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Abstract

This study presents a method for measuring speakers similarity
(the tendency for speakers to exhibit similar speech patterns)
by means of prosodic cues. It shows that similarity changes
throughout social interaction and that its variations can inform
about speakers’ attitudes, similarity being more important when
speakers are more involved in the interaction. It supports the
assumption that similarity is part of social interaction and may
be implemented into spoken dialogue systems.
Index Terms: synchrony, convergence,
prosodic cues, involvement

multi-modality,

1. Introduction

People interacting in a conversation have been observed to ex-
hibit similar speech patterns in terms of speech sounds, syntax,
lexicon and prosody (for a review see [1]). In most studies,
speech similarity is described as a linear phenomenon. Bur-
goon et al [2], for instance, define it as the situation where
the observed behaviours of two inter-actants although dissim-
ilar at the start of the interaction are moving towards behav-
ioral matching. This implies that similarity increases over time.
However, it can be assumed, especially in spontaneous speech,
that similarity tends to vary throughout the conversation, result-
ing in phases of similarity and phases of no-similarity and that
its dynamic changes participate in making an interactive dia-
logue natural.

Relying on the assumption that similarity increases over
time, most of the methodologies developed failed to identify
the dynamics of similarity, with the exception of Edlund et al
[3]. In this study, where the temporal variations of similarity
are described in terms of synchrony and convergence and are
measured in terms of pauses length (within-speaker silences)
and gaps (between-speaker silences), it is shown that similarity
between speakers is not indeed a global phenomenon and that it
can be modeled dynamically.

In this paper we propose to measure similarity in speech
for the whole interaction but also at various points of the con-
versation. Similarity is measured by means of prosodic cues
(i.e. pitch level and span, voice intensity level and variation,
mean pause duration and number of pauses). In fact, as [4],
we assume herein that similarity is the result of different phe-
nomena at different levels (prosodic, lexical, syntaxic, visual,
etc.) and that only a full description of these different levels can
capture its temporal dynamics. In this work, we propose a full
description at the prosodic level where similarity is measured
with regards to three prosodic parameters (i.e. f0, intensity and
duration) and argue that the method developed can be applied
to other levels.
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Many terms have been used to describe the phenomenon
of similarity such as accommodation, alignment, convergence,
entrainment, synchrony, terms most of the time being bounded
to a specific theory. In this work, we propose to define sim-
ilarity not according to a particular framework but rather ac-
cording to what will enable us to better describe, measure and
as a long-term goal, model it. As in [3], we propose that syn-
chrony and convergence are phenomena underlying similarity.
Synchrony is defined as a situation when two speakers exhibit
similar speech patterns, their speech variations resulting in two
parallel channels and convergence as the situation when con-
versational partners’ speech converge toward a common point
(figure 1).
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Figure 1: Phenomena underlying similarity

No-convergence

Going further, we also propose to consider anti-similarity,
also divided into two underlying phenomena: Anti-synchrony
is the tendency for speakers to differentiate their speech from
the other’s, resulting in mirror or anti-correlated patterns, and
divergence, their tendency to move apart towards different di-
rections. A last state considered is no-similarity, i.e. the situ-
ation when speakers neither exhibit synchrony, anti-synchrony,
convergence nor divergence. Drawing an analogy with coupled
oscillators model found in Physics, we assume that these under-
lying phenomena can be exhibited individually or in combina-
tion, resulting in 7 possible different states:

- 3 states of similarity (synchrony, convergence or both syn-
chrony and convergence)

- 3 states of anti-similarity (anti-synchrony, divergence or
both anti-synchrony and divergence)

- 1 state of no similarity (no synchrony and no convergence)

When we investigate the temporal dynamics of similarity,
an underlying question that can also be raised is why similar-
ity is interrupted or begins at certain points of the conversation.
In this paper, we investigate whether the temporal variations of
similarity are correlated with the speakers’ degree of involve-
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ment, assuming that similarity could be used as a cue to inform
about speakers’ attitudes. We argue that taking into account the
temporal dynamics of mimicry improves the modeling of social
interaction and hence spoken dialogue systems.

2. Experiment
2.1. Data

This study was based on the D64-corpus [5]. The D64 corpus
consists of the conversational speech of 5 speakers and was col-
lected in a domestic apartment; this corresponds to a total of 8
hours of recordings. For our analyses, sections where only two
participants took part in the conversation were selected. The
first section consists of the conversation of speaker 1 (S1; male)
and speaker 2 (S2; female). The topic under discussion was
S2’s master thesis, S1 supervising S2’s work. In the second
section, S1 again participates in the conversation but this time
with a male colleague (speaker 3; S3). They exchanged per-
sonal experiences and opinions (e.g. politics, travel, etc.). Each
interaction lasts about half an hour. Conversations were held in
English.

