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Flatness based longitudinal vehicle control with embedded torque constraint
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This paper aims at establishing a simple yet efficient solution to the problem of trajectory tracking with input constraint of a nonlinear longitudinal vehicle model. We make use of differential flatness, by embedding the constraint into the reference trajectory design.

Introduction

The aim of this paper is to come up with simple yet efficient control techniques for vehicle longitudinal speed control with constraint on its torque. More precisely, we consider a longitudinal nonlinear model including a simple adherence/friction law (see, e.g. [START_REF] Ellis | Vehicle dynamics[END_REF][START_REF] Gillespie | Fundamentals of Vehicle Dynamics[END_REF][START_REF] Kiencke | Automotive Control Systems: For Engine, Driveline and Vehicle[END_REF][START_REF] Henning Mitschke | Dynamik der Kraftfahrzeuge[END_REF][START_REF] Henning Mitschke | Dynamik der Kraftfahrzeuge[END_REF][START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]). For this model, we consider the problem of tracking a reference speed trajectory with constraint on the input torque. Traditional treatment of such a problem include model predictive control [START_REF] Li | Model predictive multi-objective vehicular adaptive cruise control[END_REF] and use of optimisation techniques [START_REF] Hsu | An optimal wheel torque distribution controller for automated vehicle trajectory following[END_REF][START_REF] Hsu | A constrained wheel torque controller for lane following system using control distribution[END_REF]) Some other works use adaptive anti-windup techniques [START_REF] Nazli | Cruise control with adaptation and wheel torque constraints for improved fuel economy[END_REF][START_REF] Tarbouriech | Anti-windup design: an overview of some recent advances and open problems[END_REF], saturated inputs [START_REF] Valmorbida | Design of polynomial control laws for polynomial systems subject to actuator saturation[END_REF] to name a few.

The constraint is embedded in the flat output trajectory design. Thus, the closed loop tracking controller naturally satisfies the required constraint, without the recourse to costly optimisation procedure.

A key advantage of the advocated technique is that the physical meaning is kept throughout the whole process, a feature often lost in MPC or other optimisation based techniques.

More precisely, a dynamical system with m inputs is differentially flat [START_REF] Fliess | Flatness and defect of nonlinear systems: introductory theory and examples[END_REF] if there exists a so-called flat output ω ω ω with m components ω ω ω = (ω 1 , . . . , ω m ) such that: first, these components are functions of the system's variables (endogenous character); second, the ω i s are differentially independent, i.e. they don't satisfy a differential equation involving themselves only (independent character); third, all the system's variables can be expressed as nonlinear functions of the ω i s and of a finite number of their derivatives (parametrisation property).

Thus, when a system variable is subject to a constraint, the latter is directly translated into a flat output constraint, thanks to the parametrisation property. The tracking problem with constraints is thus elaborated in two steps: first design a flat output reference trajectory ω ω ω r satisfying all the required constraints; second, design a closed loop feedback control law ensuring the tracking of ω ω ω r with stability. The constraints satisfaction is ensured by design, since it is embedded in the reference trajectory elaboration process.

The involved constraints can be given on any system variable, since all the system is parametrised by the flat output. The constraint is enforced on the reference variables, and is ensured practically on the actual variables since the tracking error is meant to tend to zero, in general exponentially.

Ensuring the constraints on the flat output is simplified by specialising the flat output reference trajectory to specific classes of functions with convenient properties, such as closedness wrt differentiation or being solution of a differential equation.

