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Reconstruction of isotropic conductivities from non smooth electric fields

Introduction

In Electrophysics there are some constraints implicitly satisfied by the electric field in a prescribed conductive material. For example, Alessandrini and Nesi [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF] have shown that a smooth periodic electric field cannot vanish in dimension two, while it may vanish in dimension three as proved in [START_REF] Ancona | Some results and examples about the behavior of harmonic functions and Green's functions with respect to second order elliptic operators[END_REF][START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF]. This three-dimensional specificity of the electric field allows us to derive a surprising property of the Hall effect: the sign of the Hall voltage is indeed inverted in a threedimensional metamaterial inspired by a chain mail armor. The anomalous Hall effect has been first proved theoretically in [START_REF] Briane | Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient[END_REF], then it has been simplified and validated experimentally in [START_REF] Kern | Experimental Evidence for Sign Reversal of the Hall Coefficient in Three-Dimensional Metamaterials[END_REF]. Very recently it has been emphasized simultaneously in Physics Today [START_REF] Miller | Semiconductor metamaterial fools the Hall effect[END_REF] and Nature [START_REF] Notomi | Materials science: Chain mail reverses the Hall effect[END_REF].

Conversely, starting from a regular gradient field ∇u = 0 in R d ( a ) the natural inverse problem is to reconstruct from ∇u a possibly isotropic conductivity σ which satisfies the conductivity equation div (σ∇u) = 0 in R d .

(1.1)

a When d = 2, ∇u = 0 in the periodic case (see [START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF]), otherwise it is obvious that there exist solutions with ∇u vanishing somewhere. A treatment of such cases can be found in [START_REF] Alessandrini | An identification problem for an elliptic equation in two variables[END_REF]. The case d = 3 is quite different, since ∇u may vanish somewhere in the periodic case (see [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF]).
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The gradient field ∇u is then said to be isotropically realizable. This reconstruction problem has been widely studied in the literature in terms of uniqueness, stability or instability, and algorithms of approximate solution (see, e.g., [START_REF] Farcas | An inverse dual reciprocity method for hydraulic conductivity identification in steady groundwater flow[END_REF], [START_REF] Knowles | Parameter identification for elliptic problems[END_REF] and the references therein). The isotropy constraint is actually appropriate in Materials Science, since composite materials are built from isotropic phases. Moreover, the homogeneous conductivity equation (1.1) is satisfied by the local electric fields in periodic composites. We have proved in [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] that any gradient field ∇u which is non-vanishing and regular is isotropically realizable in R d . The main ingredient of this construction is the associated gradient flow

   ∂X ∂t (t, x) = ∇u X(t, x) X(0, x) = x.
for t ∈ R, x ∈ R d .

(1.

2)

The dynamical approach of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] forces the regularity u ∈ C 3 (R d ). However, this smoothness is not compatible with most of composite materials where the gradient is only piecewise regular (for instance regular in each phase of the material). The purpose of the present work is to extend the results of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] to less regular gradient fields. To this end, we study two independent cases which are respectively developed in Section 2 and Section 3.

In Section 2 we assume that the gradient field ∇u is continuous in R d . The idea is to modify the strategy of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] applying the celebrated approach of DiPerna and Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for solving ordinary differential equations in suitable Sobolev spaces. More precisely, we prove (see Theorem 2.1 below) that any gradient field ∇u in

W 1,1 loc (R d ) d is isotropically realizable in R d if ∇u is uniformly continuous in R d , ∆u ∈ L ∞ (R d ) and inf R d |∇u| > 0. (1.3) 
Moreover, any positive function σ ∈ L ∞ loc (R d ) with σ -1 ∈ L ∞ loc (R d ) is shown to be a suitable conductivity if and only if roughly speaking (see Remark 2.3) there exists E, a set of Lebesgue measure zero, such that σ(x) σ X(t, x) = exp ˆt 0 ∆u X(s, x) ds ,

∀ t ∈ R, ∀ x ∈ R d \ E, (1.4) 
where X(•, x) is the gradient flow (1.2). Assumption (1.3) improves significantly the regularity u ∈ C 3 (R d ) which is needed in [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF]. But the price to pay is that the reconstruction of an appropriate conductivity is much more delicate. In particular, by [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] the flow X(•, x) of (1.2) is only continuous for almost everywhere x ∈ R d . However, condition (1.3) is not still satisfactory since it excludes most of the Lipschitz continuous potentials u which naturally arise in composite materials.

In section 3 we study the case of a piecewise regular gradient ∇u in a domain Ω of R d composed by n "generalized" polyhedra Ω k (i.e. obtained from polyhedra through a smooth diffeomorphism). The continuous potential u agrees in each set Ω k to a function u k ∈ C 2 (Ω k ) such that the trajectories of (1.2) flow from an inflow boundary face (on which the outer normal derivative of u k is negative) to an outflow boundary face (on which the outer normal derivative of u k is positive), while the other boundary faces are tangential to ∇u k (see Figure 1). We prove (see Theorem 3.7 below) that there exists a piecewise continuous conductivity σ solution to equation (1.1) if and only if for any contiguous polyhedra Ω j and Ω k of Ω, the normal derivatives satisfy the condition

∂u j ∂ν = ∂u k ∂ν = 0 on ∂Ω j ∩ ∂Ω k or ∂u j ∂ν ∂u k ∂ν > 0 on ∂Ω j ∩ ∂Ω k . (1.5)
In the first case the common boundary face ∂Ω j ∩ ∂Ω k is tangential to the gradient, while in the second case ∂Ω j ∩ ∂Ω k is an inflow (resp. outflow) face of Ω j and an outflow (resp. inflow) face of Ω k . Actually, the picture is a little more constrained: We need to consider a so-called ∇u-admissible domain Ω (see Definition 3.5 below). Figure 2 below represents a ∇u-admissible set, and Figure 3 represents a non-admissible one. We construct step by step a suitable piecewise conductivity σ such that σ = σ k in Ω k as follows. If σ j is already constructed in Ω j , by [START_REF] Bongiorno | A method of characteristics for solving an underground water maps problem[END_REF] and [START_REF] Richter | An inverse problem for the steady state diffusion equation[END_REF] (see Proposition 3.1 for details) there exists a unique positive function σ k ∈ C 1 (Ω k ) solution to the equation div (σ k ∇u k ) = 0 in Ω k , and equal on the inflow or outflow face ∂Ω j ∩ ∂Ω k to the boundary value γ k ∈ C ∂Ω j ∩ ∂Ω k which ensures by virtue of (1.5) the flux continuity condition

σ j ∂u j ∂ν = γ k ∂u k ∂ν on ∂Ω j ∩ ∂Ω k . (1.6)
So, the piecewise continuous function σ = σ k in Ω k is a solution to the equation div (σ∇u) = 0 in the distributional sense of Ω.