2.2. Segmentation and measurements

The prosodic parameters under investigation are pitch level and
span, voice intensity and number and mean duration of pauses.
Acoustic measurements were obtained using the phonetic soft-
ware Praat [6]. Pitch level and span were measured by calculat-
ing the FO-median and the log2(FOmax - FOmin) respectively.
The FO-median is given on a linear scale (i.e. Hertz) while FO-
max/min is given on a logarithmic scale (i.e. octave). The inten-
sity of the voice was expressed as the root mean square (RMS)
amplitude (rms-Int) and standard deviation Intensity (sd-Int).
Silent pauses were detected automatically and corrected man-
ually. Filled pauses, laughters and overlaps were excluded from
the analyses.

2.3. Prosodic cues extraction

The difficulty encountered when measuring speech similarity is
that it is not time-aligned. To resolve this, the TAMA (Time-
aligned moving average) method, as proposed by Kousidis et
al [7], was applied. Average values of prosodic cues were
automatically extracted from a series of overlapping windows
(frames) of fixed length (20 seconds) using a time step of 10
seconds. This means that prosodic cues were extracted for each
speaker every 10 seconds. Average values were calculated pro-
portional to the utterances’ length within the window, i.e. av-
erage values correspond to weighed means. Figure 2 shows the
moving window along speakers interaction (represented by a
conversation chart).

Speaker 1

Speaker 3

0 60

I Speech D Silence

Overlap I:] Moving window

Figure 2: Parts of the conversation chart for speakers 1 and 3
interaction.

Average values were plotted to visually investigate whether
speakers tend to exhibit similar speech patterns. Figure 3 repre-
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sents the two TAMA times
obtained for S1 and S3.

series of f0-median average values

fo-median

Figure 3: TAMA time series of fO0-median average values (rep-
resented here in Hertz) obtained for S1 and S3 interaction (17
minutes).

2.4. Similarity measurement and significance
2.4.1. Analogy with coupled oscillators model

As mentioned in the introduction, similarity phenomena is en-
visaged herein by drawing an analogy with coupled oscillators
model found in Physics (see for example [8]). This enables to
measure the 7 states underlying similarity.

The model describes the dynamics of two oscillators (say
two masses, each of them tied by a spring to a wall) coupled
together by a spring. The spring plays here the role of a force
coupling the respective oscillating trajectory x1 and x2 of the
two masses.

The mathematical treatment of the problem let emerge two
oscillating modes (normal modes). The symmetric mode asso-
ciated with the sum of the mass positions,

sum=2x1 + T2

describes the external oscillations of the two masses system
seen as a whole. The asymmetric mode, associated with the
difference of the mass positions,
diff = 21 - 22

describes the internal oscillations at works inside the two
masses system. These oscillations, which take place at time
scale 7, shorter than their external counterparts 7 (i.e. T <
Ts), account for the energy exchanged between the two masses.
The dynamics of the system is fully determined by a linear com-
bination of the two normal modes.

Synchrony and anti-synchrony measurement

The model allows us to describe a continuum of behaviors,
from pure synchrony, i.e. the coupling induces a synchronisa-
tion of the two trajectories (that is the case if the amplitude asso-
ciated to the asymmetric mode is null, A4i¢¢ = 0), to pure anti-
synchrony, i.e. the masses are forced to move in opposite direc-
tion (the amplitude of the symmetric mode is null, Asun = 0).
For an oscillating time series, the variance of the series is pro-
portional to the square of the amplitude. The synchrony strength
S can thus be measured by computing the ratio between the dif-
ference of variance of the two modes and the total variance of
the system:

S = (var(sum) - var(diff)) / (var(sum) + var(diff))
where the variance is computed over a window time scale

greater than the characteristic period 7s of the sum time se-
ries. The synchrony strength S is proportional' to the Pearson’s

1t can be shown that the equality holds if var(z1) = var(zz2) = 1.



correlation coefficient ppearson(1, T2) of the two time series. It
is expected to be significantly positive during synchrony phase,
negative for anti-synchrony phase, and null if the amplitudes of
the symmetric and asymmetric modes are equally distributed or
if the oscillators are not coupled.

