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Abstract—Narrow Band-Internet of Thing (NB-loT) is a re- bands (industrial, scientific and medical (ISM) radio bgnds
cently proposed technology by 3GPP in Release-13. It provides However, cellular 10T standards which operate in a licensed
low energy consumption and wide coverage in order to meet ghactrym technologies have been worth the wait. In fact, NB-
the requirements of its diverse applications that span social, . ,
industrial and environmental aspects. Increasing the number of loT can be deployed in any of t_he ZG_/3G/4G spectrum (from
repetitions of the transmission has been selected as a promising450 MHz to 3-5 GHz), since it achieves an excellent co-
approach to enhance the coverage in NB-loT up to 164 dB existence and compatibility performance with legacy deflu
in terms of maximum coupling loss for uplink transmissions, systems. NB-loT needs only a small portion of the existing

which is a significant improvement compared with legacy LTE  gyqjjaple cellular spectrum to operate without interfgrisith
technologies, especially to serve users in deep coverage. However,

a large number of repetitions reduces the system throughput It. H(_ence, NB-loT prowdes mo_re reliability and more quabf

and increases the energy consumption of the loT devices, whichService (QoS) as it operates in regulated spectrum. Morgove
reduces their battery lifetime and increases their maintenance NB-lI0T uses existing cellular network infrastructure, wlhi
cost. In this work, we propose a new method for enhancing the reduces the deployment costs.

NB-IoT coverage based on machine learning algorithms. Instead

of employing a random spectrum access procedure, dynamic However, since repeating transmission data and contrel sig
spectrum access can reduce the number of required repetitions, na|s has been selected as a major solution to enhance cov-

increase the coverage, and reduce the energy consumption. ] : .
Index Terms—Narrow-band Internet of Things (NB-oT), Cov- erage of NB-loT systems, this leads to reducing the system

erage Enhancement (CE), Dynamic spectrum access, Reinforce-throughput and thereby a spectral efficiency loss. Anotbet ¢
ment learning of providing deep indoor coverage is lowering the number of

supported devices per sector. Hence the interest of stydgw
I. INTRODUCTION AND MOTIVATIONS techniques of extending the coverage and reducing the numbe
Internet of things (loT) is becoming an increasingly grogvinOf retransmissions.

topic due to its promi;e to change different. aspects_o_f OUN 1 this work, we propose a new method to enhance the
world. As recently predicted by Cisco, there will be 50 oifis coverage based on machine learning. Instead of getting ac-

loT c_onnected devices _by 2020, where each cell su_pportsc&s to the spectrum in a random way, dynamic spectrum
massive number .Of dewces_(more than 50K con_nect|ons Ridcess based on reinforcement learning algorithms can help
cell [1].)' Th'? rapid penetration Of. connected devices s tincreasing the coverage, decreasing the number of repetjti

potential to impact the way we live, we work and how Wend thereby reducing the energy consumption. This problem

interact with objects. The massive connected world acsaiti . .o modelled as multi-armed bandit (MAB) framework, as
by IoT emerging companies requires a huge transfer of daﬁ%, .

devi ith | ¢ I tended s been proposed for cognitive radio in the literature [4].
evices with fong autonomy, as well as an extended coverqley 4150 peen reported that MAB works well in real channel
and indoor penetration.

. conditions [5]. One of the most relevant methods to address
In_ order to meet the reqm.rements of IO_T world, the 3GPP hf\l/?AB problems is upper confidence band (UCB) algorithms,
fje;lgned the narrow band internet c_>f thlngs (NB-Io‘!’) Steaid hich are efficient and converge quickly when the traffic
in its rec'ent Release 13 [1]. The main deS|gn objectives of N stationary and independent and identically distribujigld
loT are increased coverage, long battery I|fe_ (between ID sing this framework, the NB-IoT end device will select the
15 years), and low user equipment (.UE) device comple?qty. st channel following not only the criterion of availatyilbut
achlgve thesgltargets, several techmqugs have l_Jeen @,dmpte also the best coverage condition.
cluding repetitions, power spectral density boostingglsittone
transmission, power saving mode, phase rotated modutationThis paper is organized as follows: Section Il explains the
(e.g 5-BPSK and7-QPSK) to reduce peak-to-average poweKB-IoT challenges in terms of coverage enhancement and
ratio in the uplink and so forth. energy consumption, while Section Ill shows how can dynamic
Other technologies have preceded the proposition of NB-I@pectrum access and its tools enable to follow the requinesne
such as the LoRaWan standard [2] and the ultra narrow baoidNB-loT. Section IV provides simulation results about our
protocol used by Sigfox [3], which operate in the unlicenseatoposed solution. Finally, Section V concludes this paper