To the best of the author's knowledge, almost all the current work on differentially flat systems with constraints is managed through optimisation procedures [START_REF] Chamseddine | Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: Application to a quadrotor unmanned aerial vehicle[END_REF][START_REF] Faiz | Trajectory planning of differentially flat systems with dynamics and inequalities[END_REF][START_REF] Flores | Trajectory generation for differentially flat systems via NURBS basis functions with obstacle avoidance[END_REF][START_REF] Keck | SAMMY -an algorithm for efficient computation of a smooth path for reference trajectory generation[END_REF][START_REF] Petit | Optimal drive of electric vehicles using an inversion-based trajectory generation approach[END_REF][START_REF] Ross | Pseudospectral methods for optimal motion planning of differentially flat systems[END_REF][START_REF] Tsuei | Trajectory generation for constrained differentially flat systems with time and frequency domain objectives[END_REF][START_REF] Walambe | Optimal trajectory generation for car-type mobile robot using spline interpolation[END_REF]. In [START_REF] Löwis | Real-time trajectory generation for flat systems with constraints[END_REF], no optimisation technique is used, but the flat output trajectory is not known on advance; thus, the trajectory is built step by step, by concatenating pieces The only work partially related to our approach is [START_REF] Ruppel | Analytical multi-point trajectory generation for differentially flat systems with output constraints[END_REF], where the constraints appear solely on derivatives of the flat output, which is specialised to piecewise polynomial functions. Preliminary results related to the present one have been presented for linear systems with delays in [START_REF] Bekcheva | Control of differentially flat linear delay systems with constraints[END_REF], and for an Euler Bernoulli beam in [START_REF] Bekcheva | Euler-bernoulli beam flatness based control with constraints[END_REF]. Other works related to the present theme include differential flatness based techniques for longitudinal and lateral vehicle dynamics [START_REF] Menhour | Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques[END_REF].

The paper is organised as follows. In the next Section, the model is recalled. In Section 3, the flatness of the model is established, and a closed loop feedback tracking controller is given in Section 4. The torque constraint management is dealt with in Section 5.

Longitudinal model

The equations of the vehicle dynamics can be written as follows (see, e.g. [START_REF] Ellis | Vehicle dynamics[END_REF][START_REF] Gillespie | Fundamentals of Vehicle Dynamics[END_REF][START_REF] Kiencke | Automotive Control Systems: For Engine, Driveline and Vehicle[END_REF][START_REF] Henning Mitschke | Dynamik der Kraftfahrzeuge[END_REF][START_REF] Henning Mitschke | Dynamik der Kraftfahrzeuge[END_REF][START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]) :

m Vx = F x (2.1a) I w ω = RT -rF x -F o (2.1b)
with the following slip ratio and forces :

F x = µ x (λ )F z , λ = V x -rω max(V x , rω)
(2.2a)

F z = mg (2.2b) F o = -F a -F s (2.2c) R x = mgC r , F a = ρ C a AV 2 x 2 , F s = mg sin α (2.2d)
The notations for the model (2.1a)-(2.1b) are: V x is the longitudinal speed of the vehicle, m its mass, F x the longitudinal tire force, I w inertia moment of the wheel, ω angular wheel speed, R the damping coefficient of the drive-line, T the engine torque, r the effective tire radius, F o the other forces exterted on the car body. The expressions of the forces are given in Equations (2.2a)-(2.2d), with the following notations: µ x is the adherence function, F z the normal force on the tire, λ the slip ratio, g the gravity constant, R x the rolling resistance force, F a the longitudinal aerodynamic drag force, ρ is the air volumic mass, A is
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frontal area of the vehicle, C a is the drag coefficient, F s the force due to the road slope, and α the road slope angle.

A possible model for µ x (λ ) introduced by Kiencke and Daiß and depicted in Figure 1, is given by the function:

µ x (λ ) = aλ b + c|λ | + λ 2 (2.3)
One easily obtains that the maximum µ * of such a curve occurs at λ * with:

λ * = √ b, µ * = a c + 2 √ b
Conversely, the constants a, b, c can be expressed as functions of µ * λ * and µ 1 : 1) is the value of the function µ at λ = 1 (i.e. at wheel lock). Note that a and b are strictly positive constants. REMARK 2.1 Another, quite popular, model is the Pacejka one [START_REF] Bakker | Tyre modelling for use in vehicle dynamics studies[END_REF][START_REF] Pacejka | Tyre and Vehicle Dynamics[END_REF]. We have not used the latter, for simplicity reasons, but a similar, although more complex, analysis could be made with Pacejka's model.

a = µ * µ 1 (1 -λ * ) 2 µ * -µ 1 , b = λ * 2 , c = µ 1 (1 + λ * 2 ) -2µ * λ * µ * -µ 1 where µ 1 = µ(
The measured outputs are traditionally the wheel speed (e.g. through ABS encoders). We shall here suppose that the speed V x of the vehicle's center of gravity is either measured or reconstructed via an observer or an estimator (see, e.g. a previous work of some author of the present paper [START_REF] Villagra | Estimation of longitudinal and lateral vehicle velocities: An algebraic approach[END_REF]).

