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Abstract
Mean embeddings provide an extremely flexible
and powerful tool in machine learning and statis-
tics to represent probability distributions and de-
fine a semi-metric (MMD, maximum mean dis-
crepancy; also called N-distance or energy dis-
tance), with numerous successful applications.
The representation is constructed as the expec-
tation of the feature map defined by a kernel. As
a mean, its classical empirical estimator, how-
ever, can be arbitrary severely affected even by a
single outlier in case of unbounded features. To
the best of our knowledge, unfortunately even
the consistency of the existing few techniques
trying to alleviate this serious sensitivity bottle-
neck is unknown. In this paper, we show how the
recently emerged principle of median-of-means
can be used to design estimators for kernel mean
embedding and MMD with excessive resistance
properties to outliers, and optimal sub-Gaussian
deviation bounds under mild assumptions.

1. Introduction
Kernel methods (Aronszajn, 1950) form the backbone of a
tremendous number of successful applications in machine
learning thanks to their power in capturing complex relations
(Schölkopf & Smola, 2002; Steinwart & Christmann, 2008).
The main idea behind these techniques is to map the data
points to a feature space (RKHS, reproducing kernel Hilbert
space) determined by the kernel, and apply linear methods
in the feature space, without the need to explicitly compute
the map.

One crucial component contributing to this flexibility and
efficiency (beyond the solid theoretical foundations) is the
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versatility of domains where kernels exist; examples include
trees (Collins & Duffy, 2001; Kashima & Koyanagi, 2002),
time series (Cuturi, 2011), strings (Lodhi et al., 2002), mix-
ture models, hidden Markov models or linear dynamical
systems (Jebara et al., 2004), sets (Haussler, 1999; Gärtner
et al., 2002), fuzzy domains (Guevara et al., 2017), dis-
tributions (Hein & Bousquet, 2005; Martins et al., 2009;
Muandet et al., 2011), groups (Cuturi et al., 2005) such as
specific constructions on permutations (Jiao & Vert, 2016),
or graphs (Vishwanathan et al., 2010; Kondor & Pan, 2016).

Given a kernel-enriched domain (X,K) one can represent
probability distributions on X as a mean

µP =

∫
X

ϕ(x)dP(x) ∈ HK , ϕ(x) := K(·, x),

which is a point in the RKHS determined by K. This rep-
resentation called mean embedding (Berlinet & Thomas-
Agnan, 2004; Smola et al., 2007) induces a semi-metric1

on distributions called maximum mean discrepancy (MMD)
(Smola et al., 2007; Gretton et al., 2012)

MMD(P,Q) = ‖µP − µQ‖HK
. (1)

With appropriate choice of the kernel, classical integral
transforms widely used in probability theory and statistics
can be recovered by µP; for example, if X equipped with the
scalar product 〈·, ·〉 is a Hilbert space, the kernel K(x, y) =
e〈x,y〉 gives the moment-generating function, K(x, y) =

eγ‖x−y‖
2
2 (γ > 0) the Weierstrass transform. As it has been

shown (Sejdinovic et al., 2013) energy distance (Baringhaus
& Franz, 2004; Székely & Rizzo, 2004; 2005)—also known
as N-distance (Zinger et al., 1992; Klebanov, 2005) in the
statistical literature—coincides with MMD.

Mean embedding and maximum mean discrepancy have
been applied successfully, in kernel Bayesian inference
(Song et al., 2011; Fukumizu et al., 2013), approximate
Bayesian computation (Park et al., 2016), model criticism
(Lloyd et al., 2014; Kim et al., 2016), two-sample (Bar-
inghaus & Franz, 2004; Székely & Rizzo, 2004; 2005; Har-
chaoui et al., 2007; Gretton et al., 2012) or its differential pri-
vate variant (Raj et al., 2018), independence (Gretton et al.,
2008; Pfister et al., 2017) and goodness-of-fit testing (Jitkrit-
tum et al., 2017; Balasubramanian et al., 2017), domain

1Fukumizu et al. (2008); Sriperumbudur et al. (2010) provide
conditions when MMD is a metric, i.e. µ is injective.
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adaptation (Zhang et al., 2013) and generalization (Blan-
chard et al., 2017), change-point detection (Harchaoui &
Cappé, 2007), probabilistic programming (Schölkopf et al.,
2015), post selection inference (Yamada et al., 2018), dis-
tribution classification (Muandet et al., 2011; Zaheer et al.,
2017) and regression (Szabó et al., 2016; Law et al., 2018),
causal discovery (Mooij et al., 2016; Pfister et al., 2017),
generative adversarial networks (Dziugaite et al., 2015; Li
et al., 2015; Binkowski et al., 2018), understanding the dy-
namics of complex dynamical systems (Klus et al., 2018;
2019), or topological data analysis (Kusano et al., 2016),
among many others; Muandet et al. (2017) provide a recent
in-depth review on the topic.

Crucial to the success of these applications is the effi-
cient and robust approximation of the mean embedding
and MMD. As a mean, the most natural approach to esti-
mate µP is the empirical average. Plugging this estimate
into Eq. (1) produces directly an approximation of MMD,
which can also be made unbiased (by a small correction)
or approximated recursively. These are the V-statistic, U-
statistic and online approaches (Gretton et al., 2012). Kernel
mean shrinkage estimators (Muandet et al., 2016) represent
an other successful direction: they improve the efficiency
of the mean embedding estimation by taking into account
the Stein phenomenon. Minimax results have recently been
established: the optimal rate of mean embedding estima-
tion given N samples from P is N−1/2 (Tolstikhin et al.,
2017) for discrete measures and the class of measures with
infinitely differentiable density when K is a continuous,
shift-invariant kernel on X = Rd. For MMD, using N1 and
N2 samples from P and Q, it isN−1/2

1 +N
−1/2
2 (Tolstikhin

et al., 2016) in case of radial universal kernels defined on
X = Rd.

A critical property of an estimator is its robustness to con-
taminated data, outliers which are omnipresent in currently
available massive and heterogenous datasets. To the best
of our knowledge, systematically designing outlier-robust
mean embedding and MMD estimators has hardly been
touched in the literature; this is the focus of the current pa-
per. The issue is particularly serious in case of unbounded
kernels when for example even a single outlier can ruin
completely a classical empirical average based estimator.
Examples for unbounded kernels are the exponential kernel
(see the example above about moment-generating functions),
polynomial kernel, string, time series or graph kernels.

Existing related techniques comprise robust kernel density
estimation (KDE) (Kim & Scott, 2012): the authors ele-
gantly combine ideas from the KDE and M-estimator litera-
ture to arrive at a robust KDE estimate of density functions.
They assume that the underlying smoothing kernels2 are

2Smoothing kernels extensively studied in the non-parametric
statistical literature (Györfi et al., 2002) are assumed to be non-

shift-invariant on X = Rd and reproducing, and interpret
KDE as a weighted mean in HK . The idea has been (i)
adapted to construct outlier-robust covariance operators in
RKHSs in the context of kernel canonical correlation anal-
ysis (Alam et al., 2018), and (ii) relaxed to general Hilbert
spaces (Sinova et al., 2018). Unfortunately, the consis-
tency of the investigated empirical M-estimators is unknown,
except for finite-dimensional feature maps (Sinova et al.,
2018), or as density function estimators (Vandermeulen &
Scott, 2013).

To achieve our goal, we leverage the idea of Median-Of-
meaNs (MON). Intuitively, MONs replace the linear opera-
tion of expectation with the median of averages taken over
non-overlapping blocks of the data, in order to get a robust
estimate thanks to the median step. MONs date back to Jer-
rum et al. (1986); Alon et al. (1999); Nemirovski & Yudin
(1983) for the estimation of the mean of real-valued random
variables. Their concentration properties have been recently
studied by Devroye et al. (2016); Minsker & Strawn (2017)
following the approach of Catoni (2012) for M-estimators.
These studies focusing on the estimation of the mean of real-
valued random variables are important as they can be used
to tackle more general prediction problems in learning the-
ory via the classical empirical risk minimization approach
(Vapnik, 2000) or by more sophisticated approach such as
the minmax procedure (Audibert & Catoni, 2011).