In Section 4 the results of Section 3 are illustrated by the case of piecewise constant gradients in some triangulation (see Figure 4 below), and the case of the gradient of a function

u ∈ C(R d ) defined by u(x) := g ± (x 1 ) + f (x 2 , . . . , x d ) in each half-space {± x 1 > 0}. Notation • int (A) denotes the interior of a subset A of R d .
• C(A) denotes the set of continuous functions in a topological space A.

• C k (A) denotes the space of k-differentiable functions in a subset A of R d , and C k c (A) denotes the subspace of C k (A) composed of functions with compact support in A.

• D (Ω) denotes the distributions space in an open set Ω of R d .

• c denotes a positive constant which may vary from line to line.

2 Case where the gradient field is continuous

For u ∈ W 2,1 loc (R d ), the gradient flow X = X(t, x) associated with ∇u is defined (if possible) by    ∂X ∂t (t, x) = ∇u X(t, x) X(0, x) = x. for t ∈ R, x ∈ R d . (2.1) Theorem 2.1. Let u : R d → R be a function satisfying u ∈ W 2,1 loc (R d ), ∇u is uniformly continuous in R d , ∆u ∈ L ∞ (R d ), inf R d |∇u| > 0. (2.2)
Then, there exists a positive function

σ ∈ L ∞ loc (R d ) with σ -1 ∈ L ∞ loc (R d ), solution to the conduc- tivity equation div (σ∇u) = 0 in D (R d ), (2.3) 
the flow X( 

ρ n ∈ C ∞ (R d ), supp (ρ n ) ⊂ B(0, 1/n), ρ n ≥ 0, ˆRd ρ n (x) dx = 1. (2.6) Denote u n := ρ n * u ∈ C ∞ (R d ).
   ∂X n ∂t (t, x) = ∇u n X(t, x) X n (0, x) = x. for t ∈ R, x ∈ R d . (2.8)
By (2.7) the regular case of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF]Theorem 2.15] shows that there exists a unique function

τ n in C ∞ (R d ) satisfying u n X n (τ n (x), x) = 0, ∀ x ∈ R d , (2.9) 
and that, denoting

σ n (x) := exp ˆτn(x) 0 ∆u n X n (s, x) ds for x ∈ R d , (2.10) 
we have div (σ

n ∇u n ) = 0 in R d , (2.11) 
and

σ n (x) σ n X n (t, x) = exp ˆt 0 ∆u n X n (s, x) ds , ∀ x ∈ R d , ∀ t ∈ R.
(2.12)

The main difficulty is now to pass to the limit n → ∞ in equations (2.10), (2.11), (2.12). To this end, we will use the approach of DiPerna and Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for solving ordinary differential equations in Sobolev spaces. First of all, note that by condition (2.2) the field b := ∇u satisfies the condition (49) and (70) of [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], i.e. 

b 1 + |x| ∈ L ∞ (R d ), b ∈ W 1,1 loc (R d ) d and div b ∈ L ∞ (R d ), ( 2 
(s + t, x) = X s, X(t, x) , ∀ s ∈ R, ∀ x ∈ R d \ E t . (2.14)
The image measure λ X (t), for t ∈ R, of the Lebesgue measure λ by X(t, •), i.e. defined by ˆRd ϕ dλ

X (t) = ˆRd ϕ X(t, x) dx, ∀ ϕ ∈ C c (R d ), (2.15) 
has a density in r(t, •) ∈ L ∞ (R d ) with respect to the Lebesgue measure, which satisfies for any

t ∈ R, e -t ∆u L ∞ (R d ) ≤ r(t, •) ≤ e t ∆u L ∞ (R d ) a.e. in R d , (2.16) 
or equivalently, for any t ∈ R and for any ϕ

∈ C c (R d ), ϕ ≥ 0, e -t ∆u L ∞ (R d ) ˆRd ϕ(x) dx ≤ ˆRd ϕ dλ X (t) ≤ e t ∆u L ∞ (R d ) ˆRd ϕ(x) dx.
(2.17)

We will need the following result satisfied by the flows X n and X.

Lemma 2.4.

i) If f ∈ L 1 loc (R d ) then f • X ∈ L 1 loc (R × R d ).
ii) Let f ∈ L 1 loc (R d ), let K be a compact of R d , and let I be a bounded interval of R. Then, we have lim

n→∞ ˆK ˆI f X n (s, x) -f X(s, x) ds dx = 0. (2.18)
iii) Let f n be a non-negative sequence of L 1 loc (R d ) which converges strongly to 0 in L 1 loc (R d ), let K be a compact of R d , and let I be a bounded interval of R. Then, we have

lim n→∞ ˆK ˆI f n X n (s, x) ds dx = 0. (2.19) iv) Let F ∈ L p (R d ) N for N ∈ N, p ∈ [1, ∞), let G ∈ L p (R d ) N
with compact support, where p is the conjugate exponent of p, and let ρ n be a sequence in

C ∞ c (R) satisfying (2.6) with d = 1. Then, we have lim n→∞ ˆRd ˆR ρ n (s) F X(s, x) • G(x) ds dx = ˆRd F (x) • G(x) dx. (2.20)
The proof is divided in five steps.

First step: Convergence of the sequence τ n defined by (2.9). On the one hand, since by (2.2) there exists E, a set of Lebesgue measure zero, such that for any

x ∈ R \ E, d dt u(X(t, x) = |∇u| 2 X(t, x) ≥ inf R d |∇u| 2 > 0, ∀ t ∈ R, there exists a unique τ (x) ∈ R such that u X(τ (x), x) = 0 for a.e. x ∈ R d . (2.21)
On the other hand, by (2.9) we have

|u n (x)| = u n (x) -u n X n (τ n (x), x) = ˆτn(x) 0 |∇u n | 2 X n (t, x) ds ≥ m 2 |τ n (x)| a.e. x ∈ R d .
(2.22) Hence, since u n converges uniformly to u in any compact set K of R d , the sequence τ n is bounded in L ∞ (K). Let x ∈ R d be satisfying (2.22). Up to a subsequence still denoted by n, τ n (x) converges to some τ x in R. Using the uniform convergence of X n (•, x) to X(•, x) and passing to the limit in equality (2.9) we get that u X(τ x , x) = 0, which by uniqueness of τ (x) implies that τ x = τ (x). Therefore, we obtain for the whole sequence

lim n→∞ τ n (x) = τ (x) for a.e. x ∈ R d . (2.23) Since τ is measurable and ∆u • X ∈ L 1 loc (R × R d ) by Lemma 2.4, applying Fubini's theorem to the function (t, x) → 1 [0,τ (x)] (t) ∆u X(t, x) in L 1 loc (R × R d ), we can define the measurable function σ by σ(x) := exp ˆτ(x) 0 ∆u X(s, x) ds for a.e. x ∈ R d . (2.24) 
Second step: Strong convergence of the sequence

w n := ln σ n to w := ln σ in L 1 loc (R d ). Let K be a compact set of R d . We have ˆK |w n (x) -w(x)| dx ≤ ˆK ˆτn(x) 0 ∆u X n (s, x) -∆u X(s, x) ds dx =: E 1 n + ˆK ˆτn(x) 0 ∆u n -∆u X n (s, x) ds dx =: E 2 n + ˆK ˆτn(x) τ (x) ∆u X(s, x) ds dx =: E 3 n .
(2.25)

