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Abstract—Narrow Band-Internet of Thing (NB-IoT) is a re-
cently proposed technology by 3GPP in Release-13. It provides
low energy consumption and wide coverage in order to meet
the requirements of its diverse applications that span social,
industrial and environmental aspects. Increasing the number of
repetitions of the transmission has been selected as a promising
approach to enhance the coverage in NB-IoT up to 164 dB
in terms of maximum coupling loss for uplink transmissions,
which is a significant improvement compared with legacy LTE
technologies, especially to serve users in deep coverage. However,
a large number of repetitions reduces the system throughput
and increases the energy consumption of the IoT devices, which
reduces their battery lifetime and increases their maintenance
cost. In this work, we propose a new method for enhancing the
NB-IoT coverage based on machine learning algorithms. Instead
of employing a random spectrum access procedure, dynamic
spectrum access can reduce the number of required repetitions,
increase the coverage, and reduce the energy consumption.

Index Terms—Narrow-band Internet of Things (NB-IoT), Cov-
erage Enhancement (CE), Dynamic spectrum access, Reinforce-
ment learning

I. I NTRODUCTION AND MOTIVATIONS

Internet of things (IoT) is becoming an increasingly growing
topic due to its promise to change different aspects of our
world. As recently predicted by Cisco, there will be 50 billions
IoT connected devices by 2020, where each cell supports a
massive number of devices (more than 50K connections per
cell [1]). This rapid penetration of connected devices has the
potential to impact the way we live, we work and how we
interact with objects. The massive connected world advertised
by IoT emerging companies requires a huge transfer of data,
devices with long autonomy, as well as an extended coverage
and indoor penetration.

In order to meet the requirements of IoT world, the 3GPP has
designed the narrow band internet of things (NB-IoT) standard
in its recent Release 13 [1]. The main design objectives of NB-
IoT are increased coverage, long battery life (between 10 and
15 years), and low user equipment (UE) device complexity. To
achieve these targets, several techniques have been adopted, in-
cluding repetitions, power spectral density boosting, single-tone
transmission, power saving mode, phase rotated modulations
(e.g π

2
-BPSK andπ

4
-QPSK) to reduce peak-to-average power

ratio in the uplink and so forth.
Other technologies have preceded the proposition of NB-IoT

such as the LoRaWan standard [2] and the ultra narrow band
protocol used by Sigfox [3], which operate in the unlicensed

bands (industrial, scientific and medical (ISM) radio bands).
However, cellular IoT standards which operate in a licensed
spectrum technologies have been worth the wait. In fact, NB-
IoT can be deployed in any of the 2G/3G/4G spectrum (from
450 MHz to 3-5 GHz), since it achieves an excellent co-
existence and compatibility performance with legacy cellular
systems. NB-IoT needs only a small portion of the existing
available cellular spectrum to operate without interfering with
it. Hence, NB-IoT provides more reliability and more quality of
service (QoS) as it operates in regulated spectrum. Moreover,
NB-IoT uses existing cellular network infrastructure, which
reduces the deployment costs.

However, since repeating transmission data and control sig-
nals has been selected as a major solution to enhance cov-
erage of NB-IoT systems, this leads to reducing the system
throughput and thereby a spectral efficiency loss. Another cost
of providing deep indoor coverage is lowering the number of
supported devices per sector. Hence the interest of studying new
techniques of extending the coverage and reducing the number
of retransmissions.

In this work, we propose a new method to enhance the
coverage based on machine learning. Instead of getting ac-
cess to the spectrum in a random way, dynamic spectrum
access based on reinforcement learning algorithms can help
increasing the coverage, decreasing the number of repetitions,
and thereby reducing the energy consumption. This problem
can be modelled as multi-armed bandit (MAB) framework, as
has been proposed for cognitive radio in the literature [4].It
has also been reported that MAB works well in real channel
conditions [5]. One of the most relevant methods to address
MAB problems is upper confidence band (UCB) algorithms,
which are efficient and converge quickly when the traffic
is stationary and independent and identically distributed[6].
Using this framework, the NB-IoT end device will select the
best channel following not only the criterion of availability but
also the best coverage condition.

This paper is organized as follows: Section II explains the
NB-IoT challenges in terms of coverage enhancement and
energy consumption, while Section III shows how can dynamic
spectrum access and its tools enable to follow the requirements
of NB-IoT. Section IV provides simulation results about our
proposed solution. Finally, Section V concludes this paper.