In parallel to the minmax approach, there have been several
attempts to extend the usage of MON estimators from R
to more general settings. For example, Minsker (2015);
Minsker & Strawn (2017) consider the problem of estimat-
ing the mean of a Banach-space valued random variable
using “geometrical” MONs. The estimators constructed by
Minsker (2015); Minsker & Strawn (2017) are computa-
tionally tractable but the deviation bounds are suboptimal
compared to those one can prove for the empirical mean
under sub-Gaussian assumptions. In regression problems,
Lugosi & Mendelson (2019a); Lecué & Lerasle (2018) pro-
posed to combine the classical MON estimators on R in
a “test” procedure that can be seen as a Le Cam test es-
timator (Le Cam, 1973). The achievement in (Lugosi &
Mendelson, 2019a; Lecué & Lerasle, 2018) is that they
were able to obtain optimal deviation bounds for the re-
sulting estimator using the powerful so-called small-ball
method of Koltchinskii & Mendelson (2015); Mendelson
(2015). This approach was then extended to mean estima-
tion Rd by Lugosi & Mendelson (2019b) providing the first
rate-optimal sub-Gaussian deviation bounds under minimal
L2-assumptions. The constants of Lugosi & Mendelson
(2019a); Lecué & Lerasle (2018); Lugosi & Mendelson
(2019b) have been improved by Catoni & Giulini (2017)
for the estimation of the mean in Rd under L4-moment

negative functions integrating to one.
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assumption and in least-squares regression under L4/L2-
condition that is stronger than the small-ball assumption
used by Lugosi & Mendelson (2019a); Lecué & Lerasle
(2018). Unfortunately, these estimators are computationally
intractable; their risk bounds however serve as an impor-
tant baseline for computable estimators such as the minmax
MON estimators in regression (Lecué & Lerasle, 2019).

Motivated by the computational intractability of the tour-
nament procedure underlying the first rate-optimal sub-
Gaussian deviation bound holding under minimal assump-
tions in Rd (Lugosi & Mendelson, 2019b), Hopkins (2018)
proposed a convex relaxation with polynomial, O(N24)
complexity where N denotes the sample size. Cherapanam-
jeri et al. (2019) have recently designed an alternative con-
vex relaxation requiring O(N4 + dN2) computation which
is still rather restrictive for large sample size and infeasible
in infinite dimension.

Our goal is to extend the theoretical insight of Lugosi
& Mendelson (2019b) from Rd to kernel-enriched do-
mains. Particularly, we prove optimal sub-Gaussian de-
viation bounds for MON-based mean estimators in RKHS-s
which hold under minimal second-order moment assump-
tions. In order to achieve this goal, we use a different (min-
max (Audibert & Catoni, 2011; Lecué & Lerasle, 2019))
construction which combined with properties specific to
RKHSs (the mean-reproducing property of mean embed-
ding and the integral probability metric representation of
MMD) give rise to our practical MONK procedures. Thanks
to the usage of medians the MONK estimators are also ro-
bust to contamination.

Section 2 contains definitions and problem formulation. Our
main results are given in Section 3. Implementation of the
MONK estimators is the focus of Section 4, with numerical
illustrations in Section 5.

2. Definitions & Problem Formulation
In this section, we formally introduce the goal of our paper.

Notations: Z+ is the set of positive integers. [M ] :=
{1, . . . ,M}, uS := (um)m∈S , S ⊆ [M ]. For a set
S, |S| denotes its cardinality. E stands for expectation.
medq∈[Q] {zq} is the median of the (zq)q∈[Q] numbers. Let
X be a separable topological space endowed with the Borel
σ-field, x1:N denotes a sequence of i.i.d. random variables
on X with law P (shortly, x1:N ∼ P). K : X× X→ R is a
continuous (reproducing) kernel on X, HK is the reproduc-
ing kernel Hilbert space associated toK; 〈·, ·〉K := 〈·, ·〉HK

,
‖·‖K := ‖·‖HK

.3 The reproducing property of the kernel

3HK is separable by the separability of X and the continu-
ity of K (Steinwart & Christmann, 2008, Lemma 4.33). These
assumptions on X andK are assumed to hold throughout the paper.

means that evaluation of functions in HK can be represented
by inner products f(x) = 〈f,K(·, x)〉K for all x ∈ X,
f ∈ HK . The mean embedding of a probability measure P
is defined as

µP =

∫
X

K(·, x)dP(x) ∈ HK , (2)

where the integral is meant in Bochner sense; µP exists iff∫
X
‖K(·, x)‖K dP(x) =

∫
X

√
K(x, x)dP(x) < ∞. It is

well-known that the mean embedding has mean-reproducing
property Pf := Ex∼Pf(x) = 〈f, µP〉K for all f ∈ HK , and
it is the unique solution of the problem:

µP = argminf∈HK

∫
X

‖f −K(·, x)‖2K dP(x) . (3)

The solution of this task can be obtained by solving the
following minmax optimization

µP = argminf∈HK
sup
g∈HK

J(f, g), (4)

with J(f, g) = Ex∼P
[
‖f −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
.

The equivalence of (3) and (4) is obvious since the expecta-
tion is linear. Nevertheless, this equivalence is essential in
the construction of our estimators because we will below
replace the expectation by a non-linear estimator of this
quantity. More precisely, the unknown expectations are
computed by using the Median-of-meaN estimator (MON).
Given a partition of the dataset into blocks, the MON
estimator is the median of the empirical means over each
block. MON estimators are naturally robust thanks to the
median step.

More precisely, the procedure goes as follows. For any map
h : X→ R and any non-empty subset S ⊆ [N ], denote by
PS := |S|−1

∑
i∈S δxi the empirical measure associated to

the subset xS and PSh = |S|−1
∑
i∈S h(xi); we will use

the shorthand µS := µPS . Assume that N ∈ Z+ is divisible
by Q ∈ Z+ and let (Sq)q∈[Q] denote a partition of [N ] into
subsets with the same cardinality |Sq| = N/Q (∀q ∈ [Q]).
The Median Of meaN (MON) is defined as

MONQ [h]= medq∈[Q]

{
PSqh

}
= medq∈[Q]

{〈
h, µSq

〉
K

}
,

where assuming that h ∈ HK the second equality is a con-
sequence of the mean-reproducing property of µP. Specifi-
cally, in case of Q = 1 the MON operation reduces to the
classical mean: MON1 [h] = N−1

∑N
n=1 h(xn).

We define the minmax MON-based estimator associated to
kernel K (MONK) as

µ̂P,Q = µ̂P,Q(x1:N ) ∈ argminf∈HK
sup
g∈HK

J̃(f, g), (5)

where for all f, g ∈ HK

J̃(f, g) =

= MONQ
[
x 7→ ‖f −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
.
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When Q = 1, since MON1 [h] is the empirical mean, we
obtain the classical empirical mean based estimator: µ̂P,1 =
1
N

∑N
n=1K(·, xn).