1. NB-10T CHALLENGES while remains registered in the network. This mode save

Enhancing the coverage and reducing the energy consump- More energy than the idle mode.
tion are among the most relevant key targets of NB-loT. Ia thi As expected, the power consumption of these modes is sub-
section, we explain the challenges of increasing the cgeersstantially lower than the power consumed during transiesi
and saving energy as well as the recently deployed solutiohgerefore, in a normal environment conditions (MCL of 154

to fullfill these main requirements. dB), configuration of these power saving technigues allows a
battery life of more than 10 years. However, in deep indoor
A. Coverage enhancement coverage conditions, the targeted level of battery lifergrtban

NB-IoT requires 20 dB of maximum coupling loss (MCL)10 years) cannot be achievable since the uplink repetit@s
higher than LTE, and then reaches up to 164 dB of MCL ilarge. In addition, the energy consumption and the coverage
order to serve end devices in deep coverage such as basement'ancement mechanism imply high latency as the network
Several modifications have been deployed on the differeft LTvaits a long period before being able to transmit its infaiora
protocol layers to achieve this significant gain. A majoestdd data.
technique consists in increasing the number of retrangmniss More techniques that allow both extending the coverage
that reaches 128 repetitions for the uplink communicataam$ and reducing the number of required repetitions should be
2048 for the downlink. These repetitions are combined at tivestigated to help prolong battery life. We show hereafte
receiver side in order to increase the signal-to-noise (SN#at dynamic spectrum access can help enhancing the ceverag
ratio. Along with repeating the same transmission severedd, along with reducing the number of retransmissions and impro
other techniques have been used to extend the coverage snghhe latency.
as cross-subframe channel estimation and frequency hpppin

More details on these techniques can be found in [7]. [1l. DYNAMIC SPECTRUM ACCESS CAN HELP
Threes coverage classes are allowed by a serving cell to afj\stead of a random access based on slotted ALOHA which
NB-loT end device: selects randomly the channel where to transmit in order to
« CE level 0: normal coverage with MGL 144 dB and 15 establish connection with the cell, we propose in this work
kHz sub-carrier spacing. to use a dynamic spectrum access in order to learn the channel
» CE level 1: robust coverage with MGL 154 dB and 15 which is more likely to be available and in good coverage
kHz sub-carrier spacing. conditions.
« CE level 2: extreme coverage with MGL164 dB and  The spectrum learning process can be modelled as a multi-
3.75 kHz sub-carrier spacing. armed bandit (MAB) framework as proposed in [4], [8]. De-

The choice of the coverage level depends on the chanpending on the location of UE (outdoor, indoor, basements)
conditions. The extreme coverage level corresponds to a l@wd the channel conditions (high or low SNR), the quality
power received level, and a normal coverage level corregspo®f the physical channels changes. Therefore, choosing the
to a high power received level. Each selected coverage clgbannel with the best quality (i.e. coverage level), poadint
determines the transmission parameters including the aumkgads to reliable transmissions, less costly in terms ofggne
of repetitions. Such a deployment allows the UE to be serve@nsumption.
in different coverage conditions characterized by diffiere ) .
ranges of path loss. Depending on the coverage level, fhe Multi-armed bandit framework
serving cell indicates to the UE to repeat the transmissionThe MAB problem is a reinforcement learning game where
{1,2,4,8,16,32,64,128} times, using the same transmissiom player have to decide which machiketo play (among
power on each repetition. Combining the different retrassm K machines i.ek € {1,2,...,K}) at each discrete time slot
sions allows a coverage extension. t=0,1,2..., based on informations of their reward. The
player plays the machine that has the maximum reward. The
rewards associated to each machineare independent and
In addition to the normal connected mode, there are mainfjentically distributed (i.i.d.) and follows a fixed and un-
two energy efficient techniques that have been designed in N&own distribution lawdy,. In general, the reward distributions
10T in order to minimize the power consumption in end device{s{l, do,...,dg} differ from one machine to another, and the
and increase their battery life: player does not have any knowledge about these distritsition
« Idle mode extended discontinuous reception (I-eDRX): In our case, the player is the NB-loT end device, and the
this mode allows a discontinuous reception for maximumachines are the spectrum channels used for cell connection
of 3 hours, which saves UE battery but still allows it tdn the following we define some concepts related to the MAB
be reachable by the network through paging messagesframework.
downlink control channels. Reward Let r(k) be the reward of the data transmission
« Power saving mode (PSM): this energy saving mode dbr a channek at instant. The reward in our scenario takes two
lows unconnected state for up to 13 days, where UE enterdues 0 or 1. The reward is equal to 1 if the selected chasnel i
to a deep sleep. Unlike in I-eDRX, UE is unreachableacant (acknowledgement is received)d in a good coverage.

