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Time-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed
using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time
from the recordings of two synchronous high-speed cameras located at 90◦. The temporal dynamics of
finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability
threshold. The experimental results are compared with recent theories accounting for nonlinearities and mode
coupling, highlighting particular effects inherent to these mechanisms (saturation of the instability, triggering of
nonparametric shape modes). Finally, the amplitude of the nonspherical oscillations is given as function of the
driving pressure both for quadrupolar and octupolar bubbles.
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I. INTRODUCTION

Nonspherical bubble oscillations arising from the instability
of the bubble surface is a largely observed and reported phe-
nomenon. These oscillations are known to be parametrically
excited by the acoustically driven spherical oscillations of the
bubble, a mechanism similar to the hydrodynamic Faraday
waves observed on a vertically oscillating liquid layer [1].
When the driving acoustic pressure overcomes a critical value,
the surface instability manifests as the triggering of particular
shape modes corresponding to zonal harmonics of the initially
spherical bubble. Theories have been derived for many years
to describe such a phenomenon. Early theories based on the
expansion of the bubble surface perturbation into spherical
harmonics and linearization of the fluid dynamical equations
led to the well-known parametric equation governing the shape
modes amplitude, describing the bubble spherical stability
conditions and the main characteristics of the nonspherical
oscillations [2–5]. Further developments were conducted to
account for viscous dissipation [6–9] and effect of weakly
nonlinear spherical oscillations [10] on the spherical stability
of the bubble. More recently, theoretical works have been
expanded to the nonlinear interactions between vibrational
modes [11–15] to account for sound radiation [16,17] and
translational instability [18,19] of nonspherical bubbles. In
general, nonlinearities coming from mode coupling and
involved in the spherical, translational, and shape dynamical
equations can be seen as one mechanism allowing saturation
of the instability leading to nonspherical oscillations of finite
amplitude. Experiments have also been conducted to investi-
gate the conditions of appearance of nonspherical oscillations,
leading to several reports of stability diagrams [10,20–23].

However only few of them present direct measurements
of the temporal dynamics of shape oscillations. Early works
reported such observations on radiation-modulated driven and
free damped oscillations of millimetric bubbles [24,25] or
drops [25,26] (thus, below the parametric threshold). With
the recent and considerable developments of high-speed
imaging techniques, similar studies are now possible on
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high-frequency-driven micrometer-sized bubbles [23,27,28]
and time-resolved dynamics of nonspherical oscillations have
been reported over the past few years on coated microbubbles
such as ultrasound contrast agents [29,30] or armored bubbles
[31,32]. Nevertheless, experiments generally disregard the
finite amplitude properties of parametrically excited nonspher-
ical oscillations and direct measurements are rarely compared
with the most recent theoretical developments accounting for
nonlinear saturation and mode coupling. Moreover, while all
theories assume axisymmetry of the bubble shape as a starting
point of their mathematical formulation, this hypothesis is
generally mentioned as being fulfilled in experiments but has
never been examined in details and quantified rigorously.
In this paper, we first make use of an experimental setup
based on two synchronous high-speed cameras to demonstrate
and discuss the axisymmetry of nonspherical bubbles. Then,
experiments are conducted to capture the temporal dynamics of
the nonspherical oscillations above the parametric instability
threshold, highlighting nonlinear, finite-amplitude oscillations
predicted by recent models.

II. EXPERIMENTAL SETUP AND MODAL
DECOMPOSITION

Experiments are conducted on the basis of an original setup
described in a previous study [27] whose technical details are
briefly recalled here. Single laser-induced air bubbles of few
tens of micrometers in size are trapped in a cubic tank of dis-
tilled undegassed water by applying a standing-wave ultrasonic
field of frequency fa = 31.25 kHz. The bubble oscillations
are driven by a slowly varying amplitude-modulated acoustic
pressure field of the form

pa(t) = Pa cos(2πfat)[1 − η cos(2πfmt)], (1)

where Pa is the mean acoustic pressure amplitude, fm ≪ fa

is the low modulation frequency (fm = 78.125Hz,
fa/fm = 400), and η is the modulation amplitude. This
modulation allows periodic triggering of the nonspherical
oscillations on short time durations [27,28]. Once trapped
on a stable position, the bubble oscillations are captured
using two synchronous high-speed cameras (Vision Research,
Phantom V12.1) located at 90◦ (Fig. 1). Both cameras
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FIG. 1. Schematic view of the optical setup. The axis of symmetry
of the nonspherical bubble is identified by the unit vector eb.