One can use the mean embedding (2) to get a semi-metric
on probability measures: the maximum mean discrepancy
(MMD) of P and Q is

MMD(P,Q) := ‖µP − µQ‖K = sup
f∈BK

〈f, µP − µQ〉K ,

where BK = {f ∈ HK : ‖f‖K ≤ 1} is the closed unit
ball around the origin in HK . The second equality shows
that MMD is a specific integral probability metric (Müller,
1997; Zolotarev, 1983). Assume that we have access to
x1:N ∼ P, y1:N ∼ Q samples, where we assumed the size
of the two samples to be the same for simplicity. Denote
by PS,x := 1

|S|
∑
i∈S δxi the empirical measure associated

to the subset xS (PS,y is defined similarly for y), µSq,P :=
µPSq,x , µSq,Q := µPSq,y . We propose the following MON-
based MMD estimator

M̂MDQ(P,Q)= sup
f∈BK

med
q∈[Q]

{〈
f, µSq,P − µSq,Q

〉
K

}
. (6)

Again, with the Q = 1 choice, the classical V-statistic based
MMD estimator (Gretton et al., 2012) is recovered:

M̂MD(P,Q) = sup
f∈BK

 1

N

∑
n∈[N ]

f(xn)− 1

N

∑
n∈[N ]

f(yn)


=

√√√√ 1

N2

∑
i,j∈[N ]

(
Kx
ij +Ky

ij − 2Kxy
ij

)
, (7)

where Kx
ij = K(xi, xj),K

y
ij = K(yi, yj) and Kxy

ij =
K(xi, yj) for all i, j ∈ [N ]. Changing in Eq. (7)

∑
i,j∈[N ]

to
∑
i,j∈[N ],i6=j in case of the Kx

ij and Ky
ij terms gives the

(unbiased) U-statistic based MMD estimator

1

N(N − 1)

∑
i,j∈[N ]
i 6=j

(
Kx
ij +Ky

ij

)
− 2

N2

∑
i,j∈[N ]

Kxy
ij . (8)

Our goal is to lay down the theoretical foundations of the
µ̂P,Q and M̂MDQ(P,Q) MONK estimators: study their
finite-sample behaviour (prove optimal sub-Gaussian devia-
tion bounds) and establish their outlier-robustness proper-
ties.

A few additional notations will be needed throughout the
paper. S1\S2 is the difference of set S1 and S2. For
any linear operator A : HK → HK , denote by ‖A‖ :=
sup06=f∈HK

‖Af‖K / ‖f‖K the operator norm of A. Let
L(HK) = {A : HK → HK linear operator : ‖A‖ <∞}
be the space of bounded linear operators. For any A ∈
L(HK), let A∗ ∈ L(HK) denote the adjoint of A, that

is the operator such that 〈Af, g〉K = 〈f,A∗g〉K for all
f, g ∈ HK . An operator A ∈ L(HK) is called non-
negative if 〈Af, f〉K ≥ 0 for all f ∈ HK . By the sepa-
rability of HK , there exists a countable orthonormal basis
(ONB) (ei)i∈I in HK . A ∈ L(HK) is called trace-class if
‖A‖1 :=

∑
i∈I

〈
(A∗A)

1/2
ei, ei

〉
K
< ∞ and in this case

Tr(A) :=
∑
i∈I 〈Aei, ei〉K <∞. If A is non-negative and

self-adjoint, then A is trace class iff Tr(A) <∞; this will
hold for the covariance operator (ΣP, see Eq. (9)). A ∈
L(HK) is called Hilbert-Schmidt if ‖A‖22 := Tr (A∗A) =∑
i∈I 〈Aei, Aei〉K < ∞. One can show that the defi-

nitions of trace-class and Hilbert-Schmidt operators are
independent of the particular choice of the ONB (ei)i∈I .
Denote by L1(HK) := {A ∈ L(HK) : ‖A‖1 <∞} and
L2(HK) := {A ∈ L(HK) : ‖A‖2 <∞} the class of trace-
class and (Hilbert) space of Hilbert-Schmidt operators on
HK , respectively. The tensor product of a, b ∈ HK

is (a ⊗ b)(c) = a 〈b, c〉K , (∀c ∈ HK), a ⊗ b ∈
L2(HK) and ‖a⊗ b‖2 = ‖a‖K ‖b‖K . L2(HK) ∼=
HK ⊗ HK where the r.h.s. denotes the tensor product
of Hilbert spaces defined as the closure of

{∑n
i=1 ai ⊗

bi : ai, bi ∈ HK (i ∈ [n]), n ∈ Z+
}

. Whenever∫
X
‖K(·, x)⊗K(·, x)‖2 dP(x) =

∫
X
K(x, x)dP(x) <

∞, let ΣP denote the covariance operator

ΣP = Ex∼P ([K(·, x)− µP]⊗ [K(·, x)− µP]) ∈ L2(HK),
(9)

where the expectation (integral) is again meant in
Bochner sense. ΣP is non-negative, self-adjoint, more-
over it has covariance-reproducing property 〈f,ΣPf〉K =
Ex∼P[f(x)− Pf ]2. It is known that ‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.

3. Main Results
Below we present our main results on the MONK es-
timators, followed by a discussion. We allow that Nc
elements((xnj )

Nc
j=1 ) of the sample x1:N are arbitrarily cor-

rupted (In MMD estimation {(xnj , ynj )}
Nc
j=1 can be contam-

inated). The number of corrupted samples can be (almost)
half of the number of blocks, in other words, there exists
δ ∈ (0, 1/2] such that Nc ≤ Q(1/2 − δ). If the data are
free from contaminations, then Nc = 0 and δ = 1/2. Us-
ing these notations, we can prove the following optimal
sub-Gaussian deviation bounds on the MONK estimators.

Theorem 1 (Consistency & outlier-robustness of µ̂P,Q). As-
sume that ΣP ∈ L1(HK). Then, for any η ∈ (0, 1) such that
Q = 72δ−2 ln (1/η) satisfies Q ∈ (Nc/(1/2 − δ), N/2),
with probability at least 1− η,

‖µ̂P,Q − µP‖K

≤
12
(
1 +
√

2
)

δ
max

(√
6 ‖ΣP‖ ln (1/η)

δN
, 2

√
Tr (ΣP)

N

)
.



MONK – Outlier-Robust Mean Embedding Estimation by Median-of-Means

Theorem 2 (Consistency & outlier-robustness of
M̂MDQ(P,Q)). Assume that ΣP and ΣQ ∈ L1(HK).
Then, for any η ∈ (0, 1) such that Q = 72δ−2 ln (1/η)
satisfies Q ∈ (Nc/(1/2 − δ), N/2), with probability at
least 1− η,∣∣∣M̂MDQ(P,Q)−MMD(P,Q)

∣∣∣
≤

12 max

(√
(‖ΣP‖+‖ΣQ‖) ln(1/η)

δN , 2
√

Tr (ΣP)+Tr (ΣQ)
N

)
δ

.

Proof (sketch). The technical challenge is to get the opti-
mal deviation bounds under the (mild) trace-class assump-
tion. The reasonings for the mean embedding and MMD
follow a similar high-level idea; here we focus on the for-
mer. First we show that the analysis can be reduced to
the unit ball in HK by proving that ‖µ̂P,Q − µP‖K ≤
(1 +

√
2)rQ,N , where rQ,N = supf∈BK MONQ

[
x 7→

〈f,K(·, x)− µP〉K
]

= supf∈BK med
q∈[Q]

{r(f, q)} with

r(f, q) =
〈
f, µSq − µP

〉
K

. The Chebyshev inequality
with a Lipschitz argument allows us to control the prob-
ability of the event {rQ,N ≤ ε} using the variable Z =
supf∈BK

∑
q∈U [φ (2r(f, q)/ε)− Eφ (2r(f, q)/ε)], where

U stands for the indices of the uncorrupted blocks and
φ(t) = (t− 1)I1≤t≤2 + It≥2. The bounded difference prop-
erty of the Z supremum of empirical processes guarantees
its concentration around the expectation by using the McDi-
armid inequality. The symmetrization technique combined
with the Talagrand’s contraction principle of Rademacher
processes (thanks to the Lipschitz property of φ), followed
by an other symmetrization leads to the deviation bound.
Details are provided in Section A.1-A.2 (for Theorem 1-2)
in the supplementary material.

Remarks:

• Dependence on N : These finite-sample guarantees show
that the MONK estimators
– have optimalN−1/2-rate—by recalling Tolstikhin et al.