II. NB-I OT CHALLENGES

Enhancing the coverage and reducing the energy consump-
tion are among the most relevant key targets of NB-IoT. In this
section, we explain the challenges of increasing the coverage
and saving energy as well as the recently deployed solutions
to fullfill these main requirements.

A. Coverage enhancement

NB-IoT requires 20 dB of maximum coupling loss (MCL)
higher than LTE, and then reaches up to 164 dB of MCL in
order to serve end devices in deep coverage such as basements.
Several modifications have been deployed on the different LTE
protocol layers to achieve this significant gain. A major selected
technique consists in increasing the number of retransmissions
that reaches 128 repetitions for the uplink communicationsand
2048 for the downlink. These repetitions are combined at the
receiver side in order to increase the signal-to-noise (SNR)
ratio. Along with repeating the same transmission several times,
other techniques have been used to extend the coverage such
as cross-subframe channel estimation and frequency hopping.
More details on these techniques can be found in [7].

Threes coverage classes are allowed by a serving cell to an
NB-IoT end device:

• CE level 0: normal coverage with MCL≈ 144 dB and 15
kHz sub-carrier spacing.

• CE level 1: robust coverage with MCL≈ 154 dB and 15
kHz sub-carrier spacing.

• CE level 2: extreme coverage with MCL≈ 164 dB and
3.75 kHz sub-carrier spacing.

The choice of the coverage level depends on the channel
conditions. The extreme coverage level corresponds to a low
power received level, and a normal coverage level corresponds
to a high power received level. Each selected coverage class
determines the transmission parameters including the number
of repetitions. Such a deployment allows the UE to be served
in different coverage conditions characterized by different
ranges of path loss. Depending on the coverage level, the
serving cell indicates to the UE to repeat the transmission
{1, 2, 4, 8, 16, 32, 64, 128} times, using the same transmission
power on each repetition. Combining the different retransmis-
sions allows a coverage extension.

B. Energy consumption

In addition to the normal connected mode, there are mainly
two energy efficient techniques that have been designed in NB-
IoT in order to minimize the power consumption in end devices
and increase their battery life:

• Idle mode extended discontinuous reception (I-eDRX):
this mode allows a discontinuous reception for maximum
of 3 hours, which saves UE battery but still allows it to
be reachable by the network through paging messages or
downlink control channels.

• Power saving mode (PSM): this energy saving mode al-
lows unconnected state for up to 13 days, where UE enters
to a deep sleep. Unlike in I-eDRX, UE is unreachable

while remains registered in the network. This mode save
more energy than the idle mode.

As expected, the power consumption of these modes is sub-
stantially lower than the power consumed during transmission.
Therefore, in a normal environment conditions (MCL of 154
dB), configuration of these power saving techniques allows a
battery life of more than 10 years. However, in deep indoor
coverage conditions, the targeted level of battery life (more than
10 years) cannot be achievable since the uplink repetitionsget
large. In addition, the energy consumption and the coverage
enhancement mechanism imply high latency as the network
waits a long period before being able to transmit its information
data.

More techniques that allow both extending the coverage
and reducing the number of required repetitions should be
investigated to help prolong battery life. We show hereafter
that dynamic spectrum access can help enhancing the coverage
along with reducing the number of retransmissions and improv-
ing the latency.

III. D YNAMIC SPECTRUM ACCESS CAN HELP

Instead of a random access based on slotted ALOHA which
selects randomly the channel where to transmit in order to
establish connection with the cell, we propose in this work
to use a dynamic spectrum access in order to learn the channel
which is more likely to be available and in good coverage
conditions.

The spectrum learning process can be modelled as a multi-
armed bandit (MAB) framework as proposed in [4], [8]. De-
pending on the location of UE (outdoor, indoor, basements)
and the channel conditions (high or low SNR), the quality
of the physical channels changes. Therefore, choosing the
channel with the best quality (i.e. coverage level), potentially
leads to reliable transmissions, less costly in terms of energy
consumption.

A. Multi-armed bandit framework

The MAB problem is a reinforcement learning game where
a player have to decide which machinek to play (among
K machines i.ek ∈ {1, 2, . . . ,K}) at each discrete time slot
t = 0, 1, 2 . . ., based on informations of their reward. The
player plays the machine that has the maximum reward. The
rewards associated to each machinek are independent and
identically distributed (i.i.d.) and follows a fixed and un-
known distribution lawdk. In general, the reward distributions
{d1, d2, . . . , dK} differ from one machine to another, and the
player does not have any knowledge about these distributions.

