
HAL Id: hal-01705607
https://hal.science/hal-01705607

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

iBig Hybrid Architecture for Energy IoT: When the
power of Indexing meets Big Data Processing!

Houssem-Eddine Chihoub, Christine Collet

To cite this version:
Houssem-Eddine Chihoub, Christine Collet. iBig Hybrid Architecture for Energy IoT: When the power
of Indexing meets Big Data Processing!. The IEEE International Conference on Cloud Computing
Technology & Science 2017, Dec 2017, Hong Kong, Hong Kong SAR China. �hal-01705607�

https://hal.science/hal-01705607
https://hal.archives-ouvertes.fr

iBig Hybrid Architecture for Energy IoT: When the
power of Indexing meets Big Data Processing!

Houssem Chihoub and Christine Collet
Univ. Grenoble Alpes, CNRS, Grenoble INP, Enedis∗

LIG, F-38000 Grenoble, France
houssem.chihoub@imag.fr, christine.collet@grenoble-inp.fr

Abstract—Nowadays, IoT data come from multiple sources and
a large number of devices. To manage them, IoT frameworks rely
on Big Data ecosystems hosted in the cloud to provide scalable
storage systems and to achieve scalable processing. Although
these ecosystems scale well to process large sizes of data, in
many cases this is done naively. Many datasets, such as IoT
Energy measurement data, consist, even partially, of attributes
that can be indexed to avoid unnecessary and costly data scan at
these scales. In this work, we propose the iBig architecture that
provides secondary indexing to Big Data processing for energy
IoT datasets. Indexes are considered as metadata stored in a
separate component integrated in the ecosystem. Subsequently,
MapReduce-based and MPP (massively parallel processing)-
based processing leverage indexing to handle only relevant data
in a given dataset. Our experimental evaluation on the Grid5000
cloud testbed demonstrates that performance gains can exceed
98% for the MapReduce-based Spark and 81% for the MPP-
based Drill for Energy IoT Data. Furthermore, we provide
comparison insights about the Spark and Drill frameworks when
processing the whole dataset or only with relevant data.

I. INTRODUCTION

In the digital world we live today, the number of connected
devices is exploding. Gartner says that 8.4 Billion connected
things will be in use in 2017, which is 31% increase from 2016
[1]. A typical case of large-scale IoT application can be found
within energy utilities. In their efforts to transform power
grids into smart grids, utilities rely on massive deployments
of sensors and smart meters at the scale of a country or even
a continent. For instance, in France Enedis has an on-going
plan to deploy 35 million smart meters by the year 2021 [2]. In
this context, more and more IoT data are collected providing
fine grain insights about client consumption profiles and the
behavior of the power grid. These IoT data are critical towards
more efficient management of energy resources and provides
new levels of efficiency for business applications. However,
the frequency in which data are generated and collected from
millions of sensors and smart meters makes the task of data
management and processing very complex. This complexity
is due to the huge volumes of data collected and stored over
long periods of time, as well as the performance requirements
on accessing and processing them.

In order to deal with tremendous volumes of IoT data and
cope with its challenges, energy utilities have started to rely
on Big Data ecosystems for scalable storage and processing.

∗This work was carried out in collaboration with the Enedis Information
Systems Division (Franck Atgie and Tarik Loiseau)

In these ecosystems, data are stored, typically, under almost
any formats, structured, semi-structured, and unstructured on
a distributed file system or a cloud storage system. In con-
trast, data processing is based primarily on the MapReduce
programming model [3]. Since early MapReduce frameworks
[3] [4], remarkable efforts were carried out to provide an even
more scalable and efficient data processing. Recently, a new
generation of faster in-memory processing frameworks with
richer programming APIs have emerged, such as Spark[5]
and Flink[6]. More recently, in an attempt to lower analyt-
ical processing latency, Massively Parallel Processing (MPP)
models -that favor independent processisng where computation
are moved to data rather than the opposite- were revisited in
this context. Subsequently, a new class of Big Data processing
engines such as Apache Drill [7], Google Dremel/BigQuery
[8], and Presto[9] have been rising to challenge MapReduce
systems.

Most of the aforementioned Big Data processing frame-
works scale out with large datasets stored on distributed file
systems, specifically with exploratory analytics that need to
scan the entire data. In contrast, data search and scan can
be extremely costly over large datasets, in particular if it
is not necessary. For instance, we consider the case of IoT
measurement data. Many queries over measurement data are
selective where only a subset of data is needed for processing.
However, within todays’ frameworks all the files or objects in a
given dataset need to be scanned to filter data, hence incurring
significant delays considering Big Data sizes. In this work,
we propose the new iBig hybrid architecture. The primary
goal is to provide secondary indexing to energy IoT Big
Data processing. To this end, we introduce a new architecture
managed exclusively by a new component where the indexing
metadata is separated from storage and processing. Upon
request, the indexing component provides a relevant selection
of files that can be used to push down filtering prior to
data processing and thus, reduce data scan cost. Furthermore,
we provide an efficiency study of indexing in the proposed
architecture for various distributed processing models.