B. Energy consumption



Note that the quality of the channel is only known when a‘ﬁablg I: Allowed LTE PRB indices for cell connection in NB-
acknowledgement is received. loT in-band deployment.

Exploitation and exploration dilemma. It refers to a

trade-off between the exploitation of the channel with legth barﬂv%idth 3MHz | 5MHz | 10 MHz | 15 MHz | 20 MHz
mean reward, and exploring the other channels in order to get 4, 9, 14,
more information about their payoffs. 2,7,12,| 19, 24,

Regret. It means the loss represented by the difference beLiTE PRB 4,9, 14, g gg gg’ ij’
tween the expected reward associated to the suboptimahehan indices 212 | 2717 1930, | 3507 | &5 60

. . . for 22 35, 40,

learned by the end device, and the ideal reward associathd to| ng_joT 45 52,57, | 65,70,
optimal channel. Since the user does not have any knowledge 627'267' gg 28’
about the distribution of the reward, he cannot avoid a loss 95

when selecting a channel.

Denoter the learning channels policy. Let, = E[dj] the
stationary mean reward of thé" channel, where E denotes
the expectation function. The regret of a polieys defined as

t—1

t.u® — Zrl,

=0

@)

Rf

where p* stands for the expected value of the reward of the

optimal channel.

vacancy and coverage. Otherwise, whemakes lower values,
the exploitation is privileged.

The selected channe} resulting from UCB algorithm is the
one with the highest UCB index, i.e.

a

arg IfﬂaX(Bk(t))- (6)

IV. SIMULATION RESULTS

Based on (1), we define the expected cumulative regret 88 NB-loT Scenario

K

> (w* — ) E[TR (1)),

k=1

where T} (t) being the total number of times channelhas
been selected from instant O to instant 1.

)

B[R]

NB-loT standard designed by 3GPP is a slotted protocol [9].
We assume that the different communications using the esfudi
spectrum are slotted i.e. all devices share synchronized. ti
We also assume that the end device knows in advance the finite
number of dedicated radio frequency (RF) channels.

The MAB problem can be solved using reinforcement learn- The NB-loT supports the following deployment modes:

ing algorithms such as UCB approaches. In the following ,

section, we briefly define the use of UCB in dynamic spectru
access.

B. Upper confidence bound algorithm

The policy that we seek should help the NB-loT device to

make a decision on which channel to transmit. We choose

build a policy based on the UCB algorithms since this apgroac
requires few processing resources and memory, and guasante
asymptotically optimal performance. The upper confidencfﬁe

bound indexBy(t), is computed at each instahtind for each
channelk, and gives an estimation of the expected reward
a channelt. The UCB index is expressed as:

In-band mode where NB-10T is deployed within the LTE

bandwidth, and occupies one or multiple physical resource

blocks (180 kHz).

Guard-band mode where NB-loT operates within the

guard-band of an LTE carrier

« Stand-alone mode where NB-IoT can either occupies one
or more GSM carrier (200 kHz), or it can be deployed in
an adjacent band to LTE.

