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This paper aims at establishing a simple yet efficient solution to the problem of trajectory tracking with
input constraint of a nonlinear longitudinal vehicle model. We make use of differential flatness, by
embedding the constraint into the reference trajectory design.
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1. Introduction

The aim of this paper is to come up with simple yet efficient control techniques for vehicle longitudi-
nal speed control with constraint on its torque. More precisely, we consider a longitudinal nonlinear
model including a simple adherence/friction law (see, e.g. (Ellis, 1969; Gillespie, 1992; Kiencke and
Nielsen, 2000; Mitschke, Manfred ; Wallentowitz, 2004; Rajamani, 2011)). For this model, we con-
sider the problem of tracking a reference speed trajectory with constraint on the input torque. Traditional
treatment of such a problem include model predictive control (Li et al., 2011) and use of optimisation
techniques (Hsu and Chen, 2013; Hsu et al., 2010) Some other works use adaptive anti-windup tech-
niques (Kahveci and Ioannou, 2010; Tarbouriech and Turner, 2009), saturated inputs (Valmorbida et al.,
2013) to name a few.

The constraint is embedded in the flat output trajectory design. Thus, the closed loop tracking con-
troller naturally satisfies the required constraint, without the recourse to costly optimisation procedure.
A key advantage of the advocated technique is that the physical meaning is kept throughout the whole
process, a feature often lost in MPC or other optimisation based techniques.

More precisely, a dynamical system with m inputs is differentially flat (Fliess et al., 1995) if there
exists a so-called flat output ωωω with m components ωωω = (ω1, . . . ,ωm) such that: first, these compo-
nents are functions of the system’s variables (endogenous character); second, the ωis are differentially
independent, i.e. they don’t satisfy a differential equation involving themselves only (independent char-
acter); third, all the system’s variables can be expressed as nonlinear functions of the ωis and of a finite
number of their derivatives (parametrisation property).

Thus, when a system variable is subject to a constraint, the latter is directly translated into a flat
output constraint, thanks to the parametrisation property. The tracking problem with constraints is thus
elaborated in two steps: first design a flat output reference trajectory ωωωr satisfying all the required
constraints; second, design a closed loop feedback control law ensuring the tracking of ωωωr with stabil-
ity. The constraints satisfaction is ensured by design, since it is embedded in the reference trajectory
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elaboration process.
The involved constraints can be given on any system variable, since all the system is parametrised

by the flat output. The constraint is enforced on the reference variables, and is ensured practically on
the actual variables since the tracking error is meant to tend to zero, in general exponentially.

Ensuring the constraints on the flat output is simplified by specialising the flat output reference tra-
jectory to specific classes of functions with convenient properties, such as closedness wrt differentiation
or being solution of a differential equation.

To the best of the author’s knowledge, almost all the current work on differentially flat systems with
constraints is managed through optimisation procedures (Chamseddine et al., 2013; Faiz et al., 2001;
Flores and Milam, 2006; Keck et al., 2015; Petit and Sciarretta, 2011; Ross and Fahroo, 2004; Tsuei
and Milam, 2016; Walambe et al., 2016). In (Löwis and Rudolph, 2003), no optimisation technique is
used, but the flat output trajectory is not known on advance; thus, the trajectory is built step by step, by
concatenating pieces The only work partially related to our approach is (Ruppel et al., 2011), where the
constraints appear solely on derivatives of the flat output, which is specialised to piecewise polynomial
functions. Preliminary results related to the present one have been presented for linear systems with
delays in (Bekcheva et al., 2017), and for an Euler Bernoulli beam in (Bekcheva et al., 2015). Other
works related to the present theme include differential flatness based techniques for longitudinal and
lateral vehicle dynamics (Menhour et al., 2014).

The paper is organised as follows. In the next Section, the model is recalled. In Section 3, the
flatness of the model is established, and a closed loop feedback tracking controller is given in Section 4.
The torque constraint management is dealt with in Section 5.