have the vertical ez axis as shared axis. We define the
(ex,ez) plane as the view plane captured by the first camera,
and the (ey,ez) plane as the view plane captured by the
second one. The bubble contour is obtained from backlit
illumination using continuous light sources (LED) and its
dynamics is recorded with an acquisition rate of 180 064
frames per second and a frame size of 128 × 128 pixels.
The bubble contour extracted from one recorded picture then
leads to discrete values of the surface coordinate rs(θ,t),
which can be expanded over the Legendre polynomial basis,

rs(θ,t) =
N∑

n=0

an(t)Pn(cos θ ), (2)

to finally get the modal coefficients an using the orthogonality
property of the polynomials Pn:

an(t) = 2n + 1
2

∫ 1

−1
rsPn(x)dx, with x = cos θ . (3)

The coefficients an directly correspond to the respective
amplitudes of the bubble vibrational modes, including the
spherical one (n = 0). Two exemplary results of their tem-
poral evolution on one modulation period are presented
in Fig. 2, for two bubbles of respective radii 48 µm and
70 µm mainly exhibiting quadrupolar [Fig. 2(a)] and oc-
tupolar [Fig. 2(b)] deformations. Here and throughout the
paper, all quantities are dimensionless: the spherical mode
coefficient oscillating around the mean radius R0 = ⟨a0(t)⟩
is plotted as a0/R0 − 1, while the shape mode coefficients
oscillating around a zero mean value are divided by R0.
The bubble remains spherical at the early and last phases
of the modulation corresponding to the lowest values of the
instantaneous pressure amplitude [see Eq. (1)]. Due to the
modulation, the acoustic pressure dynamically crosses the
critical pressure threshold, leading to surface instability and
appearance of nonspherical oscillations. The corresponding
modal coefficients a2 (quadrupolar) and a3 (octupolar) present
a characteristic exponential growth until reaching a maximum
amplitude. Then, because the acoustic pressure falls below the
instability threshold during the last phase of the modulation,
the nonspherical oscillations are damped until complete
disappearance. One can also observe weak oscillations of
the fourth mode a4 existing for the quadrupolar bubble
presented in Fig. 2(a): these oscillations are not induced by the
classical parametric instability mechanism but are a signature
of nonlinear effects. This will be further commented in
Sec. IV.

It is worth noting that expanding the surface coordinate
on zonal harmonics according to Eq. (2) implicitly assumes
axisymmetry of the bubble shape. In Sec. III, we make
use of the recordings from the two synchronous cameras to
discuss the symmetry properties of the bubble, which will
give confidence in the analysis of the results presented in
Sec. IV.
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FIG. 2. Temporal evolution of the amplitude of the spherical mode (a0) and the first three surface modes, for (a) a bubble of radius 48 µm
exhibiting a quadrupolar deformation, and (b) a bubble of radius 70 µm exhibiting a octupolar deformation. All the modal coefficients are
dimensionless. The time length corresponds to one period of modulation f −1

m = 12.8 ms. (a) Quadrupolar mode. R0 = 48 µm, Pa = 18.4 kPa,
η = 0.38. (b) Octupolar mode. R0 = 70 µm, Pa = 8.6 kPa, η = 0.33.
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FIG. 3. Bubble orientation and associated side views on both
cameras. The axis of symmetry of the nonspherical bubble is
identified by the unit vector eb.