The following is a summary of our contributions.
• Design of the new iBig hybrid architecture that com-

bines Big Data processing frameworks with indexing for
Energy IoT data management. Indexing is provided as
metadata stored in an independent component added to
the ecosystem.

Fig. 1: iBig Hybrid Architecture

• Study of indexing efficiency in the proposed architecture.
This is a very important step to understand when to use
indexing and to provide scale-out properties.

• Thorough experimental evaluation to measure the new
architecture gains for an energy IoT benchmark.

• Fair experimental comparison of a Map Reduce system
and an MPP system where both share the same underlying
storage environment.

The remaining of this paper will be is organized as follows.
Section II introduces the iBig architecture and Section III
details its main aspects. Section IV presents the methodology
we develop. The evaluation of our architectures is extensively
discussed in Section V. Sections VI and VII give an overview
of related work and sum up our conclusions respectively.

II. IBIG ARCHITECTURE DESIGN

Figure 1 demonstrates the general design of our architecture.
Datasets are, generally, stored in files under directories in a
distributed file system (HDFS in this particular setup). Data
processing can be carried on either Spark, a next-generation
of MapReduce computation framework or Apache Drill an
MPP framework. Both processing frameworks can operate
on the same dataset stored in HDFS. This configuration is
current within many organizations. In our iBig architecture, we
introduce a new component that provides indexes as metadata
about datasets. For both Spark and Drill, a new library is
designed to allow users and developers to specify filters on
indexed attributes in the dataset prior to loading and processing
data in either framework. The library calls result in a subset of
files (file selection) that contain at least an element of relevant
data needed for further processing, whereas the other files
are filtered out. This in turn, reduces the wasted efforts of
scanning and processing the latters. The indexes on selected
attributes are built in B-Trees [10] that provide a search
complexity of log(N) with N being the size of the dataset.
Henceforth, providing the opportunity for important gains
considering that sizes in the era of Big Data are very “Big”. For
instance, searching measurements in log(N) time from trillions
of energy IoT measurements can reduce processing times by
order of magnitude for selective queries.

The indexing component hosts index data along a map that
determines which data belongs to which file. Upon request the

index is scanned in order to build a file selection to return to
the processing component. The file selection is further used
either within Spark or Drill for processing. In our architecture
we do not store the split index of attributes inside files to
preserve the efficiency of indexing in the architecture as
demonstrated in Section III-C. The component that provides
file selection based on index data is built using MongoDB [11].
This choice was motivated by the fact that MongoDB provides
built-in indexes (including secondary and spatial ones), has
a flexible document data model, and scales-out with data
sharding supported at the system level with local indexing.

MapReduce Vs. MPP

The efficiency of indexing in the proposed architecture is re-
liant on the big data processing model and distribution among
other factors. In recent years, two paradigms of Big Data pro-
cessing have gained large merits: MapReduce and Massively
parallel processing (MPP). MapReduce was rediscovered at
Google as an efficient programming model to distributed Big
Data processing [3]. Inspired by divide and conquer, it consists
of defining a Map phase to decompose a big problem into a set
of small sub problems and a Reduce phase to address the small
subproblems. In between, a Shuffle phase to redistribute data
to their respective mappers is performed. The Shuffle relies,
generally on a sort algorithm or a hash algorithm and can be
costly in terms of performance due to random data transfer.
Thanks to the Hadoop implementation [4], the MapReduce
model has been widely adopted. Lately, Spark [12], a new
generation of in-memory MapReduce processing with richer
and friendlier programming API, has emerged to be the most
popular framework.

More recently, many efforts to provide low-latency SQL-
like processing of Big Data have revisited the Massively
Parallel Processing (MPP) model. This latter has written the
success story of shared-nothing distributed database manage-
ment systems. In contrast to MapReduce, MPP consists of
moving computation to data rather than data to CPU thus,
enhancing data locality. This is achieved relying partly on cost-
based opitmizations implemented with MPP systems. This
way, many processors can process data locally, transferring
their intermediate results only when necessary. Nowadays,
many systems such as Apache Drill [7] and Presto [9] adopt
MPP and are integrated efficiently into the Hadoop ecosystem.

In many aspects, MapReduce and MPP share the same
approach consisting of divide and conquer to provide scalable
processing of large and voluminous datasets. However, these
two paradigms diverge on how to divide the initial problem.
MapReduce frameworks fully focus on exploiting the compu-
tation and CPU power of the underlying infrastructure even if
it implies redistributing data at the cost of additional delays. In
contrast, MPP frameworks focus on data locality (to amortize
the delay impact of redistributing data) where in many type of
processing the load is not fully balanced and the CPU power
is not leveraged to its fullest. As a result, the efficiency of
indexing in the iBig architecture can vary according to the

processing model and the impact of either data transfer or
load unbalancing, as it will be demonstrated later on.