2. Longitudinal model

The equations of the vehicle dynamics can be written as follows (see, e.g. (Ellis, 1969; Gillespie, 1992;
Kiencke and Nielsen, 2000; Mitschke, Manfred ; Wallentowitz, 2004; Rajamani, 2011)) :

mV̇x = Fx (2.1a)
Iwω̇ = RT − rFx−Fo (2.1b)

with the following slip ratio and forces :

Fx = µx(λ )Fz, λ =
Vx− rω

max(Vx,rω)
(2.2a)

Fz = mg (2.2b)
Fo =−Fa−Fs (2.2c)

Rx = mgCr, Fa =
ρ CaAV 2

x

2
, Fs = mgsinα (2.2d)

The notations for the model (2.1a)–(2.1b) are: Vx is the longitudinal speed of the vehicle, m its mass,
Fx the longitudinal tire force, Iw inertia moment of the wheel, ω angular wheel speed, R the damping
coefficient of the drive-line, T the engine torque, r the effective tire radius, Fo the other forces exterted
on the car body.

The expressions of the forces are given in Equations (2.2a)–(2.2d), with the following notations: µx
is the adherence function, Fz the normal force on the tire, λ the slip ratio, g the gravity constant, Rx
the rolling resistance force, Fa the longitudinal aerodynamic drag force, ρ is the air volumic mass, A is
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FIG. 1: Adherence function µ(λ ).

frontal area of the vehicle, Ca is the drag coefficient, Fs the force due to the road slope, and α the road
slope angle.

A possible model for µx(λ ) introduced by Kiencke and Daiß and depicted in Figure 1, is given by
the function:

µx(λ ) =
aλ

b+ c|λ |+λ 2 (2.3)

One easily obtains that the maximum µ∗ of such a curve occurs at λ ∗ with:

λ
∗ =
√

b, µ
∗ =

a
c+2
√

b

Conversely, the constants a,b,c can be expressed as functions of µ∗ λ ∗ and µ1:

a =
µ∗µ1(1−λ ∗)2

µ∗−µ1
, b = λ

∗2, c =
µ1(1+λ ∗2)−2µ∗λ ∗

µ∗−µ1

where µ1 = µ(1) is the value of the function µ at λ = 1 (i.e. at wheel lock). Note that a and b are
strictly positive constants.

REMARK 2.1 Another, quite popular, model is the Pacejka one (Bakker et al., 1987; Pacejka, 2006).
We have not used the latter, for simplicity reasons, but a similar, although more complex, analysis could
be made with Pacejka’s model.

The measured outputs are traditionally the wheel speed (e.g. through ABS encoders). We shall here
suppose that the speed Vx of the vehicle’s center of gravity is either measured or reconstructed via an
observer or an estimator (see, e.g. a previous work of some author of the present paper (Villagra et al.,
2008)).

3. Differential flatness of the model

The model (2.1) is trivially flat, with flat output Vx. Indeed,

V̇x = gµx(λ ) (3.1)
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Then,

λ = µ
−1
(

V̇x

g

)
(3.2)

Now one has to distinguish two acceleration and deceleration cases (implied by the form of λ in (2.2a)):

• Acceleration case, where rω >Vx

λ =
Vx

rω
−1 = µ

−1
(

V̇x

g

)
Hence

ω =
Vx

r
[

1+µ−1

(
V̇x

g

)] (3.3)

And thus

V̈x = gµ
′
x(λ )λ̇ = gµ

′
x(λ )

1
rω2

(
ωV̇x− ω̇Vx

)
• Deceleration case, where rω 6Vx

λ = 1− rω

Vx
= µ

−1
(

V̇x

g

)
Hence

ω =
Vx

r

[
1−µ

−1
(

V̇x

g

)]
(3.4)

And thus

V̈x = gµ
′
x(λ )λ̇ = gµ

′
x(λ )

r
V 2

x

(
ωV̇x− ω̇Vx

)
Thus, one has the following dynamics in Vx:

