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Exact algorithms for semidefinite programs with degenerate feasible set *

Let A 0 , . . . , A n be m × m symmetric matrices with entries in Q, and let A(x) be the linear pencil

where x = (x 1 , . . . , x n ) are unknowns. The linear matrix inequality (LMI) A(x) 0 defines the subset of R n , called spectrahedron, containing all points x such that A(x) has non-negative eigenvalues. The minimization of linear functions over spectrahedra is called semidefinite programming (SDP). Such problems appear frequently in control theory and real algebra, especially in the context of nonnegativity certificates for multivariate polynomials based on sums of squares.

Numerical software for solving SDP are mostly based on the interior point method, assuming some non-degeneracy properties such as the existence of interior points in the admissible set. In this paper, we design an exact algorithm based on symbolic homotopy for solving semidefinite programs without assumptions on the feasible set, and we analyze its complexity. Because of the exactness of the output, it cannot compete with numerical routines in practice but we prove that solving such problems can be done in polynomial time if either n or m is fixed.

Introduction

Let x = (x 1 , . . . , x n ) be variables, and A 0 , A 1 , . . . , A n m × m symmetric matrices with entries in the field Q of rational numbers. The goal of this article is to design algorithms for solving the semidefinite programming (SDP) problem inf (x) s.t. x ∈ S (A) (1.1) where (x) = 1 x 1 + • • • + n x n is a linear function and S (A) is the solution set in R n of the linear matrix inequality (LMI)

A(x) := A 0 + x 1 A 1 + • • • + x n A n 0. (1.2)
In the previous formula, the constraint A(x) 0 means that A(x) is positive semidefinite, that is, that all its eigenvalues are non-negative. The set S (A), called spectrahedron, is a convex and basic semi-algebraic, as affine section of the cone of positive semidefinite matrices. Linear matrix inequalities and semidefinite programs appear frequently in several applied domains, e.g. for stability queries in control theory [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. They also appear as a central object in convex algebraic geometry and real algebra for computing certificates of non-negativity based on sums of squares [START_REF] Blekherman | Nonnegative polynomials and sums of squares[END_REF][START_REF] Blekherman | Semidefinite optimization and convex algebraic geometry[END_REF] following the technique popularized notably by the seminal work of Lasserre [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] and Parrilo [START_REF] Parrilo | Semidefinite programming relaxations for semialgebraic problems[END_REF]. Since the LMI A(x) 0 defines the feasible set of SDP, LMI is also known as the SDP feasibility problem.

Even though SDP can be solved in polynomial time to a fixed accuracy via the ellipsoid algorithm, the complexity status of this problem in the Turing or in the real numbers model is still an open question in computer science (see [START_REF] Ramana | An exact duality theory for semidefinite programming and its complexity implications[END_REF][START_REF] Allamigeon | Solving generic nonarchimedean semidefinite programs using stochastic game algorithms[END_REF]). On the other hand, very few algebraic methods that can represent an alternative to classical approaches from optimization theory have been developed.

In this paper, we aim at designing a symbolic algorithm for solving the SDP in (1.1), without any assumption on the feasible set S (A), but with genericity assumptions on the objective function . It returns an algebraic representation of a feasible solution.

State of the art

Numerical methods have been developed for solving SDP problems, the most efficient of which are based on the interior point method [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]. This amounts to constructing an algebraic primal-dual curve called central path, whose points (x µ , y µ ) are solutions to the quadratic semi-algebraic problems

A(x)Y (y) = µ I m A(x) 0 Y (y) 0. (1.3)
Above, Y (y) must be read as a square matrix lying in a space of matrices dual to that of A(x). For small but positive µ, when the LMI has strictly feasible solutions, the points x µ lie in the interior of S (A), and converge to a boundary point for µ → 0 + . Moreover, barrier logarithmic functions have been extended from the classical setup of linear programming to the semidefinite cone, and can be used to solve (1.1) when S (A) has interior points. By the way, there are several obstacles to interior-point strategies. First, S (A) has empty interior in several situations, for instance when S (A) consists of sums-of-squares certificates of a polynomial with rational coefficients that does not admit rational certificates, see [START_REF] Scheiderer | Sums of squares of polynomials with rational coefficients[END_REF] for a class of such examples. Moreover, as proved in [START_REF] Halická | On the convergence of the central path in semidefinite optimization[END_REF], when classical assumptions on the given SDP fail to be satisfied, for instance in absence of strict complementarity, the central path might fail to converge to the optimal face. Finally, even in presence of interior points, it is hard to estimate the degree of the central path (that represents a complexity measure for path-following methods) in practical situations and explicit examples of central paths with exponential curvature have been computed [START_REF] Allamigeon | Long and winding central paths[END_REF].

The several existing variants of the interior-point algorithm are implemented in software running in finite precision, to cite a few SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF], SDPT3 [START_REF] Toh | Sdpt3 -a matlab software package for semidefinite programming, version 1.3[END_REF] and MOSEK [START_REF] Andersen | Mosek: High performance software for large-scale lp[END_REF]. The expected running time is essentially polynomial in n, m, log(η -1 ) (where η is the precision) and in the bit-length of the input [START_REF] Anjos | Introduction to semidefinite, conic and polynomial optimization[END_REF]Ch.1,Sec.1.4]. Whereas these numerical routines run quite efficiently on huge instances, they may fail on degenerate situations, even on medium or small size problems. This has motivated for instance the development of floating point libraries for SDP working in extended precision [START_REF] Joldes | Implementation and performance evaluation of an extended precision floating-point arithmetic library for high-accuracy semidefinite programming[END_REF].