(2016; 2017)’s discussed results—, and
– they are robust to outliers, providing consistent esti-

mates with high probability even under arbitrary ad-
versarial contamination (affecting less than half of the
samples).

• Dependence on δ: Recall that larger δ corresponds to less
outliers, i.e., cleaner data in which case the bounds above
become tighter. In other words, making use of medians
the MONK estimators show robustness to outliers; this
property is a nice byproduct of our optimal sub-Gaussian
deviation bound. Whether this robustness to outliers is
optimal in the studied setting is an open question.

• Dependence on Σ: It is worth contrasting the rates ob-
tained in Theorem 1 and that of the tournament proce-

dures (Lugosi & Mendelson, 2019b) derived for the finite-
dimensional case. The latter paper elegantly resolved
a long-lasting open question concerning the optimal de-
pendency in terms of Σ. Theorem 1 proves the same
dependency in the infinite-dimensional case, while giving
rise to computionally tractable algorithms (Section 4).

• Separation rate: Theorem 2 also shows that fixing the
trace of the covariance operators of P and Q, the MON-
based MMD estimator can separate P and Q at the rate
of N−1/2.

• Breakdown point: Our finite-sample bounds imply that
the proposed MONK estimators using Q blocks is resis-
tant to Q/2 outliers. Since Q is allowed to grow with N
(it can be can be chosen to be almost N/2), this specifi-
cally means that the breakdown point of our estimators
can be 25%.

4. Computing the MONK Estimator
This section is dedicated to the computation4 of the ana-
lyzed MONK estimators; particularly we will focus on the
MMD estimator given in Eq. (6). Numerical illustrations
are provided in Section 5. Recall that the MONK estimator
for MMD [Eq. (6)] is given by

M̂MDQ(P,Q) (10)

= sup
f∈BK

med
q∈[Q]

 1

|Sq|
∑
j∈Sq

f(xj)−
1

|Sq|
∑
j∈Sq

f(yj)

 .

By the representer theorem (Schölkopf et al., 2001), the
optimal f can be expressed as

f(a,b) =
∑
n∈[N ]

anK(·, xn) +
∑
n∈[N ]

bnK(·, yn), (11)

where a = (an)n∈[N ] ∈ RN and b = (bn)n∈[N ] ∈ RN .
Denote c = [a;b] ∈ R2N , K = [Kxx,Kxy;Kyx,Kyy] ∈
R2N×2N , Kxx = [K(xi, xj)]i,j∈[N ] ∈ RN×N , Kxy =
[K(xi, yj)]i,j∈[N ] = K∗yx ∈ RN×N , Kyy =

[K(yi, yj)]i,j∈[N ] ∈ RN×N . With these notations, the opti-
misation problem (10) can be rewritten as

max
c∈R2N :c∗Kc≤1

med
q∈[Q]

{
|Sq|−1[1q;−1q]∗Kc

}
, (12)

where 1q ∈ RN is indicator vector of the block Sq. To
enable efficient optimization we follow a block-coordinate
descent (BCD)-type scheme: choose the qm ∈ [N ] index for
which the median is attained in (12), and solve

max
c∈R2N :c∗Kc≤1

|Sqm |−1[1qm ;−1qm ]∗Kc. (13)

4The Python code reproducing our numerical exper-
iments is available at https://bitbucket.org/
TimotheeMathieu/monk-mmd; it relies on the ITE
toolbox (Szabó, 2014).
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Algorithm 1 MONK BCD estimator for MMD

Input: Aggregated Gram matrix: K with Cholesky factor
L (K = LL∗).
for all t = 1, . . . , T do

Generate a random permutation of [N ]: σ.
Shuffle the samples according to σ: for ∀q ∈ [Q]

Sq =

{
σ

(
(q − 1)

N

Q
+ 1

)
, . . . , σ

(
q
N

Q

)}
.

Find the block attaining the median (qm):
[1qm ;−1qm ]∗Kc

|Sqm |
= med
q∈[Q]

[1q;−1q]∗Kc

|Sq|
.

Compute the coefficient vector: c =
[1qm ;−1qm ]

‖L∗[1qm ;−1qm ]‖
2

.
end for
Output: med

q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kc
)

This optimization problem can be solved analytically: c =
[1qm ;−1qm ]

‖L∗[1qm ;−1qm ]‖
2

, where L is the Cholesky factor of K (K =

LL∗). The observations are shuffled after each iteration.
The pseudo-code of the final MONK BCD estimator is
summarized in Algorithm 1.

Notice that computing L in MONK BCD costs O(N3),
which can be prohibitive for large sample size. In order to
alleviate this bottleneck we also consider an approximate
version of MONK BCD (referred to as MONK BCD-Fast),
where the

∑
n∈[N ] summation after plugging (11) into (10)

is replaced with
∑
n∈Sq :

max
c=[a,b]∈R2N :c∗Kc≤1

med
q∈[Q]

 1

|Sq|
∑
j,n∈Sq

[anK(xj , xn)+

bnK(xj , yn)]−
∑
j,n∈Sq [anK(yj , xn) + bnK(yj , yn)]

|Sq|

}
.

This modification allows local computations restricted to
blocks and improved running time. The samples are shuf-
fled periodically (e.g., at every 10th iterations) to renew the
blocks. The resulting method is presented in Algorithm 2.
The computational complexity of the different MMD esti-
mators are summarized in Table 1.

5. Numerical Illustrations
In this section, we demonstrate the performance of the
proposed MONK estimators. We exemplify the idea on
the MMD estimator [Eq. (6)] with the BCD optimization
schemes (MONK BCD and MONK BCD-Fast) discussed
in Section 4. Our baseline is the classical U-statistic based
MMD estimator [Eq. (8); referred to as U-Stat in the sequel].

The primary goal in the first set of experiments is to under-

Algorithm 2 MONK BCD-Fast estimator for MMD

Input: Aggregated Gram matrix: K with Cholesky factor
L (K = LL∗). Incides at which we shuffle: J .
for all t = 1, . . . , T do

if t ∈ J then
Generate a random permutation of [N ]: σ.
Shuffle the samples according to σ: for ∀q ∈ [Q]

Sq =

{
σ

(
(q − 1)

N

Q
+ 1

)
, . . . , σ

(
q
N

Q

)}
.

Compute the Gram matrices and the Cholesky factors
on each block Kq and Lq for q ∈ [Q].

end if
Find the blocka attaining the median (qm):

[1qm ;−1qm ]∗Kqmcqm

|Sqm |
= med
q∈[Q]

[1q;−1q]∗Kqcq
|Sq|

.

Update the coefficient vector: cqm =
[1qm ;−1qm ]

‖L∗qm [1qm ;−1qm ]‖
2

.

end for
Output: med

q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kqcq

)
a1q ∈ R|Sq| denotes the vector of ones of size |Sq|.

Table 1: Computational complexity of MMD estimators.
N : sample number, Q: number of blocks, T : number of
iterations.

Method Complexity

U-Stat O
(
N2
)

MONK BCD O
(
N3 + T

[
N2 +Q log(Q)

])
MONK BCD-Fast O

(
N3

Q2 + T
[
N2

Q +Q log(Q)
])

stand and demonstrate various aspects of the estimators for
(K,P,Q) triplets (Muandet et al., 2017, Table 3.3) when
analytical expression is available for MMD. This is the case
for polynomial and RBF kernels (K), with Gaussian dis-
tributions (P, Q). Notice that in the first (second) case the
features are unbounded (bounded). Our second numerical
example illustrates the applicability of the studied MONK
estimators in biological context, in discriminating DNA
subsequences with string kernel.

Experiment-1: We used the quadratic and the RBF kernel
with bandwith σ = 1 for demonstration purposes and in-
vestigated the estimation error compared to the true MMD
value: |M̂MDQ(P,Q) −MMD(P,Q)|. The errors are ag-
gregates over 100 Monte-Carlo simulations, summarized in
the median and quartile values. The number of samples (N )
was chosen from {200, 400, . . . , 2000}.

