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MONK – Outlier-Robust Mean Embedding Estimation by
Median-of-Means

Matthieu Lerasle† Zoltán Szabó‡ Timothée Mathieu∗ Guillaume Lecué∗∗

Abstract

Mean embeddings provide an extremely flex-
ible and powerful tool in machine learning
and statistics to represent probability dis-
tributions and define a semi-metric (MMD,
maximum mean discrepancy; also called N-
distance or energy distance), with numerous
successful applications. The representation
is constructed as the expectation of the fea-
ture map defined by a kernel. As a mean,
its classical empirical estimator, however, can
be arbitrary severely affected even by a sin-
gle outlier in case of unbounded features. To
the best of our knowledge, unfortunately even
the consistency of the existing few techniques
trying to alleviate this serious sensitivity bot-
tleneck is unknown. In this paper, we show
how the recently emerged principle of median-
of-means can be used to design estimators
for kernel mean embedding and MMD with
excessive resistance properties to outliers, and
optimal sub-Gaussian deviation bounds under
mild assumptions.

1 INTRODUCTION

Kernel methods [3] form the backbone of a tremendous
number of successful applications in machine learning
thanks to their power in capturing complex relations
[61, 67]. The main idea behind these techniques is
to map the data points to a feature space (RKHS,
reproducing kernel Hilbert space) determined by the
kernel, and apply linear methods in the feature space,
without the need to explicitly compute the map.
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One crucial component contributing to this flexibility
and efficiency (beyond the solid theoretical foundations)
is the versatility of domains where kernels exist; exam-
ples include trees [11, 30], time series [12], strings [44],
mixture models, hidden Markov models or linear dy-
namical systems [26], sets [24, 18], fuzzy domains [21],
distributions [25, 47, 52], groups [13] such as specific
constructions on permutations [28], or graphs [74, 36].

Given a kernel-enriched domain (X,K) one can repre-
sent probability distributions on X as a mean

µP =

∫
X

ϕ(x)dP(x) ∈ HK , ϕ(x) := K(·, x),

which is a point in the RKHS determined by K. This
representation called mean embedding [7, 64] induces
a semi-metric1 on distributions called maximum mean
discrepancy (MMD) [64, 19]

MMD(P,Q) = ‖µP − µQ‖HK
. (1)

Specializing the kernel, classical integral transforms
widely used in probability theory and statistics can
be recovered by µP; for example, if X equipped with
the scalar product 〈·, ·〉 is a Hilbert space, the kernel
K(x, y) = e〈x,y〉 gives the moment-generating function,
K(x, y) = eγ‖x−y‖

2
2 (γ > 0) the Weierstrass transform.

As it has been shown [62] energy distance [6, 69, 70]—
also known as N-distance [78, 33] in the statistical
literature—coincides with MMD.

Mean embedding and maximum mean discrepancy have
been applied successfully, in kernel Bayesian inference
[65, 17], approximate Bayesian computation [57], model
criticism [43, 31], two-sample [6, 69, 70, 23, 19], inde-
pendence [20, 58] and goodness-of-fit testing [29, 5], do-
main adaptation [77] and generalization [8], probabilis-
tic programming [60], post selection inference [75], dis-
tribution classification [52, 76] and regression [68, 38],
causal discovery [51, 58] or topological data analysis
[37], among many others; [53] provide an in-depth re-
view on the topic.

1[16, 66] provide conditions when MMD is a metric, i.e.
µ is injective.
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Crucial to the success of these applications is the effi-
cient and robust approximation of the mean embedding
and MMD. As a mean, the most natural approach to
estimate µP is the empirical average. Plugging this
estimate to Eq. (1) produces directly an approximation
of MMD, which can also be made unbiased (by a small
correction) or approximated recursively. These are the
V-statistic, U-statistic and online approaches [19]. Ker-
nel mean shrinkage estimators [54] represent an other
successful direction: they improve the efficiency of the
mean embedding estimation by taking into account
the Stein phenomenon. Minimax results have recently
been established: the optimal rate of mean embedding
estimation given N samples from P is N−1/2 [71] for
discrete measures and the class of measures with in-
finitely differentiable density when K is a continuous,
shift-invariant kernel on X = Rd. For MMD, using N1

and N2 samples from P and Q, it is N−1/2
1 +N

−1/2
2 [72]

in case of radial universal kernels defined on X = Rd.

A critical property of an estimator is its resistance w.r.t.
contaminated data, outliers which are omnipresent in
currently available massive and heterogenous datasets.
To the best of our knowledge, systematically designing
outlier-robust mean embedding and MMD estimators
has hardly been touched in the literature; this is the
focus of the current paper. The issue is particularly
serious in case of unbounded kernels when for example
even a single outlier can ruin completely a classical
empirical average based estimator. Examples for un-
bounded kernels are the exponential kernel (see the
example above about moment-generating functions),
polynomial kernel, string or graph kernels.

Existing related techniques comprise robust kernel den-
sity estimation (KDE) [32]: the authors elegantly com-
bine ideas from the KDE and M-estimator literature to
arrive at a robust KDE estimate of density functions.
They assume that the underlying smoothing kernels2
are shift-invariant on X = Rd and reproducing, and in-
terpret KDE as a weighted mean in HK . The idea has
been (i) adapted to construct outlier-robust covariance
operators in RKHSs in the context of kernel canoni-
cal correlation analysis [1], and (ii) relaxed to general
Hilbert spaces [63]. Unfortunately, the consistency of
the investigated empirical M-estimators is unknown,
except for finite-dimensional feature maps [63].

To achieve our goal, we leverage the idea of Median-Of-
meaNs (MON). Intuitively, MONs replace the linear
operation of expectation with the median of averages
taken over non-overlapping blocks of the data, in order
to get a robust estimate thanks to the median step.
MONs date back to [27, 2, 56] for the estimation of

2Smoothing kernels extensively studied in the non-
parametric statistical literature [22] are assumed to be
non-negative functions integrating to one.

the mean of real-valued random variables. Their con-
centration properties have been recently studied by
[14, 50] following the approach of [9] for M-estimators.
These studies focusing on the estimation of the mean
of real-valued random variables are important as they
can be used to tackle more general prediction prob-
lems in learning theory via the classical empirical risk
minimization approach [73] or by more sophisticated
approach such as the minmax procedure [4].

In parallel to the minmax approach, there have been
several attempts to extend the usage of MON estima-
tors from R to more general settings. For example,
[49, 50] consider the problem of estimating the mean of
a Banach-valued random variable using “geometrical”
MONs. The estimators in [49, 50] are computationally
tractable but the deviation bounds are suboptimal com-
pared to those one can prove for the empirical mean un-
der sub-Gaussian assumptions. In regression problems,
[45, 40] proposed to combine the classical MON estima-
tors on R in a “test” procedure that can be seen as a Le
Cam test estimator [39]. The achievement in [45, 40]
is that they were able to obtain optimal deviation
bounds for the resulting estimator using the powerful
so-called small-ball method of [35, 48]. This approach
was then extended to mean estimation Rd in [46] pro-
viding the first rate-optimal sub-Gaussian deviation
bounds under minimal L2-assumptions. The constants
of [45, 40, 46] have been improved in [10] for the estima-
tion of the mean in Rd under L4-moment assumption
and in least-squares regression under L4/L2-condition
that is stronger than the small-ball assumption used in
[45, 40]. Unfortunately, these estimators are computa-
tionally intractable; there risk bounds however serve as
an important baseline for computable estimators such
as the minmax MON estimators in regression [41].