III. AXISYMMETRY OF SURFACE MODES

The entire set of experiments—collecting a large num-
ber of bubbles of various radii driven at various pressure
amplitudes—led us to observe that the symmetry axis of the
nonspherical bubble is not fully determined by our experimen-
tal conditions (neither by a preferential direction in the acoustic

field nor by the gravity [33]) but generally randomly oriented
in the 3D space. Therefore, the bubble apparent contour
captured by one camera does not necessarily correspond to the
surface coordinate and care must be taken when analyzing the
coefficients obtained from the modal decomposition. Typical
examples of bubble orientations observed in experiments are
given in Fig. 3, associated with the corresponding snapshots
captured by both cameras. On each snapshot is indicated the
axis of symmetry of the bubble apparent contour, i.e., the
respective orthogonal projections of eb on the (ex,ez) plane and
(ey,ez) plane. The first three cases [Figs. 3(a)–3(c)] correspond
to particular orientations of the bubble axis of symmetry eb, for
which information recorded by at least one camera can be used
to obtain a proper modal decomposition of the bubble surface.

In the most convenient case, the axis of symmetry of the
bubble apparent contour should be oriented in the vertical
direction on both cameras [Fig. 3(a)]. In that case, the bubble
contour is nearly identical on both cameras and one can assert
that the axisymmetry of the bubble is entirely defined by
the ez axis. Corresponding snapshot series on two acoustic
periods are shown in Fig. 4, attesting to the axisymmetry
of the bubble by rotation of 90◦ around the vertical axis.
These snapshot series also clearly illustrate the period doubling
usually observed for parametrically excited nonspherical
oscillations (first parametric resonance). Performing the modal
decomposition of the bubble contour captured by both cameras
then leads to the temporal curves shown in Fig. 5. These results
confirm that the modal decomposition is invariant to rotation
around the vertical axis and allow to ensure that the coefficients
well describe the oscillations of the spherical and nonspherical
modes. A deeper analysis of the curves, although discussed
with more details in the next section, also reveals that for the
quadrupolar shaped bubble considered here, the second shape
mode oscillates at half the driving frequency (first parametric
resonance) while a component mostly oscillating at the driving
frequency is also observed on the fourth shape mode (nonlinear
effect). The lack of the third mode is also consistent with the
expected nonlinear energy transfers predicted by theory (even
modes mainly transfer energy towards other even modes [13]).

A second convenient case allows to fully define the
axisymmetry of the bubble when the axis of symmetry
corresponds either to ex or ey [Fig. 3(b)]. In that case, the
bubble remains apparently spherical on one of the two cameras,
while the bubble contour captured by the other view can
be directly related to the surface coordinate and expressed
by Eq. (2). Corresponding snapshot series on two acoustic
periods are shown in Fig. 6, attesting to the axisymmetry of
the bubble along the ey axis. Similar to the previous case, the
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FIG. 4. Snapshot series on two acoustic periods corresponding to case (a) in Fig. 3. Time between two successive snapshots is 5.55 µs.
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FIG. 5. Temporal evolution of the modal coefficients on ten
acoustic periods corresponding to case (a) in Fig. 3, obtained from
camera 1 (blue curves with circles) and camera 2 (green curves with
squares).

period doubling of the nonspherical oscillations is also clearly
observed. Performing the modal decomposition of the bubble
contour captured by both cameras then leads to the temporal
curves shown in Fig. 7. Observing the results obtained from the
first camera directly shows the non-existence of shape modes
coefficients because of the apparent sphericity of the bubble,
while the results obtained from the second camera are similar
to those presented in Fig. 5. It is worth noting that the
spherical oscillations obtained on both views show obvious
differences since the apparent spherical oscillations obtained
on the first camera result from a combination of all vibrational
modes. This can be easily demonstrated by considering the
modal decomposition obtained from the second camera and
computing the surface coordinate Eq. (2) in the particular
situation of a 90◦ rotation, so that

rs(π/2,t) ≃ a0(t) − 1
2a2(t) + 3

8a4(t) (4)

reduced here up to the fourth shape mode. The results obtained
from Eq. (4) are given by the red solid curve in Fig. 7,
which nearly overlays the modal coefficient obtained from

the first camera. It should be emphasized at this point that the
modal decomposition can naturally lead to inaccurate results,
as illustrated here by the apparent spherical oscillations of the
bubble.