V̈x =
gµ ′x

max
(

rω2,
V 2

x

r

) [ωV̇x +
Vx

Iw

(
mrV̇x +Fo +RT

)]
(3.5)

and the control input T is then obtained as

T =
1
R

[(
mr+

Iwω

Vx

)
V̇x +Fo−

Iw max
(
r2ω2,V 2

x
)

grVxµ ′x
V̈x

]
(3.6)
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REMARK 3.1 The reader could have the (quite normal) feeling that the laws (3.3) and (3.4) yield a
discontinuity when the vehicle switches from acceleration to deceleration (leading to a chattering like
phenomenon). First note that this can only occur at extremely low slip, i.e. when rω −Vx� 1, where
the µ() curve is in the linear zone (and thus the µ−1 also); thus

µ
−1
(

V̇x

g

)
≈ β

V̇x

g

Moreover, when the vehicle switches from acceleration to deceleration (or vice-versa), one has |V̇x|� 1.
Thus, in (3.3), one has

1

1+µ−1

(
V̇x

g

) = 1−µ
−1
(

V̇x

g

)
+o

((
V̇x

g

)2
)

Thus, the expression of ω is

ω =
Vx

r
[

1+µ−1

(
V̇x

g

)] =
Vx

r

[
1−µ

−1
(

V̇x

g

)
+o

((
V̇x

g

)2
)]

whose term in o((Vx/g)2) is exactly the one of (3.4). Thus, in case of acceleration-deceleration switch-
ing, the expression of ω is continuous and differentiable.

4. Trajectory tracking

4.1 Trajectory tracking control law

Recalling the flat output dynamics (3.5), and setting the right member equal to a new input v, one obtains
the linearizing feedback

ωV̇x +
Vx

Iw

(
mrV̇x +Fo +RT

)
=

max
(
r2ω2,V 2

x
)

grµ ′x
v

tranforming the flat output dynamics (3.5) to

V̈x = v

Setting the new input v to

v = V̈xr−KpeVx −Kd ėVx , eVx =Vx−Vxr

with Kp,Kd > 0 yield an exponentially stable error dynamics. The original input is then obtained as

T =
1
R

[(
mr+

Iwω

Vx

)
V̇x +Fo−

Iw max
(
r2ω2,V 2

x
)

grVxµ ′x
v

]
(4.1)

v = V̈xr−KpeVx −Kd ėVx (4.2)

REMARK 4.1 Note that, in (4.2), one could have used equally a second order sliding mode or a model
free control law, for instance, in order to gain in robustness.
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4.1.1 Open and closed loop tracking. Let Vxr a reference trajectory for the flat output Vx. Denoting
by Tr the following open loop control law, one has by direct substitution from (3.6):

Tr =
1
R

[(
mr+

Iwωr

Vxr

)
V̇xr +Fo−

Iw max
(
r2ω2

r ,V
2
xr
)

grVxµ ′xr
V̈xr

]
(4.3)

Thus, the Equations (4.1)–(4.2) can be rewritten as

T = Tr−
1
R
(KpeVx +Kd ėVx) (4.4)

We thus see that, if the error eVx and its derivative ėVx remain small (which is the case when the tacking
performance is good), the closed loop torque T remains close to the open loop one Tr.

4.2 Trajectory tracking scenario

4.2.1 Trajectory form. We shall choose a trajectory Vxr(t) of the following form

Vxr(t) = Ω pppu,pppd (t) =Θ pppu(t)−Θ pppd (t) (4.5)

Θ ppp∗∗∗(t) =
Vh∗−Vl∗

2(te∗− tb∗)

(
logChσ∗(t− tb∗)+ logCh−σ∗(t− te∗)

)
+

Vh∗−Vl∗
2

(4.6)

logChσ (t) =
1
σ

log
(

cosh(σt)
)

ppp∗ ∈
{

pppu, pppd
}
, pppu = (tbu, teu,Vlu,Vhu,σu), pppd = (tbd , ted ,Vld ,Vhd ,σd)

The forms of Ω pppu,pppd and Θppp are depicted in Figures 2 and 3. The speeds Vl∗ and Vh∗ are the beginning
and reached speeds, respectively; tb∗ and te∗ are the beginning and ending times of speed change. The
real σ∗ is a stiffness parameter: the higher σ∗, the closer logChσ∗(t) is from |t|.