Convergence and divergence measurement

In addition to synchrony behavior, convergence effects will
correspond to variations of the respective equilibrium position
210 and x2o of the two oscillators. Three cases must be consid-
ered, depending on the length [ of the coupling string with re-
spect to the distance d separating the two equilibrium positions
of the masses in the absence of the spring. If the spring length
[ is lower than the distance d, the spring will act as an attractive
force which will move closer the two equilibrium positions x10
and x20. On the contrary, if [ is greater than d, a repulsive force
tends to push aside the two equilibrium positions, the third case
being [ equals d which let unchanged the equilibrium position of
the two masses. By varying the spring length over time, one ob-
tains a mechanism which depicts the possible transitions of the
coupled system between the three following states, or phases,

- phase of convergence: | < d, 10 and x29 move closer,
- phase of stability: [ = d, x10 and 220 remain unchanged,
- phase of divergence: [ > d, 19 and x20 move aside.

A measure of the convergence strength C' will thus consist in
analysing the variation of the diff time series, averaged over a
window time scale greater than the characteristic period 7’s of
the sum time series. Edlund et al. [3] suggest that the following
quantity can be used:

C= ppearson(abs(diff), t)
where t are the times corresponding to x1 and z2 observations
and the correlation coefficient is computed in window time scale
greater than T's. The convergence strength is varying from —1
(full convergence) to +1 (full divergence) and is expected to be
null when stability phases are reached or if the oscillator are not
coupled.

Here the analogy breaks off between coupled oscillators
and speakers similarity. It has been helpful in identifying two
time scales (7's associated with the characteristic period of the
sum time series and 7. associated with the diff time series), and
at selecting the pertinent phases of similarity presented in the
introduction. In particular, the analogy does not pretend to ex-
plain how the speakers dynamically perform phase transitions.

2.4.2. Application to the TAMA method

This in mind, we will consider hereafter that our two TAMA
time series (described in 2.3), which represent the variation of a
given prosodic parameter for both speakers, can be seen as the
mass positions x1 and x2 of the coupled oscillators.

First, the synchrony strength S and the convergence
strength C' are computed for the whole interaction. Then, they
are calculated at some parts of the conversation in order to de-
tect transitions between phases of similarity and dissimilarity
along the interaction. This is done by measuring .S and C' within
moving windows of time scale greater than the characteristic
period T of the sum time series.

The convergence strength C' is directly computed from the
value of the parameter. For the synchrony strength S however,
the two times series are normalized (z-score transformation) in
such a way that their mean equals zero and their variance is unit
within each window:

mean(z;) = mean(xz) =0 ; var(x1) = var(zz) = 1

1395

After such a normalization step, the measure of the synchrony
strength is equals to the Pearson’s correlation coefficient of the
two time series, i.€.S = pPpearson(Z1, 2).

We propose a confidence level interval for both the estimate
of the S and C, by applying the Fisher’s transformation to S,
and similarly to C"

F(S) = arctanh(S) = 1/2 * In( (14+5) / (1-5) )
which approximately follows a normal distribution of mean
F(S0) (S0 is the value of S under the null hypothesis) and
a standard deviation 1/SQRT(Neff-3), with Neff the effective
number of independent data within the window for one of the
series. Therefore, the z-score variable

z = (F(S) - F(S0)) * SQRT(Neft-3)
allows to decide whether the value of S and C is statistically
significant or rather due to sampling fluctuations.

2.5. Annotation of involvement

The data was annotated for involvement. By involvement, we
refer to the general involvement of a group of speakers rather
than the involvement of an individual in a conversation [5]. In-
volvement was annotated on a scale from O to 10 for 5 second
intervals; O being the smallest degree of involvement and 10
the highest. Only involvement values between 4 and 9 were
chosen for the here selected parts of the corpus. In order to val-
idate the annotation schema a perception test was conducted in
which 20 participants took part. Inter-annotator agreement was
found to have a kappa value of 0.56. In this study, the corre-
lation between degrees of involvement and similarity strength
was investigated for interaction S1/S2.

3. Results
3.1. Synchrony, anti-synchrony, no-synchrony
3.1.1. For the whole interaction

A synchrony effect is detected for S1 and S3 on the whole in-
teraction. S1 and S3 exhibit similar speech patterns in terms
of voice intensity level and variation (rms-Intensity, p=0.00554
& sd-Intensity, p=2.81271e-06), mean pause duration (dpauses,
p=0.01786) as well as the ceiling of their pitch range (f0-max,
p=0.01426). For the whole S1/S2 interaction, the synchrony
strength of each individual parameter does not reveal a statisti-
cally significant synchrony trend. This non detection can reflect
that no synchrony is present in the interaction or alternatively
that synchrony operates between S1 and S2, but only during a
short phase of the whole interaction.