Symbolic computation has been used in the context of SDP to tackle several related problems. First, it should be observed that S (A) is a semi-algebraic set in R n defined by sign conditions on the coefficients of the characteristic polynomial t → det(t I m -A(x)). Hence, classical real root finding algorithms for semi-algebraic sets such as [START_REF] Basu | A new algorithm to find a point in every cell defined by a family of polynomials[END_REF][START_REF]Algorithms in real algebraic geometry[END_REF][START_REF] Din | Testing sign conditions on a multivariate polynomial and applications[END_REF][START_REF] Bank | Intrinsic complexity estimates in polynomial optimization[END_REF] can be used to solve SDP exactly. Using such algorithms leads to solve SDP in time m O(n) . Algorithms for solving diophantine problems on linear matrix inequalities have been developed in [START_REF] Guo | Computing rational solutions of linear matrix inequalities[END_REF][START_REF] El Din | Computing rational points in convex semialgebraic sets and sum of squares decompositions[END_REF].

More recently, algorithms for solving exactly generic LMI [START_REF]Exact algorithms for linear matrix inequalities[END_REF][START_REF]Spectra: a Maple library for solving linear matrix inequalities in exact arithmetic[END_REF] and generic rankconstrained SDP [START_REF] Naldi | Solving rank-constrained semidefinite programs in exact arithmetic[END_REF] have been designed, with runtime polynomial in n (the number of variables, or equivalently the dimension of the affine section defining S (A)) if m (the size of the matrix) is fixed. Because of the high degrees needed to encode the output [START_REF] Nie | The algebraic degree of semidefinite programming[END_REF], they cannot compete with numerical software but on small size problems offer a nice complement to these techniques in situations where numerical issues are encountered. In both cases, genericity assumptions on the input are required. This means that for some special problems (lying in some Zariski closed subset of the space spanned by the entries of matrices A i ), these algorithms cannot be applied.

Outline of the main contributions

In this paper, we remove the genericity assumptions on the feasible set S A of the input SDP that were required in our previous work [START_REF]Exact algorithms for linear matrix inequalities[END_REF], and we show that optimization of generic linear functions over S A can be performed without significant extra cost from the complexity viewpoint.

Our precise contributions are as follows.

• We design an algorithm for solving the SDP in (1.1) without any assumption on the defining matrix A(x), with genericity assumptions on the objective function;

• we prove that this algorithm uses a number of arithmetic operations which is polynomial in n when m is fixed, and viceversa;

• we report on examples showing the behaviour of the algorithm on small-size but degenerate instances.

The main tool is the construction of a homotopy acting on the matrix representation A(x) rather than on the classical complementarity conditions as in (1.3). This allows to preserve the LMI structure along the perturbation. We use similar techniques from real algebraic geometry as those in [START_REF]Exact algorithms for linear matrix inequalities[END_REF], based on transversality theory [START_REF] Demazure | Bifurcations and catastrophes: geometry of solutions to nonlinear problems[END_REF], to prove genericity properties of the perturbed systems. We also investigate closedness properties of linear maps restricted to semi-algebraic sets in a more general setting in Section 2, generalizing similar statements for real algebraic sets in [START_REF] El Din | Polar varieties and computation of one point in each connected component of a smooth real algebraic set[END_REF][START_REF] Henrion | Real root finding for determinants of linear matrices[END_REF].

General notation

For a matrix of polynomials f ∈ R[x] s×t in x = (x 1 , . . . , x n ), we denote by Z(f ) the complex algebraic set defined by the entries of f . If f ∈ R[x] s , the Jacobian matrix of f is denoted by Df := ∂f i ∂x j ij . A set S ⊂ R n defined by sign conditions on a finite list of polynomials is called a basic semi-algebraic set, and a finite union of such sets is called a semi-algebraic set.

Let S m (Q) be the space of m × m symmetric matrices with entries in Q, and S + m (Q) the cone of positive semidefinite matrices in S m (Q). Let A(x) = A 0 + n i=1 x i A i , with A i ∈ S m (Q). One can associate to A(x) the hierarchy of algebraic sets D r (A) = {x ∈ R n : rank A(x) ≤ r}, r = 1, . . . , m -1 defined by the minors of A(x) of a fixed size. The set D r is called a determinantal variety. We recall the definition of incidence variety in the context of semidefinite programming, introduced by the authors in [START_REF]Exact algorithms for linear matrix inequalities[END_REF]. For r ∈ {1, . . . , m -1}, let Y = Y (y) be a m × (m -r) matrix of unknowns y i,j . Let ι ⊂ {1, . . . , m} be a subset of cardinality m -r, and Y ι the submatrix of Y corresponding to lines in ι. The incidence variety for D r (A) is the algebraic set

V r,ι (A) = {(x, y) ∈ C n × C m(m-r) : A(x)Y (y) = 0, Y ι = I m-r }.
We have defined previously the spectrahedron

S (A) = {x ∈ R n : A(x) 0}, associated to A(x). Let B ∈ S m (Q) and ε ∈ [0, 1].
In this paper, we consider a 1-parameter family of linear matrices

A(x) + εB = (A 0 + εB) + x i A i perturbing A(x) in direction B.

Preliminaries

In this section, we prove some results of topological nature on spectrahedra and their deformations. Before doing that, we need to recall basics about infinitesimals and Puiseux series rings. More details can be found in [START_REF]Algorithms in real algebraic geometry[END_REF]. An infinitesimal ε is a positive element which is transcendental over R and smaller than any positive real number. The Puiseux series field

R ε = { i≥i 0 a i ε i/q | i 0 ∈ Z, q ∈ N-{0}} is a real closed one [10, Ex.1.2.3]. An element z = i≥i 0 a i ε i/q is bounded over R if i 0 ≥ 0.
In that case, one says that its limit when ε tends to 0 is a 0 and we write it lim ε z. The lim ε operator is a ring homomorphism between R ε and R. We extend it over R ε n coordinatewise. Also given a subset Q ⊂ R ε n , we denote by lim ε Q the subset of R n of points which are the images by lim ε of bounded elements in Q.

Given a semi-algebraic set S ⊂ R n defined by a semi-algebraic formula with coefficients in R, we denote by ext(S, R ε ) the solution set of that formula in R ε n .