Since by the first step the sequence τ n is uniformly bounded in any compact set of R d , there exist a bounded interval I of R such that

E 1 n ≤ ˆK ˆI ∆u X n (s, x) -∆u X(s, x) ds dx.
Hence, applying the limit (2.18) of Lemma 2.4 with f := ∆u, we get that E 1 n tends to 0. Similarly, applying (2.19) with the sequence f n := ∆u n -∆u = ρ n * ∆u -∆u which converges strongly to 0 in L 1 loc (R d ), we get that E 2 n tends to 0. Finally, since τ n is uniformly bounded in the compact K and ∆u ∈ L ∞ (R d ), by convergence (2.23) and the Lebesgue dominated convergence theorem we get that

0 ≤ E 3 n ≤ c ˆK |τ n -τ | dx -→ n→∞ 0.
Therefore, passing to the limit n → ∞ in (2.25) we obtain that the sequence w n converges strongly to w in L 1 loc (R d ).

Third step: Derivation of the conductivity equation (2.3). By (2.10) the function w n is defined by

w n (x) = ˆτn(x) 0 ∆u n X n (s, x) ds for x ∈ R d . (2.26)
Since by the first step τ n is bounded in any compact of R d and ∆u

n = ρ n * ∆u is bounded in L ∞ (R d ), the sequence w n is bounded in L ∞ loc (R d ).
Hence, by the second step the sequence σ n = e wn converge strongly to σ = e w in L 1 loc (R d ). Moreover, the sequence ∇u n converges to ∇u in C loc (R d ). Therefore, passing to the limit in equation (2.11) we get that σ is solution to the conductivity equation (2.3) in the distributions sense. Finally, both σ and σ -1 belong to

L ∞ loc (R d ), since σ is the limit in L 1 loc (R d ) of the sequence σ n = e wn which is bounded in L ∞ loc (R d ).
Fourth step: Proof of formula (2.4). Formula (2.12) reads as

w n (x) -w n X n (t, x) = ˆt 0 ∆u n X n (s, x) ds, ∀ t ∈ R, ∀ x ∈ R d . (2.27)
On the one hand, writing

w n X n (t, x) -w X(t, x) ≤ w X n (t, x) -w X(t, x) + |w n -w| X n (t, x) ,
applying limit (2.18) with f := w, and applying limit (2.19) with f n := |w n -w| which converges strongly to 0 in L 1 loc (R d ) by the second step, we get that

w n X n (t, •) -→ n→∞ w X(t, •) strongly in L 1 loc (R d ), for any t ∈ R. (2.28) 
On the other hand, let K be a compact set of R d and t ∈ R. We have ˆK ˆt 0 ∆u n X n (s, x) ds -ˆt 0 ∆u X(s, x) ds dx

≤ ˆt 0 ˆK ∆u X n (s, x) -∆u X(s, x) + ∆u n -∆u X n (s, x) dx ds .
Then, applying successively limit (2.18) with f := ∆u and limit (2.19) with

f n := |∆u n -∆u| in [0, t] × K, we get that ˆt 0 ∆u n X n (s, x) ds -→ n→∞ ˆt 0 ∆u X(s, x) ds strongly in L 1 loc (R d ), for any t ∈ R. (2.29)
Therefore, using the limits (2.28) and (2.29) in (2.27), there exists E t , a set of Lebesgue measure zero depending on t, such that for any t ∈ R, 

w(x) -w X(t, x) = ˆt 0 ∆u X(s, x) ds, ∀ x ∈ R d \ E t . ( 2 
∂ ∂t σ X(t, x) = ∇u(x) • ∇ x σ X(t, x) in D (R × R d ).
(2.31)

Moreover, taking the derivative with respect to t in (2.5) (at this point (2.4) seems to be not sufficient) we have

∂ ∂t σ X(t, x) = -σ X(t, x) ∆u X(t, x) in D (R × R d ).
Equating the two previous equations we get that

∇ x σ X(t, x) • ∇u(x) + σ X(t, x) ∆u X(t, x) = 0 in D (R × R d ).
Since ∇u ∈ W 1,1 loc (R d ), the previous equation can be read as 

div x σ X(t, x) ∇u(x) = σ X(t, x) ∆u(x) -∆u X(t, x) in D (R × R d ), which implies that for any ϕ ∈ C ∞ c (R) and ψ ∈ C ∞ c (R d ), ˆRd ˆR ϕ(t) σ X(t, x) ∇u(x) • ∇ψ(x) dt dx = ˆRd ˆR ϕ(t) ψ(x) σ X(t,
σ(x)∇u(x) • ∇ψ(x) dx = 0, ∀ ψ ∈ C ∞ c (R d ),
or equivalently the conductivity equation (2.3).

Proof of Lemma 2.4. i) Let I be a bounded interval of R and let K be a compact set of R d . We have for any t ∈ I and x ∈ K,

X n (t, x) ≤ |x| + ˆt 0 ∇u n X n (s, x) ds .
Moreover, the uniform continuity of ∇u in R d and the equality ∇u n = ρ n * ∇u imply the existence of a constant c > 0 such that

|∇u n (y)| ≤ c |y| + c, ∀ n ∈ N, ∀ y ∈ R d .
We thus deduce that

X n (t, x) ≤ c + c ˆt 0 |X n (s, x)| ds , ∀ n ∈ N, ∀ t ∈ I, ∀ x ∈ K.
Hence, by Gronwall's inequality (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Section 17.3]) there exists a constant c > 0 such that

X n (t, x) ≤ c e c |t| , ∀ n ∈ N, ∀ t ∈ I, ∀ x ∈ K. (2.33)
Therefore, there exists a compact K of R d and E, a set of Lebesgue measure zero, such that

X n (t, x), X(t, x) ∈ K, ∀ n ∈ N, ∀ t ∈ I, ∀ x ∈ K \ E. (2.34) Let f ∈ L 1 loc (R d ), and let f n be a sequence in C ∞ c (R d ) which converges strongly to f in L 1 loc (R d
). We will show that f n • X converges strongly to some function g in L 1 (I × K). By [12, Theorem II.3.1)] and [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]Theorem III.2] 

f n • X is in L 1 loc (R × R d ).
Let O be a bounded open set of R d containing the compact set K, and let ψ be a non-negative function in C c (O) which is equal to 1 in K. By (2.34) and estimate (2.17) we have for any p, q ∈ N, ˆI ˆK

f p (X(t, x)) -f q (X(t, x)) dt dx ≤ ˆI dt ˆRd ψ(X(t, x)) f p (X(t, x)) -f q (X(t, x)) dx = ˆI dt ˆRd ψ |f p -f q | dλ X (t) ≤ c ˆO |f p -f q |.
Hence, f n • X is a Cauchy sequence in L 1 (I × K) and thus converges strongly to some function g in L 1 (I × K). Therefore, due to the arbitrariness of I, K the sequence f n • X converges strongly to some function 

g in L 1 loc (R × R d ).
∈ C c (O), ˆI dt ˆRd ϕf dλ X (t) = ˆI dt ˆO ϕ(x) f (x) r(t, x) dx = lim n→∞ ˆI dt ˆO ϕ(x) f n (x) r(t, x) dx = lim n→∞ ˆI dt ˆRd ϕf n dλ X (t) = lim n→∞ ˆI ˆRd (ϕf n ) X(t, x) dx = ˆI dt ˆRd ϕ X(t, x) g(x) dx,
which, due to the arbitrariness of I, O, ϕ, implies that f