We considered three different experimental settings for
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(P,Q) and the absence/presence of outliers:

1. Gaussian distributions with no outliers: In this case P =
N
(
µ1, σ

2
1

)
and Q = N

(
µ2, σ

2
2

)
were normal where

(µ1, σ1) 6= (µ2, σ2), µ1, σ1, µ2, σ2 were randomly cho-
sen from the [0, 1] interval, and then their values were
fixed. The estimators had access to (xn)Nn=1

i.i.d.∼ P and
(yn)Nn=1

i.i.d.∼ Q.

2. Gaussian distributions with outliers: This setting is a
corrupted version of the first one. Particularly, the dataset
consisted of (xn)N−5

n=1
i.i.d.∼ P, (yn)N−5

n=1
i.i.d.∼ Q, while the

remaining 5-5 samples were set to xN−4 = . . . = xN =
2000, yN−4 = · · · = yN = 4000.

3. Pareto distribution without outliers: In this case P =
Q = Pareto(3) hence MMD(P,Q) = 0 and the esti-
mators used (xn)Nn=1

i.i.d.∼ P and (yn)Nn=1
i.i.d.∼ Q.

The 3 experiments were constructed to understand differ-
ent aspects of the estimators: how a few outliers can ruin
classical estimators (as we move from Experiment-1 to
Experiment-2); in Experiment-3 the heavyness of the tail of
a Pareto distribution makes the task non-trivial.

Our results on the three datasets with various Q choices
are summarized in Fig. 1. As we can see from Fig. 1a and
Fig. 1d in the outlier-free case, the MONK estimators are
slower than the U-statistic based one; the accuracy is of the
same order for both kernels. As demonstrated by Fig. 1b
in the corrupted setup even a small number of outliers can
completely ruin traditional MMD estimators for unbounded
features while the MONK estimators are naturally robust
to outliers with suitable choice of Q;5 this is precisely the
setting the MONK estimators were designed for. In case
of bounded kernels (Fig. 1e), by construction, traditional
MMD estimators are resistant to outliers; the MONK BCD-
Fast method achieves comparable performance. In the final
Pareto experiment (Fig. 1c and Fig. 1f) where the distri-
bution produces “natural outliers”, again MONK estima-
tors are more robust with respect to corruption than the
one relying on U-statistics in the case of polynomial kernel.
These experiments illustrate the power of the studied MONK
schemes: these estimators achieve comparable performance
in case of bounded features, while for unbounded features
they can efficiently cope with the presence of outliers.

Experiment-2 (discrimination of DNA subsequences):
In order to demonstrate the applicability of our estimators
in biological context, we chose a DNA benchmark from

5In case of unknown Nc, one could choose Q adaptively by
the Lepski method (see for example (Devroye et al., 2016)) at the
price of increasing the computational effort. Though the resulting
Q would increase the computational time, it would be adaptive
thanks to its data-driven nature, and would benefit from the same
guarantee as the fixed Q appearing in Theorem 1-2.

the UCI repository (Dheeru & Karra Taniskidou, 2017), the
Molecular Biology (Splice-junction Gene Sequences) Data
Set. The dataset consists of 3190 instances of 60-character-
long DNA subsequences. The problem is to recognize,
given a sequence of DNA, the boundaries between exons
(the parts of the DNA sequence retained after splicing) and
introns (the parts of the DNA sequence that are spliced
out). This task consists of two subproblems, identifying
the exon/intron boundaries (referred to as EI sites) and the
intron/exon boundaries (IE sites).6 We took 1532 of these
samples by selecting 766 instances from both the EI and
the IE classes (the class of those being neither EI nor IE
is more heterogeneous and thus we dumped it from the
study), and investigated the discriminability of the EI and
IE categories. We represented the DNA sequences as strings
(X), chose K as the String Subsequence Kernel (Lodhi
et al., 2002) to compute MMD, and performed two-sample
testing based on MMD using the MONK BCD, MONK
BCD-Fast and U-Stat estimators. For completeness the
pseudocode of the hypothesis test is detailed in Algorithm 3
(Section D). Q, the number of blocks in the MONK tech-
niques, was equal to 5. The significance level was α = 0.05.
To assess the variability of the results 400 Monte Carlo
simulations were performed, each time uniformly sampling
N points without replacement resulting in (Xn)n∈[N ] and
(Yn)n∈[N ]. To provide more detailed insights the aggregated
values of M̂MD(EI, IE)− q̂1−α, M̂MD(EI,EI)− q̂1−α and
M̂MD(IE, IE)−q̂1−α are summarized in Fig. 2, where q̂1−α
is the estimated (1 − α)-quantile via B = 150 bootstrap
permutations. In the ideal case, M̂MD − q̂1−α is positive
(negative) in the inter-class (intra-class) experiments. As
Fig. 2 shows all 3 techniques are able to solve the task, both
in the inter-class (when the null hypothesis does not hold;
Fig. 2a) and the intra-class experiment (null holds; Fig. 2b
and Fig. 2c), and they converge to a good and stable perfor-
mance as a function of the sample number. It is important to
note that the MONK BCD-Fast method is especially well-
adapted to problems where the kernel computation (such
as the String Subsequence Kernel) or the sample size is a
bottleneck, as its computation is often significantly faster
compared to the U-Stat technique. For example, taking
all the samples (N = 766) in the DNA benchmark with
Q = 15, computing MONK BCD-Fast (U-Stat) takes 32s
(1m28s). These results illustrate the applicability of our
estimators in gene analysis.
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(a) Gaussian distribution, Nc = 0 (no out-
lier), quadratic kernel.

(b) Gaussian distribution, Nc = 5 outliers,
quadratic kernel.

(c) Pareto distribution, quadratic kernel.

(d) Gaussian distribution, Nc = 0 (no out-
lier), RBF kernel.

(e) Gaussian distribution, Nc = 5 outliers,
RBF kernel.

(f) Pareto distribution, RBF kernel.

Figure 1: Performance of the MMD estimators: median and quartiles of ln(|M̂MDQ(P,Q) −MMD(P,Q)|). Columns
from left to right: Experiment-1 – Experiment-3. Top: quadratic kernel, bottom: RBF kernel.

(a) Inter-class: EI-IE (b) Intra-class: EI-EI (c) Intra-class: IE-IE

Figure 2: Inter-class and intra-class MMD estimates as a function of the sample number compared to the bootstrap-estimated
(1− α)-quantile: M̂MD− q̂1−α; mean ± std. The null hypothesis is rejected iff M̂MD− q̂1−α > 0. Notice the different
scale of M̂MD− q̂1−α in the inter-class and the intra-class experiments.
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Supplement

The supplement contains the detailed proofs of our results
(Section A), a few technical lemmas used during these ar-
guments (Section B), the McDiarmid inequality for self-
containedness (Section C), and the pseudocode of the two-
sample test performed in Experiment-2 (Section D).

A. Proofs of Theorem 1 and Theorem 2
This section contains the detailed proofs of Theorem 1 (Sec-
tion A.1) and Theorem 2 (Section A.2).

A.1. Proof of Theorem 1

The structure of the proof is as follows:

1. We show that ‖µ̂P,Q − µP‖K ≤ (1 +
√

2)rQ,N , where

rQ,N = supf∈BK MONQ
[
〈f,K(·, x)− µP〉K︸ ︷︷ ︸

f(x)−Pf

]
, i.e.

the analysis can be reduced to BK .
2. Then rQ,N is bounded using empirical processes.