From statistical point of view, our goal is to prove op-
timal sub-Gaussian deviation bounds for MON-based
mean estimators in RKHS-s which hold under mini-
mal stochastic assumptions, requiring the finiteness of
second-order moments only (see later the trace-class
assumption on the covariance operators) and with the
potential presence of corrupted (and even adversar-
ial) data. We extend the results of [46, 41] to mean
embedding and MMD estimation in RKHS. In order
to attain this goal, we modify the aggregation step of
[45, 46, 40] using the minmax formulation of [4, 41].
As a result we get conceptually simpler estimators with
computationally tractable algorithms.

Our contributions can be summarized as follows:

1. We design novel mean embedding and MMD esti-
mators based on the MON principle.

2. We establish their finite-sample and outlier-
robustness properties. The obtained MONK es-
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timators (i) obey optimal sub-Gaussian deviation
bounds under mild trace-class conditions, (i) their
convergence speed match the discussed minimax
rates, and (iii) thanks to the usage of medians they
are also robust to contamination.

Section 2 contains definitions and problem formulation.
Our main results are given in Section 3. Implementa-
tion of the MONK estimators is the focus of Section 4,
with numerical illustrations in Section 5.

2 DEFINITIONS & PROBLEM
FORMULATION

In this section, we formally introduce the goal of our
paper.

Notations: Z+ is the set of positive integers. [M ] :=
{1, . . . ,M}, uS := (um)m∈S , S ⊆ [M ]. For a set S,
|S| denotes its cardinality. E stands for expectation.
medq∈[Q] {zq} is the median of the (zq)q∈[Q] numbers.
Let X be a separable topological space endowed with
the Borel σ-field, x1:N denotes a sequence of i.i.d. ran-
dom variables on X with law P (shortly, x1:N ∼ P).
K : X × X → R is a continuous (reproducing) kernel
on X, HK is the reproducing kernel Hilbert space asso-
ciated to K; 〈·, ·〉K := 〈·, ·〉HK

, ‖·‖K := ‖·‖HK
.3 The

reproducing property of the kernel means that evalu-
ation of functions in HK can be represented by inner
products f(x) = 〈f,K(·, x)〉K for all x ∈ X, f ∈ HK .
The mean embedding of a probability measure P is
defined as

µP =

∫
X

K(·, x)dP(x) ∈ HK , (2)

where the integral is meant in Bochner sense; µP exists
iff
∫
X
‖K(·, x)‖K dP(x) =

∫
X

√
K(x, x)dP(x) < ∞. It

is well-known that the mean embedding has mean-
reproducing property Pf := Ex∼Pf(x) = 〈f, µP〉K for
all f ∈ HK , and it is the unique solution of the problem:

µP = argminf∈HK

∫
X

‖f −K(·, x)‖2K dP(x) . (3)

The solution of this task can be obtained by solving
the following minmax optimization

µP = argminf∈HK
sup
g∈HK

J(f, g), (4)

where

J(f, g) = Ex∼P
[
‖f −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
.

The equivalence of (3) and (4) is obvious since the ex-
pectation is linear. Nevertheless, this equivalence is es-
sential in the construction of our estimators because we

3HK is separable by the separability of X and the conti-
nuity of K [67, Lemma 4.33].

will below replace the expectation by a non-linear esti-
mator of this quantity. More precisely, the unknown ex-
pectations are computed by using the Median-of-meaN
estimator (MON). Given a partition of the dataset into
blocks, the MON estimator is the median of the em-
pirical means over each block. MON estimators are
naturally robust thanks to the median step.

More precisely, the procedure goes as follows. For any
map h : X→ R and any non-empty subset S ⊆ [N ], de-
note by PS := |S|−1

∑
i∈S δxi the empirical measure as-

sociated to the subset xS and PSh = |S|−1
∑
i∈S h(xi);

we will use the shorthand µS := µPS . Assume that
N ∈ Z+ is divisible by Q ∈ Z+ and let (Sq)q∈[Q] de-
note a partition of [N ] into subsets with the same
cardinality |Sq| = N/Q (∀q ∈ [Q]). The Median Of
meaN (MON) is defined as

MONQ [h] = medq∈[Q]

{
PSqh

}
= medq∈[Q]

{〈
h, µSq

〉
K

}
,

where assuming that h ∈ HK the second equality
is a consequence of the mean-reproducing property
of µP. Specifically, in case of Q = 1 the MON op-
eration reduces to the classical mean: MON1 [h] =

N−1
∑N
n=1 h(xn).

We define the minmax MON-based estimator associated
to kernel K (MONK) as

µ̂P,Q = µ̂P,Q(x1:N ) ∈ argminf∈HK
sup
g∈HK

J̃(f, g), (5)

where for all f, g ∈ HK

J̃(f, g) =

= MONQ
[
x 7→ ‖f −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
.

When Q = 1, since MON1 [h] is the empirical mean,
we obtain the classical empirical mean based estimator:
µ̂P,1 = 1

N

∑N
n=1K(·, xn).

One can use the mean embedding [Eq. (2)] to get a
semi-metric on probability measures: the maximum
mean discrepancy (MMD) of P and Q is

MMD(P,Q) := ‖µP − µQ‖K = sup
f∈BK

〈f, µP − µQ〉K ,

where BK = {f ∈ HK : ‖f‖K ≤ 1} is the closed unit
ball around the origin in HK . The second equality
shows that MMD is a specific integral probability met-
ric [55, 79]. Assume that we have access to x1:N ∼ P,
y1:N ∼ Q samples, where we assumed the size of the
two samples to be the same for simplicity. Denote
by PS,x := 1

|S|
∑
i∈S δxi the empirical measure asso-

ciated to the subset xS (PS,y is defined similarly for
y), µSq,P := µPSq,x , µSq,Q := µPSq,y . We propose the
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following MON-based MMD estimator

M̂MDQ(P,Q) = sup
f∈BK

med
q∈[Q]

{〈
f, µSq,P − µSq,Q

〉
K

}
.