Differential flatness of the model

The model (2.1) is trivially flat, with flat output V x . Indeed,

Vx = gµ x (λ ) (3.1)
Then,

λ = µ -1 Vx g (3.2)
Now one has to distinguish two acceleration and deceleration cases (implied by the form of λ in (2.2a)):

• Acceleration case, where rω V x λ = V x rω -1 = µ -1 Vx g Hence ω = V x r 1 + µ -1 Vx g (3.3) And thus Vx = gµ x (λ ) λ = gµ x (λ ) 1 rω 2 ω Vx -ωV x • Deceleration case, where rω V x λ = 1 - rω V x = µ -1 Vx g Hence ω = V x r 1 -µ -1 Vx g (3.4)
And thus

Vx = gµ x (λ ) λ = gµ x (λ ) r V 2 x ω Vx -ωV x
Thus, one has the following dynamics in V x :

Vx = gµ x max rω 2 , V 2 x r ω Vx + V x I w mr Vx + F o + RT (3.5)
and the control input T is then obtained as

T = 1 R mr + I w ω V x Vx + F o - I w max r 2 ω 2 ,V 2 x grV x µ x Vx (3.6)
5 of 15 REMARK 3.1 The reader could have the (quite normal) feeling that the laws (3.3) and (3.4) yield a discontinuity when the vehicle switches from acceleration to deceleration (leading to a chattering like phenomenon). First note that this can only occur at extremely low slip, i.e. when rω -V x 1, where the µ() curve is in the linear zone (and thus the µ -1 also); thus

µ -1 Vx g ≈ β Vx g
Moreover, when the vehicle switches from acceleration to deceleration (or vice-versa), one has | Vx | 1. Thus, in (3.3), one has

1 1 + µ -1 Vx g = 1 -µ -1 Vx g + o Vx g 2
Thus, the expression of ω is

ω = V x r 1 + µ -1 Vx g = V x r 1 -µ -1 Vx g + o Vx g 2 whose term in o((V x /g) 2
) is exactly the one of (3.4). Thus, in case of acceleration-deceleration switching, the expression of ω is continuous and differentiable.

Trajectory tracking

Trajectory tracking control law

Recalling the flat output dynamics (3.5), and setting the right member equal to a new input v, one obtains the linearizing feedback

ω Vx + V x I w mr Vx + F o + RT = max r 2 ω 2 ,V 2 x grµ x v
tranforming the flat output dynamics (3.5) to

Vx = v Setting the new input v to v = Vxr -K p e V x -K d ėV x , e V x = V x -V xr
with K p , K d > 0 yield an exponentially stable error dynamics. The original input is then obtained as

T = 1 R mr + I w ω V x Vx + F o - I w max r 2 ω 2 ,V 2 x grV x µ x v (4.1) v = Vxr -K p e V x -K d ėV x (4.2)
REMARK 4.1 Note that, in (4.2), one could have used equally a second order sliding mode or a model free control law, for instance, in order to gain in robustness. 

T r = 1 R mr + I w ω r V xr Vxr + F o - I w max r 2 ω 2 r ,V 2 xr grV x µ xr Vxr (4.3)
Thus, the Equations (4.1)-( 4.2) can be rewritten as

T = T r - 1 R (K p e V x + K d ėV x ) (4.4)
We thus see that, if the error e V x and its derivative ėV x remain small (which is the case when the tacking performance is good), the closed loop torque T remains close to the open loop one T r .

4.2 Trajectory tracking scenario 4.2.1 Trajectory form. We shall choose a trajectory V xr (t) of the following form is met, where

V xr (t) = Ω p p p u ,p p p d (t) = Θ p p p u (t) -Θ p p p d (t) (4.5) Θ p p p * * * (t) = V h * -V l * 2(t e * -t b * ) logCh σ * (t -t b * ) + logCh -σ * (t -t e * ) + V h * -V l * 2 (4.6) logCh σ (t) = 1 σ log cosh(
max λ ∈[-1,1] (µ x (λ )) = µ x (λ * ) = µ *
is given by (see Eq. (2.3) and below)

µ * = a c + 2 √ b , with λ * = √ b
We shall consider the following

max t∈R Vxr (t) = g(µ * -ε µ x ) gµ M (4.8)
where ε µ x is such that ε µ x /µ * 1. This corresponds to

λ M = µ -1 (µ M ) = λ * -ε λ (4.9)
where ε λ is such that ε λ /λ * 1.

Trajectory tracking.