For a linear pencil

A(x) = A 0 + x 1 A 1 + • • • + x n A n of m × m symmetric
linear matrices and a m × m positive definite matrix B, we consider the spectrahedron S (A + εB) in R ε . Our first result relates S (A) ⊂ R n with S (A + εB) ⊂ R ε n . Lemma 1 Using the above notation, S (A) is included in (the interior of ) S (A + εB).

Proof : If S (A) = ∅, there is nothing to prove. Let x * ∈ S (A). By definition of positive semi-definiteness, for any vector v ∈ R m , v t A(x * )v ≥ 0. Since ε is a positive infinitesimal and B is positive definite, we deduce that for any vector

v ∈ R m \ {0}, 0 < v t A(x * )v + v t εBv = v t (A(x * ) + εB)v.
We deduce that A + εB is positive definite at x * , hence x * is in (the interior of) S (A + εB), as requested.

Further, we identify the set of linear forms = 1 x 1 + • • • + n x n with C n , the linear form being identified to the point 1 , . . . , n . By a slight abuse of notation we also denote by the map x → (x).

Lemma 2 Let R be a real closed field, C be an algebraic closure of R and S ⊂ R n be a closed semi-algebraic set. There exists a non-empty Zariski open set L (S) ⊂ C n such that for ∈ L (S) ∩ R n , (S) is closed for the Euclidean topology.

Proof : Our proof is by induction on the dimension of S. When S has dimension 0, the statement is immediate.

We let now d ∈ N \ {0}, assume that the statement holds for semi-algebraic sets of dimension less than d and that S has dimension d. By [10, Th.2.3.6], it can be partitioned as a finite union of closed semi-algebraically connected semi-algebraic manifolds S 1 , . . . , S N . Note that each S i is still semi-algebraic. We establish below that there exist non-empty Zariski open sets L (S i ) ⊂ C n such that for ∈ L (S i ) ∩ R n , (S i ) is closed for the Euclidean topology. Taking the intersections of those finitely many non-empty Zariski open set is then enough to define L (S).

Let 1 ≤ i ≤ N . If the dimension of S i is less than d, we apply the induction assumption and we are done. Assume now that S i has dimension d. Let V ⊂ C n be the Zariski closure of S i and C be the semi-algebraically connected component of V ∩ R n which contains S i . By [?, Prop.17], there exists a non-empty Zariski open set Λ

1,i ⊂ C n such that for ∈ Λ 1,i ∩ R n , (C) is closed.
By definition of C and using [10, Ch.2.8], C has dimension d, as S i . We denote by T i ⊂ R n the boundary of S i . Observe that it is a closed semi-algebraic set of dimension less than d [10, Ch.2.8]. Using the induction assumption, we deduce that there exists a non

-empty Zariski open set Λ 2,i ⊂ C n such that for ∈ Λ 2,i ∩ R n , (T i ) is closed. We claim that one can define L (S i ) as the intersection Λ 1,i ∩ Λ 2,i , i.e. for ∈ L (S i ) ∩ R n , (S i ) is closed.
Indeed, assume that the boundary of (S i ) is not empty (otherwise there is nothing to prove) and take a in this boundary. Without loss of generality, assume also that for all x ∈ S i , (x) ≥ a. We need to prove that a ∈ S i .

Assume first that for all η > 0, -1 ([a, a + η]) has a non-empty intersection with T i . Since (T i ) is closed by construction, we deduce that there exists x ∈ T i such that (x) = a. Since S i is closed by construction and T i is its boundary, we deduce that x ∈ S i and then that a ∈ (S i ).

Assume now that for some η > 0, -1 ([a, a + η]) has an empty intersection with T i . Then, we deduce that Assume that there exists x * ∈ S (A) such that (x * ) lies in the boundary of (S (A)). Then, there exists x * ε ∈ S (A + εB) such that (x * ε ) lies in the boundary of (S (A + εB))

-1 ([a, a + η]) ∩ S i = -1 ([a, a + η]) ∩ C. Besides, since (C) is closed, there exists x ∈ C such that (x) = a. Because, -1 ([a, a + η]) ∩ S i = -1 ([a, a + η]) ∩ C, we deduce that x ∈ S i which ends the proof.
and lim ε x * ε = x * . Viceversa, if x * ε ∈ S (A + εB)
lies in the boundary of (S (A + εB)), and S (A) = ∅, then (lim ε x * ε ) lies in the boundary of (S (A)).

Proof : Fix r ∈ R positive and let B(x * , r) be the ball centered at x * of radius r. Further we abuse notation by denoting ext(S (A), R ε ) by S (A).

Recall that S (A) is contained in S (A + εB) (Lemma 1) and observe that S (A + εB) is infinitesimally close to S (A) (because of the continuity of the eigenvalues of A(x) + εB when x ranges over S (A + εB)).

This implies that there exists ρ ε in the boundary of (S (A + εB) ∩ ext(B(x * , r))) and which is infintesimally close (x * ). Since S (A + εB) ∩ ext(B(x * , r) is closed and bounded, (S (A + εB) ∩ ext(B(x * , r)) is closed for the Euclidean topology. Then, there exists x * ε ∈ S (A + εB) ∩ ext(B(x * , r) such that (x * ε ) = ρ ε . Since this is true for any r ∈ R positive, we deduce the equality lim ε x * ε = x * . Viceversa, suppose that x * ε ∈ S (A + εB) is such that (x * ε ) lies in the boundary of (S (A + εB)). Hence (x * ε ) minimizes on S (A + εB). Let y ∈ S (A). From Lemma 1, we know that y ∈ S (A + εB). Since orders are preserved under limit, and by the continuity of , we get that (x * ) = (lim

ε x * ε ) = lim ε (x * ε ) ≤ lim ε (y) = (y).
By the arbitrarity of y we deduce that x * minimizes on S (A), hence (x * ) lies in the boundary of (S (A)).