Step-1: Since HK is an inner product space, for any f ∈
HK

‖f −K(·, x)‖2K − ‖µP −K(·, x)‖2K
= ‖f − µP‖2K − 2 〈f − µP,K(·, x)− µP〉K . (14)

Hence, by denoting e = µ̂P,Q − µP, g̃ = g − µP we get

‖e‖2K − 2rQ,N ‖e‖K
(a)

≤ ‖e‖2K − 2MONQ

[〈
e

‖e‖K
,K(·, x)− µP

〉]
K

‖e‖K

(b)

≤ MONQ

[
‖e‖2K − 2

〈
e

‖e‖K
,K(·, x)− µP

〉
K

‖e‖K

]
(c)

≤ MONQ
[
‖µ̂P,Q −K(·, x)‖2K − ‖µP −K(·, x)‖2K

]
(d)

≤ sup
g∈HK

MONQ
[
‖µ̂P,Q −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
(e)

≤ sup
g∈HK

MONQ
[
‖µP −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
(f)
= sup

g∈HK

{
2MONQ

[
〈g̃, K(·, x)− µP〉K︸ ︷︷ ︸

‖g̃‖K
〈

g̃
‖g̃‖K

,K(·,x)−µP

〉
K

]
− ‖g̃‖2K

}

(g)
= sup

g∈HK

{
2 ‖g̃‖K rQ,N − ‖g̃‖

2
K

} (h)

≤ r2
Q,N , (15)

where we used in (a) the definition of rQ,N , (b) the linearity7

of MONQ [·], (c) Eq. (14), (d) supg, (e) the definition of

7MONQ [c1 + c2f ] = c1 + c2MONQ [f ] for any c1, c2 ∈ R.

µ̂P,Q, (f) Eq. (14) and the linearity of MONQ [·], (g) the
definition of rQ,N . In step (h), by denoting a = ‖g̃‖K ,
r = rQ,N , the argument of the sup takes the form 2ar−a2;
2ar − a2 ≤ r2 ⇔ 0 ≤ r2 − 2ar + a2 = (r − a)2.

In Eq. (15), we obtained an equation a2 − 2ra ≤ r2 where
a := ‖e‖K ≥ 0. Hence r2 + 2ra − a2 ≥ 0, r1,2 =[
−2a±

√
4a2 + 4a2

]
/2 =

(
−1±

√
2
)
a, thus by the non-

negativity of a, r ≥ (−1 +
√

2)a, i.e., a ≤ r√
2−1

= (
√

2 +

1)r. In other words, we arrived at

‖µ̂P,Q − µP‖K ≤
(

1 +
√

2
)
rQ,N . (16)

It remains to upper bound rQ,N .

Step-2: Our goal is to provide a probabilistic bound on

rQ,N = sup
f∈BK

MONQ [x 7→ 〈f,K(·, x)− µP〉K ]

= sup
f∈BK

med
q∈[Q]

{
〈
f, µSq − µP

〉
K︸ ︷︷ ︸

=:r(f,q)

}.

The Nc corrupted samples can affect (at most) Nc of the
(Sq)q∈[Q] blocks. Let U := [Q]\C stand for the indices of
the uncorrupted sets, where C := {q ∈ [Q] : ∃nj s.t. nj ∈
Sq, j ∈ [Nc]} contains the indices of the corrupted sets. If

∀f ∈ BK : |{q ∈ U : r(f, q) ≥ ε}|︸ ︷︷ ︸∑
q∈U Ir(f,q)≥ε

+Nc ≤
Q

2
, (17)

then for ∀f ∈ BK , medq∈[Q]{r(f, q)} ≤ ε, i.e.
supf∈BK medq∈[Q]{r(f, q)} ≤ ε. Thus, our task boils
down to controlling the event in (17) by appropriately choos-
ing ε.

• Controlling r(f, q): For any f ∈ BK the random vari-
ables 〈f, k(·, xi)− µP〉HK

= f(xi) − Pf are indepen-
dent, have zero mean, and

Exi∼P 〈f, k(·, xi)− µP〉2K = 〈f,ΣPf〉K
≤ ‖f‖K ‖ΣPf‖K ≤ ‖f‖

2
K ‖ΣP‖ = ‖ΣP‖ (18)

using the reproducing property of the kernel and the co-
variance operator, the Cauchy-Schwarz (CBS) inequality
and ‖f‖HK

= 1.
For a zero-mean random variable z by the Chebyshev’s
inequality P (z > a) ≤ P (|z| > a) ≤ E

(
z2
)
/a2, which

implies P
(
z >

√
E (z2) /α

)
≤ α by a α = E

(
z2
)
/a2

substitution. With z := r(f, q) (q ∈ U ), using E
[
z2
]

=

E
〈
f, µSq − µP

〉2
K

= Q
NExi∼P 〈f, k(·, xi)− µP〉2K and

Eq. (18) one gets that for all f ∈ BK , α ∈ (0, 1) and

q ∈ U : P
(
r(f, q) >

√
‖ΣP‖Q
αN

)
≤ α. This means

P
(
r(f, q) > ε

2

)
≤ α with ε ≥ 2

√
‖ΣP‖Q
αN .
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• Reduction to φ: As a result∑
q∈U

P
(
r(f, q) ≥ ε

2

)
≤ |U |α

happens if and only if∑
q∈U

Ir(f,q)≥ε

≤ |U |α+
∑
q∈U

[
Ir(f,q)≥ε − P

(
r(f, q) ≥ ε

2

)
︸ ︷︷ ︸

E
[
Ir(f,q)≥ ε

2

]
]

=: A.

Let us introduce φ : t ∈ R → (t − 1)I1≤t≤2 + It≥2. φ
is 1-Lipschitz and satisfies I2≤t ≤ φ(t) ≤ I1≤t for any
t ∈ R. Hence, we can upper bound A as

A ≤ |U |α+
∑
q∈U

[
φ

(
2r(f, q)

ε

)
− Eφ

(
2r(f, q)

ε

)]
by noticing that ε ≤ r(f, q) ⇔ 2 ≤ 2r(f, q)/ε and
ε/2 ≤ r(f, q) ⇔ 1 ≤ 2r(f, q)/ε, and by using the
I2≤t ≤ φ(t) and the φ(t) ≤ I1≤t bound, respectively.
Taking supremum over BK we arrive at

sup
f∈BK

∑
q∈U

Ir(f,q)≥ε

≤ |U |α+ sup
f∈BK

∑
q∈U

[
φ

(
2r(f, q)

ε

)
− Eφ

(
2r(f, q)

ε

)]
︸ ︷︷ ︸

=:Z

.

• Concentration of Z around its mean: Notice that Z is
a function of xV , the samples in the uncorrupted blocks;
V = ∪q∈USq. By the bounded difference property of
Z (Lemma 4) for any β > 0, the McDiarmid inequality
(Lemma 6; we choose τ := Qβ2/8 to get linear scaling
in Q on the r.h.s.) implies that

P (Z < ExV [Z] +Qβ) ≥ 1− e−
Qβ2

8 .

• Bounding ExV [Z]: Let M = N/Q denote the number
of elements in Sq-s. The G = {gf : f ∈ BK} class with
gf : XM → R and PM := 1

M

∑M
m=1 δum defined as

gf (u1:M ) = φ

(
〈f, µPM − µP〉K

ε

)
is uniformly bounded separable Carathéodory (Lemma 5),
hence the symmetrization technique (Steinwart & Christ-
mann, 2008, Prop. 7.10), (Ledoux & Talagrand, 1991)
gives

ExV [Z] ≤ 2ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eqφ

(
2r(f, q)

ε

)∣∣∣∣∣∣ ,
where e = (eq)q∈U ∈ R|U | with i.i.d. Rademacher en-
tries [P(eq = ±1) = 1

2 (∀q)].