The trajectory tracking of V xr = Ω p p p u ,p p p d is depicted in Figures 4 and5.

The chosen parameters are the following: initial conditions V x0 = 5m/s, ω 0 = 16.67rad/s, starting speed V lu = V ld = 5m/s, reached speed V hu = V hd = 15m/s. We see on Fig. 4 and 5 that the trajectory tracking is achieved with a very good precision, since the maximum error V x -V xr in Fig. 5 is 2.055.10 -5 . The slip ratio λ and the adherence function µ(λ ) are plotted in Figures 6 and7. Remark that this slip ratio λ remains very small (the maximum of λ is 4.613.10 -4 ). The parameters of the function µ(λ ) are: a = 3.661, b = 0.022, c = 5.153. 

Torque constraint management

Since the constraints will be expressed in terms of the flat output V x and its derivatives, we have to compute analytically the first derivatives of V x .

Trajectory first derivatives

The derivatives of Ω are the following:

Vxr = Ω p p p u ,p p p d (t) = V hu -V lu 2(t eu -t bu ) tanh σ u (t -t bu ) + tanh -σ u (t -t eu ) - V hd -V ld 2(t ed -t bd ) tanh σ d (t -t bd ) + tanh -σ d (t -t ed ) (5.1) Vxr = Ω p p p u ,p p p d (t) = σ u (V hu -V lu ) 2(t eu -t bu ) tanh 2 -σ u (t -t eu ) -tanh 2 σ u (t -t bu ) - σ d (V hd -V ld ) 2(t ed -t bd ) tanh 2 σ d (t -t ed ) -tanh 2 -σ d (t -t bd ) (5.2)
For the example depicted in Figure 2, we get the derivatives in Figures 10 and11. The maximum and minimum of Ω p p p u ,p p p d and Ω p p p u ,p p p d are max( Ω p p p u ,p p p d (t We then set

)) = V hu -V lu 2(t eu -t bu ) , min( Ω p p p u ,p p p d (t)) = - V hd -V ld 2(t ed -t bd ) (5.3) max( Ω p p p u ,p p p d (t)) = max σ u (V hu -V lu ) 2(t eu -t bu ) , σ d (V hd -V ld ) 2(t ed -t bd ) (5.4) min( Ω p p p u ,p p p d (t)) = -max σ u (V hu -V lu ) 2(t eu -t bu ) , σ d (V hd -V ld ) 2(t ed -t bd ) (5.5)
∆ Vu = V hu -V lu , ∆ Vd = V hd -V ld , ∆ tu = t eu -t bu , ∆ td = t ed -t bd Vxm = - ∆ Vd ∆ td , VxM = ∆ Vu ∆ tu , Vxm = -max σ u ∆ Vu ∆ tu , σ d ∆ Vd ∆ td , VxM = -V xm

Torque expression and simple bounds

We shall give in this Subsection various bounds, postponing a discussion about them to Subsection 5.3, p. 12.

5.2.1

Torque expression amenable to be bounded. Recall the expression obtained for the trajectory tracking feedback law in Eq. (4.1):

T = 1 R mr + I w ω V x Vx + F o - I w max r 2 ω 2 ,V 2 x grV x µ x
Vx Then, we have:

• In the acceleration case, where rω V x , λ 0

ω V x = 1 r(1 + λ ) • In the deceleration case, where rω V x , λ 0 ω V x = 1 -λ r
Thus, the expression for the torque is

• In the acceleration case

T = 1 R mr + I w r(1 + λ ) Vx + F o + I w grµ x (1 + λ ) 2 V x Vx • In the deceleration case T = 1 R mr + I w (1 -λ ) r Vx + F o - I w grµ x V x Vx
5.2.2 Generic bound. We have the following bounds for |T |:

• In the acceleration case

|T | 1 R mr + I w r(1 + λ ) Vx + |F o | + I w gr|µ x |(1 + λ ) 2 V x | Vx |
(5.6)

• In the deceleration case

|T | 1 R mr + I w (1 -λ ) r | Vx | + |F o | + I w grµ x V x | Vx | (5.7) 5.2.3 A simplistic bound.
A simplistic bound is given by considering minimum (in denominators) and maximum (in numerators) values for the various expressions in the bounding formulas (5.6)-(5.7):