Homotopy for semidefinite systems

We consider the original linear matrix inequality A(x) 0 and its solution set S (A). In this section, we prove that one gets regularity properties under the the deformation of S (A) described in the previous sections.

Regularity of perturbed incidence varieties

Let B ∈ S m (Q) and ε ∈ [0, 1]. We say that A + εB is regular if, for every r = 1, . . . , m and ι ⊂ {1, . . . , m} with ι = m-r, the algebraic set V r,ι (A+εB) is smooth and equidimensional, of co-dimension m(m -r)

+ m-r+1 2 in C n+m(m-r) .
The following proposition states that such a property holds almost everywhere if the perturbation follows a generic direction.

Proposition 5 There exists a non-empty Zariski open set B 1 ⊂ S m (C) such that, for all r ∈ {0, . . . , m}, ι ⊂ {1, . . . , m} with ι = m -r, and for B ∈ B 1 ∩ S m (Q), the following holds. For every ε ∈ (0, 1], out of a finite set, the matrix A + εB is regular.

Proof : We suppose w.l.o.g. that r is fixed and ι = {1, . . . , m -r}. Let B be an unknown m×m symmetric matrix. For ε ∈ (0, 1], we get a matrix A+εB = A(x)+εB, which is bilinear in the two groups of variables x, B. Let f (ε) = f (ε) (x, y, B) be the polynomial system given by the (i, j)-entries of (A + εB)Y with i ≥ j, and by all entries of Y ι -I m-r . By [17, Lemma

3.2], Z(f (ε) ) = Z((A + εB)Y, Y ι -I m-r ), and remark that f (ε) = m(m -r) + m-r+1 2 .
We now proceed with a transversality argument. Consider the map (with abuse of notation)

f (1) :

C n × C m(m-r) × C ( m+1 2 ) -→ C m(m-r)+( m-r+1 2 ) (x, y, B) -→ f (1) (x, y, B).
We claim that 0 is a regular value of the map f (1) (the claim is proved in the last paragraph). This implies by Thom's Weak Transversality [30, Prop. B.3] that there is a Zariski open set B r,ι ⊂ S m (C) such that, if B ∈ B r,ι , then 0 is a regular value of the section map (x, y) → f (1) (x, y, B).

We define

B 1 := ∩ r ∩ ι B r,ι , which is a finite intersection of Zariski open sets, hence Zariski open. Now, for a fixed B ∈ B 1 , consider the line tB, t ∈ R, in S m (C). Let F 1 ∈ C[B]
be the generator of the ideal of all polynomials vanishing over the algebraic hypersurface S m (C) \ B 1 . Then, since B ∈ B 1 by construction, t → F 1 (tB) does not vanish identically, hence it vanishes exactly deg F 1 many times (counting multiplicities). We deduce that, εB ∈ B 1 except for finitely many values of ε. We conclude that for all r and ι, V r,ι (A + εB) is smooth and equidimensional of co-dimension f (ε) = m(m -r) + m-r+1 2 , for ε ∈ (0, 1] except for finitely many values.

We prove now our claim. It follows by argument similar to the proof of [START_REF]Exact algorithms for linear matrix inequalities[END_REF]Prop.3.4]. Consider the derivatives of polynomials in f (1) (x, y, B) with respect to the (i, j)-entries of B, with either i ≤ m -r or j ≤ m -r, and those with respect to y i,j with i ∈ ι. It is straightforward to check that this gives a maximal submatrix of the jacobian matrix Df (1) whose determinant is non-zero, proving that 0 is actually a regular value of f (1) .

Critical points on perturbed LMI

Let B ∈ S m (Q) and let A + εB be the perturbed linear pencil defined above. For a fixed ε < 1, we consider the stratification of the hypersurface Z(det(A + εB)) given by the varieties D r (A + εB) of multiple rank defects of A + εB, and their lifted incident sets V r,ι (A + εB).

For r < m and ι ⊂ {1, . . . , m} with ι = m -r, let c := m(m -r) + m-r+1
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. We recall from the proof of Proposition 5 that f (ε) ∈ R[x, y] c consists of the (i, j)-entries of A (ε) Y with i ≥ j, and by all entries of Y ι -I m-r . We define the Lagrange system Lag r,ι (A + εB) as follows:

f (ε) i (x, y) = 0, i = 1, . . . , c c i=1 z i ∇f (ε) i (x, y) = 0 (3.1)
where : R n → R is linear. As in Section 2, we abuse the notation of , and identifying it with the vector ( 1 , . . .

, n ) ∈ R n giving (x) = 1 x 1 + • • • + n x n , hence = ∇ .
The set Z(f (ε) ) = V r,ι (A + εB) is smooth for generic B thanks to Proposition 5. Hence a solution (x * , y * , z * ) of system (3.1) is a critical point (x * , y * ) of the restriction of to V r,ι (A + εB), equipped with a Lagrange multiplier z * ∈ C c . Such a solution is called of rank r if rank (A(x * ) + εB) = r.

Proposition 6 There are two non-empty Zariski-open sets B 2 ⊂ S m (C) and l 2 ⊂ C n such that, for B ∈ B 2 ∩ S m (Q), ∈ l 2 ∩ Q n , and ε ∈ (0, 1] out of a finite set, the following holds. Suppose that has a minimizer or maximizer x * ε on S (A + εB). The projection on the x-space of the union, for ι ⊂ {1, . . . , m}, ι = m -r, of the solution sets of rank r of system (3.1), is finite and contains x * ε .