III. IBIG COMPONENTS AND EFFICIENCY

A. Data Processing

Our iBig architecture supports two processing models:
MapReduce provided by Spark and MPP provided by Drill.

Spark: Spark is implemented in the Scala language and
provides a rich programming API to users. Within this API,
operations are divided into a set of transformations, which
are specific Map functions and a set of actions that are
specific Reduce functions. Spark API in addition, is very
powerful to express iterative operations. To facilitate data
manipulation, Spark introduces the abstraction of resilient
distributed datasets (RDDs), an in-memory read-only collec-
tions of objects partitioned across a set of machines that can
be recovered in case of failures. Data must be loaded to
RDDs prior to processing. Within Spark, the Spark SQL [13]
module provides an SQL query engine that generates Spark
tasks for SQL statements. Spark SQL relies on the introduced
DataFrame API to store data in a columnar layout in memory
and perform relational operations on both external data sources
and spark built-in collections.

Drill: Apache Drill [7] is an open-source Big Data SQL
query engine that is open-source and can be integrated in the
Hadoop ecosystem. It was partly inspired by Google Dremel
[8]. It implements an MPP model to process data coming
from different datastores including file systems (with vari-
ous file formats), NoSQL datastores, and relational systems.
Drill supports nested document data model, and like Google
Dremel converts nested data into flatten columnar formats
for in-memory internal execution. Moreover, Drill relies on
cost-based and rule-based optimizations to generate optimal
locality-aware execution plans. Although, Drill provides SQL
query processing as the only language support, it allows
developers to write User Defined Functions (UDFs) in order
to customize and develop their own specific functions and
computations.

B. Data Indexing

Our indexing component is hosted entirely on MongoDB.
MongoDB: MongoDB [11] is an open-source document

datastore. It stores data in a BSON (JSON-Like) document
data model to provide flexibility and easier evolution of data
structure. MongoDB is a distributed system by design and
supports built-in data sharding to provide scale-out properties.
Moreover, MongoDB supports a wide range of indexes for a
faster data search. The achieved performance and scalability
together with secondary indexes support makes MongoDB
the ideal candidate to host our indexing component. Indexed
attributes are stored in a document collection with their
mapped file names and if necessary the row key from the
dataset. Secondary indexes are then built within MongoDB on
corresponding attributes (fields in MongoDB). With sharding
in MongoDB, indexes are local to shards. This allows a parallel
scan of indexes, which can improve efficiency as shown in the

next section. This latter property is key to provide efficient
indexing in a scale-out architecture.

When new files are to be ingested into HDFS, updating
the index data on them is necessary before it is possible to
use indexing. Data ingestion processes rely generally on either
streaming or loading batches that put data in immutable files in
a data lake or an OLAP system (unlike transnational systems).
Until new data files are indexed, queries must scan all data.

C. Indexing Efficiency

Indexing data in our architecture can potentially provide
large gains, as with IoT data for instance. However, relying
on indexing has an overhead. The overhead for some types
of processing can be so important and results in worse
performance. A typical case would be for queries that need
to process the whole data. For instance, aggregations on the
entire dataset. In such a case, the execution time would consist
of the indexing overhead in addition to the original execution
time of the query (without indexing). To study the efficiency
of indexing in the iBig architecture, we model its potential
gains. To this end, we consider a dataset S with a size
|S|. Since the same type of processing is applied with or
without indexing, the main difference relies within scanning
and filtering data. Accordingly, we define the efficiency in
Formula 1 as proportional to the fraction of the response time
of index scan added to the resulting filtered data scan, and the
response time of scanning of all data.

Eff = 1− Tscan(Index) + Tscan(FilteredData)

Tscan(AllData)
(1)

The scan time is proportional to both the data size and
the number of nodes that data are distributed across. In the
following, we assume an uniform distribution and partitioning
of data across nodes in the cluster. Subsequently, we define
the efficiency in Formula 2 where Nidx is the number of
nodes on which index data are distributed (a.k.a MongoDB).
Similarly, Nproc is the number of nodes on which the dataset
is distributed that is the number of datanodes in HDFS.
Moreover, Ssel is the set of selected data after indexing, i.e.
the data to be scanned in the indexing component in order to
build the file selection. Finally, Fsel is the file selection that
results from indexing and |f | is the average size of files. It is
noteworthy to observe that |Fsel| × |f | ≥ |Ssel| and that these
two sizes that determine the most the efficiency of indexing.

Eff = 1−
log(

∣∣∣ S
Nidx

∣∣∣) + |Ssel|
Nidx

+ |Fsel|×|f |
Nproc

|S|
Nproc

(2)

After simplification, the result is shown in Formula 3.

