We compute

v = Fu =

[
In

L2L
−1
1

]
u =

[
u

L2L
−1
1 u

]
entailing a forward triangular solve with L1. Similarly, we compute

FT v = [In|L−T1 LT
2 ]v = v + L−T1 (LT

2 v),

which requires a triangular backsolve. The multiplications by F and FT take
almost the same number of flops as multiplications by L, but the backward and
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forward solves are likely to be harder to parallelize than multiplication by L. In
the remainder of this paper, the lsqr algorithm where we iterate with

F = LL−11 =

[
I

C

]
instead of A is referred to as lsqrLinvL and is given in Algorithm 1. The
adapted lsqr algorithm which is called in lsqrLinvL is detailed in Algorithm 2.

Algorithm 1 lsqrLinvL

function [x, its] = lsqrLinvL(A, b, tol,maxit)
% A is an input matrix of m rows and n columns
% b is an input m-vector
% tol (convergence tolerance) is a positive input scalar
% maxit is the maximal number of iterations
% output x is an n vector to minimize ‖Ax− b‖2
% its is the actual number of iterations performed

[L,U,prow,qcol] ← lu(A,’vector’);
r ← permute(b,prow);
[x,its] ← lsqr(L,r,tol,maxit);
if (its ≥ maxit),”maxits exceeded”, end
x ← U \ x;
x ← ipermute(qcol,x);

End

Figure 2 compares the condition numbers ofA, L, and C for some rectangular
matrices small enough that we can explicitly compute the SVD in Matlab and
thus the condition number as the ratio of largest and smallest singular values.
These matrices were created in a similar fashion to those discussed in the next
section, with the number of columns at most 5,000. Most had ten per cent more
rows than columns.

We have observed that F = LL−11 is usually better conditioned than L.
Moreover we can easily estimate cond2(F ) even for large matrices. Consider
that

FTF = [In|CT ]

[
In
C

]
= In + CTC,

then we have

σ2
i (F ) = λi(F

TF ) = 1 + λi(C
TC) = 1 + σ2

i (C),

where σi(·) and λi(·) are the singular values and eigenvalues of the considered
matrices. If λmax, λmin denote the largest and smallest eigenvalues of CTC,
and since CTC is real and symmetric, then we have 0 ≤ λmin ≤ λmax. The
condition number of F = LL−11 can be expressed as

cond2(F ) =

√
λmax + 1

λmin + 1
.
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Algorithm 2 lsqr: adapted from Paige and Saunders, 1982

function [x, its] = lsqr(L, b, tol,maxit)
% output x is an n vector to minimize ‖Ax− b‖2
% its is the actual number of iterations performed

% Initialization
β ← ‖b‖2;φb ← β; b← b/β;
x← 0n; δ ← 1; its← 0;
[m,n]←size(L);
L1 ← L[1:n,1:n];
L2 ← L[n+1:m,1:n];
v1 ← L′2u[n+1:m];
v1 ← L′1\u2;
v ← u[1:n]+v1;
ν ← ‖v‖2;
v ← v/ν;
w ← v;
φa ← 1;

% Lanczos iteration
While ((|δ| > tol) and (its < maxit))

% Continue the bidiagonalization
u1 ← L1\v;
u← [v;L2u1]− νu;
β ← ‖u‖2;
u← u/β;
v1 ← L′2 u[n+1:m];
v1 ← L′1\v1;
v1 ← u[1:n]+v1;
v ← v1 − βv;
ν ← ‖v‖2;
v ← v/ν;
% Construct and apply next orthog. transformation
ρ←

√
ρ2b + β2

c← ρb/ρ;
s← β/ρ;
θ ← sν;
ρb ← −cν;
φ← cφb;
φb ← sφb;
% update x,w
δ ← φ/ρ;
φa =

√
|φδ|;

x← x+ δw;
w ← v − (θ/ρ)w;
its← its+ 1;

End
x← L1\x;

End 6



Then we get

cond2(F ) ≤
√
λmax + 1.

In the case where m− n < n, we have λmin = 0, so we get an equality

cond2(F ) =
√
λmax + 1.
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Figure 2: Comparison of the conditioning of various lsqr iteration matrices.