Proof : Let r ≤ m -1 and ι ⊂ {1, . . . , m}. Recall by [START_REF] Naldi | Solving rank-constrained semidefinite programs in exact arithmetic[END_REF]Th. 4] that a minimizer or a maximizer x * for the SDP inf{ (x) : A(x) + εB 0}, with rank (A(x * ) + εB) = r, is a critical point of the restriction of to D r (A + εB). Moreover, [START_REF] Naldi | Solving rank-constrained semidefinite programs in exact arithmetic[END_REF]Lem. 2] implies that such critical points can be computed as projection on the x-space, of the critical points of the restriction of to V r,ι (A + εB), for some ι (here we mean the extension (x, y) → (x) of to the (x, y)-space). Thus we only need to prove the finiteness of solutions of rank r of system (3.1), for a generic perturbation matrix B and a generic linear function , uniformly on ε.

We denote by g (ε) = z T Df (ε) -( , 0) T (the polynomials in the second row of (3.1)). The system (f ( ) , g ( ) ) is square, for a fixed . Consider the polynomial map (f (1) , g (1) ) sending (x, y, B, z, l) to (f (1) (x, y, B), g (1) (x, y, B, z, l)), where B and l are variables for B and , of the right size. As in the proof of Proposition 5, for generic B the rank of Df (1) is maximal. Hence, following mutatis mutandis the proof of [START_REF] Naldi | Solving rank-constrained semidefinite programs in exact arithmetic[END_REF]Prop.3], we conclude that the jacobian matrix of (f (1) , g (1) ) has full rank at every point in Z(f (1) , g (1) ) of rank r. Hence there exist non-empty Zariski open sets B r,ι ⊂ S m (C), l r,ι ⊂ C n such that if (B, ) ∈ B r,ι × l r,ι then system (3.1) has finitely many solutions of rank r, for ε = 1. We define B 2 := ∩ r ∩ ι B r,ι and l 2 := ∩ r ∩ ι l r,ι and we conclude the same disregarding r and ι.

Let F 2 ∈ C[B, l] be the generator of the ideal of all polynomials vanishing over (S m (C) × C n ) \ (B 2 × l 2 ). Then F 2 (B, ) = 0, which implies that t → F 2 (tB, ) has finitely many roots, hence (εB, ) ∈ (B 2 × l 2 ) almost everywhere in (0, 1]. We conclude the proof by defining the claimed finite set as the union of (1) the set of roots of F 2 and (2) the finite set constructed in Proposition 5.

Note that the transversality techniques used in the proofs of Propositions 5 and 6 are non-constructive. Indeed they prove the existence of the discriminants F 1 ∈ C[B] and F 2 ∈ C[B, l], but do not construct them effectively. If we knew F 1 , F 2 one could use separation bounds for real roots of univariate polynomials (e.g. [START_REF] Herman | Improving Root Separation Bounds[END_REF]) to get upper bounds for the minimum of the finite sets.

The degree of the homotopy curve

We consider the Lagrange system (3.1), r < m and ι ⊂ {1, . . . , m} with ι = m -r. For a given homotopy parameter ε ∈ (0, 1) out of the union of the finite sets defined in Propositions 5 and 6, the system has finitely many solutions of rank r. When ε converges to 0, these solutions draw a (possibly reducible) semi-algebraic curve. This can also be seen as a semi-algebraic subset of dimension 1 in R ε n . We denote this curve by C r,ι .

Contrarily to the classical homotopy based on the central path, whose points lie in the interior of the feasible set, we have constructed homotopy curves containing optimal solutions of given rank of perturbed semidefinite programs. This allows to derive degree bounds that depend on this rank. Proposition 7 Let r, ι be fixed, let C r,ι be the curve of solutions or rank r of the Lagrange system (3.1), for positive small enough ε, and Zar(C r,ι ) be its complex Zariski closure. Then

deg Zar(C r,ι ) ≤ (1 + 2r(m -r)) • θ 1
where

θ 1 = k c n -k n c + k -r(m -r) r(m -r) k (3.2)
Proof : We first compute a polynomial system equivalent to (3.1). We make the substitution Y ι = I m-r that eliminates variables {y i,j : i ∈ ι} in the vector f (ε) defining the incidence variety V r,ι (A + εB), hence we suppose

f (ε) ∈ Q[ε, x, y] c , with c = m(m -r) -m-r 2 = (m-r)(m+r+1) 2
and y = {y i,j : i ∈ ι}. (Indeed, m-r 2 is the number of redundancies eliminated by [START_REF]Exact algorithms for linear matrix inequalities[END_REF]Lemma 3.2] recalled in the proof of Proposition 5.) Above we have intentionally abused of the notation of f (ε) and c. Next, the new polynomials f i do not depend on y \ y. Hence, defining g := c i=1 z i ∇f

(ε) i (x, y) -(∇ , 0) T ∈ Q[ε, x, y, z], with z = (z 1 , . . . , z c ), one has g = x + y = n + r(m -r).
We conclude that the Lagrange system (3.1) is given after reduction by the entries of f (ε) and g, that are multilinear in the three groups of variables ξ := (ε, x), y and z. The multidegree with respect to (ξ, y, z) is respectively

• mdeg (ξ,y,z) (f (ε) i ) = (1, 1, 0), for i = 1, . . . , c
• mdeg (ξ,y,z) (g i ) = (0, 1, 1), for i = 1, . . . , n

• mdeg (ξ,y,z) (g n+j ) = (1, 0, 1), for j = 1, . . . , r(m -r)

We compute below a multilinear Bézout bound of deg Zar(C r,ι ) (see [START_REF] El Din | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF]App.H.1]). This is given by the sum of the coefficients of the polynomial

P = (s 1 + s 2 ) c (s 2 + s 3 ) n (s 1 + s 3 ) r(m-r) modulo the monomial ideal I = s n+2 1 , s r(m-r)+1 2 , s c+1 3
. Since the maximal admissible power modulo I of s 1 (resp. of s 2 , s 3 ) is n + 1 (resp. r(m -r), c) and since P is homogeneous of degree c + n + r(m -r) we get

P ≡ θ 1 s n 1 s r(m-r) 2 s c 3 + θ 2 s n+1 1 s r(m-r)-1 2 s c 3 + θ 3 s n+1 1 s r(m-r) 2 s c-1
3 modulo I, where θ i = θ i (m, n, r) are the corresponding coefficiens in the expansion of P , hence the bound is θ 1 + θ 2 + θ 3 . Just by expanding P and by solving a linear system over Z one gets the expression in (3.2), within the range 0 ≤ k ≤ min{n -c + r(m -r), r(m -r)}. A similar formula holds for θ 2 where n -k + 1 substitutes n -k in the first binomial coefficient. We deduce that

θ 2 ≤ max k c -n + k n -k + 1 θ 1 ≤ r(m -r)θ 1 .
Moreover the expression of θ 3 equals that of θ 2 except for the second binomial coefficient which is smaller, hence θ 3 ≤ θ 2 ≤ r(m -r)θ 1 , and we conclude.