Eff = 1−
Nproc × log(

∣∣∣ S
Nidx

∣∣∣) + Nproc×|Ssel|
Nidx

+ |Fsel| × |f |

|S|
(3)

The Efficiency metric Eff can determine whether the
query would benefit from indexing or not. If Eff < 0, then
indexing should not be used because it would result in a slower

Eff = 1− Tscan(Index+ FilteredData) + Tpartition(FilteredData) + Tmscan(FilteredData)

Tscan(AllData) + Tpartition(AllData) + Tmscan(AllData)
(4)

Eff = 1−
Tscan(log(

∣∣∣ S
Nidx

∣∣∣) + |Ssel|
Nidx

+ |Fsel|×|f |
Nproc

) + Tpartition(|Fsel| × |f |) + Tmscan(
|Fsel|×|f |

Nproc
)

Tscan(
|S|

Nproc
) + Tpartition(|S|) + Tmscan(

|S|
Nproc

)
(5)

execution time. Efficiency estimation can be computed relying
on collected statistics about the dataset. These statistics can
be stored in histograms to provide estimated values of the
parameters described above for a given query at runtime.

Efficiency with Spark. The previous efficiency estimation
is applicable with general architectures where data are fetched
from the filesystem, then filtered before in-memory internal
execution. This is true for Apache Drill as well. However,
with Spark the approach is quite different and the efficiency
estimation is more complicated. In fact, in Spark processing,
the dataset is first uploaded to an RDD, a DataFrame, or
DataSet, which are all in-memory collections of data. Upon
loading time, data are partitioned across the Spark nodes, then
processing starts from this point further, including particularly
data filtering. For this reason, data indexing has even greater
potential. With indexing in our architecture, much of data
filtering is done prior to loading data to spark. Therefore, the
effort needed to partition data in spark is reduced accordingly
along with data scan from memory. As a result, the Efficiency
is given by Formula 4 where Tscan is the data scan time from
the filesystem, Tpartition the time needed to partition data in
spark, and Tmscan is the scan time from memory.

Furthermore, the efficiency metric, given by Formula 5, can
be computed based on estimating sizes of filtered data.

To further simplify the previous formula, an estimation of
the cost of partitioning data in spark should be developed.
It should include the implied data transfer and data scan in
distributed memory as opposed to disks from the filesystem.
The main difficulty resides in the fact it is difficult to provide
a relative cost between scanning data from disk, scanning data
from memory, and transferring data.

IV. EXPERIMENTAL METHODOLOGY

A. iBig Implementation

We have designed a Python-based tool to integrate our
indexing component with the data processing frameworks
Spark and Drill. In this context, a library that allows users to
specify filters on indexed attributes is available. Based on this
filter, MongoDB is solicited relying on the PyMongo driver
to provide the file selection of relevant data to be loaded to a
Spark DataFrame. For this purpose, we use PySpark to execute
queries. With Drill, our approach is different. Drill SQL-based
syntax considers a file name or a file directory as a table name.
Hence, providing multiple file names does not comply with its
syntax. To overcome this issue, we use Drill RESTful API to
generate physical plans for our queries. We thereafter, inject

the indexed file selection into the JSON representation of the
physical plan. The plan is then submitted for execution.

B. Data Generation

For privacy reasons, it has not been possible for us to
get real smart meter and IoT data from energy utilities.
Fortunately, it was possible to generate realistic datasets that
illustrate meter data as described in [14]. In a previous work
[15], we have used the authors approach to create our meter
dataset. Accordingly, We generate meter data for 50000 meters
over a period of one year with a measurement every one hour
and a total of 438 million measurements.

C. Benchmarking

Meter data are used for multiple purposes in the smart
(power) grid: bill computations, consumption analysis, power
generation forecasting, fraud detection etc. Most of these
services and applications exhibit three types of meter data
processing queries as shown in [16]: aggregation queries,
selection and filtering based on some predicates (e.g. to filter
based on a consumption threshold), and bill computation
queries that exhibit the most complex processing for meter
data management systems [16]. In this context, we introduce
seven (7) queries that illustrate processing types on meter data.
The queries are summarized in Table I.

D. Setup

We run our experiments on Grid5000 cloud and grid testbed
[17] in France. We use up to 16 nodes in the Parasilo cluster
located in the Rennes site. All nodes are equipped with 2 Intel
Xeon E5 CPUs having 8 cores each and 2.4GHz speed. Every
node has memory size of 128GB and a Hard Drive Disk of
600GB used in our experiments. The nodes are interconnected
relying on two 10 Gigabit Ethernet links. Our deployments
rely on HDFS within Cloudera CDH-5.2.3 distribution, Spark-
2.1.0, Apache Drill-1.9, and MongoDB-3.2.11. MongoDB is
deployed on only one node co-located with HDFS datanode,
and either a Spark Slave or a Drillbit (drill processor). In our
dataset, two attributes are indexed: the measurement attribute,
a measurement value about client consumption read from a
meter, and the meter id attribute, which is a unique id for
a given smart meter. Beforehand, indexes data are loaded to
MongoDB. Thereafter, the BTree-based secondary indexes on
both measurement and meter id are built in approximately
1350 seconds for the first, and 880 seconds for the second.