• X = g ∈ L 1 loc (R × R d ). ii) Let I be a bounded interval of R and let K be a compact set of R d . Let ϕ ∈ C ∞ c (R d ) be an approximation of f in L 1 (R d ). We have lim sup n→∞ ˆK ˆI f X n (s, x) -f X(s, x) ds dx ≤ lim sup n→∞ ˆK ˆI ϕ X n (s, x) -ϕ X(s, x) ds dx + lim sup n→∞ ˆK ˆI |f -ϕ| X n (s, x) ds dx + ˆK ˆI |f -ϕ| X(s, x) ds dx.
(2.35)

On the one hand, the uniform convergence of X n (•, x) to X(•, x) in I combined with the continuity of ϕ yields that ˆI ϕ X n (s, x) -ϕ X(s, x) ds -→ n→∞ 0 a.e. x ∈ K, and estimate (2.33) combined with the continuity of ϕ gives that ˆI ϕ X n (s, x) -ϕ X(s, x) ds ≤ c a.e. x ∈ K.

Hence, by the Lebesgue dominated convergence theorem lim n→∞ ˆK ˆI ϕ X n (s, x) -ϕ X(s, x) ds dx = 0.

(2.36)

Then, since by (2.34) there exists a set E, of Lebesgue measure zero, such that 

1 K (x) ≤ min 1 K (X(t, x)), 1 K (X n (t, x)) , ∀ n ∈ N, ∀ t ∈ I, ∀ x ∈ R d \ E, ( 2 
≤ lim sup n→∞ ˆI ˆRd 1 K |f -ϕ| X n (s, x) dx ds + ˆI ˆRd 1 K |f -ϕ| X(s, x) dx ds = lim sup n→∞ ˆI ˆRd 1 K (y) |f -ϕ|(y) λ Xn (s)(dy) ds + ˆI ˆRd 1 K (y) |f -ϕ|(y) λ X (s)(dy) ds ≤ c f -ϕ L 1 ( K) .
Therefore, putting this and limit (2.36) in (2.35) we deduce the desired limit (2.18).

iii) Let I be a bounded interval of R, let K be a compact set of R d , and let K be a compact set of R d satisfying (2.34). Let f n be a non-negative sequence of L 1 loc (R d ) which converges strongly to 0 in L 1 loc (R d ). Repeating the argument of ii) using inequality (2.37) and the estimate (2.17) with X n in place of X, we get that

lim sup n→∞ ˆK ˆI f n X n (s, x) ds dx ≤ lim sup n→∞ ˆI ˆRd 1 K f n X n (s, x) ds dx ≤ lim sup n→∞ ˆI ˆRd 1 K (y) f n (y) λ Xn (s)(dy) ds ≤ c lim sup n→∞ f n L 1 ( K) = 0, which yields (2.19). iv) Let F ∈ L p loc (R d ) N for N ∈ N, p ∈ [1, ∞), and let G ∈ L p (R d ) N whose support is included in a compact set K of R d . Consider a compact set K of R d satisfying (2.34) with I = [-1, 1]
and K, i.e. there exists a set E, of Lebesgue measure zero, such that

1 K X(t, x) = 1, ∀ t ∈ [-1, 1], ∀ x ∈ K \ E. Let Φ ∈ C ∞ c (R d ) N be an approximation of F in L p ( K) N . By (2.6) we have ˆRd ˆR ρ n (s) F X(s, x) • G(x) ds dx - ˆRd F (x) • G(x) dx = ˆRd ˆR ρ n (s) Φ X(s, x) -Φ(x) • G(x) ds + ˆRd ˆR ρ n (s) 1 K (F -Φ) X(s, x) -1 K (F -Φ) (x) • G(x) ds dx.
Then, by the Hölder inequality combined with estimate (2.16) we get that lim sup

n→∞ ˆRd ˆR ρ n (s) F X(s, x) • G(x) ds dx - ˆRd F (x) • G(x) dx ≤ lim sup n→∞ ˆRd ˆR ρ n (s) Φ X(s, x) -Φ(x) • G(x) ds dx + c F -Φ L p ( K) N G L p (K) N .
(2.38) By the continuity of Φ we have ˆR ρ n (s) Φ X(s, x) -Φ(x) ds -→ n→∞ 0 a.e. x ∈ R d .

Moreover, we have

ˆR ρ n (s) Φ X(s, x) -Φ(x) ds ≤ 2 Φ L ∞ (R d ) N a.e. x ∈ R d , so that ˆR ρ n (s) Φ X(s, x) -Φ(x) ds • G(x) ≤ c |G(x)| a.e. x ∈ R d .
Hence, since G ∈ L 1 (R d ) N due to its compact support, the Lebesgue dominated convergence theorem implies that

lim n→∞ ˆRd ˆR ρ n (s) Φ X(s, x) -Φ(x) • G(x) ds dx = 0.
Using this in (2.38) we thus obtain limit (2.20).

3 Case where the gradient field has jumps

In this section we will consider a gradient field which is piecewise regular in a finite number of so-called gradient-admissible domains.

Gradient-admissible domain

The starting point is the following result first due to Bongiorno, Valente [START_REF] Bongiorno | A method of characteristics for solving an underground water maps problem[END_REF], and well reformulated by Richter [START_REF] Richter | An inverse problem for the steady state diffusion equation[END_REF]. Let Γ -be the inflow boundary of Ω, i.e. the subset of ∂Ω on which the outer normal derivative of u is negative: ∂u ∂ν < 0, and let Γ + be the outflow boundary of Ω, i.e. the subset of ∂Ω on which the outer normal derivative of u is positive: ∂u ∂ν > 0. Then, each point of Ω belongs to a unique trajectory t → X(t, x) which flows from Γ -to Γ + . Moreover, there exists a unique positive function σ ∈ C 1 (Ω) taking prescribed values on Γ - (resp. on Γ + ) which is solution to the equation div (σ∇u) = 0 in Ω. Remark 3.2. Actually, in [START_REF] Richter | An inverse problem for the steady state diffusion equation[END_REF] the existence and the uniqueness of the conductivity σ taking previous values on the inflow boundary Γ -is proved under the weaker assumption inf Ω min (|∇u|, ∆u) > 0.