(6)

Again, with the Q = 1 choice, the classical V-statistic
based MMD estimator [19] is recovered:

M̂MD(P,Q) = sup
f∈BK

 1

N

∑
n∈[N ]

f(xn)− 1

N

∑
n∈[N ]

f(yn)


=

√√√√ 1

N2

∑
i,j∈[N ]

(
Kx
ij +Ky

ij − 2Kxy
ij

)
, (7)

where Kx
ij = K(xi, xj),K

y
ij = K(yi, yj) and Kxy

ij =
K(xi, yj) for all i, j ∈ [N ]. Changing in Eq. (7)∑
i,j∈[N ] to

∑
i,j∈[N ],i6=j in case of the Kx

ij and Ky
ij

terms gives the (unbiased) U-statistic based MMD es-
timator

1

N(N − 1)

∑
i,j∈[N ]
i 6=j

(
Kx
ij +Ky

ij

)
− 2

N2

∑
i,j∈[N ]

Kxy
ij . (8)

Our goal is to lay down the theoretical foundations
of the µ̂P,Q and M̂MDQ(P,Q) MONK estimators:
study their finite-sample behaviour (prove optimal sub-
Gaussian deviation bounds) and establish their outlier-
robustness properties.

A few additional notations will be needed through-
out the paper. S1\S2 is the difference of set S1

and S2. For any linear operator A : HK →
HK , denote by ‖A‖ := sup06=f∈HK

‖Af‖K / ‖f‖K
the operator norm of A. Let L(HK) =
{A : HK → HK linear operator : ‖A‖ <∞} be the
space of bounded linear operators. For any A ∈ L(HK),
let A∗ ∈ L(HK) denote the adjoint of A, that is
the operator such that 〈Af, g〉K = 〈f,A∗g〉K for all
f, g ∈ HK . An operator A ∈ L(HK) is called non-
negative if 〈Af, f〉K ≥ 0 for all f ∈ HK . By the
separability of HK , there exists a countable orthonor-
mal basis (ONB) (ei)i∈I in HK . A ∈ L(HK) is called
trace-class if ‖A‖1 :=

∑
i∈I

〈
(A∗A)

1/2
ei, ei

〉
K
< ∞

and in this case Tr(A) :=
∑
i∈I 〈Aei, ei〉K < ∞. If A

is non-negative and self-adjoint, then A is trace class
iff Tr(A) < ∞; this will hold for the covariance oper-
ator (ΣP, see Eq. (9)). A ∈ L(HK) is called Hilbert-
Schmidt if ‖A‖22 := Tr (A∗A) =

∑
i∈I 〈Aei, Aei〉K <

∞. One can show that the definitions of trace-
class and Hilbert-Schmidt operators are independent
of the particular choice of the ONB (ei)i∈I . De-
note by L1(HK) := {A ∈ L(HK) : ‖A‖1 <∞} and
L2(HK) := {A ∈ L(HK) : ‖A‖2 <∞} the class of

trace-class and (Hilbert) space of Hilbert-Schmidt
operators on HK , respectively. The tensor prod-
uct of a, b ∈ HK is (a ⊗ b)(c) = a 〈b, c〉K , (∀c ∈
HK). a ⊗ b ∈ L2(HK), L2(HK) ∼= HK ⊗
HK where ⊗ is the tensor product of Hilbert
spaces and ‖a⊗ b‖2 = ‖a‖K ‖b‖K . Whenever∫
X
‖K(·, x)⊗K(·, x)‖2 dP(x) =

∫
X
K(x, x)dP(x) <

∞, let ΣP denote the covariance operator

ΣP = Ex∼P ([K(·, x)− µP]⊗ [K(·, x)− µP]) ∈ L2(HK),
(9)

where the expectation (integral) is again meant in
Bochner sense. ΣP is non-negative, self-adjoint,
moreover it has covariance-reproducing property
〈f,ΣPf〉K = Ex∼P[f(x) − Pf ]2. It is known that
‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.

3 MAIN RESULTS

Below we present our main results on the MONK es-
timators, followed by a discussion. We allow that Nc
elements((xnj )

Nc
j=1 ) of the sample x1:N are arbitrarily

corrupted (In MMD estimation {(xnj , ynj )}
Nc
j=1 can be

contaminated). The number of corrupted samples can
be (almost) half of the number of blocks, in other words,
there exists δ ∈ (0, 1/2] such that Nc ≤ Q(1/2− δ). If
the data are free from contaminations, then Nc = 0
and δ = 1/2. Using these notations, we can prove the
following optimal sub-Gaussian deviation bounds on
the MONK estimators.

Theorem 1 (Consistency & outlier-robustness of µ̂P,Q).
Assume that ΣP ∈ L1(HK). Then, for any η ∈ (0, 1)
such that Q = 72δ−2 ln (1/η) satisfies Q ∈ (Nc/(1 −
δ), N/2), with probability at least 1− η,

‖µ̂P,Q − µP‖K

≤
12
(
1 +
√

2
)

δ
max

(√
6 ‖ΣP‖ ln (1/η)

δN
, 2

√
Tr (ΣP)

N

)
.

Theorem 2 (Consistency & outlier-robustness of
M̂MDQ(P,Q)). Assume that ΣP and ΣQ ∈ L1(HK).
Then, for any η ∈ (0, 1) such that Q = 72δ−2 ln (1/η)
satisfies Q ∈ (Nc/(1−δ), N/2), with probability at least
1− η,∣∣∣M̂MDQ(P,Q)−MMD(P,Q)

∣∣∣
≤ 12

δ
max

(√
(‖ΣP‖+ ‖ΣQ‖) ln (1/η)

δN
, 2

√
Tr (ΣP) + Tr (ΣQ)

N

)
.

Proof (sketch). The technical challenge is to get the
optimal deviation bounds under the (mild) trace-class
assumption. The reasonings for the mean embedding
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and MMD follow a similar high-level idea; here we
focus on the former. First we show that the analysis
can be reduced to the unit ball in HK by proving that

‖µ̂P,Q − µP‖K ≤ (1 +
√

2)rQ,N ,

where

rQ,N = sup
f∈BK

MONQ
[
x 7→ 〈f,K(·, x)− µP〉K

]
= sup
f∈BK

med
q∈[Q]

{r(f, q)}

with r(f, q) =
〈
f, µSq − µP

〉
K
. The Chebyshev inequal-

ity with a Lipschitz argument allows us to control the
probability of the event {rQ,N ≤ ε} using the variable
Z = supf∈BK

∑
q∈U [φ (2r(f, q)/ε)− Eφ (2r(f, q)/ε)],

where U stands for the indices of the uncorrupted
blocks and φ(t) = (t− 1)I1≤t≤2 + It≥2. The bounded
difference property of the Z supremum of empirical
processes guarantees its concentration around the ex-
pectation by using the McDiarmid inequality. The sym-
metrization technique combined with the Talagrand’s
contraction principle of Rademacher processes (thanks
to the Lipschitz property of φ), followed by an other
symmetrization leads to the deviation bound. Details
are provided in Section A.1-A.2 (for Theorem 1-2) in
the supplementary material.

Remarks:

• Dependence on N : These finite-sample guarantees
show that the MONK estimators
– have optimal N−1/2-rate—by recalling [72, 71]’s

discussed results—, and
– they are robust to outliers, providing consistent es-

timates with high probability even under arbitrary
adversarial contamination (affecting less than half
of the samples).