• Discarding φ: Since φ(0) = 0 and φ is 1-Lipschitz,
by Talagrand’s contraction principle of Rademacher pro-
cesses (Ledoux & Talagrand, 1991), (Koltchinskii, 2011,
Theorem 2.3) one gets

ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eqφ

(
2r(f, q)

ε

)∣∣∣∣∣∣
≤ 2ExV Ee sup

f∈BK

∣∣∣∣∣∣
∑
q∈U

eq
2r(f, q)

ε

∣∣∣∣∣∣ .
• Switching from |U | toN terms: Applying an other sym-

metrization [(a)], the CBS inequality, f ∈ BK , and the
Jensen inequality

ExV Ee sup
f∈BK

∣∣∣∣∣
Q∑
q=1

eq
r(f, q)

ε

∣∣∣∣∣
(a)

≤ 2Q

εN
ExV Ee′

[
sup
f∈BK

∣∣∣ ∑
n∈V

e′n 〈f,K(·, xn)− µP〉K︸ ︷︷ ︸
=〈f,∑n∈V e

′
n[K(·,xn)−µP]〉

K

∣∣∣]

≤ 2Q

εN
ExV Ee′

 sup
f∈BK

‖f‖K︸ ︷︷ ︸
=1

∥∥∥∥∥∑
n∈V

e′n [K(·, xn)− µP]

∥∥∥∥∥
K


=

2Q

εN
ExV Ee′

∥∥∥∥∥∑
n∈V

e′n [K(·, xn)− µP]

∥∥∥∥∥
K

≤ 2Q

εN

√√√√ExV Ee′

∥∥∥∥∥∑
n∈V

e′n [K(·, xn)− µP]

∥∥∥∥∥
2

K

(b)
=

2Q
√
|V |Tr(ΣP)

εN
.

In (a), we proceed as follows:

ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eq
r(f, q)

ε

∣∣∣∣∣∣
= ExV Ee sup

f∈BK

∣∣∣∣∣∣
∑
q∈U

eq

〈
f, µSq − µP

〉
K

ε

∣∣∣∣∣∣
(c)

≤ 2Q

Nε
ExV EeEe′ sup

f∈BK

∣∣∣∣∣∑
n∈V

e′ne
′′
n 〈f,K(·, xn)− µP〉K

∣∣∣∣∣
=

2Q

Nε
ExV Ee′ sup

f∈BK

∣∣∣∣∣∑
n∈V

e′n 〈f,K(·, xn)− µP〉K

∣∣∣∣∣ ,
where in (c) we applied symmetrization, e′ =
(e′n)n∈V ∈ R|V | with i.i.d. Rademacher entries,
e′′n = eq if n ∈ Sq (q ∈ U ), and
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we used that (e′ne
′′
n 〈f,K(·, xn)− µP〉K)

n∈V
distr
=

(e′n 〈f,K(·, xn)− µP〉K)
n∈V .

In step (b), we had

ExV Ee′

∥∥∥∑
n∈V

e′n [K(·, xn)− µP]
∥∥∥2

K

= ExV Ee′

∑
n∈V

[e′n]
2 〈K(·, xn)− µP,K(·, xn)− µP〉K

= |V |Ex∼P 〈K(·, x)− µP,K(·, x)− µP〉K
= |V |Ex∼P Tr ([K(·, x)− µP]⊗ [K(·, x)− µP])

= |V |Tr(ΣP)

exploiting the independence of e′n-s and [e′n]2 = 1.

Until this point we showed that for all α ∈ (0, 1), β > 0, if

ε ≥ 2
√
‖ΣP‖Q
αN then

sup
f∈BK

Q∑
q=1

Ir(f,q)≥ε ≤ |U |α+Qβ +
8Q
√
|V |Tr(ΣP)

εN

with probability at least 1 − e−
Qβ2

8 . Thus, to ensure that
supf∈BK

∑Q
q=1 Ir(f,q)≥ε + Nc ≤ Q/2 it is sufficient to

choose (α, β, ε) such that |U |α + Qβ +
8Q
√
|V |Tr(ΣP)

εN +

Nc ≤ Q
2 , and in this case ‖µ̂P,Q − µP‖K ≤ (1 +

√
2)ε.

Applying the |U | ≤ Q and |V | ≤ N bounds, we want to
have

Qα+Qβ +
8Q
√

Tr(ΣP)

ε
√
N

+Nc ≤
Q

2
. (19)

Choosing α = β = δ
3 in Eq. (19), the sum of the first two

terms is Q 2δ
3 ; ε ≥ max

(
2
√

3‖ΣP‖Q
δN , 24

δ

√
Tr (ΣP)
N

)
gives

≤ Q δ
3 for the third term. Since Nc ≤ Q( 1

2 − δ), we got

‖µ̂P,Q − µP‖K ≤ c1 max

(√
3 ‖ΣP‖Q
δN

,
12

δ

√
Tr (ΣP)

N

)

with probability at least 1−e−
Qδ2

72 . With an η = e−
Qδ2

72 , and

hence Q =
72 ln( 1

η )
δ2 reparameterization Theorem 1 follows.

A.2. Proof of Theorem 2

The reasoning is similar to Theorem 1; we detail the dif-
ferences below. The high-level structure of the proof is as
follows:

• First we prove that
∣∣M̂MDQ(P,Q) −

MMD(P,Q)
∣∣ ≤ rQ,N , where rQ,N =

sup
f∈BK

∣∣∣med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}∣∣∣.
• Then rQ,N is bounded.

Step-1:

• M̂MDQ(P,Q)−MMD(P,Q) ≤ rQ,N : By the subaddi-
tivity of supremum [supf (af+bf ) ≤ supf af+supf bf ]
one gets

M̂MDQ(P,Q)

= sup
f∈BK

med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

+ (µP − µQ)
〉
K

}
≤ sup
f∈BK

med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}
+ sup
f∈BK

〈f, µP − µQ〉K

≤ sup
f∈BK

∣∣∣∣med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}∣∣∣∣︸ ︷︷ ︸
=rQ,N

+ MMD(P,Q).

• MMDQ(P,Q) − M̂MDQ(P,Q) ≤ rQ,N :
Let af := 〈f, µP − µQ〉K and bf :=
med
q∈[Q]

{〈
f, (µP − µQ)− (µSq,P − µSq,Q)

〉
K

}
. Then

af − bf
= 〈f, µP − µQ〉K

+ medq∈[Q]

{〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K

}
= medq∈[Q]

{〈
f, µSq,P − µSq,Q

〉
K

}
by medq∈[Q]{−zq} = −medq∈[Q]{zq}. Applying the
supf (af−bf ) ≥ supf af−supf bf inequality (it follows
from the subadditivity of sup):

M̂MDQ(P,Q)

≥ MMD(P,Q)

− sup
f∈BK

med
q∈[Q]

{〈
f, (µP − µQ)− (µSq,P − µSq,Q)

〉
K

}
︸ ︷︷ ︸

− med
q∈[Q]
{〈f,(µSq,P−µSq,Q)−(µP−µQ)〉

K
}

≥ MMD(P,Q)

− sup
f∈BK

∣∣∣∣med
q∈[Q]

{〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K

}∣∣∣∣︸ ︷︷ ︸
rQ,N

.

Step-2: Our goal is to control

rQ,N = supf∈BK

∣∣∣medq∈[Q]

{
r(f, q)

}∣∣∣, where

r(f, q) :=
〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K
.

The relevant quantities which change compared to the proof
of Theorem 1 are as follows.
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• Median rephrasing:

sup
f∈BK

∣∣∣med
q∈[Q]

{r(f, q)}
∣∣∣ ≤ ε

⇔ ∀f ∈ BK : −ε ≤ medq∈[Q]{r(f, q)} ≤ ε
⇐ ∀f ∈ BK : |{q : r(f, q) ≤ −ε}| ≤ Q/2

and |{q : r(f, q) ≥ ε}| ≤ Q/2
⇐ ∀f ∈ BK : |{q : |r(f, q)| ≥ ε}| ≤ Q/2.

Thus, ∀f ∈ BK : |{q ∈ U : |r(f, q)| ≥ ε}| + Nc ≤ Q
2 ,

implies supf∈BK

∣∣∣medq∈[Q]{r(f, q)}
∣∣∣ ≤ ε.