In our case, the player is the NB-IoT end device, and the
machines are the spectrum channels used for cell connection.
In the following we define some concepts related to the MAB
framework.

Reward Let rt(k) be the reward of the data transmission
for a channelk at instantt. The reward in our scenario takes two
values 0 or 1. The reward is equal to 1 if the selected channel is
vacant (acknowledgement is received)and in a good coverage.



Note that the quality of the channel is only known when an
acknowledgement is received.

Exploitation and exploration dilemma. It refers to a
trade-off between the exploitation of the channel with highest
mean reward, and exploring the other channels in order to get
more information about their payoffs.

Regret. It means the loss represented by the difference be-
tween the expected reward associated to the suboptimal channel
learned by the end device, and the ideal reward associated tothe
optimal channel. Since the user does not have any knowledge
about the distribution of the reward, he cannot avoid a loss
when selecting a channel.

Denoteπ the learning channels policy. Letµk = E[dk] the
stationary mean reward of thekth channel, where E[.] denotes
the expectation function. The regret of a policyπ is defined as

Rπ

t
= t.µ∗ −

t−1
∑

l=0

rl, (1)

whereµ∗ stands for the expected value of the reward of the
optimal channel.

Based on (1), we define the expected cumulative regret as

E[Rπ

t
] =

K
∑

k=1

(µ∗ − µk)E[Tk(t)], (2)

where Tk(t) being the total number of times channelk has
been selected from instant 0 to instantt− 1.

The MAB problem can be solved using reinforcement learn-
ing algorithms such as UCB approaches. In the following
section, we briefly define the use of UCB in dynamic spectrum
access.

B. Upper confidence bound algorithm

The policy that we seek should help the NB-IoT device to
make a decision on which channel to transmit. We choose to
build a policy based on the UCB algorithms since this approach
requires few processing resources and memory, and guarantees
asymptotically optimal performance. The upper confidence
bound indexBk(t), is computed at each instantt and for each
channelk, and gives an estimation of the expected reward of
a channelk. The UCB index is expressed as:

Bk(t) = X̄k(t) +Ak(t), (3)

such that X̄k(t) =
1

Tk(t)

t−1
∑

l=0

rl(k)1{al=k} (4)

Ak(t) =

√

α ln t

Tk(t)
, (5)

whereX̄k is the sample mean of the channelk reward, andAk

is an upper confidence bias.1 is the indicator function andat is
the selected channel using the policyπ at thetth transmission.
Therefore, we have1{al=k} = 1 only if the channelk has
been chosen at instantl. The factorα in (5) is an exploration
coefficient for channel availability and coverage. Ifα gets
larger, the UCB algorithm will explore more channels for better

Table I: Allowed LTE PRB indices for cell connection in NB-
IoT in-band deployment.

LTE
bandwidth

3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

LTE PRB
indices

for
NB-IoT

2, 12
2, 7, 17,

22

4, 9, 14,
19, 30,
35, 40,

45

2, 7, 12,
17, 22,
27, 32,
42, 47,
52, 57,
62, 67,

72

4, 9, 14,
19, 24,
29, 34,
39, 44,
55, 60,
65, 70,
75, 80,
85, 90,

95

vacancy and coverage. Otherwise, whenα takes lower values,
the exploitation is privileged.

The selected channelat resulting from UCB algorithm is the
one with the highest UCB index, i.e.

at = argmax
k

(Bk(t)). (6)

IV. SIMULATION RESULTS

A. NB-IoT Scenario

NB-IoT standard designed by 3GPP is a slotted protocol [9].
We assume that the different communications using the studied
spectrum are slotted i.e. all devices share synchronized time.
We also assume that the end device knows in advance the finite
number of dedicated radio frequency (RF) channels.

The NB-IoT supports the following deployment modes:
• In-band mode where NB-IoT is deployed within the LTE

bandwidth, and occupies one or multiple physical resource
blocks (180 kHz).

• Guard-band mode where NB-IoT operates within the
guard-band of an LTE carrier

• Stand-alone mode where NB-IoT can either occupies one
or more GSM carrier (200 kHz), or it can be deployed in
an adjacent band to LTE.