• Dependence on δ: Recall that larger δ corresponds
to less outliers, i.e., cleaner data in which case the
bounds above become tighter. In other words, mak-
ing use of medians the MONK estimators show ro-
bustness to outliers; this property is a nice byprod-
uct of our optimal sub-Gaussian deviation bound.
Whether this robustness to outliers is optimal in the
studied setting is an open question.

• Dependence on Σ: It is worth contrasting the rates
obtained in Theorem 1 and that of the tournament
procedures [46] derived for the finite-dimensional
case. The latter paper elegantly resolved a long-
lasting open question concerning the optimal depen-
dency in terms of Σ. Theorem 1 proves the same
dependency in the infinite-dimensional case, while
giving rise to computionally tractable algorithms
(Section 4).

• Separation rate: Theorem 2 also implies that fixing
the trace of the covariance operators of P and Q, the
MON-based MMD estimator can separate P and Q
at the rate of N−1/2.

4 COMPUTING THE MONK
ESTIMATOR

This section is dedicated to the computation4 of the
analyzed MONK estimators; particularly we will focus
on the MMD estimator given in Eq. (6). Numerical
illustrations are provided in Section 5. Recall that the
MONK estimator for MMD [Eq. (6)] is given by

M̂MDQ(P,Q) (10)

= sup
f∈BK

med
q∈[Q]

 1

|Sq|
∑
j∈Sq

f(xj)−
1

|Sq|
∑
j∈Sq

f(yj)

 .

By the representer theorem [59], the optimal f can be
expressed as

f(a,b) =
∑
n∈[N ]

anK(·, xn) +
∑
n∈[N ]

bnK(·, yn), (11)

where a = (an)n∈[N ] ∈ RN and b = (bn)n∈[N ] ∈ RN .
Denote c = [a;b] ∈ R2N , K = [Kxx,Kxy;Kyx,Kyy] ∈
R2N×2N , Kxx = [K(xi, xj)]i,j∈[N ] ∈ RN×N ,
Kxy = [K(xi, yj)]i,j∈[N ] = K∗yx ∈ RN×N , Kyy =

[K(yi, yj)]i,j∈[N ] ∈ RN×N . With these notations, the
optimisation problem (10) can be rewritten as

max
c∈R2N :c∗Kc≤1

med
q∈[Q]

{
|Sq|−1[1q;−1q]∗Kc

}
, (12)

where 1q ∈ RN is indicator vector of the block Sq.
To enable efficient optimization we follow a block-
coordinate descent (BCD)-type scheme: choose the
qm ∈ [N ] index for which the median is attained in
(12), and solve

max
c∈R2N :c∗Kc≤1

|Sqm |−1[1qm ;−1qm ]∗Kc. (13)

This optimization problem can be solved analytically:

c =
[1qm ;−1qm ]

‖L∗[1qm ;−1qm ]‖2
.

where L is the Cholesky factor of K (K = LL∗). The
observations are shuffled after each iteration. The
pseudo-code of the final MONK BCD estimator is
summarized in Algorithm 1.

4The Python code reproducing our numerical experi-
ments is enclosed in the supplement. It will also be publicly
released upon acceptance of the manuscript.
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Table 1: Computational complexity of MMD estima-
tors. N : sample number, Q: number of blocks, T :
number of iterations.

Method Complexity
U-Stat O

(
N2
)

MONK BCD O
(
N3 + T

[
N2 +Q log(Q)

])
MONK BCD-Fast O

(
N3

Q2 + T
[
N2

Q +Q log(Q)
])

Notice that computing L in MONK BCD costs O(N3),
which can be prohibitive for large sample size. In
order to alleviate this bottleneck we also consider an
approximate version of MONK BCD (referred to as
MONK BCD-Fast), where the

∑
n∈[N ] summation after

plugging (11) to (10) is replaced with
∑
n∈Sq :

max
c=[a,b]∈R2N :c∗Kc≤1

med
q∈[Q]

 1

|Sq|
∑
j,n∈Sq

[anK(xj , xn)+

bnK(xj , yn)]− 1

|Sq|
∑
j,n∈Sq

[anK(yj , xn) + bnK(yj , yn)]

 .

This modification allows local computations restricted
to blocks and improved running time. The samples are
shuffled periodically (e.g., at every 10th iterations) to
renew the blocks. The resulting method is presented
in Algorithm 2. The computational complexity of the
different MMD estimators are summarized in Table 1.

5 NUMERICAL ILLUSTRATIONS

In this section, we demonstrate the performance of the
proposed MONK estimators. We exemplify the idea on
the MMD estimator [Eq. (6)] with the BCD optimiza-
tion schemes (MONK BCD and MONK BCD-Fast)
discussed in Section 4. Our baseline is the classical
U-statistic based MMD estimator [Eq. (8); referred to
as U-Stat in the sequel].

The primary goal in the first set of experiments is to
understand and demonstrate various aspects of the es-
timators for (K,P,Q) triplets [53, Table 3.3] when ana-
lytical expression is available for MMD. This is the case
for polynomial and RBF kernels (K), with Gaussian
distributions (P, Q). Notice that in the first (second)
case the features are unbounded (bounded). Our sec-
ond numerical example illustrates the applicability of
the studied MONK estimators in biological context, in
discriminating DNA subsequences with string kernel.

Experiment-1: We used the quadratic and the RBF
kernel with bandwith σ = 1 for demonstration pur-
poses and investigated the estimation error compared

to the true MMD value: |M̂MDQ(P,Q)−MMD(P,Q)|.
The errors are aggregates over 100 Monte-Carlo sim-
ulations, summarized in the median and quartile val-
ues. The number of samples (N) was chosen from
{200, 400, . . . , 2000}.

We considered three different experimental settings for
(P,Q) and the absence/presence of outliers:

1. Gaussian distributions with no outliers: In this case
P = N

(
µ1, σ

2
1

)
and Q = N

(
µ2, σ

2
2

)
were normal

where (µ1, σ1) 6= (µ2, σ2), µ1, σ1, µ2, σ2 were ran-
domly chosen from the [0, 1] interval, and then their
values were fixed. The estimators had access to
(xn)Nn=1

i.i.d.∼ P and (yn)Nn=1
i.i.d.∼ Q.

2. Gaussian distributions with outliers: This setting is
a corrupted version of the first one. Particularly, the
dataset consisted of (xn)N−5

n=1
i.i.d.∼ P, (yn)N−5

n=1
i.i.d.∼ Q,

while the remaining 5-5 samples were set to xN−4 =
. . . = xN = 2000, yN−4 = · · · = yN = 4000.

3. Pareto distribution without outliers: In this case
P = Q = Pareto(3) hence MMD(P,Q) = 0 and
the estimators worked based on (xn)Nn=1

i.i.d.∼ P and
(yn)Nn=1

i.i.d.∼ Q.

The 3 experiments were constructed to understand
different aspects of the estimators: how a few out-
liers can ruin classical estimators (as we move from
Experiment-1 to Experiment-2); in Experiment-3 the
heavyness of the tail of a Pareto distribution makes
the task non-trivial.