Recall that the algorithm in [START_REF]Exact algorithms for linear matrix inequalities[END_REF] solves LMI under genericity properties that cannot be assumed in the context of this paper. It avoids the use of homotopy. We expect that in degenerate situations the degree of the homotopy curve will exceed that of the univariate representation computed in the regular case. We prove that this degree gap is controlled, namely, that the extra factor is linear in n and in the rank-corank coefficient r(m -r).

Proposition 8 Let θ = θ(m, n, r) be the bound computed in [START_REF]Exact algorithms for linear matrix inequalities[END_REF]Prop.5.1]. For all r and ι as above, deg Zar(C r,ι ) ≤ (1 + 2r(m -r)) nθ.

Proof : Let θ 1 be the expression in (3.2). We prove that θ 1 ≤ nθ and we conclude. Indeed,

let θ = k a k and θ 1 = k b k . Then b k a k = n c + k -r(m -r) that does not exceed n for all k. Hence θ 1 ≤ k na k = nθ.

Algorithm

Description

This section contains the formal description of a homotopy-based algorithm for solving the semidefinite program in (1.1), called DegenerateSDP.

We first define the data structures we use to represent algebraic sets of dimension 0 and 1 during the algorithm. A zero-dimensional parametrization of a finite set W ⊂ C n is a vector Q = (q 0 , q 1 , . . . , q n , q) ∈ Q[t] n+2 such that q 0 , q are coprime and W = {a ∈ C n : a i = q i (t)/q 0 (t), q(t) = 0, ∃t ∈ R} .

Similarly a one-dimensional parametrization of a curve C ⊂ C n is a vector Q = (q 0 , q 1 , . . . , q n , q) ∈ Q[t, u] n+2 with q 0 , q coprime and

C = {a ∈ C n : a i = q i (t, u)/q 0 (t, u), q(t, u) = 0, ∃t, u ∈ R} .
Abusing notation we denote by Z(Q) the sets in the right part of the previous equalities.

If Q is a list of parametrizations, Z(Q) denotes the union of Z(Q i ) for Q i in Q, and every x * ∈ Z(Q) is encoded by (Q, [a * , b * ]), where a * , b * ∈ Q and [a * , b * ]
is a separating interval for the root that corresponds to x * . These representations for finite sets and curves are standard in real algebraic geometry, and are called parametrizations in the sequel. By convention, ( ) is a parametrization for ∅.

We also define the following subroutines manipulating this kind of representations:

• ODP. With input a polynomial system f = (f 1 , . . . , f s ) defining a one-dimensional algebraic set Z(f ), and a set of variables x, it returns a one-dimensional parametrization of the projection of Z(f ) on the x-space.

• CUT. Given a one-dimensional parametrization Q of the zero set

Z(f ) ⊂ C n+1 of polynomials f 1 , . . . , f s ∈ Q[ε, x],
it returns a zero-dimensional parametrization of the projection on the x-space of the limit of Z(f ) for ε → 0 + .

• UNION. Given two parametrizations Q 1 , Q 2 , it returns a parametrization Q such that Z(Q) = Z(Q 1 ) ∪ Z(Q 2 ).
The input of DegenerateSDP is the m × m n-variate symmetric linear matrix A(x) defining the spectrahedron S (A), and a linear form . The output is a list

Q = [Q 1 , . . . , Q m-1 ]
of zero-dimensional parametrizations containing a solution x * to the original LMI (with the corresponding interval [a * , b * ] of rational numbers), or ( ), which means that the original SDP (1.1) is either infeasible (S (A) = ∅) or that the infimum in (1.1) equals -∞.

Below we describe each step of the algorithm.

1: procedure DegenerateSDP(A, )

2: Generate B ∈ S m (Q) 3: Q ← [ ] 4:
for r = 1, . . . , m -1 do 5:

Q r ← (1) 6: 
for ι ⊂ {1, . . . , m} with ι = m -r do 7:

L ← Lag r,ι (A + εB)

8: Q r,ι ← ODP(L, x) 9: Q r ← UNION(Q r , Q r,ι ) 10: Q ← [Q, CUT(Q r )] 11: if S (A) ∩ Z(Q) = ∅ then return ( ) 12: return (Q, [a * , b * ])
Note that ε in the previous formal description is treated as variable, so that the polynomials in L at step 7 define a curve. Remark that all solutions satisfy det A(x) = 0 hence rank A(x) ≤ m -1.

