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The Chudnovsky algorithm for the multiplication in extensions of finite fields provides a 
bilinear complexity uniformly linear with respect to the degree of the extension. Recently, 
Randriambololona has generalized the method, allowing asymmetry in the interpolation 
procedure and leading to new upper bounds on the bilinear complexity. In this note, we 
describe the construction of this asymmetric method without derived evaluation. To do 
this, we translate this generalization into the language of algebraic function fields and we 
give a strategy of construction and implementation.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

L’algorithme de multiplication dans les corps finis de Chudnovsky a une complexité 
bilinéaire uniformément linéaire en le degré de l’extension. Randriambololona a récemment 
généralisé cette méthode en introduisant l’asymétrie dans la procédure d’interpolation 
et en obtenant ainsi de nouvelles bornes sur la complexité bilinéaire. Dans cette note, 
nous décrivons la construction de cette méthode asymétrique sans évaluation dérivée. 
Pour ce faire, nous traduisons cette généralisation dans le langage des corps de fonctions 
algébriques, et nous donnons une stratégie de construction et d’implantation.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Let q be a prime power, Fq the finite field with q elements and Fqn the degree n extension of Fq . Among all algorithms 
of multiplications in Fqn , those based on the Chudnovsky–Chudnovsky [6] method are known to provide the lowest bilinear 
complexity. This method is based on interpolation on algebraic curves defined over a finite field and provides a bilinear com-
plexity, which is linear in n. The original algorithm uses only points of degree 1, with multiplicity 1. Ballet and Rolland [4,5]
and Arnaud [1] improved the algorithm, introducing interpolation at points of higher degree or higher multiplicity. The sym-
metry of the original construction involves 2-torsion points that represent an obstacle to the improvement of upper bilinear 
complexity bounds. To eliminate this difficulty, Randriambololona [8] allowed asymmetry in the interpolation procedure, 
and then Pieltant and Randriambololona [7] derived new bounds, uniform in q, of the bilinear complexity. Unlike symmetric 
constructions, no effective implementation of this asymmetric construction has been done yet. When g = 1, it is known [3]
that an asymmetric algorithm can always be symmetrized. However, for greater values of g , it may not be the case. Thus, it 
is of interest to know an effective construction of this asymmetric algorithm. So far, no effective implementation has been 
proposed for such an algorithm.

1.1. Multiplication algorithm and tensor rank

The multiplication of two elements of Fqn is an Fq-bilinear application from Fqn ×Fqn onto Fqn . Then it can be considered 
as an Fq-linear application from the tensor product Fqn ⊗Fq Fqn onto Fqn . Consequently, it can also be considered as an 
element Tm of Fqn

� ⊗Fq Fqn
� ⊗Fq Fqn where � denotes the dual. When Tm is written

Tm =
r∑

i=1

x�
i ⊗ y�

i ⊗ ci, (1)

where the r elements x�
i as well as the r elements y�

i are in the dual Fqn
� of Fqn while the r elements ci are in Fqn , the 

following holds for any x, y ∈ Fqn : x · y = ∑r
i=1 x�

i (x)y�
i (y)ci . The decomposition (1) is not unique.

Definition 1.1. Every expression x · y = ∑r
i=1 x�

i (x)y�
i (y)ci defines a bilinear multiplication algorithm U of bilinear complexity 

μ(U) = r. Such an algorithm is said symmetric if xi = yi for all i.

Definition 1.2. The minimal number of summands in a decomposition of the tensor Tm of the multiplication is called the 
bilinear complexity (resp. symmetric bilinear complexity) of the multiplication and is denoted by μq(n) (resp. μsym

q (n)):

μq(n) = min
U

μ(U)

where U is running over all bilinear multiplication algorithms (resp. all bilinear symmetric multiplication algorithms) in Fqn

over Fq .