Query Description
Query1 Sum of all measurements (consumption of all meters) for a range of 300 meters (over 1 year data)
Query2 same as Query1 but for a range of 1200 meters
Query3 Sum of measurements for a range of 300 meters in a 2-month time interval
Query4 Selection of rows based on a highly restrictive consumption threshold, sorted by their meter ids
Query5 Selection of rows based on a wider consumption threshold for a range of 2000 meters, all sorted by their meter ids
Query6 Compute the bill for a given client (meter) following the tarif blue billing rules of EDF (power vendor)
Query7 Compute the bill for 300 clients (meters) following the tarif blue billing rules of EDF(power vendor)

TABLE I: Processing Queries on meter data

4 8 12 16
0.00

50000.00

1.00×105

1.50×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(a) Query 1

4 8 12 16
0.00

50000.00

1.00×105

1.50×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(b) Query 2

4 8 12 16
0.00

1.00×105

2.00×105

3.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(c) Query 3

4 8 12 16
0.00

1.00×105

2.00×105

3.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(d) Query 4

4 8 12 16
0.00

1.00×105

2.00×105

3.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(e) Query 5

4 8 12 16
0.00

2.00×105

4.00×105

6.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(f) Query 6

4 8 12 16
0.00

2.00×105

4.00×105

6.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Indexed-Spark

Dril

Indexed-Drill

(g) Query 7

Fig. 2: Evaluation of queries in iBig

V. EXPERIMENTAL EVALUATION

A. Evaluation of the iBig Architecture

In Figure 2, we show the response time for both Spark
and Drill with and without indexing in the iBig architecture.
As depicted, our indexing solution reduces considerably the
response time achieving high levels of efficiency, in particular
for Spark. In fact, Spark with indexing exhibits comparable
latency to Drill (with and without indexing), which is due to
large gains in our architecture. Furthermore, with bill queries,
Query6 and Query7 (Figures 2f and 2f respectively) indexing
makes Spark extremely fast. However, with Query4 (depicted
in Figure 2d), even indexing can not make Spark at the same
level as Drill. In fact, data transfer both at partitioning time
and in intermediate phases, in particular with the sort clause,
introduces important delays with regard to the file selection
of relevant data at input. Another observation is that Drill can
rapidly become faster than indexing with added nodes in the
cluster, and that when queries have wide filters on the indexed
attribute. This is true for instance, with Query2 (in Figure 2b)
when the number of nodes increases beyond 8 nodes because
of the wide data selection of its filter. Obviously, one solution
is to increase the number of nodes for the indexing component
for higher efficiency as shown in Section III-C.

An additional important result, is the exhibited performance
of Spark in comparison to Drill. For all queries, Drill is

order of magnitude faster (e.g. 97% faster with Query5).
Both systems are written in Java and implement an optimized
columnar in-memory execution (with DataFrames in Spark)
and vectorization. Drill is much faster, since it is data locality-
aware with its MPP model, which in turn, reduces significantly
data transfer in intermediate phases. Furthermore, data transfer
delay dominates the gained CPU power in Spark. Prior to
processing, data are first uploaded to a DataFrame, an in-
memory distributed and structured collection of data. When
reading data from files, the entire dataset is uploaded and then
partitioned across Spark nodes, which can incur significant and
unnecessary data transfer along with the useless data scan.

Zoom on indexing gain: In this section, we further zoom
on the efficiency of indexing in our architecture and the gains
obtained with both Spark and Drill. Figure 3 depicts the gains
with the aggregation queries Query1 and Query4. Spark gains
for Query1 exceed 98% no matter the number of nodes in
the cluster. Such extraordinary efficiency is due to the fact
that with indexing, most of irrelevant data are filtered out
before loading data to memory. As a result, the data scan
and partitioning time in Spark is negligible with selected data
compared to the entire dataset. The data size to be scanned in
memory is also significantly reduced. Gains are less important
with Drill because it was already fast and filters data at source
before loading them to memory. Despite this, indexing with
Drill in our architecture, has allowed Query1 to save from 12%

4 8 12 16
0.00

50000.00

1.00×105

1.50×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Index

Gain

(a) Query1 Spark

4 8 12 16
0.00

5000.00

10000.00

15000.00

20000.00

25000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Drill

Index

Gain

(b) Query1 Drill

4 8 12 16
0.00

1.00×105

2.00×105

3.00×105

4.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Index

Gain

(c) Query4 Spark

4 8 12 16
0.00

5000.00

10000.00

15000.00

20000.00

25000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Drill

Index

Gain

(d) Query4 Drill

Fig. 3: Gains with Aggregation Queries

of processing time when the number of nodes is 16 to 79%
when the number of nodes is 4 as demonstrated in Figure 3a.