Our results on the three datasets with various Q choices
are summarized in Fig. 1. As we can see from Fig. 1a
and 1b in the outlier-free case, the MONK estima-
tors are slower than the U-statistic based one; the
accuracy is of the same order for both kernels. As
demonstrated by Fig. 1c in the corrupted setup even
a small number of outliers can completely ruin tradi-
tional MMD estimators for unbounded features while
the MONK estimators are naturally robust to outliers
with suitable choice of Q5 ; this is precisely the setting
the MONK estimators were designed for. In case of
bounded kernels [Fig. 1d], by construction, traditional
MMD estimators are naturally resistant to outliers;
the MONK BCD-Fast method achieves comparable
performance. In the final Pareto experiment [Fig. 1e-
1f] where the distribution produces “natural outliers”,
again MONK estimators are more robust with respect
to corruption than the one relying on U-statistics in
the case of polynomial kernel. These experiments illus-
trate the power of the studied MONK schemes: these
estimators achieve comparable performance in case of

5In this case of unknownNc, one can chooseQ adaptively
by the Lepski method (see for example [14]) at the price of
increasing the computational effort.
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Algorithm 1 MONK BCD estimator for MMD

Input: Aggregated Gram matrix: K with Cholesky factor L (K = LL∗).
for all t = 1, . . . , T do
Generate a random permutation of [N ]: σ.
Shuffle the samples according to σ: Sq =

{
σ
(

(q − 1)NQ + 1
)
, . . . , σ

(
qNQ

)}
, for ∀q ∈ [Q].

Find the block attaining the median (qm): 1
|Sqm |

[1qm ;−1qm ]∗Kc = med
q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kc
)
.

Compute the coefficient vector: c =
[1qm ;−1qm ]

‖L∗[1qm ;−1qm ]‖
2
.

Output: med
q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kc
)

Algorithm 2 MONK BCD-Fast estimator for MMD

Input: Aggregated Gram matrix: K with Cholesky factor L (K = LL∗). Incides at which we shuffle: J .
for all t = 1, . . . , T do
if t ∈ J then
Generate a random permutation of [N ]: σ.
Shuffle the samples according to σ: Sq =

{
σ
(

(q − 1)NQ + 1
)
, . . . , σ

(
qNQ

)}
, for ∀q ∈ [Q].

Compute the Gram matrices and the Cholesky factors on each block Kq and Lq for q ∈ [Q].
Find the blocka attaining the median (qm): 1

|Sqm |
[1qm ;−1qm ]∗Kqmcqm = med

q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kqcq

)
.

Update the coefficient vector: cqm =
[1qm ;−1qm ]

‖L∗qm [1qm ;−1qm ]‖
2

.

Output: med
q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kqcq

)
a
1q ∈ R|Sq| denotes the vector of ones of size |Sq|.

bounded features, while for unbounded features they
can efficiently cope with the presence of outliers.

Experiment-2 (discrimination of DNA subse-
quences): In order to demonstrate the applicability
of our estimators in biological context, we chose a
DNA benchmark from the UCI repository [15], the
Molecular Biology (Splice-junction Gene Sequences)
Data Set. The dataset consists of 3190 instances of
60-character-long DNA subsequences. The problem is
to recognize, given a sequence of DNA, the boundaries
between exons (the parts of the DNA sequence retained
after splicing) and introns (the parts of the DNA se-
quence that are spliced out). This task consists of two
subproblems, identifying the exon/intron boundaries
(referred to as EI sites) and the intron/exon bound-
aries (IE sites).6 We took 1532 of these samples by
selecting N = 766 instances from both the EI and the
IE classes (the class of those being neither EI nor IE
is more heterogeneous and thus we dumped it from
the study), and investigated the discriminability of
the EI and IE categories. We represented the DNA
sequences as strings (X), chose the Subsequent String
Kernel to compute MMD, and tuned the kernel pa-

6In the biological community, IE borders are referred to
as “acceptors” while EI borders are referred to as “donors”.

rameter by using 5-fold cross-validation to maximize
the distance between intra-class MMD and inter-class
MMD. Our results obtained from 50 Monte Carlo sim-
ulations (each time with a random 70% percent of
the samples) summarized in Figure 2 show that the
estimated inter-class M̂MD(EI, IE) distances are signif-
icantly bigger than the two intra-class M̂MD(EI,EI)
and M̂MD(IE, IE) ones. The MONK BCD and the
U-Stat techniques perform similarly in terms of both
the precision of the estimates and running time. The
MONK BCD-Fast method accelerates the computation
by its block-wise operation for the computationally
heavy string kernel, while offering somewhat less dis-
tinctive discriminability values. These results illustrate
the applicability of our estimators in biology.
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Supplement

The supplement contains the detailed proofs of our
results (Section A), a few technical lemmas used dur-
ing these arguments (Section B), and the McDiarmid
inequality for self-containedness (Section C).

A PROOFS OF THEOREM 1 AND
THEOREM 2

A.1 Proof of Theorem 1

The structure of the proof is as follows:

1. We show that ‖µ̂P,Q − µP‖K ≤ (1+
√

2)rQ,N , where

rQ,N = supf∈BK MONQ
[
〈f,K(·, x)− µP〉K︸ ︷︷ ︸

f(x)−Pf

]
, i.e.

the analysis can be reduced to BK .
2. Then rQ,N is bounded using empirical processes.

Step-1: Since HK is a Euclidean space, for any f ∈
HK

‖f −K(·, x)‖2K − ‖µP −K(·, x)‖2K
= ‖f − µP‖2K − 2 〈f − µP,K(·, x)− µP〉K . (14)

Hence, by denoting e = µ̂P,Q − µP, g̃ = g − µP we get

‖e‖2K − 2rQ,N ‖e‖K
(a)

≤ ‖e‖2K − 2MONQ
[〈

e

‖e‖K
,K(·, x)− µP

〉]
K

‖e‖K

(b)

≤ MONQ
[
‖e‖2K − 2

〈
e

‖e‖K
,K(·, x)− µP

〉
K

‖e‖K

]
(c)

≤ MONQ
[
‖µ̂P,Q −K(·, x)‖2K − ‖µP −K(·, x)‖2K

]
(d)

≤ sup
g∈HK

MONQ
[
‖µ̂P,Q −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
(e)

≤ sup
g∈HK

MONQ
[
‖µP −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
(f)
= sup

g∈HK

{
2MONQ

[
〈g̃,K(·, x)− µP〉K︸ ︷︷ ︸

‖g̃‖K
〈

g̃
‖g̃‖K

,K(·,x)−µP

〉
K

]
− ‖g̃‖2K

}

(g)
= sup

g∈HK

{
2 ‖g̃‖K rQ,N − ‖g̃‖

2
K

} (h)

≤ r2
Q,N , (15)

where we used in (a) the definition of rQ,N , (b) the
linearity7 of MONQ [·], (c) Eq. (14), (d) supg, (e) the
definition of µ̂P,Q, (f) Eq. (14) and the linearity of
MONQ [·], (g) the definition of rQ,N . In step (h), by
denoting a = ‖g̃‖K , r = rQ,N , the argument of the

7MONQ [c1 + c2f ] = c1+c2MONQ [f ] for any c1, c2 ∈ R.

sup takes the form 2ar − a2; 2ar − a2 ≤ r2 ⇔ 0 ≤
r2 − 2ar + a2 = (r − a)2.