1.2. Organisation of the note

In Section 2, we give an explicit translation of the generalization of the Chudnovsky algorithm given by Randriambololona 
[8, Theorem 3.5]. Then in Section 3, by defining a new design of this algorithm, we give a strategy of construction and imple-
mentation. In particular, thanks to a suitable representation of the Riemann–Roch spaces, we present the first construction of 
asymmetric effective algorithms of multiplication in finite fields. These algorithms are tailored to hardware implementation 
and they allow computations to be parallelized while maintaining a low number of bilinear multiplications. In Section 4, 
we give an analysis of the not asymptotical complexity of this algorithm.

2. Multiplication algorithms of type Chudnovsky: generalization of Randriambololona

In this section, we present a generalization of Chudnovsky-type algorithms, introduced in [8, Theorem 3.5] by Ran-
driambololona, which is possibly asymmetric. Since our aim is to describe explicitly the effective construction of this 
asymmetric algorithm, we transform the representation of this algorithm, initially made in the abstract geometrical lan-
guage, in the more explicit language of algebraic function fields.

Let F/Fq be an algebraic function field over the finite field Fq of genus g(F ). We denote by N1(F/Fq) the number of 
places of degree one of F over Fq . If D is a divisor, L(D) denotes the Riemann–Roch space associated with D . We denote 
by OQ the valuation ring of the place Q and by F Q its residue class field OQ /Q , which is isomorphic to Fqdeg Q , where 
deg Q is the degree of the place Q .

In the framework of algebraic function fields, the result [8, Theorem 3.5] of Randriambololona can be stated as in The-
orem 2.1. Note that we do not take into account derived evaluations, since we are not interested in asymptotic results. It 
means that we describe this asymmetric algorithm with the divisor G = P1 + · · · + P N where the Pi are pairwise distinct
closed points of degree deg Pi = di .
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Let us define the following Hadamard product in Fql1 × Fql2 × · · · × FqlN , where the li ’s denote positive integers, by 
(u1, . . . , uN) � (v1, . . . , v N) = (u1 v1, . . . , uN v N).

Theorem 2.1. Let F/Fq be an algebraic function field of genus g over Fq. Suppose that there exists a place Q of degree n. Let P =
{P1, . . . , P N} be a set of N places of arbitrary degree not containing the place Q . Suppose that there exist two effective divisors D1, D2
of F/Fq such that:

(i) the place Q and the places of P are not in the support of the divisors D1 and D2;
(ii) the natural evaluation maps Ei for i = 1, 2 defined as follows are surjective

Ei :
{
L(Di) −→ Fqn � F Q

f �−→ f (Q )

(iii) the natural evaluation map defined as follows is injective

T :
{
L(D1 + D2) −→ Fqdeg P1 × Fqdeg P2 × · · · × Fqdeg P N

f �−→ ( f (P1), f (P2), . . . , f (P N))

Then for any two elements x, y in Fqn , we have:

xy = E Q ◦ T −1
|Im T

(
T ◦ E−1

1 (x) � T ◦ E−1
2 (y)

)
,

where E Q denotes the canonical projection from the valuation ring OQ of the place Q in its residue class field F Q , ◦ the standard 
composition map, T −1

|Im T the restriction of the inverse map of T on the image of T , E−1
i the inverse map of the restriction of the map Ei on 

the quotient group L(Di)/ ker Ei and � the Hadamard product in Fqdeg P1 × Fqdeg P2 × · · · × Fqdeg P N ; and μq(n) ≤ ∑N
i=1 μq(deg Pi).

3. Effective algorithm

3.1. Method and strategy of implementation

The construction of the algorithm is based on the choice of the place Q , the effective divisors D1 and D2, the bases of 
spaces L(D1), L(D2) and L(D1 + D2) and the basis of the residue class field F Q .

In practice, following the ideas of [2], divisors D1 and D2 are chosen as places of degree n + g − 1. Furthermore, we 
require some additional properties, which are described below.