REMARK 4.2 One could have chosen a tanh-like trajectory for Vxr. The chosen form (which amounts to
a combination of primitives of tanh) is a smooth (in fact entire) approximation of a trajectory yielding
a piecewise constant acceleration. The difference te∗− tb∗ is related to the acceleration, while the stiff-
ness σ is related to the jerk. A tanh-like trajectory would furnish only a single design parameter (the
stiffness).

The associated trajectory parameters are: σ = 0.5, tbu = 20s, teu = 35s, tbd = 70s, ted = 85s.

4.2.2 A physical constraint. Using Eq. (2.1a), p. 2, we have

V̇x = gµx(λ )

Since the µx curve is imposed by the tyre/ground physics, we should ensure that V̇x does not exceed the
maximum (resp. minimum) of gµx. In other words, the chosen trajectory will be such that the physical
constraint ∣∣V̇xr

∣∣6 g max
λ∈[−1,1]

(µx(λ )) (4.7)
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FIG. 2: An example of Vxr(t) = Ω pppu,pppd
(t) trajectory.
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FIG. 3: An example of Θ ppp(t) function.

is met, where

max
λ∈[−1,1]

(µx(λ )) = µx(λ
∗) = µ

∗

is given by (see Eq. (2.3) and below)

µ
∗ =

a
c+2
√

b
, with λ

∗ =
√

b

We shall consider the following

max
t∈R

∣∣V̇xr(t)
∣∣= g(µ∗− εµx),gµM (4.8)

where εµx is such that εµx/µ∗� 1. This corresponds to

λM = µ
−1(µM) = λ

∗− ελ (4.9)

where ελ is such that ελ/λ ∗� 1.

4.2.3 Trajectory tracking. The trajectory tracking of Vxr = Ω pppu,pppd is depicted in Figures 4 and 5.
The chosen parameters are the following: initial conditions Vx0 = 5m/s, ω0 = 16.67rad/s, starting speed
Vlu =Vld = 5m/s, reached speed Vhu =Vhd = 15m/s. We see on Fig. 4 and 5 that the trajectory tracking
is achieved with a very good precision, since the maximum error Vx−Vxr in Fig. 5 is 2.055.10−5. The
slip ratio λ and the adherence function µ(λ ) are plotted in Figures 6 and 7. Remark that this slip ratio
λ remains very small (the maximum of λ is 4.613.10−4). The parameters of the function µ(λ ) are:
a = 3.661, b = 0.022, c = 5.153.
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FIG. 4: Speed trajectory tracking; in blue Vx and in red
Vxr, standard trajectory.
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The control law T and the error T −Tr are depicted in Figures 8 and 9. The chosen feedback gains
are: Kp = 200, Kd = 10. Finally, the closed loop torque T is very close to the open loop torque Tr, as
can be seen on Fig. 9: the maximum error (in absolute value) T −Tr is −1.4.10−6.
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5. Torque constraint management

Since the constraints will be expressed in terms of the flat output Vx and its derivatives, we have to
compute analytically the first derivatives of Vx.