However, we will need the stronger condition (3.1) in the sequel.

Proof of Proposition 3.1. The proof can be found in [START_REF] Richter | An inverse problem for the steady state diffusion equation[END_REF]. We will give another expression of the conductivity σ following Theorem 2.1. Let γ be a positive function in C 1 (Γ -). For a fixed x ∈ Ω, the trajectory t ∈ [τ -(x), τ + (x)] → X(t, x) flows from the inflow boundary Γ -to the outflow boundary Γ + , where τ -(x) < 0 < τ + (x) and X τ ± (x), x ∈ Γ ± . Let y = X(τ, x) be a point on the same trajectory. Note that by the semi-group property of the flow we have

X τ -(x), x = X τ -(y), y = X τ -(y), X(τ, x) = X τ -(y) + τ, x , hence τ -(y) = τ -(x) -τ . Now,
we can define the conductivity σ γ along the trajectory by

σ γ X(t, x) := γ X(τ -(x), x) exp ˆτ-(x) t ∆u X(s, x) ds for t ∈ [τ -(x), τ + (x)]. (3.2)
Formula (3.2) does not depend on the point y = X(τ, x) on the same trajectory, since

ˆt τ -(y) ∆u X(s, y) ds = ˆt τ -(x)-τ ∆u X(s + τ, x) ds = ˆt+τ τ -(x)
∆u X(s, x) ds, which implies that σ γ X(t, y) = σ γ X(t + τ, x) . Moreover, it is immediate that formula (3.2) implies formula (2.5). Therefore, by Theorem 2.1 σ γ is a solution to the equation div (σ γ ∇u) = 0 in Ω, and σ γ = γ on Γ -. Conversely, consider a positive function σ ∈ C 1 (Ω) such that div (σ∇u) = 0 in Ω, and σ = γ on Γ -. From the equality ∇σ • ∇u + σ ∆u = 0 in Ω, we deduce that for any x ∈ Ω,

d dt ln σ(X(t, x) = -∆u X(t, x) , ∀ t ∈ [τ -(x), τ + (x)], then σ(x) σ X(t, x) = exp ˆt 0 ∆u X(s, x) ds , ∀ t ∈ [τ -(x), τ + (x)].
This combined with (3.2) implies that for any x ∈ Ω,

σ(x) γ X(τ -(x), x) = σ(x) σ X(τ -(x), x) = exp ˆτ-(x) 0 ∆u X(s, x) ds = σ γ (x) γ X(τ -(x), x)
.

Therefore, we obtain that σ = σ γ in Ω, which shows the uniqueness of the conductivity σ γ .

We can now state the definition of a gradient-admissible set. 

Piecewise regular gradient field

In connection with the definition 3.3 of a gradient-admissible set, we focus on a so-called admissible domain defined as follows.

Definition 3.5. Let Ω be a bounded domain of R d . The set Ω is said to be admissible if it is decomposed into "generalized open polyhedra" (obtained from polyhedra through a smooth diffeomorphism) Ω j,k for j ∈ {1, . . . , n k } and k ∈ {1, . . . , n}, where some of the domains Ω 1,k may agree, satisfying:

i) each polyhedron Ω j,k is a ∇u j,k -admissible domain with u j,k ∈ C 2 (Ω j,k ); ii) each internal face of the chain Ω 1,k → Ω 2,k → • • • → Ω n k ,k made of n k contiguous domains,
is an inflow boundary for one domain and an outflow boundary for the contiguous domain, or equivalently

∂u j,k ∂ν ∂u j-1,k ∂ν > 0 on ∂Ω j,k ∩ ∂Ω j-1,k for any j ∈ {2, . . . , n k }, (3.3) 
where ν is the outer normal of ∂Ω j,k ;

iii) each external face of the chain

Ω 1,k → Ω 2,k → • • • → Ω n k ,k is -either a boundary part of ∂Ω,
or a surface tangential to some ∇u j,k ,

or an inflow or outflow boundary of Ω 1,k which is (possibly

) connected to another chain Ω 1,k = Ω 1,j → Ω 2,j → • • • → Ω n j ,j .
Example 3.6.

1. Figure 2 represents an admissible domain Ω composed of the n = 4 chains

       Ω 1,1 → Ω 2,1 → Ω 3,1 → Ω 4,1 Ω 1,1 = Ω 1,2 → Ω 2,2 Ω 1,1 = Ω 1,3 → Ω 2,3 → Ω 3,3 Ω 1,4 → Ω 2,4
.

Ω 1,1 = Ω 1,2 = Ω 1,3 Ω 2,1 Ω 1,4 Ω 2,3 Ω 2,4 Ω 3,3 Ω 2,2 Ω 4,1 Ω 3,1 i o o o i i i i i i o o o o

Inflow(i) or ouflow(o) boundary faces

Boundary of Ω

Flow trajectories

Surfaces tangential to the gradient The three first chains are connected to the same set Ω 1,1 . The fourth one is separated from three others by surfaces which are tangential to the gradient. 3 is composed of n = 1 chain made of 4 ∇u k -admissible sets.

The domain Ω of Figure

It is not admissible, since the chain Ω 1 → Ω 2 → Ω 3 → Ω 4 has an external boundary which is neither a boundary part of ∂Ω nor a surface tangential to some gradient ∇u k . This creates a conflict for defining a suitable conductivity σ k in each domain Ω k (see Remark 3.8, 2. below).

Theorem 3.7. Let Ω be an admissible domain composed of ∇u j,k -admissible open sets Ω j,k for j ∈ {1, . . . , n k } and k ∈ {1, . . . , n}, according to Definition 3.5, and let u ∈ C(Ω) be such that u = u j,k in Ω j,k . Then, there exists a piecewise continuous positive conductivity σ such that

σ |Ω k,j ∈ C 1 Ω k,j for j ∈ {1, . . . , n k } and k ∈ {1, . . . , n}, div (σ∇u) = 0 in D (Ω). (3.4) 
Conversely, let Ω be a bounded domain of R d composed of n generalized polyhedra Ω k , and let u be a function in

C(Ω) such that u k := u |Ω k ∈ C 2 (Ω k ) and Ω k is a ∇u k -admissible domain for k ∈ {1, . . . , n}. Assume that σ is a positive function in C(Ω) such that σ k := σ |Ω k ∈ C 1 (Ω k )
and div (σ∇u) = 0 in D (Ω). Then, for any contiguous polyhedra Ω j and Ω k , the common face Γ j,k := ∂Ω j ∩ ∂Ω k is either a surface tangential to ∇u, or an inflow (resp. outflow) boundary of Ω j and an outflow (resp. inflow) boundary of Ω k .