The exemplary cases presented in Figs. 3(a) and 3(b)
correspond to ideally oriented bubbles for which the definition
of axisymmetry is unambiguous. Another suitable case is
illustrated in Fig. 3(c), for which one axis of symmetry is
oriented in the vertical direction on at least one camera. This
allows to assert that the axis of symmetry of the bubble eb
necessarily lies in the view plane of the other camera, thus the
bubble contour can be described by Eq. (2) and used for modal
decomposition. Finally, in the most general case [Fig. 3(d)]
where both apparent axes of symmetry are randomly oriented,
bubble contours are purely apparent contours in 3D space
and cannot be described by Eq. (2). In that case, the modal
decomposition of the surface coordinate leads to artificial
modal coefficients and further analysis becomes irrelevant.
In the next section, all the results presented correspond to
bubbles for which axisymmetry is ensured [cases presented in
Figs 3(a)–3(c)].

IV. CHARACTERISTICS OF THE NONSPHERICAL
OSCILLATIONS

A. Summary of the model

In the following, we further analyze the dynamics of the
nonspherical oscillations through direct comparisons with a
suitable theory. In a previous study [27], we observed nonlinear
mode coupling and the necessity of introducing this effect
theoretically was pointed out. The chosen model is based
on a set of dynamical equations derived by Doinikov [19]
at the second order of accuracy, latter expanded to cubic
order by Shaw [13,14]. The full equations derived in the
above-mentioned references are however strongly simplified
in the present study by assuming (i) uniform incident acoustic
pressure, (ii) negligible translational motion, (iii) viscous dissi-
pation at the lowest order (boundary layer approximation), and
(iv) accuracy to second order. The importance of accounting
for viscous dissipation can notably be inferred from an analysis
of the Ohnesorge number which demonstrates that viscous
effects cannot be neglected for micrometer-sized bubbles and
are expected to increase with the order of the shape mode
[23]. Retaining these hypotheses, the differential equations
governing the spherical mode a0 and nonspherical modes

ex

ez

ey⊗

ey

ez

ex

Camera 1

Camera 2

FIG. 6. Snapshot series on two acoustic periods corresponding to case (b) in Fig. 3. Time between two successive snapshots is 5.55 µs.
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FIG. 7. Temporal evolution of the modal coefficients on ten
acoustic periods corresponding to case (b) in Fig. 3, obtained from
camera 1 (blue curves with circles) and camera 2 (green curves with
squares). The red solid curve on the top graph corresponds to the
apparent spherical oscillations computed from camera 2 using Eq. (4).

an(n = 2,3,4) can be summarized as

a0ä0 + 3
2
ȧ2

0 = 1
ρ

(
p∞ + 2σ

R0

)(
R0

a0

)3γ

− p∞ + pa(t)
ρ

− 2σ

ρa0
− 4ν

ȧ0

a0
+ ϵ2h0

(
a2

i ,ȧ
2
i ,ai ȧi

)
, (5)

än + Bnȧn − Anan = ϵhn

(
a2

i ,ȧ
2
i ,ai ȧi ,aiaj ,ai ȧj

)
, (6)

where ρ and ν are the liquid density and kinematic viscosity,
σ is the surface tension, γ is the gas polytropic index, p∞
and pa(t) are the static part and the acoustic part of the
liquid pressure, and An and Bn are the classical time-varying
coefficients [7]:

An(t) = (n − 1)
[
ä0

a0
− (n + 1)(n + 2)σ

ρa3
0

−(n + 2)
(

1 + 2nδ

a0

)
2νȧ0

a3
0

]
, (7)

Bn(t) = 3
ȧ0

a0
+ (n + 2)

[
(2n + 1) − (n + 2)

2nδ

a0

]
2ν

a2
0

, (8)

where δ denotes the viscous boundary layer thickness. The
functions h0 and hn involved in Eqs. (5) and (6) gather all
the contributions of the nonlinear interactions between shape
modes at the second order of approximation (i,j = 2,3,4).
Their mathematical expressions are not explicited here for the
sake of conciseness but they can be found in Refs. [13,19]. The
numerical integration of Eqs. (5) and (6) is achieved for a mod-
ulated acoustic pressure field pa(t) of the form given by Eq. (1).