5.1 Trajectory first derivatives

The derivatives of Ω are the following:

V̇xr = Ω̇ pppu,pppd (t) =
Vhu−Vlu

2(teu− tbu)

(
tanh

(
σu(t− tbu)

)
+ tanh

(
−σu(t− teu)

))
−

Vhd−Vld

2(ted− tbd)

(
tanh

(
σd(t− tbd)

)
+ tanh

(
−σd(t− ted)

))
(5.1)

V̈xr = Ω̈ pppu,pppd (t) =
σu(Vhu−Vlu)

2(teu− tbu)

(
tanh2 (−σu(t− teu)

)
− tanh2 (

σu(t− tbu)
))
−

σd(Vhd−Vld)

2(ted− tbd)

(
tanh2 (

σd(t− ted)
)
− tanh2 (−σd(t− tbd)

))
(5.2)

For the example depicted in Figure 2, we get the derivatives in Figures 10 and 11. The maximum and
minimum of Ω̇ pppu,pppd and Ω̈ pppu,pppd are

max(Ω̇ pppu,pppd (t)) =
Vhu−Vlu

2(teu− tbu)
, min(Ω̇ pppu,pppd (t)) =−

Vhd−Vld

2(ted− tbd)
(5.3)

max(Ω̈ pppu,pppd (t)) = max
(

σu(Vhu−Vlu)

2(teu− tbu)
,

σd(Vhd−Vld)

2(ted− tbd)

)
(5.4)

min(Ω̈ pppu,pppd (t)) =−max
(

σu(Vhu−Vlu)

2(teu− tbu)
,

σd(Vhd−Vld)

2(ted− tbd)

)
(5.5)
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We then set

∆Vu =Vhu−Vlu, ∆Vd =Vhd−Vld , ∆tu = teu− tbu, ∆td = ted− tbd

V̇xm =−∆Vd

∆td
, V̇xM =

∆Vu

∆tu
, V̈xm =−max

(
σu∆Vu

∆tu
,

σd∆Vd

∆td

)
, V̈xM =−Vxm

5.2 Torque expression and simple bounds

We shall give in this Subsection various bounds, postponing a discussion about them to Subsection 5.3,
p. 12.

5.2.1 Torque expression amenable to be bounded. Recall the expression obtained for the trajectory
tracking feedback law in Eq. (4.1):

T =
1
R

[(
mr+

Iwω

Vx

)
V̇x +Fo−

Iw max
(
r2ω2,V 2

x
)

grVxµ ′x
V̈x

]
Then, we have:

• In the acceleration case, where rω >Vx, λ 6 0

ω

Vx
=

1
r(1+λ )

• In the deceleration case, where rω 6Vx, λ > 0

ω

Vx
=

1−λ

r

Thus, the expression for the torque is
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• In the acceleration case

T =
1
R

[(
mr+

Iw

r(1+λ )

)
V̇x +Fo +

Iw

grµ ′x(1+λ )2 VxV̈x

]
• In the deceleration case

T =
1
R

[(
mr+

Iw(1−λ )

r

)
V̇x +Fo−

Iw

grµ ′x
VxV̈x

]
5.2.2 Generic bound. We have the following bounds for |T |:

• In the acceleration case

|T |6 1
R

[(
mr+

Iw

r(1+λ )

)
V̇x + |Fo|+

Iw

gr|µ ′x|(1+λ )2 Vx|V̈x|
]

(5.6)

• In the deceleration case

|T |6 1
R

[(
mr+

Iw(1−λ )

r

)
|V̇x|+ |Fo|+

Iw

grµ ′x
Vx|V̈x|

]
(5.7)

5.2.3 A simplistic bound. A simplistic bound is given by considering minimum (in denominators)
and maximum (in numerators) values for the various expressions in the bounding formulas (5.6)–(5.7):

• In the acceleration case

|T |6 1
R

[(
mr+

Iw

r(1+λm)

)
V̇xM +

Iw

gr|µ ′xm|(1+λm)2 VxM|V̈xM|
]

(5.8)

• In the deceleration case

|T |6 1
R

[(
mr+

Iw(1−λm)

r

)
|V̇xM|+

Iw

grµ ′xm
VxM|V̈xM|

]
(5.9)

with the following notations (see, in particular, Eq. (4.9))