• In the acceleration case

|T | 1 R mr + I w r(1 + λ m ) VxM + I w gr|µ xm |(1 + λ m ) 2 V xM | VxM | (5.8) • In the deceleration case |T | 1 R mr + I w (1 -λ m ) r | VxM | + I w grµ xm V xM | VxM | (5.9)
with the following notations (see, in particular, Eq. (4.9))

VxM = max ∆ Vu ∆ tu , ∆ Vd ∆ td , VxM = max σ u ∆ Vu ∆ tu , σ d ∆ Vd ∆ td (5.10) λ m = -λ M = µ -1 (µ M ) = -λ * + ε λ , µ m = µ (λ * -ε µ ) (5.11)
5.2.4 A simple but realistic bound. We shall then consider the following more realistic bounding function:

• In the acceleration case

|T | mr R + I w rR(1 + λ m ) Vx + max I w V xr | Vxr | grR|µ xr |(1 + λ r ) 2 = ξ aM Vx + ζ aM
(5.12) 5.12)-(5.13) yields a maximum of 1.962N which is a much better bound than the previous one, wrt the real maximum of 1.948N.

REMARK 5.1 Note that the bounding functions (5.12)-(5.13) are valid for any type of reference trajectory, and not only the one given in (4.5), p. 6.

Recall the form of the bounds given in (5.3)

Vxm = - ∆ Vd ∆ td , VxM = ∆ Vu ∆ tu ∆ Vu = V hu -V lu , ∆ Vd = V hd -V ld ,
∆ tu = t eut bu , ∆ td = t edt bd and suppose ∆ Vu and ∆ Vd being given by practical considerations (e.g. speed limits). From the bounds obtained in (5.12)-(5.13), we then have In Figure 12, we have the bounds (5.12)-(5.13) in dashed line (ξ aM Vx + ζ aM and ξ dM Vx + ζ dM ) and the torque T in solid line, and in Figure 13 is depicted the error between the previous two. Note that the maximum error is 1.398.10 -2 , which is 0.18% of T r 's maximum. FIG. 13: Error between T and the bounds (5.12)-(5.13).

Conclusion

We have elaborated a simple yet efficient scheme for tracking a reference speed of a longitudinal vehicle model with torque constraint. The flatness character of the model enabled to embed the constraint fulfilment in the trajectory design. We considered a special class of functions for the class output, namely combinations of log(cosh(t)) type functions.

More general classes of functions will be considered in the future, together with some other types of constraints.
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 11 Open and closed loop tracking. Let V xr a reference trajectory for the flat output V x . Denoting by T r the following open loop control law, one has by direct substitution from (3.6):
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 457 FIG.4: Speed trajectory tracking; in blue V x and in red V xr , standard trajectory.
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 9 FIG. 9: Control error T -T r , standard trajectory.
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 10 FIG. 10:The first derivative Vxr = Ω p p p u ,p p p d (acceleration).

FIG. 11 :

 11 FIG. 11:The second derivative Vxr = Ω p p p u ,p p p d (jerk).

  FIG. 12: Bounds (5.12)-(5.13) on T .

  Since the µ x curve is imposed by the tyre/ground physics, we should ensure that Vx does not exceed the maximum (resp. minimum) of gµ x . In other words, the chosen trajectory will be such that the physical constraint
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σt) p p p * ∈ p p p u , p p p d , p p p u = (t bu ,t eu ,V lu ,V hu , σ u ), p p p d = (t bd ,t ed ,V ld ,V hd , σ d )

The forms of Ω p p p u ,p p p d and Θ p p p are depicted in Figures

2 and 3

. The speeds V l * and V h * are the beginning and reached speeds, respectively; t b * and t e * are the beginning and ending times of speed change. The real σ * is a stiffness parameter: the higher σ * , the closer logCh σ * (t) is from |t|. REMARK 4.2 One could have chosen a tanh-like trajectory for V xr . The chosen form (which amounts to a combination of primitives of tanh) is a smooth (in fact entire) approximation of a trajectory yielding a piecewise constant acceleration. The difference t e *t b * is related to the acceleration, while the stiffness σ is related to the jerk. A tanh-like trajectory would furnish only a single design parameter (the stiffness).

The associated trajectory parameters are: σ = 0.5, t bu = 20s, t eu = 35s, t bd = 70s, t ed = 85s. FIG. 2: An example of V xr (t) = Ω p p p u ,p p p d (t) trajectory. FIG. 3: An example of Θ p p p (t) function.
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