Proof of Theorem 3.7. The idea is to construct in each chain Ω

1,k → Ω 2,k → • • • → Ω n k ,k
for k ∈ {1, . . . , n}, successively the conductivities σ 1,k , . . . , σ n k ,k . To this end, the conductivity σ j-1,k being constructed in the domain Ω j-1,k for some j ∈ {2, . . . , n k }, we will choose a suitable positive continuous function γ j,k on the inflow or outflow boundary face ∂Ω j,k ∩ ∂Ω j-1,k , which

Βoundary of Ω

Flow trajectories

Inflow or ouflow boundary faces

Ω 1 Ω 2 Ω 3 Ω 4 Figure 3: A non-admissible domain Ω with n = 1 chain: Ω 1 → Ω 2 → Ω 3 → Ω 4
• determines the conductivity σ j,k in the ∇u j,k -admissible domain Ω j,k by Proposition 3.1,

• satisfies the flux continuity condition through the surface ∂Ω j,k ∩ ∂Ω j-1,k .

For k ∈ {1, . . . , n}, fix the conductivity equal to 1 on the inflow or outflow boundary face of Ω 1,k , which by Proposition 3.1 determines a unique conductivity

σ 1,k ∈ C 1 (Ω 1,k ) such that div (σ 1,k ∇u) = 0 in Ω 1,k .
Next, using an induction argument we will construct a suitable piecewise continuous conductivity along the chain Ω 1,k → • • • → Ω n k ,k . Assume that for some j ∈ {2, . . . , n k }, we have built a piecewise conductivity σ = σ i,k in Ω i,k for i ∈ {1, . . . , j -1}, solution to the equation

div (σ∇u) = 0 in int Ω 1,k ∪ ∪ j-1 i=2 (Ω i,k ∪ Γ i,k ) , where Γ i,k := ∂Ω i,k ∩ ∂Ω i-1,k is the common face of Ω j,k and Ω j-1,k . By the condition (3.3) on Γ j,k there exists a positive function γ j,k ∈ C(Γ j,k ) such that γ j,k ∂u j,k ∂ν = σ j-1,k ∂u j-1,k ∂ν on Γ j,k , (3.5) 
where ν is the outer normal of ∂Ω j,k . Since by the assumption ii) of Definition 3.5 Γ j,k is an inflow or outflow boundary face of the ∇u j,k -admissible domain Ω j,k , by Proposition 3.1 there exists a positive conductivity σ j,k ∈ C(Ω j,k ) taking the value γ j,k on Γ j,k and solution to the equation div (σ j,k ∇u) = 0 in Ω j,k . Then, equality (3.5) reads as the flux continuity condition through Γ j,k . It follows that the conductivity σ := σ i,k in Ω i,k for i ∈ {1, . . . , j}, is solution to the equation div (σ∇u) = 0 in int Ω 1,k ∪ ∪ j i=2 (Ω i,k ∪ Γ i,k ) , which concludes the induction proof. Therefore, we has just constructed a piecewise continuous positive function

σ = σ j,k in Ω j,k solution to div (σ∇u) = 0 in int Ω 1,k ∪ ∪ n k j=2 (Ω j,k ∪ Γ j,k ) . (3.6)
Now, according to Definition 3.5 consider the partition (K i ) 1≤i≤p of {1, . . . , n} such that the sets Ω 1,k agree to the same set Ω 1,k i (k i ∈ K i ) for any k ∈ K i and i ∈ {1, . . . , p}. Since for each i ∈ {1, . . . , p} the chains Ω 1,k → Ω 2,k → • • • → Ω n k ,k are connected to the set Ω 1,k i for any k ∈ K i , by the definition (3.6) of the piecewise continuous conductivity σ we thus have div (σ∇u) = 0 in int

k∈K i Ω 1,k i ∪ ∪ n k j=2 (Ω j,k ∪ Γ j,k )
for any i ∈ {1, . . . , p}.

(3.7)

Moreover, by the assumption iii) of Definition 3.5 we have 

∂u ∂ν = 0 on ∂ k∈K i Ω 1,k i ∪ ∪ n k j=2 (Ω j,k ∪ Γ j,k ) \ ∂Ω
ˆ k∈K i [Ω1,k i ∪ ∪ n k j=2 (Ω j,k ∪Γ j,k )]
σ∇u • ∇ϕ dx = 0, which implies that the piecewise continuous conductivity σ of (3.6) is solution to the equation div (σ∇u) = 0 in D (Ω).

Conversely, let Ω be a bounded domain of R d composed of n generalized polyhedra Ω k for k ∈ {1, . . . , n}. Let u ∈ C(Ω) be such that

u k := u |Ω k ∈ C 2 (Ω k ), and Ω k is ∇u k -admissible.
Assume that σ is a positive piecewise continuous function such that σ k := σ |Ω k ∈ C 1 (Ω k ) and div (σ∇u) = 0 in D (Ω). Consider two contiguous polyhedra Ω j and Ω k , the common face of which Γ j,k := ∂Ω j ∩ ∂Ω k is not a surface tangential to ∇u. The flux continuity condition through Γ j,k reads as

σ j ∂u j ∂ν = σ k ∂u k ∂ν on Γ j,k , (3.9) 
where ν is the outer normal to ∂Ω j , which implies that

∂u j ∂ν ∂u k ∂ν > 0 on Γ j,k .
Therefore, Γ j,k is an inflow (resp. outflow) boundary face of Ω j , and an outflow (resp. inflow) boundary face of Ω k . The proof of Theorem 3.7 is now complete.

Remark 3.8.

1. In the case of Figure 2 the domain Ω is composed of 9 polyhedra Ω j,k grouped into 4 chains with 11 internal faces. The step by step construction of Theorem 3.7 reads as follows:

• We prescribe the conductivity on the say inflow face ∂Ω 1,1 ∩ ∂Ω 2,3 of Ω 1,1 , which determines the conductivity σ 1,1 . Then, ∂Ω 1,1 ∩ ∂Ω 2,1 and ∂Ω 1,1 ∩ ∂Ω 2,2 are outflow faces of Ω 1,1 .

• We choose successively the conductivities on the inflow face ∂Ω 1,1 ∩ ∂Ω 2,1 of Ω 2,1 , the outflow face ∂Ω 2,1 ∩ ∂Ω 3,1 of Ω 3,1 , and the outflow face ∂Ω 3,1 ∩ ∂Ω 4,1 of Ω 4,1 , which determine the conductivities σ 2,1 , σ 3,1 , σ 4,1 ensuring the flux continuity conditions on

∂Ω 1,1 ∩ ∂Ω 2,1 , ∂Ω 2,1 ∩ ∂Ω 3,1 , ∂Ω 3,1 ∩ ∂Ω 4,1 .
• We choose the conductivity on the inflow face ∂Ω 1,1 ∩∂Ω 2,2 of Ω 2,2 , which determines the conductivity σ 2,2 ensuring the flux continuity condition on ∂Ω 1,1 ∩ ∂Ω 2,2 .

• We choose successively the conductivities on the outflow face ∂Ω 1,1 ∩ ∂Ω 2,3 of Ω 2,3 and the inflow face ∂Ω 2,3 ∩ ∂Ω 3,3 of Ω 3,3 , which determine the conductivities σ 2,3 , σ 3,3 ensuring the flux continuity conditions on ∂Ω 1,1 ∩ ∂Ω 2,3 , ∂Ω 2,3 ∩ ∂Ω 3,3 .