We can estimate λmax with a few iterations of the symmetric power method [11,
p. 406] applied to CTC. A few iterations suffice for a cond2(F ) estimate. So
having computed L, we can easily decide whether further preconditioning is
needed. For the LL−11 preconditioning, the above analysis shows that we can
estimate cond2(F ) for the partial pivoting case |lij | ≤ 1, i > j, and also for
the threshold pivoting case where |lij | is not bounded by 1. Inexpensive esti-
mation of cond2(F ) does need L1 to be lower triangular and nonsingular (so
that the symmetric power method can use forward and backward solves on each
iteration).

3 Experimental framework

In this section, we define the test set for our experiments and the implementation
choices based on the Julia programming language [15].

The numerical experiments are carried out with the lsqr algorithm where
we iterate with

F = LL−11 =

[
I

C

]
,
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using Algorithms 1 and 2. In general, neither C nor L−11 are explicitly computed
(except in some cases described in Section 4). The LU = PAQ factorization is
performed in full precision and with both column and row permutations, using
the UMFPACK routine [7]. UMFPACK chooses the Q column permutations to
reduce the matrix fill-in and the P row permutations to reduce the Gaussian
multipliers size (threshold pivoting). For our numerical experiments, we get L
such that the lij entries satisfy

lii = 1 for i = j, lij = 0 for i < j, |lij | < 10 for i > j

To construct our test problems, we took 235 matrices from the Davis collec-
tion, with most of the matrices having less than a maximum of twenty thousand
rows or columns. For matrices with more columns than rows, we transposed.
Since most matrices were square, we augmented the matrices with one hun-
dred additional rows (or, for square matrices with fewer than 1, 000 columns,
we increased the number of rows by ten per cent). The additional rows were
perturbed copies of randomly selected rows of the original square matrix. The
randomly perturbed entries were the original entries times a factor in the range
[0.9, 1.1], i.e.

aijnew
= (1 + 0.1τij)aij ,

where τij was randomly selected from a uniform distribution on [-1,1]. The
minimum number of columns n was 25, the minimum of m + n was 182, the
maximum of m + n was 39532. The average number of columns was around
5600. The average number of rows was around 7230.

We performed numerical experiments with the Julia language which is a
high-level language for numerical computing and provides good performance
(close to that of a C code). Julia codes require fairly minimal changes from
Matlab or Octave codes, while being much faster, making Julia very suitable
for prototyping HPC algorithms. Wherever there are loops, Julia runs much
faster2. For example, for sparse matrix multiplications [18], a sparse matrix-
vector multiplication Ax in C (gcc in Linux) and Julia (compiled with the
same gcc), the C version was less than ten per cent faster, with Octave much
slower. Moreover converting code from Octave to Julia is much easier than
converting to C or Fortran.

Some of the issues we encountered are as follows: In some instances, we had
to be aware that in the statement A = B for Julia arrays, the copy of B is
“shallow” i.e., no new copy of A is produced, so changes in A also change B.
Though Matlab, Octave and Julia all use sparse LU and QR factorizations
based on SuiteSparse [7], the Julia lufact and qrfact functions do not offer
user options. The lufact wrapper that we used for UMFPACK is the default in
Julia, using a threshold pivoting of 10, and both row and column pivoting. To
disable row scaling, we had to find what line to change in the lufact wrapper for
UMFPACK, else we would have been solving a weighted least squares problem.

Also, using Octave, we could obtain a factorization of the form QR =
[

In
Cdrop

P
]

2See https://julialang.org/benchmarks/ for Julia benchmarks
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(Cdrop is the matrix C on which we apply a drop tolerance, see Section 4), where
we could explicitly obtain the orthogonal matrix Q, upper triangular matrix R,
and column permutation P . Alas the qrfact function in Julia currently returns
a least squares solution, but does not offer options to return R, Q, or P . In
exact arithmetic, RTR = RTQTQR, so in this sense the storage for R from
the Cholesky factorization (cholmod routine from SuiteSparse, as wrapped in
Julia) is the same as the storage for R from the QR factorization. We used

this equivalence as a work-around for the Julia qrfact, so long as
[

In
Cdrop

]
was

not so poorly conditioned that the Cholesky factorization failed.