The gains exhibited with Query4 are quite different. Query4
is a selection and filtering query with a sort clause that
leverages indexing in our architecture on the measurement
attribute. Indexing with Spark achieves between 41% and 49%
gains. With Drill however, the gains are 31% and 21% when
the number of nodes is 4 and 8 respectively. Indexing with
Drill becomes inefficient beyond this number of nodes in this
setup. The cause for Spark Gains drop in this case, lies within
the measurement attribute. Measurement values are not unique
and are not ordered. This implies that values in a given range
have a great probability to be contained in a large number of
files. Therefore, the file selection (files that contains at least
one element necessary for processing) can be bigger than other
attributes such as meter id. This in turn, reduces the gains.
Within iBig, we can make Drill (that is already fast) more
efficient with 12 and 16 nodes by adding more nodes to the
indexing component hosted on MongoDB.

For Bill queries Query6 and Query7 shown in Figure 4,
the gains are huge with Spark mainly because the selected
data after indexing are very small compared to the entire
dataset. Furthermore, Bill queries are scheduled as two spark
jobs executed sequentially. This can be very costly when
scanning the entire dataset. In turn, with indexing, the gains
are multiplied since only the small selected data are scanned
and processed. It is noteworthy also, to observe that index
time is quite small for Query6 (shown in Figures 4a and 4b)
since the query computes the bill for only one given client
indexed on the meter id attribute. In contrast, the gains with
Drill are less important, in particular when the number of
nodes in the cluster increases. For instance, the gains are
41% and 43% when nodes number is 4 for Query6 and
Query7, whereas only 11% gains are observed with Query6.
Indexing becomes inefficient with Query7 beyond 16 nodes.
The exhibited behavior of these queries is because Drill scales
out well in this setup with the entire data, in particular, with the
current distribution of the dataset across HDFS datanodes but
not with the filtered data. Bill queries are CPU-intensive and
require minimal data transfer. Drill however processes data
locally, and therefore will use CPUs only in the nodes that
contains data. This results of load unbalancing with filtered
data that are not usually uniformly distributed across the
cluster depending on filtering conditions.

B. Indexed Spark vs. Indexed Drill

In Figure 5, we focus on the response time exhibited by
both Spark and Drill and this only for the set of files that
contain relevant data for the respective processing (i.e. after
index-based filtering but without accounting for index scan).
Compared to the result demonstrated in the previous Section,
the first observation is that spark response time is close to
that of Drill and in many times even faster. This is due
to minimizing the impact of scanning the whole data and
partitioning them in-memory. For aggregation queries Query1,
Query2, and Query3 (Figures 5a, 5b, and 5c respectively),
Spark outperforms Drill in most cases, but not by much. For
instance, Spark is 76% faster with Query1 when the number
of nodes is 16, but only 1% faster with Query3 for 8 nodes-
sized cluster and even 6 % slower with Query2 for 16 nodes-
sized cluster. Two reasons cause this behavior: First, Drill
relies on cost-based optimization, which can take hundreds
to thousands milliseconds. With such fast response time with
filtered data, the overhead introduces noticeable overweight.
Secondly, unlike Spark that partitions data before processing
to achieve load balancing, Drill is locality-aware and processes
data on the node it stores it. Subsequently, this can unbalance
the processing load between nodes because filtered data at
input is located on a subset of nodes (since data are ordered
and partitioned into files on the meter id attribute in this
case). This latter reason explains as well why Drill does not
scale out with filtered data as it did with the entire dataset.
In fact, increasing the number of Drill processors increases
the coordination overhead while the added processing power
is not really needed. The most interesting results however,
are demonstrated by the selection and filtering queries with a
sort clause (Query4 and Query5 shown in Figures 5d and 5e
respectively), which are queries that incur heavy data transfer,
and the Bill queries (Query6 and Query7 shown in Figures
5f and 5g respectively), which are CPU-intensive queries with
very little need for data transfer. The results clearly show that
spark excels with the CPU-intensive Bill computation whereas
Drill is similarly suited for data transfer-heavy processing.
Drill is up to 90% faster than Spark with Query4 and up to
76% faster with Query5. In contrast, Spark can outperform
Drill by 98% with Query6 and 84% with Query7. Spark is
more suited to CPU-intensive queries because it partitions data
in memory across the cluster nodes. This would allow better
load balancing, which in turn exploits the computing power in