It is worth mentioning that in the in-band deployment,
the channels supported by NB-IoT are well-defined to avoid
interfering with resources used by the LTE system such as
synchronization, broadcast and control channels. The allowed
physical resource blocks (PRB) are provided in Table I. We
assume in our scenario that the NB-IoT is deployed in in-
band mode associated to LTE system bandwidth of 15 MHz.
14 physical channels are then allowed for cell connection as
given by Table I.

When the NB-IoT end device turns on, it tries to connect to
the cell using the channel that maximizes its reward:

• If the device receives a feedback from the base station,
it will update the reward (1 if good coverage level, 0
otherwise) and proceeds to the data transmission.

• Otherwise, the reward of the selected channel is updated
to 0, and the device waits till the beginning of the next
slot to select a new channel.

We defineµk
vac the expected mean reward associated to the

vacancy of the PRBsk, and µk
cov the expected mean reward



Table II: NB-IoT channel parameters for an LTE Bandwidth of
15 MHz when in-band mode is deployed.

PRB
index

Channel
index µ

k
vac [%] µ

k
cov [%] µ

k
vac,cov= µ

k
vac.µ

k
cov

2 1 10 50 0.5

7 2 20 90 0.18

12 3 25 55 0.137

17 4 30 80 0.24

22 5 35 75 0.262

27 6 40 60 0.24

32 7 45 40 0.18

42 8 50 70 0.35

47 9 55 65 0.357

52 10 60 35 0.21

57 11 65 50 0.325

62 12 70 40 0.28

67 13 80 85 0.68

72 14 90 20 0.18

related to the coverage level of the PRBsk. Table II shows
the values used in our learning policy, which are defined
in a random way. Without loss of generality, we assume
µ1

vac ≤ µ2

vac . . . µ
14

vac. Note thatµ1

vac = 10% means that channel
1 is available10% of the time, andµ1

cov = 50% means that
channel 1 has a probability of50% to be in a good coverage
when it is free.µk

vac,cov= 0.05 is associated to the probability
that channel 1 is both availableand in a good coverage.

B. Best channel selection and cumulative regret

In addition to the cumulative regret defined in Section III-A,
the percentage of optimal channel selection is a relevant metric
in the analysis of reinforcement learning policies. Since the
device should transmit in the optimal channel i.e. that has the
highest mean reward, the more is the percentage of optimal
channel selection, the better is the policy. Both of these relevant
metrics are compared in Fig. 3, Fig. 1, Fig. 4, and Fig. 2 for
the following proposed UCB scenarios:

• UCB(vac) means that the policy consider only the vacancy
distributionsµk

vac and assumes that the different channels
have the same coverage properties. The best channel in this
case is14 = argmax

k

(µk
vac). This scenario is extremely

unlikely to happen, since the coverage level of each
RF channel is independent from the probability of its
availability.

• UCB(vac,cov) takes into account both the vacancy and
the coverage criteria. The policy is then based on the
distribution µk

vac,cov. The best channel in this case is
different from UCB(vac) case, and it corresponds to13 =
argmax

k

(µk
vac,cov).

• UCB(vac,cov): In this scenario, the channels do not have
the same coverage quality but follow the distributions
µk

cov. However, the end device does not take the coverage
criterion in the calculation of the UCB index1, its calcu-
lation is based only on the vacancy distributionsµk

vac. The

1This is what we mean by the notationcov.

best channel here is13 since the channels have different
coverage and vacancy properties.

The exploration coefficientα is set to1.5 for all the studied
scenarios.

Fig. 1 and Fig. 2 show the impact of the coverage constraint
on the UCB policies. The major finding resulting from com-
paring the UCB(vac,cov) policy where the coverage criterion is
not considered, and the UCB(vac,cov) policy where the choice
of the RF channel is constrained with its coverage quality, is
that the former policy does not converge to the optimal channel
unlike the latter. This result was expected from the behaviour
and the target of each policy. During the first iterations, both
algorithms start exploring the physical channels with different
objectives: UCB(vac,cov) calculates its UCB index based on
the mean reward of vacancyµk

vac, while UCB(vac,cov) takes
into account both availability and coverage i.e.µk

vac,cov in its
UCB index calculation. In the long run, UCB(vac,cov) tends to
choose the channel number14, which is the most available one,
while channel number13 is the optimal one since it allows both
a good availability and a good coverage level. The channel with
the highest probability to be free is not necessarily the onewith
the best coverage. Therefore, the two compared policies behave
in a symmetric manner, the best channel selection percentage
decreases with time for UCB(vac,cov) and tends to0% while it
converges to100% for UCB(vac,cov) (see Fig. 1). The resulting
cumulative regret increases linearly with time for UCB(vac,cov)
and seems insignificant for UCB(vac,cov) compared with the
first policy (see Fig. 2). Note that in some other scenarios, the
most available channel might be also the one with the best
coverage level. Assuming this scenario, even if it is highly
unlikely to occur, the policy UCB(vac,cov) would not behave
better than the proposed policy UCB(vac,cov).