3.1.2. Temporal variations of synchrony

The temporal variations of synchrony is investigated by com-
puting the synchrony strength within the time moving window
of size 20 mentioned in the previous section. For the interaction
S1/S3, speakers show similar variations in terms of fO-max, fO-
span, rms-Intensity, sd-Int and dpauses and exhibit a long phase
of synchrony (p<0.05). Figure 4 gives an example of S-series
obtained for the parameters f0-max, fO-span, rms-Intensity, sd-
Int and dpauses. In order to reduce error bars amplitude, mean
synchrony strength (mean(S)), obtained from the set of the 3
prosodic parameters (fO, intensity and duration), was also cal-
culated. Figure 5 shows the variation of mean(S) with time,
which allows to define one long phase of synchrony, from point
9 to 32 (p<0.05).

Similar results are found for interaction S1/S2. S1 & S2
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Figure 4: Representation of S for f0-max, f0-max/min, rms-Int,
sd-Int and dpauses obtained for each moving window (Interac-
tion S1/S3).
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Figure 5: Representation of mean(S) obtained for each moving
window for S1 and S3 interaction.

exhibit similar patterns in terms of voice intensity (rms-Int),
during a shorter period roughly located at the middle of the in-
teraction. The computation of mean(S) allows to locate more
precisely this synchrony phase (from moving time window 16
to 25, not shown).

3.2. Convergence, divergence, no-convergence

No convergence was found for the whole conversations, for in-
teraction S1/S2 as well as for S1/S3. The analyses on temporal
variations neither allow to detect phases of convergence or di-
vergence in interactions S1/S2 and S1/S3.

3.3. Synchrony and degrees of involvement

Since synchrony and not convergence was detected in our data,
only the correlation between synchrony and involvement was
investigated. This was done for interaction S1/S2. Results show
that involvement is strongly correlated to synchrony strength S
(Rho=0.9052; p = 3.55884e-05). More specifically, the higher
the degree of involvement, the more speakers display simi-
lar speech patterns in terms of Rms-Intensity (r=0.89), dpause
(r=0.89), npauses (r=0.59), fO0-min (r=0.55), fO-span (r=0.51)
and fO-median (r=0.42), S being stronger in terms of intensity
of the voice.

4. Discussion

Our results show that prosodic cues can be used to measure and
detect similarity in speech. They also support the assumption
that similarity does not increase over time but is rather dynamic
where the interaction is marked by phases of similarity and dis-
similarity.

It is shown in this data that speakers exhibit parallel
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prosodic patterns rather than tending to converge towards com-
mon prosodic values. The fact that they do not display conver-
gence may be explained either by physiological constraints or
by the fact that the prosodic features of the speakers are intrin-
sically similar. For example, the fact that we do not find any
convergence in interaction S1/S2 may be due to gender differ-
ences. Converging in this interaction (composed of a female
and a male speaker) may require too much vocal effort. As for
interaction S1/S3, there is no ‘need’ to converge since the two
male speakers have a similar voice level. From these results,
it can be assumed that depending on the features under inves-
tigation (i.e. speech sounds, prosody, syntax, lexicon, visual,
etc.), speakers may exhibit either synchrony, or convergence or
both. This justifies the 7 similarity states defined herein. It can
also be hypothesized that speakers’ synchrony may be linked
to the informational structure and hierarchical organisation of
discourse.

The fact that speakers’ similarity is expressed by specific
prosodic cues underlines the complexity of investigating speak-
ers’ strategies in communicating and suggests the use of dif-
ferent strategies. Investigating other levels and analysing more
data will allow us to better understand how and what this phe-
nomenon is used for in social interaction.

Finally, this study has shown that degrees of involvement
are correlated with similarity in speech; the more the speakers
are involved in the interaction, the more they tend to exhibit
similar speech prosody. We therefore argue that the presence or
absence of similarity in speech prosody can serve as a cue for
the detection of degrees of involvement in spontaneous conver-
sation.

5. Conclusions

This study has shown that the dynamics of similarity in con-
versational speech can be measured by means of prosodic cues.
It reports that similarity does not increase over time but rather
changes throughout social interaction. We also found that the
higher the degree of involvement, the higher the strength of sim-
ilarity. Our study therefore supports the claim that similarity in
speech is part of social interaction and that it should be imple-
mented into spoken communication systems.
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