3.2. Finding good places D1 , D2 , and Q

In order to obtain the good places, we proceed as follows:

– we draw at random an irreducible polynomial Q(x) of degree n in Fq[X] and check that this polynomial is primitive 
and totally decomposed in the algebraic function field F/Fq ;

– we choose a place Q of degree n above the polynomial Q(x);
– we choose a place Q of degree n among the places of F/Fq lying above the polynomial Q(x);
– we draw at random a place D1 of degree n + g − 1 and check that D1 − Q is a non-special divisor of degree g − 1, i.e. 

dimL(D1 − Q ) = 0;
– we draw at random a place D2 of degree n + g − 1 and check that D2 − Q is a non-special divisor of degree g − 1, i.e. 

dim(D2 − Q ) = 0.

3.3. Choosing good bases of the spaces

The residue field F Q .
We choose the canonical basis BQ generated by a root α of the polynomial Q(x), namely BQ = (1, α, α2, ..., αn−1). From 

now on, we identify Fqn to F Q , as the residue class field F Q of the place Q is isomorphic to the finite field Fqn .
The Riemann–Roch spaces L(D1) and L(D2).
We choose as basis of L(Di) the reciprocal image BDi of the basis BQ = (φ1, . . . , φn) of F Q by the evaluation map Ei , 

namely BDi = (E−1
i (φi), . . . , E−1

i (φn)).
Let us denote BDi = ( f i,1, ..., f i,n) with f i,1 = 1 for i = 1, 2.
The Riemann–Roch space L(D1 + D2).
Note that since D1 and D2 are effective divisors, we have L(D1) ⊂L(D1 + D2) and L(D2) ⊂L(D1 + D2).

Lemma 3.1. Let D1 and D2 be two effective divisors with disjoint supports. Then L(D1) ∩L(D2) = Fq.
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Proposition 3.1. Let D1 , D2 and Q be places having the properties described in (3.2). Consider the map � :L(D1 + D2) → F Q such 
that �( f ) = f (Q ) for f ∈L(D1 + D2). There exists a vector space M ⊆ ker� of dimension g such that

L(D1 + D2) = L(D1) ⊕Lr(D2) ⊕M,

where Lr(D2) is such that L(D2) = Fq ⊕ Lr(D2) and ⊕ denotes the direct sum. In particular, if g = 0, then M = K er� is equal 
to {0}.

We choose as basis of L(D1 + D2) the basis BD1+D2 defined by BD1+D2 = ( f1, . . . , fn, fn+1, . . . , f2n+g−1) where BD1 =
( f1, . . . , fn) is the basis of L(D1), ( fn+1, . . . , f2n−1) is a basis of Lr(D2) such that fn+ j = f2, j+1 ∈ BD2 with BD1 and BD2

defined in Section 3.3 and BM = ( f2n, . . . , f2n+g−1) is a basis of M.

3.4. Product of two elements in Fqn

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements of Fqn given by their components over Fq relative to the chosen 
basis BQ . According to the previous notation, we can consider that x and y are identified as respectively fx = ∑n

i=1 xi f1,i ∈
L(D1) and f y = ∑n

i=1 yi f2,i ∈L(D2).
The product fx f y of the two elements fx and f y is their product in the valuation ring OQ . This product lies in L(D1 +

D2), since D1 and D2 are effective divisors. We consider that x and y are respectively the elements fx and f y embedded 
in the Rieman–Roch space L(D1 + D2), via respectively the embeddings Ii : L(Di) −→ L(D1 + D2), defined by I1( fx) and 
I2( f y) as follows. If, fx and f y have respectively coordinates fxi and f yi in BD1+D2 , where i ∈ {1, . . . , 2n + g − 1}, we have: 
I1( fx) = ( fx1 := x1, . . . , fxn := xn, 0, . . . , 0) and I2( f y) = ( fx1 := y1, 0, . . . , 0, f yn+1 := y2, . . . , f y2n−1 := yn, 0, . . . 0). Now it is 
clear that knowing x (resp. y) or fx (resp. f y) by their coordinates is the same thing.

Theorem 3.2. Let PMs be the projection of L(D1 + D2) onto Ms = L(D1) ⊕ Lr(D2), and let � be the map defined as in Proposi-
tion 3.1. Then, for any elements x, y ∈ Fqn , the product of x by y is such that

xy = � ◦ PMs

(
T −1

|Im T

(
T ◦ I1 ◦ E−1

1 (x) � T ◦ I2 ◦ E−1
2 (y)

))
,

where ◦ denotes the standard composition map, T −1
|Im T the restriction of the inverse map of T on the image of T , and � the Hadamard 

product as in Theorem 2.1.