t is worth mentioning that in the in-band deployment,

channels supported by NB-IoT are well-defined to avoid

interfering with resources used by the LTE system such as

Ynchronization, broadcast and control channels. Thavatlo

physical resource blocks (PRB) are provided in Table I. We

m

to

Bi(t) = Xp(t)+ Ag(t), (3) assume in our scenario that the NB-loT is deployed in in-
t—1 band mode associated to LTE system bandwidth of 15 MHz.
such that X, (t) = Zrl(k;)jl{al:k} (4) 14 physical channels are then allowed for cell connection as
Ty (1) =0 given by Table I.
olnt When the NB-loT end device turns on, it tries to connect to
Ap(t) = ’/T ok (5) the cell using the channel that maximizes its reward:
k « If the device receives a feedback from the base station,

where X}, is the sample mean of the chanieleward, andA;,

is an upper confidence biasis the indicator function and;, is

the selected channel using the policyat thet™ transmission.
Therefore, we havel;,,_;y; =1 only if the channelk has
been chosen at instaht The factora in (5) is an exploration
coefficient for channel availability and coverage. df gets
larger, the UCB algorithm will explore more channels fortbet

it will update the reward (1 if good coverage level, 0
otherwise) and proceeds to the data transmission.

« Otherwise, the reward of the selected channel is updated
to 0, and the device waits till the beginning of the next
slot to select a new channel.

We definepk, . the expected mean reward associated to the

vacancy of the PRB%, and k., the expected mean reward



Table 11: NB-IoT channel parameters for an LTE Bandwidth of  past channel here i3 since the channels have different
15 MHz when in-band mode is deployed. coverage and vacancy properties.
The exploration coefficient is set tol.5 for all the studied

PRB Channel

index index /-L\]/Cac [%] ﬂ’gov [%] ﬂ\’fac,cov: N\]facﬂlgov scenarios.
2 1 10 50 0.5 Fig. 1 and Fig. 2 show the impact of the coverage constraint
172 g gg gg 8&27 on the UCB policies. The major finding resulting from com-
17 4 30 30 0.24 paring the UCB(vacov) policy where the coverage criterion is
22 5 35 75 0.262 not considered, and the UCB(vac,cov) policy where the @hoic
27 6 40 60 0.24 of the RF channel is constrained with its coverage qualgy, i
4313 ; gg ?8 8:;’? that the former policy does not converge to the optimal ckann
47 9 55 65 0.357 unlike the latter. This result was expected from the behavio
52 10 60 35 0.21 and the target of each policy. During the first iterationsthbo
2; E ?g 4518 8-3;5 algorithms start exploring the physical channels withediht
67 13 80 35 0.68 objectives: UCB(vacov) calculates its UCB index based on
72 14 90 20 0.18 the mean reward of vacangy,., while UCB(vac,cov) takes

into account both availability and coverage i€ . in its
UCB index calculation. In the long run, UCB(vaoy) tends to
related to the coverage level of the PRBsTable Il shows chqose the channel ““”_‘bm' Whi(.:h Is the m.ost a_vailable one,
the values used in our learning policy, which are define\’&hIIe chanr'lel f‘%’mbe}?’ is the optimal one since it allows bOth.
in a random way. Without loss of generality, we assurrf%goqd availability g_ndagood coverage IeveI.Th_e Cha”fm' Wi
plo < 2.k Note thatul, — 10% means that channel the highest probability to be free is not necessarily the_wm

1 is available10% of the time, andul,, = 50% means that Fhe best coverage. Therefore, the two compared pohueavleeh
channel 1 has a probability &00% to be in a good coverageIn a symmet_rlc manner, the best channel selection p.ero.entag
when it is free.u\’facyco\,: 0.05 is associated to the probabilitydecre"’lses with time for UCB(v&my) and tends 0% while it

that channel 1 is both availabtend in a good coverage. converges td00% for UCB(vac,cov) (see Fig. 1). The resulting
cumulative regret increases linearly with time for UCB(zav)

and seems insignificant for UCB(vac,cov) compared with the
first policy (see Fig. 2). Note that in some other scenarios, t
In addition to the cumulative regret defined in Section IlI-Ayost available channel might be also the one with the best
the percentage of optimal channel selection is a relevanicmeco\,erage level. Assuming this scenario, even if it is highly
in the analysis of reinforcement learning policies. Sinbe tunlikely to occur, the policy UCB(vacov) would not behave
device should transmit in the optimal channel i.e. that h@s tpetier than the proposed policy UCB(vac,cov).
highest mean reward, the more is the percentage of optimalye compare in Fig. 3 and Fig. 4 the previously anal-
channel selection, the better is the policy. Both of thetevamt ysed UCB(vac,cov) policy, with UCB(vac) scenario. It can be
metrics are compared in Fig. 3, Fig. 1, Fig. 4, and Fig. 2 fQfoticed that UCB(vac,cov) still gives the best performance
the following proposed UCB scenarios: UCB(vac,cov) converges faster than UCB(vac) and produces
« UCB(vac) means that the policy consider only the vacantige lowest cumulative regret. As an example, if we consider
distributions ¥, and assumes that the different channetbe transmission i.e iteration numbet= 103, the best channel
have the same coverage properties. The best channel in #akection associated to UCB(vac,cov) reaché%, while it
case isl4 = argmax(ul,.). This scenario is extremely is equal t043% for UCB(vac) which is less than half the
unlikely to happen, since the coverage level of eadiffcentage achieved by UCB(vac,coufi%). Regarding the