4 8 12 16
0.00

2.00×105

4.00×105

6.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
) Spark

Index

Gain

(a) Query6 Spark

4 8 12 16
0.00

10000.00

20000.00

30000.00

40000.00

50000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Drill

Index

Gain

(b) Query6 Drill

4 8 12 16
0.00

2.00×105

4.00×105

6.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
) Spark

Index

Gain

(c) Query7 Spark

4 8 12 16
0.00

10000.00

20000.00

30000.00

40000.00

50000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Drill

Index

Gain

(d) Query7 Drill

Fig. 4: Gains with Bill Queries

4 8 12 16
0.00

1000.00

2000.00

3000.00

4000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Drill

(a) Query 1

4 8 12 16
0.00

1000.00

2000.00

3000.00

4000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Drill

(b) Query 2

4 8 12 16
0.00

500.00

1000.00

1500.00

2000.00

2500.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Drill

(c) Query 3

4 8 12 16
0.00

50000.00

1.00×105

1.50×105

2.00×105

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Drill

(d) Query 4

4 8 12 16
0.00

5000.00

10000.00

15000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
)

Spark

Drill

(e) Query 5

4 8 12 16
0.00

5000.00

10000.00

15000.00

20000.00

25000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
) Spark

Drill

(f) Query 6

4 8 12 16
0.00

10000.00

20000.00

30000.00

number of nodes

re
s
p

o
n

s
e
 t
im

e
 (
m

s
) Spark

Drill

(g) Query 7

Fig. 5: indexed Spark Vs indexed Drill

the cluster to its fullest, but at the cost of data transfer, thus
exposing data processing to the network latency. In contrast,
Drill, with its MPP model, favors locality-aware processing
where computations are sent to data, rather than the opposite.
When data does not span across the entire cluster however,
computing power is under used, which can prove costly with
CPU-intensive processing. We argue that a lot of improvement
can be achieved in this area to provide the most relevant model
according to the nature of processing and queries.

VI. RELATED WORK

Although indexing structures have been around for many
years, in particular to speed up data access in relational
database systems, it is only recently they started to be
integrated in Big Data Ecosystems. Hadoop vendors have
integrated search services within their Hadoop distributions
mostly to search and index text. Their solutions are based
on either Elasticsearch [18] or Solr [19]. Additional file text
and split indexing approaches for Hadoop are proposed in
[20] and [21]. In [22], HadoopDB a hybrid architecture that
consists of Hive with its SQL-like query execution engine over
Hadoop MapReduce and Relational DBMS was introduced.
Although indexing is supported within RDBMS, It is used for
data within relational tables. In [23], the authors propose a

hybrid architecture that consists of an RDBMS in addition to
Hadoop. They use split indexes per file in HDFS, which might
be costly in terms of scan, thus impacting the efficiency of
indexing, in particular when the number of processors is large.
The architecture is also reliant on the job tracker of the former
version of Hadoop MapReduce and is not implemented with
Spark. In [24] and [25], indexing approaches are proposed for
IoT sensors data. The work in [24], provides novel indexes
for key/value stores in the cloud while the work in [25]
proposes an index structure for Apache Hive. The indexing
efficiency of most of the aforementioned solutions is limited
and hardly discussed. In fact, the amount of information stored
for a given index (split indexes) is not negligible. Therefore,
index scan can result in important delays for large datasets,
which jeopardizes the overall efficiency. Additionally, in these
studies horizontal scalability is not considered although it is
a very important aspect of Big Data processing. In a different
direction, studies in [26] and [15], demonstrate the impact
of different underlying storage systems, that adopt different
approaches to storing, partitioning, and searching data, on Big
Data processing.

Many efforts were dedicated to compare MapReduce against
parallel database management systems (PDBMS) that adopt
MPP type of processing [27], [28], [29]. However, those efforts

focused mostly on early MapReduce implementations and can
be considered as unfair since in MapReduce systems, data
storage and data processing are separated, unlike PDBMS.
Henceforth, more often than not it is storage optimization that
favors PDBMS. In our study however, MapReduce and MPP
frameworks are evaluated in the same ecosystem with the same
underlying storage architecture, which makes them on par for
a fair comparison.

VII. CONCLUSION

Today’s Energy IoT platforms rely on Big Data ecosystems
to manage and process large datasets of multiple origins.
These ecosystems scale very well to large volumes but rely on
blind data search and scan from underlying file systems. As
a result, all elements in a given dataset are scanned no matter
how useful they are. This can be very costly when scanning
irrelevant data for selective data processing. In this work, we
have introduced the new iBig hybrid Big Data architecture
to provide attribute indexing capabilities to IoT Big Data
processing through an additional component in the ecosystem.
We have demonstrated, through our experimental evaluation on
the Grid5000 cloud and grid testbed, the potential of indexing
in our architecture where performance gains for Energy IoT
data processing can exceed 98% for few of the selective
queries. In addition, in this paper, we have provided an
extensive comparison between MapReduce and MPP models
illustrated by Spark and Drill respectively. Unlike many related
work that attempted this comparison in the past, we have relied
on fair comparison conditions where both processing models
rely on the same storage layout and environment. In a future
work, we plan to enrich the indexing component with a wider
selection of indexing structures and other kind of datastores
and data processing models.