4 Numerical experiments

We performed julia lufact LU = PAQ decompositions for the 235 matrices
of the test set defined in Section 3.

We plot in Figure 3 the condition number of LL−11 for these 235 matrices.
We observe that LL−11 tends to be acceptably well conditioned (192 of 235 ma-
trices had cond2(LL−11 ) < 400). As noted in Section 2, the condition number
is easily computed, using the symmetric power method. Of the 43 more poorly
conditioned matrices, 29 were among the 47 matrices with more than one hun-
dred rows in C (i.e. correspond to “tall” A matrices), indicating that LL−11

preconditioning is appropriate for near square matrices.

..

●●
●●●●●●●●●●●●●●●●

●●●
●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●
●

●●
●●
●
●●
●●●●

●●

●

●

●
●

●

●

0 50 100 150 200

0
2

4
6

8
10

12

Condition(L inv(L1))

233 sparse matrices, 192 had cond(L inv(L1) < 400

lo
g1

0(
co

nd
(L

 in
v(

L1
))

Figure 3: Condition number of LL−11 for the 235 test matrices.

We plot in Figure 4 the iteration count obtained using test matrices for which
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lsqrLU converged in n iterations (iteration matrix L). For these matrices, we
observe that the convergence is significantly accelerated by iterating on LL−11 .
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After the lsqrLinvL algorithm has converged, a final solve with U is needed.
However we can observe in Figure 5 that for some matrices U may have near
zero diagonal elements. If we consider the normalized (by column norm) size of
the diagonal elements, 30 of the 235 matrices had diagonal values uii such that
|uii|/maxi|uij | < 10−10, so for these matrices neither L nor LL−11 precondition-
ing was judged to be feasible.

We discard 30 matrices because |uii|/maxi|uij | < 10−10. For the remaining
205 of the matrices U , we obtain, as explained in Section 2, an upper bound
K =

√
λmax + 1 of cond2(LL−11 ), where λmax is the largest eigenvalue of CTC

(computed using the symmetric power method.) Then we select the lsqr iter-
ation matrix by the size of K, as follows:

- If K < 400, we use lsqrLinvL (lsqr algorithm iterating with LL−11 ).
This situation concerns 173 of the 205 matrices.

- If 400 < K < 108, we explicity compute C and we perform a drop tolerance
on C by zeroing elements cij such that |cij | < |ci|/K .25, where ci denotes
the maximal entry of the ith column of C, leading to the matrix Cdrop

3.

3 Taking K.25 means for example that if K = 104, then all entries less than 1/10 of the
column max in absolute value are discarded. Taking a constant less than .25 would reduce
fill, but might retard convergence.
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We then compute the Cholesky factor R satisfying

RTR = [In|CT
drop]

[
In

Cdrop

]
,

and we use lsqr iteration with LL−11 R−1 (28 of 205 matrices).

- If K > 108, we have cond2(FTF ) > 1016. Then the Cholesky decompo-
sition in double precision arithmetic gives a floating point error. In this
case, we try lsqr iteration with L (4 of 205 matrices).

The algorithm where we choose, as mentioned above, the iteration matrix
according to the size of K will be referred to as the “hybrid” lsqrLinvL algo-
rithm in the remainder of this paper. In our experiments, we iterated with a
stopping criterion of |δ| < 10−10 in Algorithm 2. The results4 are summarized
in Table 1. In this table, the number of iterations to convergence is expressed as
a multiple of n (number of columns of A) and the storage required is expressed
as a multiple of the nonzero entries of A. As expected, the case 400 < K < 108

requires more storage (×13 in average) due to the use of R but decreases the
number of iterations by a factor 2.3 in average. The decreased storage for the
largest condition numbers is the average storage for A + L + U , which is the
same storage required for K < 400, but with the average computed over a much
smaller set.