V̇xM = max
(

∆Vu

∆tu
,

∆Vd

∆td

)
, V̈xM = max

(
σu∆Vu

∆tu
,

σd∆Vd

∆td

)
(5.10)

λm =−λM = µ
−1(µM) =−λ

∗+ ελ , µ
′
m = µ

′(λ ∗− εµ ′) (5.11)

5.2.4 A simple but realistic bound. We shall then consider the following more realistic bounding
function:

• In the acceleration case

|T |6
(

mr
R

+
Iw

rR(1+λm)

)
V̇x +max

(
IwVxr|V̈xr|

grR|µ ′xr|(1+λr)2

)
= ξaMV̇x +ζaM (5.12)

• In the deceleration case

|T |6
(

mr
R

+
Iw(1−λm)

rR

)
|V̇x|+max

(
IwVxr|V̈xr|
grRµ ′xr

)
= ξdMV̇x +ζdM (5.13)
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5.3 Discussion and bounds fulfilment

5.3.1 Generic bound. The bound given in Equations (5.6)–(5.7) is rather generic, since it contains
expressions in λ , yielding expressions in Vx (see, e.g. Eq. (3.2)). Thus, it cannot be used very simply.

5.3.2 Simplistic bound. The simplistic bound of Equations (5.8)–(5.9) are far too pessimistic. In-
deed, e.g. for the trajectory given in Figure 4, p. 8, the above bound in the acceleration case is
9696.828N, when the real maximum on T is 1.948N. It is thus unusable.

5.3.3 A simple but realistic bound. The simple bound given in Equations (5.12)–(5.13) yields a max-
imum of 1.962N which is a much better bound than the previous one, wrt the real maximum of 1.948N.

REMARK 5.1 Note that the bounding functions (5.12)-(5.13) are valid for any type of reference trajec-
tory, and not only the one given in (4.5), p. 6.

Recall the form of the bounds given in (5.3)

V̇xm =−∆Vd

∆td
, V̇xM =

∆Vu

∆tu

∆Vu =Vhu−Vlu, ∆Vd =Vhd−Vld , ∆tu = teu− tbu, ∆td = ted− tbd

and suppose ∆Vu and ∆Vd being given by practical considerations (e.g. speed limits). From the bounds
obtained in (5.12)–(5.13), we then have

• In the acceleration case

|T |6 ξaMV̇x +ζaM 6 ξaMV̇xM +ζaM = ξaM
∆Vu

∆tu
+ζaM (5.14)

• In the deceleration case

|T |6 ξdMV̇x +ζdM 6−ξdMV̇xm +ζdM = ξdM
∆Vd

∆td
+ζdM (5.15)

Then, to ensure some prescribed bound on the the torque

|T |6 TMa on acceleration, and |T |6 TMd on deceleration (5.16)

it is sufficient to impose the following bounds on ∆tu, ∆td :

∆tu >
ξdM∆Vd

TMd−ζdM
, ∆ta >

ξaM∆Va

TMa−ζaM

In Figure 12, we have the bounds (5.12)–(5.13) in dashed line (ξaMV̇x +ζaM and ξdMV̇x +ζdM) and the
torque T in solid line, and in Figure 13 is depicted the error between the previous two. Note that the
maximum error is 1.398.10−2, which is 0.18% of Tr’s maximum.
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FIG. 12: Bounds (5.12)–(5.13) on T .
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FIG. 13: Error between T and the bounds (5.12)–
(5.13).

6. Conclusion

We have elaborated a simple yet efficient scheme for tracking a reference speed of a longitudinal vehicle
model with torque constraint. The flatness character of the model enabled to embed the constraint
fulfilment in the trajectory design. We considered a special class of functions for the class output,
namely combinations of log(cosh(t)) type functions.

More general classes of functions will be considered in the future, together with some other types of
constraints.
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