In Eq. (15), we obtained an equation a2 − 2ra ≤ r2

where a := ‖e‖K ≥ 0. Hence r2 + 2ra − a2 ≥ 0,
r1,2 =

[
−2a±

√
4a2 + 4a2

]
/2 =

(
−1±

√
2
)
a, thus by

the non-negativity of a, r ≥ (−1 +
√

2)a, i.e., a ≤
r√
2−1

= (
√

2 + 1)r. In other words, we arrived at

‖µ̂P,Q − µP‖K ≤
(

1 +
√

2
)
rQ,N . (16)

It remains to upper bound rQ,N .

Step-2: Our goal is to provide a probabilistic bound
on

rQ,N = sup
f∈BK

MONQ [x 7→ 〈f,K(·, x)− µP〉K ]

= sup
f∈BK

med
q∈[Q]

{
〈
f, µSq − µP

〉
K︸ ︷︷ ︸

=:r(f,q)

}.

The Nc corrupted samples can affect (at most) Nc of
the (Sq)q∈[Q] blocks. Let U := [Q]\C stand for the
indices of the uncorrupted sets, where C := {q ∈ [Q] :
∃nj s.t. nj ∈ Sq, j ∈ [Nc]} contains the indices of the
corrupted sets. If

∀f ∈ BK : |{q ∈ U : r(f, q) ≥ ε}|︸ ︷︷ ︸∑
q∈U Ir(f,q)≥ε

+Nc ≤
Q

2
, (17)

then for ∀f ∈ BK , medq∈[Q]{r(f, q)} ≤ ε, i.e.
supf∈BK medq∈[Q]{r(f, q)} ≤ ε. Thus, our task boils
down to controlling the event in (17) by appropriately
choosing ε.

• Controlling r(f, q): For any f ∈ BK the random
variables 〈f, k(·, xi)− µP〉HK

= f(xi)− Pf are inde-
pendent, have zero mean, and

Exi∼P 〈f, k(·, xi)− µP〉2K = 〈f,ΣPf〉K
≤ ‖f‖K ‖ΣPf‖K ≤ ‖f‖

2
K ‖ΣP‖ = ‖ΣP‖ (18)

using the reproducing property of the kernel and
the covariance operator, the Cauchy-Schwarz (CBS)
inequality and ‖f‖HK

= 1.
For a zero-mean random variable z by the
Chebyshev’s inequality P (z > a) ≤ P (|z| > a) ≤
E
(
z2
)
/a2, which implies P

(
z >

√
E (z2) /α

)
≤ α

by a α = E
(
z2
)
/a2 substitution. With z :=

r(f, q) (q ∈ U), using E
[
z2
]

= E
〈
f, µSq − µP

〉2
K

=
Q
NExi∼P 〈f, k(·, xi)− µP〉2K and Eq. (18) one gets
that for all f ∈ BK , α ∈ (0, 1) and q ∈

U : P
(
r(f, q) >

√
‖ΣP‖Q
αN

)
≤ α. This means

P
(
r(f, q) > ε

2

)
≤ α with ε ≥ 2

√
‖ΣP‖Q
αN .
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• Reduction to φ: As a result∑
q∈U

P
(
r(f, q) ≥ ε

2

)
≤ |U |α

happens if and only if∑
q∈U

Ir(f,q)≥ε

≤ |U |α+
∑
q∈U

[
Ir(f,q)≥ε − P

(
r(f, q) ≥ ε

2

)
︸ ︷︷ ︸

E
[
Ir(f,q)≥ ε

2

]
]

=: A.

Let us introduce φ : t ∈ R → (t − 1)I1≤t≤2 + It≥2.
φ is 1-Lipschitz and satisfies I2≤t ≤ φ(t) ≤ I1≤t for
any t ∈ R. Hence, we can upper bound A as

A ≤ |U |α+
∑
q∈U

[
φ

(
2r(f, q)

ε

)
− Eφ

(
2r(f, q)

ε

)]
by noticing that ε ≤ r(f, q) ⇔ 2 ≤ 2r(f, q)/ε and
ε/2 ≤ r(f, q) ⇔ 1 ≤ 2r(f, q)/ε, and by using the
I2≤t ≤ φ(t) and the φ(t) ≤ I1≤t bound, respectively.
Taking supremum over BK we arrive at

sup
f∈BK

∑
q∈U

Ir(f,q)≥ε

≤ |U |α+ sup
f∈BK

∑
q∈U

[
φ

(
2r(f, q)

ε

)
− Eφ

(
2r(f, q)

ε

)]
︸ ︷︷ ︸

=:Z

.

• Concentration of Z around its mean: Notice
that Z is a function of xV , the samples in the un-
corrupted blocks; V = ∪q∈USq. By the bounded
difference property of Z (Lemma 4) for any β > 0,
the McDiarmid inequality (Lemma 6; we choose
τ := Qβ2/8 to get linear scaling in Q on the r.h.s.)
implies that

P (Z < ExV [Z] +Qβ) ≥ 1− e−
Qβ2

8 .

• Bounding ExV [Z]: Let M = N/Q denote the num-
ber of elements in Sq-s. The G = {gf : f ∈ BK}
class with gf : XM → R and PM := 1

M

∑M
m=1 δum

defined as

gf (u1:M ) = φ

(
〈f, µPM − µP〉K

ε

)
is uniformly bounded separable Carathéodory
(Lemma 5), hence the symmetrization technique [67,
Prop. 7.10], [42] gives

ExV [Z] ≤ 2ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eqφ

(
2r(f, q)

ε

)∣∣∣∣∣∣ ,
where e = (eq)q∈U ∈ R|U | with i.i.d. Rademacher
entries [P(eq = ±1) = 1

2 (∀q)].

• Discarding φ: Since φ(0) = 0 and φ is 1-Lipschitz,
by Talagrand’s contraction principle of Rademacher
processes [42], [34, Theorem 2.3] one gets

ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eqφ

(
2r(f, q)

ε

)∣∣∣∣∣∣
≤ 2ExV Ee sup

f∈BK

∣∣∣∣∣∣
∑
q∈U

eq
2r(f, q)

ε

∣∣∣∣∣∣ .
• Switching from |U | to N terms: Applying an

other symmetrization [(a)], the CBS inequality, f ∈
BK , and the Jensen inequality

ExV Ee sup
f∈BK

∣∣∣∣∣
Q∑
q=1

eq
r(f, q)

ε

∣∣∣∣∣
(a)

≤ 2Q

εN
ExV Ee′

[
sup
f∈BK

∣∣∣ ∑
n∈V

e′n 〈f,K(·, xn)− µP〉K︸ ︷︷ ︸
=〈f,∑n∈V e

′
n[K(·,xn)−µP]〉

K

∣∣∣]

≤ 2Q

εN
ExV Ee′

 sup
f∈BK

‖f‖K︸ ︷︷ ︸
=1

∥∥∥∥∥∑
n∈V

e′n [K(·, xn)− µP]

∥∥∥∥∥
K


=

2Q

εN
ExV Ee′

∥∥∥∥∥∑
n∈V

e′n [K(·, xn)− µP]

∥∥∥∥∥
K

≤ 2Q

εN

√√√√ExV Ee′

∥∥∥∥∥∑
n∈V

e′n [K(·, xn)− µP]

∥∥∥∥∥
2

K

(b)
=

2Q
√
|V |Tr(ΣP)

εN
.