B. Temporal dynamics

Experimental and theoretical results are compared in Fig. 8
for a bubble of radius R0 = 44 µm driven at mean acoustic
pressure Pa = 22.5 kPa and modulation amplitude η = 0.23.
It should be emphasized that we make use of the periodicity
of the bubble oscillations at the modulation frequency to
substantially increase the time resolution from the combination
of around ten modulation periods of the entire acquired movie.
This allows to get almost 60 experimental points per acoustic
period and highly resolved temporal dynamics. Figure 8(a)
reveals the onset of the second shape mode with characteristic
dynamics including exponential growth of the instability,
saturation and slow decay. This nonspherical mode, reaching
the largest amplitude values, corresponds to the most unstable
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FIG. 8. Temporal evolution of the modal coefficients for a bubble of radius R0 = 44 µm driven at mean acoustic pressure Pa = 22.5 kPa
and modulation amplitude η = 0.23. The time length corresponds to one period of modulation f −1

m = 12.8 ms. (a) Experiments. (b) Theory.
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FIG. 9. Comparison between theory (black curves) and experi-
ments (blue curves with circles) at the acoustic time scale.

mode parametrically excited by the spherical oscillations of
the bubble. Given the bubble radius R0 = 44 µm and acoustic
frequency fa = 31.25 kHz, the computation of the acoustic
pressure threshold [7] for this mode gives P2,th ≃ 18.1 kPa,
indeed lower than the mean acoustic pressure Pa = 22.5 kPa
used in experiments. The experimental results also show the
appearance of the fourth shape mode, although computing
the pressure threshold for this mode gives P4,th ≃ 37 kPa.
Consequently, this additional mode does not come from a
classical parametric excitation but from nonlinear effects, in
particular from quadratic contributions of the second mode
a2 to the dynamics of the fourth mode a4. This analysis is

also supported by the numerical simulations in Fig. 8(b),
which are in agreement with the experimental observations.
It is clearly observed that, whereas the second shape mode
is the only unstable mode, the theory predicts oscillations of
the fourth shape mode. It is worth noting that the third shape
mode does not appear through the same process, which is
also consistent with theoretical predictions stating that even
modes can only excite other even modes through nonlinear
coupling [13]. Experimental and theoretical results are further
compared at the acoustic time scale in Fig. 9 by zooming at
the middle of the modulation period (the modal coefficient
a3 has been removed for clarity). Note that while the global
dynamics observed in experiments are well captured by the
model, a difference remains concerning the amplitude of
the oscillations (see Fig. 8). To get a direct comparison of
the temporal dynamics, we chose to present the shape modes
coefficients normalized by their maximum amplitude. Such a
representation has not been made on the spherical oscillations
of the bubble and the top graph is a direct zoom-in of Fig. 8: this
allows us to highlight the excellent agreement between theory
and experiments, including fundamental-driving oscillations,
second-harmonic oscillations (nonlinearities of the spherical
mode), and (weak but observable) subharmonic oscillations
induced by the nonspherical oscillations. A good agreement
is also obtained on the temporal dynamics of the nonspherical
oscillations. The second shape mode oscillates at half the
driving frequency, with a more pronounced distortion observed
in experiments. The fourth shape mode oscillates mainly at the
driving frequency (quadratic contribution of the second mode)
and exhibits strong nonlinear oscillations which are correctly
captured by the model.