We compare in Fig. 3 and Fig. 4 the previously anal-
ysed UCB(vac,cov) policy, with UCB(vac) scenario. It can be
noticed that UCB(vac,cov) still gives the best performance.
UCB(vac,cov) converges faster than UCB(vac) and produces
the lowest cumulative regret. As an example, if we consider
the transmission i.e iteration numbert = 103, the best channel
selection associated to UCB(vac,cov) reaches56%, while it
is equal to43% for UCB(vac) which is less than half the
percentage achieved by UCB(vac,cov) (16%). Regarding the
cumulative regret, Fig. 4 reflects in fact the same performance
behaviour. In order to give a numerical insight, let us consider
another interval of the data transmission:t = 105. The
cumulative regret corresponding to UCB(vac,cov) is only492,
while it reaches615 for UCB(vac).

Note that for the different scenarios, their behaviour during
the first iterations is not regular. This is due to the random
selection of the channels during the first round since no
knowledge about the vacancy nor the coverage is available
during the beginning of the iterations.

C. Coverage extension and reducing repetitions

In the previous section, we have strongly supported that
integrating the coverage level constraint into the UCB policy
improves the best channel selection percentage and decreases
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Figure 1: Impact of considering coverage on best channel
selection percentage.
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Figure 2: Impact of considering coverage on cumulative
regret.
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Figure 3: Best channel selection percentage for different
scenarios.

0 2 4 6 8 10
x 10

5

0

200

400

600

800

C
um

ul
at

iv
e 

R
eg

re
t

Time(t)

 

 

UCB(vac,cov)
UCB(vac)

Figure 4: Cumulative regret for different scenarios.

the cumulative regret. Regarding the studied scenarios that are
associated to the distributed values reported in Table II, using
UCB(vac,cov) would rather choose a RF channel (channel
number 13 in the provided example) with a good coverage
that allows reaching easily the destination, than a RF channel
(channel number 14) with an extreme coverage that makes
reaching the receiver pretty hard. Moreover, UCB(vac,cov)
allows avoiding transmission repetitions by selecting a good
quality channel that requires no or few number of repetitions.

When using a random selection procedure, the channel to
transmit is chosen in a random way, ignoring its probability
of availability or its coverage properties. In the literature,
several researchers have been defending the interest of dynamic
spectrum access using the vacancy criterion of the channels.
Here, we support the relevance of involving the quality of the
channels in terms of coverage level in UCB policies, especially
for applications that need a long battery lifetime such as NB-
IoT. To be convinced of this, let us consider the best and worse
case scenarios for the proposed policy UCB(vac,cov):

• Best case scenario for implementing UCB proposed poli-

cies: the selected channel by a random selection procedure
is the one with the highest required number of repetitions
128 (in an extreme coverage), while the optimal channel in
UCB policy requires only 1 (or 0) repetition. This scenario
would reduce the latency and save significant amount of
energy by avoiding large number of retransmissions.

• Worse case scenario: the randomly selected channel
matches the one with the best quality of service. This
means that our policy for this typical transmission time,
would not save a priori more energy than legacy selection
schemes.

Hence, our policy promises in the general case a considerable
improvement of the quality of the transmission, and meets then
the challenges required by NB-IoT applications.

V. CONCLUSION

The emergence of new IoT applications such as NB-IoT
requires to fullfill and meet several challenges. Reducing the
energy consumption is one of the major features of NB-IoT end
devices. This target is inherently correlated to enhancingthe



coverage, since the fundamental adopted solution is increasing
the number of retransmissions, and thereby consuming more
energy. In order to enhance the coverage and to reduce the
energy consumption, this paper proposes a new solution based
on dynamic spectrum using machine learning algorithms. The
random selection procedure is replaced by a more efficient
selection method that chooses the channels with the highest
probability to be available, and with the best coverage and
the lowest number of required repetitions. The next step of
our work targets the investigation of a multi-player scenario,
where several NB-IoT end devices need to access dynamically
the network.
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