RF channel is independent from the probability of it§umulative regret, Fig. 4 reflects in fact the same perfoggan
availability behaviour. In order to give a numerical insight, let us cdesi

« UCB(vac,cov) takes into account both the vacancy ar?@OthFr_ interval of the data} transmissioh: = 107, The
the coverage criteria. The policy is then based on tf!Mmulative regret corresponding to UCB(vac,cov) is off,
distribution s, ., The best channel in this case ig'Nl€ it reachessls for UCB(vac).

different from UCB(vac) case, and it corresponds 3c Note that for the different scenarios, their behaviour riyri
arg max(uk_ o) ' the first iterations is not regular. This is due to the random
vac,cov *

k ) ) selection of the channels during the first round since no
« UCB(vacgov): In this scenario, the channels do not havghowledge about the vacancy nor the coverage is available
the same coverage quality but follow the distributiongyring the beginning of the iterations.
uk . However, the end device does not take the coverage i ) »
criterion in the calculation of the UCB indé its calcu- C- Coverage extension and reducing repetitions
lation is based only on the vacancy distributigrfs.. The In the previous section, we have strongly supported that
integrating the coverage level constraint into the UCB gpoli
1This is what we mean by the notati@ov. improves the best channel selection percentage and desreas

B. Best channel selection and cumulative regret
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Figure 3: Best channel selection percentage for different Figure 4: Cumulative regret for different scenarios.

scenarios.
the cumulative regret. Regarding the studied scenaridsatiea cies: the selected channel by a random selection procedure
associated to the distributed values reported in Tablesihgu is the one with the highest required number of repetitions

UCB(vac,cov) would rather choose a RF channel (channel 128 (in an extreme coverage), while the optimal channel in

number 13 in the provided example) with a good coverage UCB policy requires only 1 (or 0) repetition. This scenario

that allows reaching easily the destination, than a RF odlann  would reduce the latency and save significant amount of

(channel number 14) with an extreme coverage that makes energy by avoiding large number of retransmissions.

reaching the receiver pretty hard. Moreover, UCB(vac,cov) « Worse case scenario: the randomly selected channel

allows avoiding transmission repetitions by selecting adyo matches the one with the best quality of service. This

quality channel that requires no or few number of repetition means that our policy for this typical transmission time,
When using a random selection procedure, the channel to Would not save a priori more energy than legacy selection

transmit is chosen in a random way, ignoring its probability =~ schemes.

of availability or its coverage properties. In the liten@u Hence, our policy promises in the general case a considerabl

several researchers have been defending the interest afriyn improvement of the quality of the transmission, and meeds th

spectrum access using the vacancy criterion of the channef® challenges required by NB-loT applications.

Here, we support the relevance of involving the quality @ th

channels in terms of coverage level in UCB policies, esfiigcia V. CONCLUSION

for applications that need a long battery lifetime such as NB

lI0T. To be convinced of this, let us consider the best and evors Th_e emergence of new |oT applications such as NB-loT
. . ) requires to fullfill and meet several challenges. Reduchmey t
case scenarios for the proposed policy UCB(vac,cov):

energy consumption is one of the major features of NB-loT end
« Best case scenario for implementing UCB proposed potievices. This target is inherently correlated to enhantiveg



coverage, since the fundamental adopted solution is istrga
the number of retransmissions, and thereby consuming more
energy. In order to enhance the coverage and to reduce the
energy consumption, this paper proposes a hew solutiordbase
on dynamic spectrum using machine learning algorithms. The
random selection procedure is replaced by a more efficient
selection method that chooses the channels with the highest
probability to be available, and with the best coverage and
the lowest number of required repetitions. The next step of
our work targets the investigation of a multi-player scémar
where several NB-l10oT end devices need to access dynamically
the network.
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