In (a), we proceed as follows:

ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eq
r(f, q)

ε

∣∣∣∣∣∣
= ExV Ee sup

f∈BK

∣∣∣∣∣∣
∑
q∈U

eq

〈
f, µSq − µP

〉
K

ε

∣∣∣∣∣∣
(c)

≤ 2Q

Nε
ExV EeEe′ sup

f∈BK

∣∣∣∣∣∑
n∈V

e′ne
′′
n 〈f,K(·, xn)− µP〉K

∣∣∣∣∣
=

2Q

Nε
ExV Ee′ sup

f∈BK

∣∣∣∣∣∑
n∈V

e′n 〈f,K(·, xn)− µP〉K

∣∣∣∣∣ ,
where in (c) we applied symmetrization, e′ =
(e′n)n∈V ∈ R|V | with i.i.d. Rademacher en-
tries, e′′n = eq if n ∈ Sq (q ∈ U), and
we used that (e′ne

′′
n 〈f,K(·, xn)− µP〉K)

n∈V
distr
=

(e′n 〈f,K(·, xn)− µP〉K)
n∈V .
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In step (b), we had

ExV Ee′

∥∥∥∑
n∈V

e′n [K(·, xn)− µP]
∥∥∥2

K

= ExV Ee′

∑
n∈V

[e′n]
2 〈K(·, xn)− µP,K(·, xn)− µP〉K

= |V |Ex∼P 〈K(·, x)− µP,K(·, x)− µP〉K
= |V |Ex∼P Tr ([K(·, x)− µP]⊗ [K(·, x)− µP])

= |V |Tr(ΣP)

exploiting the independence of e′n-s and [e′n]2 = 1.

Until this point we showed that for all α ∈ (0, 1), β > 0,

if ε ≥ 2
√
‖ΣP‖Q
αN then

sup
f∈BK

Q∑
q=1

Ir(f,q)≥ε ≤ |U |α+Qβ +
8Q
√
|V |Tr(ΣP)

εN

with probability at least 1 − e−
Qβ2

8 . Thus, to ensure
that supf∈BK

∑Q
q=1 Ir(f,q)≥ε+Nc ≤ Q/2 it is sufficient

to choose (α, β, ε) such that |U |α+Qβ+
8Q
√
|V |Tr(ΣP)

εN +

Nc ≤ Q
2 , and in this case ‖µ̂P,Q − µP‖K ≤ (1 +

√
2)ε.

Applying the |U | ≤ Q and |V | ≤ N bounds, we want
to have

Qα+Qβ +
8Q
√

Tr(ΣP)

ε
√
N

+Nc ≤
Q

2
. (19)

Choosing α = β = δ
3 in Eq. (19), the sum of the first

two terms is Q 2δ
3 ; ε ≥ max

(
2
√

3‖ΣP‖Q
δN , 24

δ

√
Tr (ΣP)
N

)
gives ≤ Q δ

3 for the third term. Since Nc ≤ Q( 1
2 − δ),

we got

‖µ̂P,Q − µP‖K ≤ c1 max

(√
3 ‖ΣP‖Q
δN

,
12

δ

√
Tr (ΣP)

N

)

with probability at least 1−e−
Qδ2

72 . With an η = e−
Qδ2

72 ,

and hence Q =
72 ln( 1

η )
δ2 reparameterization Theorem 1

follows.

A.2 Proof of Theorem 2

The reasoning is similar to Theorem 1; we detail the
differences below. The high-level structure of the proof
is as follows:

• First we prove that
∣∣M̂MDQ(P,Q) −

MMD(P,Q)
∣∣ ≤ rQ,N , where rQ,N =

sup
f∈BK

∣∣∣med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}∣∣∣.
• Then rQ,N is bounded.

Step-1:

• M̂MDQ(P,Q) − MMD(P,Q) ≤ rQ,N : By the sub-
additivity of supremum [supf (af + bf ) ≤ supf af +
supf bf ] one gets

M̂MDQ(P,Q)

= sup
f∈BK

med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

+ (µP − µQ)
〉
K

}
≤ sup
f∈BK

med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}
+ sup
f∈BK

〈f, µP − µQ〉K

≤ sup
f∈BK

∣∣∣∣med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}∣∣∣∣︸ ︷︷ ︸
=rQ,N

+ MMD(P,Q).

• MMDQ(P,Q) − M̂MDQ(P,Q) ≤ rQ,N :
Let af := 〈f, µP − µQ〉K and bf :=
med
q∈[Q]

{〈
f, (µP − µQ)− (µSq,P − µSq,Q)

〉
K

}
. Then

af − bf
= 〈f, µP − µQ〉K

+ medq∈[Q]

{〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K

}
= medq∈[Q]

{〈
f, µSq,P − µSq,Q

〉
K

}
by medq∈[Q]{−zq} = −medq∈[Q]{zq}. Applying the
supf (af − bf ) ≥ supf af − supf bf inequality (it fol-
lows from the subadditivity of sup):

M̂MDQ(P,Q)

≥ MMD(P,Q)

− sup
f∈BK

med
q∈[Q]

{〈
f, (µP − µQ)− (µSq,P − µSq,Q)

〉
K

}
︸ ︷︷ ︸

−med
q∈[Q]
{〈f,(µSq,P−µSq,Q)−(µP−µQ)〉

K
}

≥ MMD(P,Q)

− sup
f∈BK

∣∣∣∣med
q∈[Q]

{〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K

}∣∣∣∣︸ ︷︷ ︸
rQ,N

.

Step-2: Our goal is to control

rQ,N = supf∈BK

∣∣∣medq∈[Q]

{
r(f, q)

}∣∣∣, where
r(f, q) :=

〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K
.

The relevant quantities which change compared to the
proof of Theorem 1 are as follows.
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• Median rephrasing:

sup
f∈BK

∣∣∣med
q∈[Q]

{r(f, q)}
∣∣∣ ≤ ε

⇔ ∀f ∈ BK : −ε ≤ medq∈[Q]{r(f, q)} ≤ ε
⇐ ∀f ∈ BK : |{q : r(f, q) ≤ −ε}| ≤ Q/2

and |{q : r(f, q) ≥ ε}| ≤ Q/2
⇐ ∀f ∈ BK : |{q : |r(f, q)| ≥ ε}| ≤ Q/2.