We can now present the setup algorithm (Algorithm 1), which is done only once.

Algorithm 1 Setup algorithm.
INPUT: F/Fq, Q , D1, D2, P1, . . . , P N .
OUTPUT: T and T −1.

(i) The representation of the finite field Fq =< a >, where a is a fixed primitive element.
(ii) The function field F/Fq , the place Q , the divisors D1 and D2 and the points P1, . . . , P N are such that Conditions (ii) and (iii) in Theorem 2.1 are 

satisfied. In addition, we require that ∑1≤i≤N deg Pi = 2n + g − 1.

(iii) Represent Fqn in the canonical basis BQ = {1, α, α2, ..., αn−1}, where Fqn =< α > with α a primitive element as in Section 3.3.
(iv) Construct a basis ( f1, . . . , fn, fn+1, . . . , f2n+g−1) of L(D1 + D2), where ( f1, . . . , fn) is the basis of L(D1), ( f1, fn+1, . . . , f2n−1) the basis of L(D2)

and ( f2n, . . . , f2n+g−1) the basis of M, defined in Section 3.3.
(v) Compute the matrices T and T −1.

(vi) Compute the matrix �.

The multiplication algorithm (Algorithm 2) is presented hereafter.

4. Complexity analysis

In terms of number of multiplications in Fq , the complexity of this multiplication algorithm is as follows: calculation of 
z and t needs 2(2n2 + ng − n) multiplications, calculation of u needs (2n + 2g − 2 + r) sup1≤i≤r

μq(i)
i bilinear multiplications 

and calculation of 2n − 1 first components of w needs (2n + g − 1)(2n − 1) multiplications (remark that, in Algorithm 2, 
we just have to compute the 2n − 1 first components of w). The calculation of xy needs n + g multiplications. The total 
complexity in terms of multiplications is bounded by 8n2 + n(4g − 5) + (2n + 2g − 2 + r) sup1≤i≤r

μq(i)
i .

The general construction of the set-up algorithm involves some random choice of divisors having prescribed properties 
over an exponentially large set of divisors. To get a polynomially constructible algorithm with linear complexity, one needs 
to construct explicitly (i.e. polynomially) points of corresponding degrees n on curves of arbitrary genus with many rational 
points. Unfortunately, so far it is unknown how to produce such points (cf. [9, Section 4, Remark 5] and [8, Remark 6.6]). 
Hence, the asymptotic complexity of such a construction is an open problem.
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Algorithm 2 Multiplication algorithm.
INPUT: x = (x1, . . . , xn) and y = (y1, . . . , yn).
OUTPUT: xy.

(i) Compute

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,d1

.

.

.

zn,dn

zn+1,dn+1

.

.

.

zN,dN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

.

.

.

zn

zn+1

.

.

.

z2n+g−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

.

.

.

xn

0
.
.
.

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1,d1

.

.

.

tn,dn

tn+1,dn+1

.

.

.

tN,dN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

.

.

.

tn

tn+1

.

.

.

t2n+g−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= T

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y1

0
y2

.

.

.

yn

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where ∑N
i=1 di = 2n + g − 1, (zi, j , ti, j) ∈ (F

qd j )
2, (zi , ti) ∈ (Fq)

2 and 0 stands for the null vector.

(ii) Compute the Hadamard product u = (u1,d1 , . . . , uN,dN ) = (u1, . . . , u2n+g−1), where ui,di = zi,di ti,di , in Fqd1 × Fqd2 × · · · × FqdN as in Theorem 2.1.

(iii) Compute w = (w1, . . . , w2n+g−1) = T −1(u).
(iv) Extract w ′ = (w1, . . . , w2n−1) (in step (iii), just the 2n − 1 first components have to be computed).
(v) Return xy = �(w ′).
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