C. Shape modes amplitudes

Collecting several measurement series made on bubbles
of different radii driven with increasing pressure amplitudes,
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FIG. 10. Shape modes amplitude as function of the acoustic pressure. The experimental results are represented by symbols for n = 2 (blue
circles), n = 3 (green triangles), and n = 4 (red squares). The error bars are only provided for the main modes for clarity; however, similar
uncertainties are obtained for the other shape modes. The theoretical results are represented by curves with colors corresponding to modal
coefficients and line styles corresponding to three values of bubble radius. (a) Quadrupolar bubble. R0 ∈ [46–49] µm. (b) Octupolar bubble.
R0 ∈ [70–73] µm.
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Fig. 10 shows the maximum amplitude of the nonspherical
oscillations as function of the acoustic pressure. Figure 10(a)
presents results obtained for bubbles of radii lying in
[46–49] µm exhibiting mainly quadrupolar deformations,
while Figure 10(b) presents results obtained for bubbles
of radii lying in [70–73] µm exhibiting mainly octupolar
deformations. On both graphs, the maximum amplitude of
each shape mode is plotted as function of the maximum
acoustic pressure reached during one modulation period,
thus (1 + η)Pa according to Eq. (1). In order not to overload
the graphs, the uncertainties on experimental data are only
provided for the main modes [n = 2 in Fig. 10(a) and n = 3 in
Fig. 10(b)]; however, similar uncertainties are obtained for the
other shape modes. An increase of the shape modes amplitudes
is obtained when the acoustic pressure exceeds a critical
value, found to be around 22 kPa for the quadrupolar mode
and 9.5 kPa for the octupolar mode. In Fig. 10(a), the gradual
appearance of the fourth shape mode is also clearly observed,
as a consequence of the nonlinear nonspherical oscillations of
large amplitudes. Such a nonlinear behavior is, however, not
visible in Fig. 10(b) and stronger oscillations driven at larger
acoustic pressures would be necessary to possibly observe
the excitation of even modes by the third shape mode as
predicted by theory [13]. Nevertheless, the theory qualitatively
reproduces the observations in the range of acoustic pressures
considered in this study, both for parametrically excited
shape modes [n = 2 in Fig. 10(a) and n = 3 in Fig. 10(b)]
and nonlinearly excited shape modes [n = 4 in Fig. 10(a)].
Although globally consistent with the experimental results,
the numerical simulations also point out the sensitivity of
the theory to the bubble static radius, for which a slight
change of 1–2 µm can lead to noticeable differences on the
nonspherical oscillations. An even better agreement would
require better accuracy and control of the experimental bubble
radius, while approximate solutions of Eqs. (5) and (6) would
be very instructive to capture the general dependency of the
shape modes amplitude on the physical parameters above
onset.

V. CONCLUSIONS

A set of controlled experiments has been conducted to
capture the temporal dynamics of nonspherical oscillations of
single micrometer-sized air bubbles levitated in water. Shape
modes were parametrically excited using a slowly varying
amplitude-modulated ultrasonic field. Using two synchronous
high-speed cameras located at 90◦ provided direct observations
of the axisymmetry of the bubble shape, thus validating the
modal decomposition of the surface coordinate on zonal
harmonics. As the axis of symmetry of the bubble apparent
contour corresponds to the orthogonal projection of the
bubble axis on the camera view plane, a particular orientation
of this axis on at least one camera ensures to correctly define
the surface coordinate and to obtain a physically relevant
modal decomposition. Once the axisymmetry of the bubble
examined in detail, the nonspherical oscillations have been
characterized by increasing the acoustic pressure amplitude
above the parametric threshold. Several features inherent to
the nonlinear behavior of the shape oscillations have been
highlighted by the high-speed imaging and successfully
compared with a second-order accurate theory. Bubbles
exhibiting quadrupolar oscillations show an exponential
growth followed by a saturation towards finite amplitude and
rapidly induce oscillations of the fourth shape mode through
nonlinear coupling. While finite amplitude oscillations are also
observed for octupolar bubbles, nonlinear coupling with even
modes is not observed for the acoustic pressures considered
in the present study. In addition, the order of magnitude of the
amplitude of the nonspherical oscillations is recovered by the
theory, as well as its dependence on acoustic pressure.
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