Thus, ∀f ∈ BK : |{q ∈ U : |r(f, q)| ≥ ε}|+ Nc ≤ Q
2 ,

implies supf∈BK

∣∣∣medq∈[Q]{r(f, q)}
∣∣∣ ≤ ε.

• Controlling |r(f, q)|: For any f ∈ BK the random
variables [f(xi)−f(yi)]− [Pf −Qf ] are independent,
zero-mean and

E(x,y)∼P⊗Q([f(x)− Pf ]− [f(y)−Qf ])2

= Ex∼P[f(x)− Pf ]2 + Ey∼Q[f(y)−Qf ]2

≤ ‖ΣP‖+ ‖ΣQ‖ ,

where P⊗Q is the product measure. The Chebyshev
argument with z = |r(f, q)| implies that ∀α ∈ (0, 1)

(P⊗Q)

(
|r(f, q)| >

√
(‖ΣP‖+ ‖ΣQ‖)Q

αN

)
≤ α.

This means (P ⊗ Q) (|r(f, q)| > ε/2) ≤ α with ε ≥
2
√

(‖ΣP‖+‖ΣQ‖)Q
αN .

• Switching from |U | to N terms: With (xy)V =
{(xi, yi) : i ∈ V }, in ’(b)’ with x̃n := K(·, xn) − µP,
ỹn := K(·, yn)− µQ we arrive at

E(xy)V Ee′

∥∥∥∥∥∑
n∈V

e′n (x̃n − ỹn)

∥∥∥∥∥
2

K

= E(xy)V Ee′

∑
n∈V

[e′n]
2 〈x̃n − ỹn, x̃n − ỹn〉K

= |V |E(xy)∼P ‖[K(·, x)− µP]− [K(·, y)− µQ]‖K
= |V | [Tr (ΣP) + Tr (ΣQ)] .

• These results imply

Qα+Qβ +
8Q
√

Tr (ΣP) + Tr (ΣQ)

ε
√
N

+Nc ≤ Q/2.

ε ≥ max

(
2
√

3(‖ΣP‖+‖ΣQ‖)Q
δN , 24

δ

√
Tr (ΣP)+Tr (ΣQ)

N

)
,

α = β = δ
3 choice gives that∣∣∣M̂MDQ(P,Q)−MMD(P,Q)

∣∣∣
≤ 2 max

(√
3 (‖ΣP‖+ ‖ΣQ‖)Q

δN
,

12

δ

√
Tr (ΣP) + Tr (ΣQ)

N

)

with probability at least 1− e−
Qδ2

72 . η = e−
Qδ2

72 , i.e.

Q =
72 ln( 1

η )
δ2 reparameterization finishes the proof of

Theorem 2.

B TECHNICAL LEMMAS

Lemma 3 (Supremum).∣∣∣ sup
f
af − sup

f
bf

∣∣∣ ≤ sup
f
|af − bf |.

Lemma 4 (Bounded difference property of Z). Let
N ∈ Z+, (Sq)q∈[Q] be a partition of [N ], K : X×X→ R
be a kernel, µ be the mean embedding associated to
K, x1:N be i.i.d. random variables on X, Z(xV ) =

sup
f∈BK

∑
q∈U

[
φ

(
2〈f,µSq−µP〉

K

ε

)
− Eφ

(
2〈f,µSq−µP〉

K

ε

)]
,

where U ⊆ [Q], V = ∪q∈USq. Let x′Vi be xV except for
the i ∈ V -th coordinate; xi is changed to x′i. Then

sup
xV ∈X|V |,x′i∈X

∣∣Z (xV )− Z
(
x′Vi
)∣∣ ≤ 4, ∀i ∈ V.

Proof. Since (Sq)q∈[Q] is a partition of [Q], (Sq)q∈U
forms a partition of V and there exists a unique r ∈ U
such that i ∈ Sr. Let

Yq := Yq(f, xV ),

q ∈ U = φ

(
2
〈
f, µSq − µP

〉
K

ε

)
− Eφ

(
2
〈
f, µSq − µP

〉
K

ε

)
,

Y ′r := Yr(f, x
′
Vi).

In this case∣∣Z (xV )− Z
(
x′Vi
)∣∣

=

∣∣∣∣∣∣ sup
f∈BK

∑
q∈U

Yq − sup
f∈BK

 ∑
q∈U\{r}

Yq + Y ′r

∣∣∣∣∣∣
(a)

≤ sup
f∈BK

|Yr − Y ′r |
(b)

≤ sup
f∈BK

(
|Yr|︸︷︷︸
≤2

+ |Y ′r |︸︷︷︸
≤2

)
≤ 4,

where in (a) we used Lemma 3, (b) the triangle in-
equality and the boundedness of φ [|φ(t)| ≤ 1 for all
t].

Lemma 5 (Uniformly bounded separable
Carathéodory family). Let ε > 0, N ∈ Z+, Q ∈ Z+,
M = N/Q ∈ Z+, φ(t) = (t − 1)I1≤t≤2 + It≥2,
K : X×X→ R is a continuous kernel on the separable
topological domain X, µ is the mean embedding associ-
ated to K, PM := 1

M

∑M
m=1 δum , G = {gf : f ∈ BK},

where gf : XM → R is defined as

gf (u1:M ) = φ

(
2 〈f, µPM − µP〉K

ε

)
.

Then G is a uniformly bounded separable Carathéodory
family: (i) supf∈BK ‖gf‖∞ < ∞ where ‖g‖∞ =
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supu1:M∈XM |g(u1:M )|, (ii) u1:M 7→ gf (u1:M ) is mea-
surable for all f ∈ BK , (iii) f 7→ gf (u1:M ) is continu-
ous for all u1:M ∈ XM , (iv) BK is separable.

Proof.

(i) |φ(t)| ≤ 1 for any t, hence ‖gf‖∞ ≤ 1 for all
f ∈ BK .

(ii) Any f ∈ BK is continuous since HK ⊂
C(X) = {h : X → R continuous}, so u1:M 7→
(f(u1), . . . , f(uM )) is continuous. φ is Lipschitz,
specifically continuous. The continuity of these two
maps imply that of u1:M 7→ gf (u1:M ), specifically
it is Borel-measurable.

(ii) The statement follows by the continuity of f 7→
〈f, h〉K (h = µPM − µP) and that of φ.

(iv) BK is separable since HK is so by assumption.

C EXTERNAL LEMMA

Below we state the McDiarmid inequality for self-
containedness.

Lemma 6 (McDiarmid inequality). Let x1:N be X-
valued independent random variables. Assume that
f : XN → R satisfies the bounded difference property

sup
u1,...,uN ,u′r∈X

|f(u1:N )− f(u′1:N )| ≤ c, ∀n ∈ [N ],

where u′1:N = (u1, . . . , un−1, u
′
n, un+1, . . . , uN ). Then

for any τ > 0

P

(
f(x1:N ) < Ex1:N

[f(x1:N )] + c

√
τN

2

)
≥ 1− e−τ .
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