• Controlling |r(f, q)|: For any f ∈ BK the random vari-
ables [f(xi)− f(yi)]− [Pf −Qf ] are independent, zero-
mean and

E(x,y)∼P⊗Q([f(x)− Pf ]− [f(y)−Qf ])2

= Ex∼P[f(x)− Pf ]2 + Ey∼Q[f(y)−Qf ]2

≤ ‖ΣP‖+ ‖ΣQ‖ ,

where P ⊗ Q is the product measure. The Chebyshev
argument with z = |r(f, q)| implies that ∀α ∈ (0, 1)

(P⊗Q)

(
|r(f, q)| >

√
(‖ΣP‖+ ‖ΣQ‖)Q

αN

)
≤ α.

This means (P ⊗ Q) (|r(f, q)| > ε/2) ≤ α with ε ≥
2
√

(‖ΣP‖+‖ΣQ‖)Q
αN .

• Switching from |U | to N terms: With (xy)V =
{(xi, yi) : i ∈ V }, in ’(b)’ with x̃n := K(·, xn) − µP,
ỹn := K(·, yn)− µQ we arrive at

E(xy)V Ee′

∥∥∥∥∥∑
n∈V

e′n (x̃n − ỹn)

∥∥∥∥∥
2

K

= E(xy)V Ee′

∑
n∈V

[e′n]
2 〈x̃n − ỹn, x̃n − ỹn〉K

= |V |E(xy)∼P ‖[K(·, x)− µP]− [K(·, y)− µQ]‖K
= |V | [Tr (ΣP) + Tr (ΣQ)] .

• These results imply

Qα+Qβ +
8Q
√

Tr (ΣP) + Tr (ΣQ)

ε
√
N

+Nc ≤ Q/2.

ε ≥ max

(
2
√

3(‖ΣP‖+‖ΣQ‖)Q
δN , 24

δ

√
Tr (ΣP)+Tr (ΣQ)

N

)
,

α = β = δ
3 choice gives that∣∣∣M̂MDQ(P,Q)−MMD(P,Q)

∣∣∣
≤ 2 max

(√
3 (‖ΣP‖+ ‖ΣQ‖)Q

δN
,

12

δ

√
Tr (ΣP) + Tr (ΣQ)

N

)

with probability at least 1 − e−
Qδ2

72 . η = e−
Qδ2

72 , i.e.

Q =
72 ln( 1

η )
δ2 reparameterization finishes the proof of

Theorem 2.

B. Technical Lemmas
Lemma 3 (Supremum).∣∣∣ sup

f
af − sup

f
bf

∣∣∣ ≤ sup
f
|af − bf |.

Lemma 4 (Bounded difference property of Z). Let
N ∈ Z+, (Sq)q∈[Q] be a partition of [N ], K : X× X→ R
be a kernel, µ be the mean embedding associated to
K, x1:N be i.i.d. random variables on X, Z(xV ) =

sup
f∈BK

∑
q∈U

[
φ

(
2〈f,µSq−µP〉

K

ε

)
− Eφ

(
2〈f,µSq−µP〉

K

ε

)]
,

where U ⊆ [Q], V = ∪q∈USq. Let x′Vi be xV except for
the i ∈ V -th coordinate; xi is changed to x′i. Then

sup
xV ∈X|V |,x′i∈X

∣∣Z (xV )− Z
(
x′Vi
)∣∣ ≤ 4, ∀i ∈ V.

Proof. Since (Sq)q∈[Q] is a partition of [Q], (Sq)q∈U forms
a partition of V and there exists a unique r ∈ U such that
i ∈ Sr. Let

Yq := Yq(f, xV ),

q ∈ U = φ

(
2
〈
f, µSq − µP

〉
K

ε

)
− Eφ

(
2
〈
f, µSq − µP

〉
K

ε

)
,

Y ′r := Yr(f, x
′
Vi).

In this case∣∣Z (xV )− Z
(
x′Vi
)∣∣

=

∣∣∣∣∣∣ sup
f∈BK

∑
q∈U

Yq − sup
f∈BK

 ∑
q∈U\{r}

Yq + Y ′r

∣∣∣∣∣∣
(a)

≤ sup
f∈BK

|Yr − Y ′r |
(b)

≤ sup
f∈BK

(
|Yr|︸︷︷︸
≤2

+ |Y ′r |︸︷︷︸
≤2

)
≤ 4,

where in (a) we used Lemma 3, (b) the triangle inequality
and the boundedness of φ [|φ(t)| ≤ 1 for all t].

Lemma 5 (Uniformly bounded separable Carathéodory fam-
ily). Let ε > 0, N ∈ Z+, Q ∈ Z+, M = N/Q ∈ Z+,
φ(t) = (t− 1)I1≤t≤2 + It≥2, K : X× X→ R is a contin-
uous kernel on the separable topological domain X, µ is the
mean embedding associated to K, PM := 1

M

∑M
m=1 δum ,

G = {gf : f ∈ BK}, where gf : XM → R is defined as

gf (u1:M ) = φ

(
2 〈f, µPM − µP〉K

ε

)
.
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Then G is a uniformly bounded separable Carathéodory
family: (i) supf∈BK ‖gf‖∞ < ∞ where ‖g‖∞ =
supu1:M∈XM |g(u1:M )|, (ii) u1:M 7→ gf (u1:M ) is measur-
able for all f ∈ BK , (iii) f 7→ gf (u1:M ) is continuous for
all u1:M ∈ XM , (iv) BK is separable.

Proof.

(i) |φ(t)| ≤ 1 for any t, hence ‖gf‖∞ ≤ 1 for all f ∈ BK .
(ii) Any f ∈ BK is continuous since HK ⊂ C(X) = {h :

X→ R continuous}, so u1:M 7→ (f(u1), . . . , f(uM ))
is continuous. φ is Lipschitz, specifically continuous.
The continuity of these two maps imply that of u1:M 7→
gf (u1:M ), specifically it is Borel-measurable.

(ii) The statement follows by the continuity of f 7→
〈f, h〉K (h = µPM − µP) and that of φ.

(iv) BK is separable since HK is so by assumption.

C. External Lemma
Below we state the McDiarmid inequality for self-
containedness.

Lemma 6 (McDiarmid inequality). Let x1:N be X-valued
independent random variables. Assume that f : XN → R
satisfies the bounded difference property

sup
u1,...,uN ,u′r∈X

|f(u1:N )− f(u′1:N )| ≤ c, ∀n ∈ [N ],

where u′1:N = (u1, . . . , un−1, u
′
n, un+1, . . . , uN ). Then

for any τ > 0

P

(
f(x1:N ) < Ex1:N

[f(x1:N )] + c

√
τN

2

)
≥ 1− e−τ .

D. Pseudocode of Experiment-2
The pseudocode of the two-sample test conducted in
Experiment-2 is summarized in Algorithm 3.

Algorithm 3 Two-sample test (Experiment-2)

Input: Two samples: (Xn)n∈[N ], (Yn)n∈[N ]. Number of
bootstrap permutations: B ∈ Z+. Level of the test: α ∈
(0, 1). Kernel function with hyperparameter θ ∈ Θ: Kθ.
Split the dataset randomly into 3 equal parts:

[N ] =

3⋃̇
i=1

Ii, |I1| = |I2| = |I3|.

Tune the hyperparameters using the 1st part of the dataset:

θ̂ = argmaxθ∈Θ Jθ := M̂MDθ ((Xn)n∈I1 , (Yn)n∈I1) .

Estimate the (1 − α)-quantile of M̂MDθ̂ under the null,
usingB bootstrap permutations from (Xn)n∈I2∪(Yn)n∈I2 :
q̂1−α.
Compute the test statistic on the third part of the dataset:

Tθ̂ = M̂MDθ̂ ((Xn)n∈I3 , (Yn)n∈I3) .

Output: Tθ̂ − q̂1−α.