ACKNOWLEDGMENT

This work has been funded through the Industrial Research
Chair Enedis (*) in Smart Grids

REFERENCES

[1] “Gartner says 8.4 billion connected ”things” will be in use in
2017, up 31 percent from 2016,” April 2017. [Online]. Available:
http://www.gartner.com/newsroom/id/3598917

[2] “Linky, le compteur communicant d’erdf,” March 2016. [Online].
Available: http://www.erdf.fr/linky-le-compteur-communicant-derdf

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation, ser. OSDI’04, 2004.

[4] “Apache hadoop,” April 2017. [Online]. Available:
http://hadoop.apache.org/

[5] “Apache spark,” March 2016. [Online]. Available:
http://spark.apache.org/

[6] “Apache flink,” March 2016. [Online]. Available: http://flink.apache.org/
[7] “Apache drill,” April 2017. [Online]. Available: https://drill.apache.org

(*) Enedis is a french public-service company, managing the electricity-
distribution grid. It develops, operates and modernizes the electricity grid
and manages the associated data. It performs customer connections, 24-hour
emergency interventions, meter reading and all technical interventions. It is
independent from the energy providers, which are responsible for the sale of
electricity and the management of the supply contract.

[8] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: Interactive analysis of web-scale datasets,”
in Proc. of the 36th Int’l Conf on Very Large Data Bases, 2010.

[9] “Presto: Distributed sql query engine for big data,” April 2017.
[Online]. Available: https://prestodb.io

[10] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, no. 3, pp. 173–189, 1972.

[11] “Mongodb,” April 2017. [Online]. Available: http://www.mongodb.org/
[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10, 2010.

[13] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
sql: Relational data processing in spark,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’15, 2015.

[14] X. Liu, L. Golab, W. Golab, and I. F. Ilyas, “Benchmarking smart meter
data analytics,” in EDBT: 18th International Conference on Extending
Database Technology, March 2015, Online Proceedings.

[15] H. Chihoub and C. Collet, “A scalability comparison study of data
management approaches for smart metering systems,” in 2016 45th
International Conference on Parallel Processing (ICPP), Aug 2016.

[16] “Using the hp vertica analytics platform to manage massive
volumes of smart meter data,” HP Technical white paper,
Tech. Rep., 2014. [Online]. Available: http://www.odbms.org/wp-
content/uploads/2014/06/SmartMetering WP.pdf

[17] Y. Jégou, S. Lantéri, J. Leduc et al., “Grid’5000: a large scale and
highly reconfigurable experimental grid testbed.” Intl. Journal of High
Performance Comp. Applications, 2006.

[18] “Elasticsearch,” April 2017. [Online]. Available: https://www.elastic.co
[19] “Apache solr,” April 2017. [Online]. Available:

http://lucene.apache.org/solr/
[20] N. Li, J. Rao, E. Shekita, and S. Tata, “Leveraging a scalable row store to

build a distributed text index,” in Proceedings of the First International
Workshop on Cloud Data Management, ser. CloudDB ’09, 2009.

[21] M. Y. Eltabakh, F. Özcan, Y. Sismanis, P. J. Haas, H. Pirahesh, and
J. Vondrak, “Eagle-eyed elephant: Split-oriented indexing in hadoop,”
in Proceedings of the 16th International Conference on Extending
Database Technology, ser. EDBT ’13, 2013.

[22] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “Hadoopdb: An architectural hybrid of mapreduce and dbms
technologies for analytical workloads,” Proc. VLDB Endow., vol. 2,
no. 1, Aug. 2009.

[23] V. R. Gankidi, N. Teletia, J. M. Patel, A. Halverson, and D. J. DeWitt,
“Indexing hdfs data in pdw: Splitting the data from the index,” Proc.
VLDB Endow., Aug. 2014.

[24] T. Guo, T. G. Papaioannou, and K. Aberer, “Efficient indexing and query
processing of model-view sensor data in the cloud,” Big Data Res., Aug.
2014.

[25] Y. Liu, W. Liu, Z. Xiao, W. Qiu, Y. Li, and Y. Liang, “Dgfindex: A hive
multidimensional range index for smart meter big data,” in Proceedings
Demo & Poster Track of ACM/IFIP/USENIX International Middle-
ware Conference, ser. MiddlewareDPT ’13, 2013.

[26] K. Doan, A. O. Oloso, K. S. Kuo, T. L. Clune, H. Yu, B. Nelson, and
J. Zhang, “Evaluating the impact of data placement to spark and scidb
with an earth science use case,” in 2016 IEEE International Conference
on Big Data (Big Data), Dec 2016.

[27] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: Friends or
foes?” Commun. ACM, 2010.

[28] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’09. ACM, 2009.

[29] A. McClean, R. Conceicao, and M. O’Halloran, “A comparison of
mapreduce and parallel database management systems,” in Proceedings
of ICONS 2013, The Eighth International Conference on Systems.
IARIA, 2013.