• We prescribe the conductivity on the say inflow face ∂Ω 

∈ R 2 such that ∇u = λ k in Ω k for k ∈ {1, . . . , n}. (4.2) 
This imposes the flux continuity conditions

(λ k -λ k-1 ) • ξ k = 0, ∀ k ∈ {2, . . . , n} and (λ 1 -λ n ) • ξ 1 = 0. (4.3)
Up to decrease the value of n we can also assume that

λ k -λ k-1 = 0, ∀ k ∈ {2, . . . , n} and λ 1 -λ n = 0. (4.4)
Similarly to the case of Figure 3 (see Remark 3.8, 2.) the chain Ω 1 → Ω 2 → • • • → Ω n does not satisfy the condition iii) of Definition 3.5. Indeed, the existence of constant conductivities σ k in Ω k satisfying the flux continuity condition (3.9) reads as

σ k det (ξ k , λ k ) = σ k-1 det (ξ k , λ k-1 ) , ∀ k ∈ {2, . . . , n} and σ n det (ξ 1 , λ n ) = σ 1 det (ξ 1 , λ 1 ) ,

Boundary of Ω

Flow trajectories

Surface tangential to the gradient Inflow or ouflow boundary faces which thus implies the constraint

ξ 1 ξ 2 ξ ξ 4 ξ 3 Ω 2 Ω 3 Ω 1 Ω 4,2 Ω 4,1
n k=1 det (ξ k , λ k ) = det (ξ 1 , λ n ) n k=2 det (ξ k , λ k-1 ) . (4.5) 
A less restrictive alternative is to assume that for some k ∈ {1, . . . , n}, say k = n without loss of generality, there exists a vector ξ ∈ R 2 satisfying ξ ∈ Ω n \ {0} and ξ λ n .

( 

n,2 → Ω 1 → • • • → Ω n-1 → Ω n,1
satisfies the conditions i) and iii) of Definition 3.5 (see Figure 4 and compare to Figure 3). Then, taking into account conditions (4.3) and (4.4) the condition ii) of Definition 3.5 is equivalent to 

det (ξ k , λ k ) det (ξ k , λ k-1 ) > 0, ∀ k ∈ {2, . . . , n} and det (ξ 1 , λ 1 ) det (ξ 1 , λ n ) > 0. ( 4 
=                              det (

Example 2

Let f be a function in W 2,∞ loc (R d-1 ) for d ≥ 2, and let g, h be 2 functions in C 2 (R) such that        f satisfies condition (2.2) in R d-1 , g(0) = h(0), g , h are uniformly continuous in R and g (t) h (t) = 0, ∀ t ∈ R. Due to the separation of the variables x 1 and x , the gradient flow X = (X 1 , X ) associated with ∇u 1 satisfies

                 ∂X 1 ∂t (t, x 1 ) = g X 1 (t, x 1 ) X 1 (0, x 1 ) = x 1 , ∂X ∂t (t, x ) = ∇ x f X (t, x) X (0, x ) = x for t ∈ R, x = (x 1 , x ) ∈ R d , which yields                X 1 (t, x 1 ) = G -1 t + G(x 1 ) X 1 (0, x 1 ) = x 1 , ∂X ∂t (t, x ) = ∇ x f X (t, x) X (0, x) = x for t ∈ R, x = (x 1 , x ) ∈ R d , (4.14) 
where G -1 is the inverse function of the primitive G of 1/g in R such that G(0) = 0. For a.e.

x ∈ R d , the flow X(•, x) reaches the surface {x 1 = 0} at the time τ 1 (x) = -G(x 1 ) which implies X 1 τ 1 (x), x 1 = 0. Then, by Theorem 2.1 and formula (2.24) with u 1 , for any constant λ > 0, the gradient ∇u 1 is realizable with the continuous conductivity 

where H is the primitive of 1/h in R such that H(0) = 0. Choosing λ = h (0)/g (0) > 0 by (4.13), we get the flux continuity condition across the interface {x 1 = 0}, i.e.

σ 1 (0, x ) ∂u 1 ∂x 1 (0, x ) = σ 2 (0, x ) ∂u 2 ∂x 1 (0, x ) = h (0) for x ∈ R d-1 .

Therefore, the gradient ∇u is realizable with the piecewise continuous conductivity

σ(x) =              h (0) g (x 1 ) exp ˆ-G(x 1 ) 0 ∆ x f X (s, x ) ds if x ∈ (0, ∞) × R d-1 h (0) h (x 1 ) exp ˆ-H(x 1 ) 0 ∆ x f X (s, x ) ds if x ∈ (-∞, 0) × R d-1 .
(4.17)

  Finally, by estimate (2.16) we have for any bounded interval I of R, any bounded open set O of R d and any function ϕ

Proposition 3 . 1 ([ 16 ,

 3116 Lemma 2]). Let Ω be a bounded domain (i.e. a connected open set) of R d , and let u ∈ C 2 (Ω) such that inf Ω

Definition 3 . 3 .Figure 1 :

 331 Figure 1: The trajectories in Ω flow from Γ -to Γ +

Figure 2 :

 2 Figure 2: An admissible domain Ω composed of n = 4 chains

Figure 4 :

 4 Figure 4: Triangulation of Ω by the cones Ω 1 , Ω 2 , Ω 3 , and Ω 4 = int Ω 4,1 ∪ Ω 4,2 with ξ λ 4

(4. 9 ) 4 . 1 .

 941 Remark We can also extend the previous two-dimensional example to dimension three replacing the open cones (4.1) as follows. Let Ω be an open set of R 3 which is star-shaped with respect to the origin. Let ξ 1 , . . . , ξ n be n ≥ 3 non-zero vectors of R 3 such that the open conesΩ i,j,k := Ω ∩ r ξ i + s ξ j + t ξ k , r, s, t > 0 if det (ξ i , ξ j , ξ k ) = 0, (4.10) do not contain any vector ξ . For example, if (e 1 , e 2 , e 3 ) is a basis of R 3 and n = 6 with ξ 1 = e 1 , ξ 2 = e 2 , ξ 3 = e 3 , ξ 4 = -e 1 , ξ 5 = -e 2 , ξ 6 = -e 3 , there are 8 open cones of type (4.10).