4The results are stored in a comma separated file with 235 rows and 19 numbers per line,
loadable as an R language data frame.
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As we can see in Figure 6, when using a drop tolerance on C and then

computing RTR = FT
dropFdrop (where Fdrop =

[
In

Cdrop

]
), the resulting R factor

is relatively dense matrix (R has relatively few entries when A had only 25
columns and many rows).

Cases Iterations Nonzeros
Condition Iteration of Multiple Multiple
Number Matrix 205 of n nnz(A)

K < 400 LL−11 173 .32 n 12.6

400 < K < 108 LL−11 R−1 28 .138 n 165
108 < K L 4 .6 n 6.52

Table 1: Storage and iterations for 205 matrices using the hybrid lsqrLinvL

algorithm. The last two columns give averages over 173, 28, and 4 test matrices,
respectively.
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Figure 6: Fill-in for the Cholesky factorization of FT
dropFdrop.

For each of the 205 matrices, the hybrid lsqrLinvL algorithm converged to
a solution. For 152 of 205 matrices, we have

‖xLinvL − xqr‖|2
‖xLinvL‖2

< 10−8,

where xLinvL and xqr are the solution computed using the hybrid lsqrLinvL

12



and SparseQR algorithms, respectively. When the solutions differ, which of
SparseQR and lsqrLinvL is better in terms of finding x with a lower LLS
residual? Figure 7 plots the log of

‖b−Axqr‖2
‖b−AxLinvL‖2

.

This graph shows that in most cases, the x values do not differ significantly,
so the ratio is 1 and its log is zero. But when x differs (i.e. the log of the
ratio is larger than zero), then residuals are smaller for the hybrid lsqrLinvL

algorithm.
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Before claiming victory of lsqrLinvL over SparseQR, we should note that
for the 53 solutions that differed significantly, ‖x‖2 tended to be larger for the
hybrid lsqrLinvL method than for SparseQR (42 of 53 cases). Then users
concerned with ‖x‖2 might well prefer SparseQR.

Balancing concerns for size of the residual vs. size of the solution can be
thought of as “regularization”. For example, the Tikhonov regularization (see,
e.g., [13, p. 193]) chooses x to minimize the function

T (x) =
√
‖Ax− b‖22 + λ2‖x‖22.

Figure 8 plots the log of the ratio√
‖b−Axqr‖22 + λ2‖xqr‖22

‖b−AxLinvL‖22 + λ2‖xLinvL‖22
,
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with the Tikhonov regularization parameters λ = 10−8 and λ = 10−4. We recall
that for most matrices, ‖xqr − xLinvL‖ is quite small. In these cases, residuals
and solution norms match and the ratio is close to one. In some cases, residuals
and norms do not match, then the ratios T (xqr)/T (xLinvL) are larger than one
(points greater than zero on the plot) indicating that T (x) is larger for SparseQR
than for lsqrLinvL solutions. For λ = 10−8, lsqrLinvL usually gives a solution
with a smaller T (x). For λ = 10−4, the T (xqr) quantity is usually smaller.
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Figure 8: Comparison between Tikhonov regularizations of xqr and xLinvL.

5 Conclusion and future work

When the number of equations is not much larger than the number of variables,
LU factorization usually allows iterative least squares solves with less storage
than QR factorization or Cholesky factorization of the normal equations. More-
over, when the number of equations is not much more than the number of un-
knowns, iterating in the lsqr algorithm using LL−11 usually requires relatively
few iterations for the solution of a least squares problem. A main limitation
is that the method fails when U has near zero diagonal elements, i.e., when
the problem is numerically not overdetermined. The near singularity of U is
typically not discovered until the relatively expensive LU factorization has been
attempted.

As future work, a possible way to further reduce the required storage is to
perform the original LU factorization in a lower precision (or to use an incom-
plete factorization of A). The iteration is then with AU−1L−11 , possibly with a
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preliminary cheaper iteration with
[

I
L2L

−1
1

]
. That iteration can be compared to

the RIF preconditioner [2], which is a sparse Cholesky-like factorization of ATA.
Other future tasks will be to address larger problems using the distributed com-
putation possibilities provided by Julia, and to analyze the resulting execution
time and speedup.
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