We show in Theorem 9 that DegenerateSDP is correct and computes solutions to the original linear matrix inequality as limits of perturbed solutions. We use the results of Sections Proof : First, suppose that A(x * ) = 0 for some

x * ∈ R n . Then A 0 = -i x * i A i , hence A(x) = (x 1 -x * 1 )A 1 + • • • + (x n -x * n )A n .
We deduce that S A is the image under the translation x → x + x * of a cone, that is: either S A = {x * }, in which case ≡ (x * ) on S A , and x * is a minimizer for (1.1), or S A is an unbounded convex cone with origin in x * . In the second case, since is linear, either its infimum on S A is attained at the origin x * , or its maximum is attained in x * and is unbounded from below on S A . We prove the first sentence in (B). Assume that x * ∈ S (A) is a minimizer in (1.1). Then (x * ) lies in the boundary of (S (A)). By Lemma 4, we get that there exists x * ε ∈ S (A+εB) such that (x * ε ) lies in the boundary of (S (A + εB)) and lim ε x * ε = x * . Hence for ε > 0, x * ε is a minimizer of on (S (A+εB)) ⊂ R n . By Proposition 6, there exists r ∈ {1, . . . , m-1}, ι ⊂ {1, . . . , m} with ι = m -r, y * ε and z * ε , such that (x * ε , y * ε , z * ε ) is a solution of the Lagrange system Lag r,ι (A + εB). We deduce that for ε > 0, x * ε is parametrized by the one-dimensinal parametrization Q r,ι = ODP(L) computed at step 8 of DegenerateSDP, hence by Q r . We deduce that Q parametrizes the limit x * = lim ε x * ε , that is x * ∈ S (A) ∩ Z(Q). We finally come to the second sentence in (B). Since is not unbounded on S (A), and S (A) = 0, then the same holds for on S (A + εB). By Lemma 3, (S (A)) and (S (A + εB)) are closed intervals. We deduce that the boundary of (S (A + εB)) is nonempty. Let x * ε be such that (x * ε ) lies in the boundary of (S (A + εB)). Since S (A) = ∅, by 4 x * := lim ε x * ε ∈ S (A) ∩ Z(Q) is such that (x * ) lies in the boundary of (S (A)), hence a minimizer of the SDP in (1.1).

To conclude, we make explicit the following fact that follows from Theorem 9. Recall that a generic linear form over a non-empty convex set is either unbounded from below (inf = -∞) or its infimum is attained. Theorem 9 implies that if is a generic linear form, then S (A) ∩ Z(Q) = ∅ if and only if S (A) = ∅ or is unbounded from below on S (A). We conclude that up to genericity assumptions on the linear form, the algorithm is correct, since it returns a non-empty rational parametrization if and only if problem (1.1) has a feasible solution.

Complexity analysis

This section contains a rigourous analysis of the arithmetic complexity of DegenerateSDP. Let us first give an overview of the algorithms that are used to perform the subroutines in DegenerateSDP.

The computation of a one-dimensional parametrization of the homotopy curve Zar(C r,ι ) at step 8, that is the routine ODP, is done in two steps. First, we instantiate the system Lag r,ι (A + εB) to a generic ε = ε. By Proposition 6 we deduce that the obtained system is zero-dimensional. We use [START_REF] El Din | Bit complexity for multi-homogeneous polynomial system solving -application to polynomial minimization[END_REF] to compute a zero-dimensional rational parametrization of this system.

The second steps consists in lifting the parameter ε and in computing a parametric geometric resolution of Lag r,ι (A + εB) with the algorithm in [START_REF] Schost | Computing parametric geometric resolutions[END_REF], that is, a parametric analogue of [START_REF] Giusti | A Gröbner-free alternative for polynomial system solving[END_REF]. In our context, there is only one parameter, that is ε.

The routine CUT can be performed via the algorithm in [START_REF] Rouillier | Finding at least one point in each connected component of a real algebraic set defined by a single equation[END_REF] and, finally, the cost of the routine UNION is given in [START_REF] El Din | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF]Lem.G.3].

To keep notations simple, let L = (L 1 , . . . , L N ) ∈ Q[ε, t 1 , . . . , t N ] be the polynomials defining the Lagrange system (3.1), in the reduced form as in the proof of Proposition [START_REF]Algorithms in real algebraic geometry[END_REF]. Hence N = c + n + r(m -r), where c = (m -r)(m + r + 1)/2. The complex algebraic set Zar(C r,ι ) = Z(L) is a curve whose degree is bounded by Proposition 7. The complexity of UNION is in O(N θ2 ) at each step, by [START_REF] El Din | A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets[END_REF]Lem.G.3]. This shows that the most expensive step is the lifting step.

The previous complexity bounds depend on r, and hold for all r = 1, . . . , m, and for all index subsets ι ⊂ {1, . . . , m}. We conclude by summing up with weight m r , the number of subsets ι ⊂ {1, . . . , m} of cardinality m -r.

We note that N can be bounded above by n + 2m 2 uniformly in r. The complexity of DegenerateSDP given by Theorem 10 is polynomial in n when m is fixed. Moreover, for a generic perturbation matrix B, [17, Lem. The interior of S (A) := {(p 1 , p 2 )} in R 2 is empty, and moreover S (A), corresponding to the intersection of the 2-dimensional linear space of matrices in the pencil A(x) with the the 3-dimensional cone of 2 × 2 symmetric matrices, has co-dimension 2 in R 2 . We first construct the incidence varieties V r,ι (A). For r = 0, the incidence variety is smooth, but for r = 1 and ι = {1}, this is the following algebraic curve in C 3 V 1,{1} = Z((x 2 -p 2 )y + p 1 -x 1 , (x 1 -p 1 )y + x 2 -p 2 ) having two complex singularities lifting (p 1 , p 2 ), precisely at (p 1 , p 2 , ±i), with i = -1.

According to Proposition 5, we can desingularize the varieties V r,ι (A) by applying a sufficiently generic homotopy

A + εB = p 1 -x 1 x 2 -p 2 x 2 -p 2 x 1 -p 1 + ε b 11 b 12 b 12 b 22
perturbing the constant term of A. The set V r,ι (A + εB) is smooth and equidimensional for generic B, and the expected number of critical points of the restriction of a generic linear function (x 1 , x 2 ) = 1 x 1 + 2 x 2 is finite for each ε.