( 4 . 11 )

 411 Consider the function u ∈ C(R d ) defined byu(x) = u 1 (x 1 , x ) := g(x 1 ) + f (x ) if (x 1 , x ) ∈ Ω 1 := (0, ∞) × R u 2 (x 1 , x ) := h(x 1 ) + f (x ) if (x 1 , x ) ∈ Ω 2 := (-∞, 0) × R,(4.12)so that u satisfies the conditions i) and iii) (which is empty there) of Definition 3.5. Moreover, the function ∇u is piecewise continuous in R d , and condition ii) of Definition 3.5 is reduced to g (0) h (0) > 0. (4.13)

σ 1 (

 1 x) = λ exp ˆ-G(x 1 ) 0 g X 1 (s, x 1 ) + ∆ x f X (s, x ) ds for x ∈ R d , which using the change of variable t = X 1 (s, x 1 ) = G -1 s + G(x 1 ) yields σ 1 (x) = λ g (0) g (x 1 ) exp ˆ-G(x 1 ) 0 ∆ x f X (s, x ) ds for a.e. x ∈ R d . (4.15)Similarly, the gradient ∇u 2 is realizable in R d with the continuous conductivityσ 2 (x) = h (0) h (x 1 ) exp ˆ-H(x 1 ) 0 ∆ x f X (s, x ) ds for a.e. x ∈ R d ,

  •, x) is well defined by (2.1) for a.e. x ∈ R d , and σ satisfies the following: for any t ∈ R, there exists a set E t , of Lebesgue measure zero depending on t, such that holds for any t ∈ R and any x ∈ R d \ E, then σ is solution to equation (2.3).

	Conversely, if there exists E, a set of Lebesgue measure zero, and a positive function σ in
	L ∞ loc (R d ) such that	σ(x) σ X(t, x)	= exp	ˆt 0	∆u X(s, x) ds	(2.5)
	Remark 2.2. Assumptions (2.2) replace the smoothness u ∈ C 3 (R d ) which is needed in [6].
	Remark 2.3. The set E of Lebesgue measure zero where formula (2.5) is not satisfied by x
	does not depend on t, while the set E t does depend on t in formula (2.4). Hence, formula (2.5)
	is stronger than (2.4). Both formulas are equivalent if for instance X, ∆u and σ are continuous.
	Proof of Theorem 2.1. Let (ρ n ) n≥1 be a sequence of mollifiers satisfying
		σ(x) σ X(t, x)	= exp	ˆt 0	∆u X(s, x) ds , ∀ x ∈ R d \ E t .	(2.4)

  Since by (2.2) ∇u is uniformly continuous in R d , the sequence ∇u n = ρ n * ∇u converges uniformly to ∇u in R d .

		Hence, by the last inequality of (2.2) there
	exists a constant m > 0 such that	
	inf R d	|∇u n | ≥ m > 0 for n large enough.	(2.7)
	Let X		

n (t, x) be the flow associated with ∇u n defined by

  .[START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF] since any uniformly continuous function f (x) in R d is bounded by an affine function of |x|. Hence, by virtue of[START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] Theorem III.2], the flow X n (•, x) converges in C loc (R) to the unique flow X(•, x) ∈ C 1 (R d ) d defined by (2.1) for a.e. x ∈ R d . Moreover, X satisfies the semi-group property: for any t ∈ R, there exists a set E t , of Lebesgue measure zero depending on t, such that X

  Formula (2.5) implies the conductivity equation(2.3). Let σ be a positive function in L ∞ loc (R d ) satisfying formula(2.4). First of all by (2.2) the function b(t, x) := ∇u(x) satisfies the assumptions ( * ), ( * * ) of [12, Theorem II.3.1)] and assumptions (49), (70) of[START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] Theorem III.2]. Then, by virtue of[START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] Theorem II.3.1)] and[START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] Theorem III.2] the function σ X(t, x) is solution to the transport equation

.30) or equivalently formula

(2.4

).

Remark 2.5. A direct proof of (2.4) would consist in replacing x by X(t, x) in the definition (2.24) of σ(x) and to use the semi-group property

(2.14)

, to obtain the desired formula (2.4). However, since the function τ involving in (2.24) is only defined a.e. in R d by (2.21), it is not clear that for an admissible point x of τ , X(t, x) for t ∈ R, is also an admissible point of τ .

Fifth step:

  .37) using the estimate (2.17) satisfied by the image measure λ X (s) with ∆u and the similar one satisfied by λ Xn (s) with ∆u n , we get that

	lim sup	ˆK	ˆI |f -ϕ| X n (s, x) ds dx +	ˆK	ˆI |f -ϕ| X(s, x) ds dx
	n→∞				

  for any i ∈ {1, . . . , p}.

		(3.8)
	Let ϕ ∈ C ∞ c (Ω). Therefore, integrating by parts and using (3.7), (3.8) we get that
	ˆΩ σ∇u • ∇ϕ dx =	p
		i=1

  1,4 ∩ ∂Ω 2,4 of Ω 1,4 , which determines the conductivity σ 1,4 . Then, we choose the conductivity on the ouflow face ∂Ω 1,4 ∩ ∂Ω 2,4 of Ω 2,4 , which determines the conductivity σ 2,4 ensuring the flux continuity condition on ∂Ω 1,4 ∩ ∂Ω 2,4 .• The 4 remaining faces ∂Ω 4,1 ∩ ∂Ω 2,2 , ∂Ω 2,2 ∩ ∂Ω 3,3 , ∂Ω 2,3 ∩ ∂Ω 2,4 , ∂Ω 2,1 ∩ ∂Ω 1,4 aretangential to the gradient, and thus satisfy the flux continuity conditions.2. In the case of Figure2the domain Ω is made of one chain composed of 4 polyhedra. For example, we prescribe the conductivity on the say inflow face ∂Ω 1 ∩ ∂Ω 2 of Ω 1 . Then, the flux continuity conditions on the faces ∂Ω 1 ∩ ∂Ω 2 , ∂Ω 2 ∩ ∂Ω 3 , ∂Ω 3 ∩ ∂Ω 4 determine successively the conductivities σ k in Ω k for k = 1, 2, 3, 4. But then the flux continuity condition on the face ∂Ω 1 ∩ ∂Ω 4 does not hold in general.

	4 Examples
	4.1 Example 1

Let Ω be an open set of R 2 which is star-shaped with respect to the origin. Let ξ 1 , . . . , ξ n be n ≥ 2 non-zero vectors of R 2 such that the open cones

Ω k := s ξ k + t ξ k+1 , , s, t > 0 for 1 ≤ k ≤ n -1 Ω n := s ξ 1 + t ξ n , , s, t > 0 for k = n, (

4

.1) do not contain any vector ξ j . Consider a function u ∈ C(Ω) of finite element type P 1 (see, e.g. [11, Section 2.2], i.e. there exists constant vectors λ k

  .8) Therefore, by Theorem 3.7 ∇u is isotropically realizable in Ω if and only if condition (4.8) holds true. Finally, due to condition (4.8) a suitable piecewise constant conductivity is given by σ

  ξ 1 , λ n ) det (ξ 1 , λ 1 ) in Ω 1 det (ξ 1 , λ n ) det (ξ 1 , λ 1 )

		k j=2	det (ξ j , λ j-1 ) det (ξ j , λ j )	in Ω k	for 2 ≤ k ≤ n -1
	det (ξ 1 , λ n ) det (ξ 1 , λ 1 )	n j=2	det (ξ j , λ j-1 ) det (ξ j , λ j )	in Ω n,1
		1		in Ω n,2 .
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