In Figure 1 we plot the semi-algebraic curve of solutions to the perturbed systems for a fixed linear objective function. Eliminating variables y and z from the Lagrange system Lag r,ι (A + εB), one gets a one-dimensional complex curve, representing the Zariski closure of the red curves in Figure 1. For the special choice B = I 2 , the real trace of the homotopy curve is the line orthogonal to , that is parallel to the zero set of ⊥ (x 1 , x 2 ) = 2 x 1 -1 x 2 and passing through (p 1 , p 2 ), while if B is drawn randomly the homotopy curve has degree 2. For instance, for (p 1 , p 2 ) = (1, 1), the homotopy curve constructed by DegenerateSDP is given by the equality 

Lemma 3

 3 Let A(x) be as above and let B be a positive definite m × m matrix. There exists a non-empty Zariski open set l 1 ⊂ C n such that for ∈ l 1 ∩ R n the following holds: • (S (A)) is closed for the Euclidean topology • (S (A + εB)) is closed for the Euclidean topology.

  Proof : If S (A) = ∅, there is nothing to prove. Since S (A) ⊂ R n is a closed semi-algebraic set, one can apply Lemma 2 and deduce that there exists a non-empty Zariski open set l 1 ⊂ C n such that for ∈ l 1 ∩ R n , (S (A)) is closed for the Euclidean topology.The spectrahedron S (A + εB) ⊂ R ε n is also a closed semi-algebraic set. Applying Lemma 2 with R = R ε , one deduces that there exists a non-empty Zariski open setl ε ⊂ C ε n such that for ∈ l ε ∩ R ε n , (S (A + εB)) isclosed for the Euclidean topology. Since any non-empty Zariski open set l ε ⊂ C ε n contains a non-empty Zariski open set of C n , we pick one such set, denoted by l 1 and take finally l 1 = l 1 ∩ l 1 . Lemma 4 Let in l 1 ∩ R n where l 1 is the non-empty Zariski open set defined in Lemma 3.

Theorem 9

 9 2 and 3 and refer to the notation of Zariski open sets constructed in Lemma 3 and 4, and in Proposition 5 and 6. Let A be a m×m n-variate symmetric linear matrix.Let B ∈ B 1 ∩B 2 ∩S + m (Q),and∈ l 1 ∩ l 2 ∩ Q n . A. If A(x * ) = 0 for some x * ∈ R n , then x *is a minimizer in (1.1) or is unbounded from below on S A . B. Otherwise, Q = DegenerateSDP(A, ) fulfils the following condition. If x * ∈ S (A) is a minimizer in (1.1) then x * ∈ S (A) ∩ Z(Q). Viceversa, if S (A) = ∅, and is not unbounded from below on S (A), then S (A) ∩ Z(Q) contains a minimizer in (1.1).

Theorem 10 3 .≤ c + n n 3 ≤ m(m -r) + n n 3 ,

 10333 Let L and N be as above. Under the assumptions of Theorem 9, the output Q = DegenerateSDP(A, ) is returned within O n r m r r(m -r)N 4 θ 2 arithmetic operations over Q, where O(T ) = O(T log a (T )) for some a and θ ≤ m 2 +n n Proof : Let ε ∈ (0, 1) be generic, and let L be equal to the system L where ε is instantiated to ε. Let θ be the value computed in [17, Prop.5.1], that bound the number of solution of L = 0 in C N . By the same proposition one gets θ from which the claimed bound uniform in r. Let L = (L 1 , . . . , L N ) be a polynomial vector of lenght N such that L i has the same multilinear structure as L i , for i = 1, . . . , N . Let H(T, t 1 , . . . , t N ) = T L + (1 -T )L . By [31, Prop.5], the complexity of computing a univariate representation of Z(L) is in O(N 3 θθ ) where θ = deg, Z(H). By [17, Lem.5.4], θ ∈ O(N min{n, c}θ). Hence the complexity of the first step of ODP is in O(min{n, c}N 4 θ 2 ). Next, let π : C N +1 → C be the projection (ε, t 1 , . . . , t N ) → ε. By [17, Prop.5.1], a generic fiber of π has degree bounded by θ. Proposition 8 implies that deg Zar(C r,ι ) is bounded above by (1 + 2r(m -r)) nθ. We apply the bound in [34, Cor.1], and we get a complexity in O nr(m -r)N 4 θ 2 , for the parametric resolution step in ODP. By [31, Lem.13], the complexity of CUT is in O (N 3 θθ ), hence in O min{n, c}N 4 θ 2 .

  3.1] allows to deduce the inequality n ≥ m-r+1Consider the 2 × 2 semidefinite representation of a point (p 1 , p 2 ) ∈ R 2 :(x 1 , x 2 ) ∈ R 2 : A(x) := p 1 -x 1 x 2 -p 2 x 2 -p 2 x 1 -p 1 0 = {(p 1 , p 2 )} .

Figure 1 :

 1 Figure 1: Homotopy curves in red and linear objective function in blue, for generic B (left) and for B = I 2 (right)

  2241769 x 2 1 + 115046296 x 1 x 2 + 65669911 x 2 2 -119529834 x 1 -246386118 x 2 + 182957976 = 0where (x 1 , x 2 ) = 88x 1 -94x 2 is the objective function, and with perturbation matrix

	B =	80 -68 -68 109	.

: this implies that when n is fixed, then m is bounded above and hence the complexity is still polynomial.5 ExampleIn this final section we develop a degenerate example in low dimension, showing how our algorithm works from a geometric viewpoint.

We finally remark that, even if the choice B = I 2 exhibits a degenerate behaviour in the sense described above, from the point of view of the homotopy constructed in this work B = I 2 exhibits a generic behaviour: one can check by hand that the incidence variety V r,ι (A + εI 2 ) is singular if and only if ε = 0. Indeed, V r,ι (A + εI 2 ) is defined by the vanishing of f (ε) = (ε -x 1 + x 2 y, x 2 + εy + x 1 y), and the 2 × 2 minors of Df (ε) combined with f (ε) = 0 imply that y = ±i and 0 = x 2 = ε -x 1 = ε + x 1 hence x 1 = x 2 = ε = 0.
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